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Music Technology Group, Machine Learning and Music Lab, Department of Communication and Information Technology,

Pompeu Fabra University, Barcelona, Spain

Background: Expression is a key skill in music performance, and one that is difficult to

address in music lessons. Computational models that learn from expert performances

can help providing suggestions and feedback to students.

Aim: We propose and analyze an approach to modeling variations in dynamics and note

onset timing for solo violin pieces with the purpose of facilitating expressive performance

learning in new pieces, for which no reference performance is available.

Method: The method generates phrase–level predictions based on musical score

information on the assumption that expressiveness is idiomatic, and thus influenced by

similar–sounding melodies. Predictions were evaluated numerically using three different

datasets and against note–level machine–learning models, and also perceptually by

listeners, who were presented to synthesized versions of musical excerpts, and asked

to choose the most human–sounding one. Some of the presented excerpts were

synthesized to reflect the variations in dynamics and timing predicted by the model,

whereas others were shaped to reflect the dynamics and timing of an actual expert

performance, and a third group was presented with no expressive variations.

Results: surprisingly, none of the three synthesized versions was consistently

selected as human–like nor preferred with statistical significance by listeners. Possible

interpretations of these results include the fact that the melodies might have been

impossible to interpret outside their musical context, or that expressive features that

were left out of the modeling such as note articulation and vibrato are, in fact, essential

to the perception of expression in violin performance. Positive feedback by some listeners

toward the modeled melodies in a blind setting indicate that the modeling approach was

capable of generating appropriate renditions at least for a subset of the data. Numerically,

performance in phrase–level suffers a small degradation if compared to note–level, but

produces predictions easier to interpret visually, thusmore useful in a pedagogical setting.

Keywords: expressive music performance, machine learning, music information retrieval, violin, music pedagogy

1. INTRODUCTION

When practicing an instrument on their own, music students focusmostly on playing correctly, and
not enough on playing expressively. Software tools for assisting practice could address this issue
by offering suggestions and feedback about expressive aspects of performance such as dynamics,
articulation, and timbre quality, ensuring students keep these concerns in mind at all times.
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However, the implementation of this feature requires equipping
software tools with models of performance that enable them to
generate coherent suggestions for any musical piece included in
the practice routine. This work explores the feasibility of that
approach by proposing such a model and analyzing its suggested
variations in dynamics and note onset timing of solo violin pieces.

Much of the work in the field of expressive performance
modeling deals with predicting expressive features of notes
in isolation, however, in this particular scenario where the
goal is providing guidance to a human player, long–term
movements and character of expression take preference over
minute variations that occur note–by–note. For that reason, the
devised model bases its outputs on features of compositions
that play a strong role in representing musical context:
phrasing andmelody.

Phrasing is defined as the separation of successive notes from
one another, singly or in groups, by a performer, and the manner
in which this is done (Chew, 2001). In the context of this work,
it refers to the separation of sequences of notes into the smallest
cohesive groups typically acknowledged in the western musical
canon, themotifs (Drabkin, 2001), thoughwe refer to such groups
asmotifs or phrases interchangeably.

As for melody, it is understood for our purposes as a pattern
characterized by the relationships of pitch and duration of notes
in a phrase, that is, the tones of a phrase itself along with its
rhythmic qualities, but isolated from harmonic context.

Expression in music performance has been actively studied
for over two decades from several standpoints. Many authors
dedicate their efforts to computationally modeling expressive
performance actions as surveyed by Kirke and Miranda
(2009) and Widmer and Goebl (2004) allowing a range of
applications, from automatic performer recognition (Molina-
Solana et al., 2008) to adding realism to automatic performance
and improvisation (Grachten, 2001; Widmer et al., 2009). Other
notable aspects of expression inmusic include representation and
communication of emotion (Juslin and Timmers, 2010) and the
role of motion (Meyer, 1956; Huberth and Fujioka, 2018) and
expectations (Huron, 2006; Pearce et al., 2010), as summarized by
Juslin (2003). The problem of teaching expressive performance
in an effective manner has also been studied, though to a
lesser extent. Woody (2006) investigates different methods used
by teachers to communicate the desired expressive intentions
and their effectiveness. Some intersection between performance
modeling and pedagogy have been explored by Juslin et al. (2006)
with a system trained to give feedback to students on their ability
to communicate specific emotions through music in the guitar.
The pianoFORTE system (Smoliar et al., 1995) for assisting
piano instructors in discussing and instructing expressiveness
also serves as a seminal reference to this work.

Existing approaches to performance modeling have mostly
been developed for piano (Kirke and Miranda, 2013). Though
partially applicable, the many other expressive possibilities
available to violin performers justify developing more specific
models. From the existing piano approaches we highlight
the DISTALL system (Tobudic and Widmer, 2003) which
also produces timing and dynamics predictions incorporating
phrase–level analyses.

Specifically targeting the violin, the works of Maestre (2009)
and Van Der Linden et al. (2011) share a similar goal to ours, the
first one by predicting bow movement from score notation and
the second by seeking to correct violin students’ posture using
vibrotactile feedback in wearable devices. Finally, Ramirez et al.
(2013) provide a framework for expressive feature prediction in
violin performances, albeit in terms of classification rather than
regression as we do.

Evaluating expression in violin performances presents several
distinct challenges when contrasted with piano performances.
The advantage of the piano lies in the fact that the interaction
between performer and instrument can be summarized with
only a few parameters (mainly instants and velocities of keys
and pedals pressure and release). Thus, for piano, modeling
expression in these parameters is often sufficient for synthesizing
convincing performances. Since the violin offers musicians
several other expressive dimensions (e.g., attack speed, vibrato,
intonation, etc.), our approach to validating the restricted set
of modeled features—timing and dynamics—has been to ensure
that the synthesized sounds lacked any other type of expressive
variation. However, in many situations, these variations work in
conjunction and justify one another.

The model as implemented forms expressive suggestions
based on information taken from the musical score only, with the
purpose of presenting them to students as either visual feedback,
such as an orchestra conductor does, or by overlaying graphs on
the score itself, or auditory, by providing synthesized examples
or even accompaniment. At this stage, however, the mode output
is raw, and has been analyzed in terms of similarity to an actual
expert performance and perceived human-likeness, essentially
exploring whether an automatic recognition of phrasing and
melody from a score can used as predictor of its performance
attributes. Consequently, this is an indirect way of addressing
the broader question: to what extent do these musical structures
influence performance?

2. PROPOSED MODEL

As previously mentioned, the developed algorithm models the
dynamics and timing for a given musical piece, meaning that
given the computed score features, it outputs recommended
loudness levels for its performance, and indications of when to
rush or drag the tempo. Since its intended application is as a
pedagogical aid, we are interested in modeling the long–term
variations in expression that arise from the players’ interpretation
of the music rather than short–term variations that are not
only impractical to communicate in real time but are also, to
a large extent, influenced by the same long–term intentions as
well as some unconscious factors such as playing technique. For
that reason the model is trained on phrases rather than notes.
Nevertheless, it is built on top of a note–level structure, which
means all training data are initially processed in the form of note–
level inputs and outputs, and later aggregated into phrase features
as informed by a phrase boundaries determination method.

The note–level input features of interest are note pitch
and note duration. These were extracted from musicXML by
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FIGURE 1 | Summary of the steps for producing suggestions of expression.

a parser written in MATLAB (code available in GitHub1).
Other features present in scores such as note articulation,
dynamics annotations, and song key were also extracted
but were left out of the modeling in an effort to explore
exclusively the effect of melodic and rhythmic content
in expression. Also, by using only pitch and duration,
the model is readily applicable to even the simplest
music notation such as MIDI, allowing us to expand our
training set and to make use of automatic transcriptions in
future iterations.

The note–level output features are the mean level of loudness
at which each note was performed in the recordings, and their
onset times and durations. To compute them, the audio files
were normalized to−0.1 dB and then input in the Tony software
(Mauch et al., 2015), where the onsets and offsets played were
recognized by a hidden Markov model designed by Mauch et al.
over the pYin (Mauch and Dixon, 2014) algorithm and manually
corrected. This information about onsets and offsets could then
be exported to a table and their corresponding pitches matched
against the pitches from score notes using an implementation
of the Needleman–Wunsch algorithm for optimal matching
of sequences (Needleman and Wunsch, 1970), thus remedying
discrepancies between score and performance (e.g., grace notes).
Finally, themean loudness level v of each note could be computed
according to Equation 1, where s are audio samples in the
time-frame of note n.

vn = 20 · log







√

√

√

√

√

offsetn
∑

i=onsetn

s2i






(1)

The flowchart in Figure 1 outlines the steps involved in
computing the expressive features of a piece with the proposed
model. A detailed description of each step follows.

The automatic detection of melodically–coherent phrases uses
a top-down approach based on the Local Boundary Detection
Model (LBDM) (Cambouropoulos, 2001). The LBDM outputs a
value for each note in a piece which represents the likelihood of
that note being a local boundary (i.e., the first in a phrase) taking
into account the variations in pitch, note durations and presence
of rests. The segmentation algorithm uses these values for
recursively evaluating whether a segment should be split further.
The following pseudocode illustrates how that is achieved:

As a result of its structure, the algorithm gravitates
toward phrases of approximately 10 notes without

1https://gist.github.com/fabiozeh

Algorithm 1:

Input: The LBDM value li for every note i = 1..end.

1: procedure SEGMENT([lk, lk+1, ..., ln])
2: if n− k ≤ 10 then
3: return one segment, from k to n
4: else

5: Calculate z-scores from values [lk+2, ..., ln−1]
6: if the largest z-score z(lmax) > 2 then
7: return Segment([lk, ..., lmax−1]),

Segment([lmax, ..., ln])
8: else

9: return one segment, from k to n

imposing a hard restriction. Even though phrases of
a single note might be musicologically acceptable, we
intentionally prevent their occurrence since pieces
with ambiguous phrase boundaries often cause the
LBDM to output high likelihood values for consecutive
notes in situations where one-note phrases would not
be reasonable.

Once a piece is split into phrases, each phrase must be
associated with a set of characteristics—phrase input features—
that allow us to describe its expressive character as phrase
output features.

The input features are essentially the key–invariant melodic
contour, and the tempo–invariant rhythmic contour. The
melodic contour is a time–series with one data point per phrase
note beginning in zero and with each subsequent value equal to
the difference in semitones between consecutive note pitches. As
an example, a major triad in root position would be encoded as
the sequence: 0, 4, 3. The rhythmic contour is also a time–series
with one data point per phrase note; its first value is one and the
others are equal to the ratio between each note in the phrase and
the previous one.

The intelligence built into the model follows the principle
that similar–sounding melodies are more likely to be performed
similarly. In practice, this is implemented by applying a k-NN
algorithm that, for each input phrase, locates its most similar
phrases in the training set with respect to the described features.
The measure applied for determining the degree of similarity
between two phrases is an implementation of the method
proposed by Stammen and Pennycook (1993), which itself is a
dynamic time warping algorithm that interprets each phrase as
a two-dimensional time series, the dimensions being our phrase
input features. The cost function is based on euclidean distance,
that is, the sum of squared differences between values in each
dimension. The algorithm outputs a distance value which is the
minimum cost required to warp the first time-series into the
second, therefore, zero for equal melodies and a positive real
number otherwise. The intuitive interpretation of the method is
that two melodies are rated as more distant, or dissimilar, the
more notes one has to include or change—in pitch, duration, or
both—in order to make both melodies sound the same.

The phrase output features must describe the dynamics
and timing of a phrase in terms that can be transposed to
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other pieces and contexts. Our implementation defines four
of them: mean dynamic level, dynamic range, dynamic
contour, and local tempo curve. These features are
computed for every phrase in the training set recordings
and act as references for the model’s operation. When
suggesting how to express a new phrase, all four features
are decided by the algorithm for the new phrase using the
available references.

The formal definition of each of these features depends on
some metrics related to the entire piece. In a piece with n notes,
each with loudness v (defined in Equation 1) and duration d, the
mean loudness level L of the piece and its dynamic range R are:

L =

n
∑

i=1
vi · di

n
∑

i=1
di

R = maxi(vi)−mini(vi) (2)

Essentially, L is the weighted mean of loudness values vi with
respect to the durations di, and R is the range of excursion of the
same random variable.

Using these metrics, we define the mean dynamic level ℓp of a
phrase p havingm notes and beginning in note k as:

ℓp =
1

R
·











k+m
∑

i=k

vi · di

k+m
∑

i=k

di

− L











(3)

This feature (ℓp) refers to the character of a phrase (e.g., forte,
pianissimo, etc.) and is represented by a single real number that
measures how the loudness in the phrase deviates from the mean
loudness in the piece, normalized by that piece’s dynamic range.

The second output feature is the phrase dynamic range rp:

rp =
1

R
·
(

maxp(vp)−minp(vp)
)

(4)

Analogously to what happens between ℓp and L, output feature rp
is the phrase–level counterpart of R, and it measures the dynamic
range of a phrase in “piece range” units.

Lastly, phrase contour (Cp) is a function which describes how
each note in a phrase p contributes to its dynamics once the
effects of ℓp and rp are discounted. Therefore, if ℓp, rp, and Cp

are known for p, the loudness value for each note i ∈ p can be
determined by:

vi = L+ R ·
(

ℓp + rp · Cp(i)
)

(5)

This definition has two implications. The first is that we can
determine the values of Cp in each note i for phrases in the
training set since their loudness values vi are known. Using
those values, Cp is fitted in a quadratic polynomial using the
least–squares method, as inspired by observations regarding
typical phrasing dynamics by McAngus Todd (1992) and other
researchers (Gabrielsson et al., 1983; Tobudic andWidmer, 2003;
Livingstone et al., 2010) who all point to their parabolic contour.

This allows us to define Cp for all p in the training set using only
three coefficients for each.

The second implication of Equation 5 is that determining
ℓp, rp, and Cp for a phrase p for which we wish to provide
dynamics suggestions is enough to compute suggested loudness
values vi for all notes i ∈ p, as long as chosen values for L and
R are provided. In practice, L represents the overall character of
the piece and R its overall dynamic range, to which all phrases
should conform. These can be set to default values or adapted
according to a wider context (e.g., a lower L for an adagio than
for an allegro). This aligns with our initial desire of characterizing
phrases independently of context, so that the knowledge–base of
the training set is applicable across all musical intentions.

Finally, the local tempo curve is defined as the function that
describes how the tempo changes throughout the phrase. For
each note i, its local tempo value ti is computed as:

ti =
60

T
·
bi

ioii
(6)

Where T is the piece tempo in beats per minute, bi is the duration
of note i in beats according to its rhythmic figure in the score,
and ioii is the inter–onset interval between notes i and i + 1.
The local tempo curve of each phrase is, once again, the quadratic
polynomial that best fits its local tempo values, for x–axis values
spaced proportionally to bi.

For a suggested local tempo curve τ , one can use Equation 6
to compute the IOI of each note, since ti is given by τ (bi) and
the desired piece tempo T should be provided. Assuming that the
first note starts at 0s and working sequentially, this defines the
onset times of all notes.

It should be highlighted that the only processing step
in the modeling that required manual intervention was
the onset detection for note alignment. However, since
this task was partially automated and completed without
making use of score information, we are confident that
the entire modeling process could be done automatically to
satisfactory results, enabling its application in the desired
pedagogical context.

3. NUMERICAL AND PERCEPTUAL
EVALUATIONS OF THE PROPOSED
MODEL

3.1. Materials and Methods
The evaluation is divided into numeric and perceptual analyses.
The numeric analysis checks if the score–related metrics of
phrasing and melody correlate with the dynamics and timing
of a performance whereas the perceptual analysis verifies if
synthesized performances based on modeled expression possess
human–like qualities.

Eight short (approximately 50 s each) musical excerpts were
recorded by a professional violinist to be used for both model
generation and evaluation, making up dataset DS1. The pieces
were chosen from the violinist’s repertoire with the intention
of providing a wide range of moods and melodies of western
classical violin, and were played solo and without metronome.
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The audio was captured from a single condenser microphone
placed at close distance from the violin body and the scores of
all recorded excerpts weremanually transcribed intoMusicXML2

format using the MuseScore software3. Though small for a
typical machine–learning application, this dataset emulates an
envisioned scenario where a student is interested in being
presented with performance suggestions resembling a particular
style or musician as represented by a short number of sample
recordings. To enable such a use–case, it is important to verify
whether our modeling strategy is sufficiently robust to provide
meaningful results under those restrictions.

In the numeric analysis, the suggested loudness values
computed from Equation 5 were interpreted as estimations
and compared against the measured values in the recorded
performances of the pieces. Likewise, the suggested onset times
were compared to the performed ones for each piece. Test sets
were built in a leave–one–out approach, meaning that dynamics
and timing suggestions were generated for each available piece
using the other seven recorded pieces as training set.

For the perceptual analysis, the note loudness values obtained
from the model were converted into MIDI velocity values used
to control the dynamics of synthesized versions of the pieces.
The syntheses were made using Apple Logic Pro X’s EXS24
sampler4, with violin samples obtained from the Freesound
database (Akkermans et al., 2011). The sample set was chosen
for its lack of vibrato, in order to minimize the influence of this
other expressive element in the evaluation of the synthesized
performances 5. The conversion of loudness values from dBFS
(decibels relative to full-scale) to the MIDI velocity scale (1–
128) followed the findings of Dannenberg (2006) who observed
a square-law between velocity values and RMS amplitude in
synthesized audio. Our mapping was empirically adjusted so
that the dynamic range of pieces synthesized using velocities
calculated from the amplitude of the recordings matched the
dynamic range of the original audio of the same recordings.

Three versions of each piece were synthesized for the
evaluation, the only difference being the supplied velocity values
and note onset times and durations, resulting in different
dynamics and timing for each of them: one version used velocity
and onset values derived from themodel suggestions as described
above; a second version corresponds to the expression of the
performer in the recordings, as measured for usage in the
training set. The third and last version serves as baseline and
scientific control, and uses the same velocity for all notes, its value
being the mean value used in the “human” version to minimize
discrepancies in volume level, and its timing has no fluctuation,
the tempo being set to the mean tempo from the “human”
version. Each of the three versions of the original 8 pieces were
manually divided into 3 excerpts of approximately 15 s each
and their audio normalized (applying the same gain to all three

2MusicXML 3.1 Specification. The W3C Music Notation Community Group,

2017. https://www.w3.org/2017/12/musicxml31/.
3http://musescore.org
4https://www.apple.com/lae/logic-pro/
5Violin samples from user ldk1609 at freesound.org, licensed with Creative

Commons v.1.0 (https://creativecommons.org/licenses/by/1.0/).

versions of an excerpt to prevent from modifying their relative
dynamic range). Finally, the eight most complete, melodic
sounding of those 24 excerpts were selected for the evaluation.

The evaluation was conducted by means of an on-line survey.
Participants were instructed to hear randomized pairs of audio
samples from the synthesized pieces, always consisting of two
out the three existing versions of an excerpt. They were then
presented with two questions for which to choose between
audio samples 1 or 2: “In terms of dynamics (the intensity of
volume with which notes are expressed), select which audio
sample sounds most like a human performance to you.” and
“Which performance did you like best?” Finally, participants
were instructed to answer, from 1 to 5, “How clearly do you
perceive the distinction between the two audio samples?” A space
for free comments was also included in each screen to encourage
participants to share insights about their thought–process.

A total of 20 people participated in the experiment.
Recruitment was carried out by personal invitation and each
participant was assisted in accessing the web page containing
the survey and its instructions using their own computers and
audio equipment. Each of them was asked to provide answers to
16 pairs of melodies as described above, but early abandonment
was allowed. This provided a total of 305 pairwise comparisons.
Figure 2 shows a breakdown of the profile of participants in
terms of age and musical training.

3.2. Results
Numeric analysis results are presented in Figure 3, which shows
distributions of mean absolute errors in dynamics predictions
measured on note level and aggregated across all modeled pieces.
In this case, model outputs are interpreted as predictions of
dynamics and the difference between predicted values for each
note and the measured values in an actual performance make
up the boxplot values. The baseline values measure the mean
absolute difference between the dynamics of each performed note
and the mean dynamics of the piece, therefore, it represents the
lowest possible errors for a prediction with no dynamic variation.

Boxplot “kNN (exact, k = 1)” is the result of modeling
the phrase contour function (Cp in the model) as a piecewise
linear function containing data points from all notes in the
reference phrase whereas boxplot “kNN (parabola, k =1)” defines
phrase contour as a quadratic function such as explained
in the previous section. Their similar error profiles indicate
that the simplified parabolic representation retains all relevant
information validating its use. Errors in predictions of timing
deviations fared similarly in comparison with a “deadpan”
(inexpressive) baseline showing no onset time deviation.

In the perceptual analysis, a total of 305 pairs of melodies
were compared by listeners in terms of human–likeness and
personal preference. The mean perceived distinction between
pairs was 3.41 ± 0.13 (on a 1–5 scale, α = 0.05). Figure 4
shows the results divided into the three possible pairs according
to expressive character: (C1) choice of human–based expression
over “deadpan” baseline, (C2) human–based over modeled
expression, and (C3) modeled expression over deadpan. A
sign–test with confidence–level of 95% controlled for 5% false
discovery rate using the Benjamini-Hochberg method fails to
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FIGURE 2 | Summary of perceptual evaluation participants information.

FIGURE 3 | Aggregate mean absolute errors when considering dynamics

suggestions as performance predictors.

reject the null hypothesis in all comparisons (p-values listed
in Table 1), thus indicating that none of the versions was
perceived as significantly more human–like nor preferred by
users consistently.

Lastly, Figure 5 helps to provide some insight about the test
setup by showing aggregate results of all comparison classes when
considering exclusively the responses given by musically active
participants of the survey, here characterized by the subset of
people who reported practicing an instrument for at least one
weekly hour.

3.3. Discussion
The large variance observed for the boxplots of model errors in
the numeric analysis indicate that predictions for some sections
of the pieces share similar dynamics to those performed in the
reference recordings whereas other sections differ. Increasing
the number of neighbors considered from one to three is

effective at pruning out eccentric predictions as can be seen by
the shorter tail of the distribution, but has been observed to

also reduce the overall dynamic range of the output, making

renditions a bit “dull.” In fact, this effect is expected for a
small dataset such as DS1, since there ought to be very few

examples of sufficiently similar melodies to be selected as
nearest neighbors. Consequently, in such conditions, employing

a single nearest neighbor is the most promising approach for

a perceptually valid output, since the most melodically–similar
phrase represents the available data point most likely to have

applicable expression data for a given target melody, and copying
such data parameters from the same sample retains the coherence

between different expressive output variables. For this reason,

and considering the success of the parabolic representation as

a parametric model of contour indicated by their similar error
distributions, the model with k = 1 and parabolic phrase contour
was used for the synthesis of modeled performances for the
perceptual evaluation.

The overall higher median errors observed in all
measurements indicate that with DS1 as training set the model is
not accurate at predicting timing and dynamics, but since there

is no single correct interpretation of a musical piece, this result

is not enough to dismiss the model as a tool for suggestions of
expression, hence the utility of the perceptual validation.
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FIGURE 4 | Aggregate results of perceptual survey pairwise comparisons.

TABLE 1 | Measured p-values for all perceptually evaluated comparisons.

Comparison Question p-value

C1 Human–likeness 0.7500

Preference 0.8016

C2 Human–likeness 0.1440

Preference 0.1440

C3 Human–likeness 0.7500

Preference 0.8378

Regarding perceptual analysis results, typically (Katayose
et al., 2012; Bresin and Friberg, 2013), one would expect a
wide dominance of human–based renditions over inexpressive
ones, which was not verified in the results of C1. The inclusion
of such cases in the survey was intended as a mechanism for
validating the experimental setup, since the corpus of existing
results in this field has been based mostly on piano works,
and, to our knowledge, no similar setup has been investigated
for violin pieces. The absence of a clear tendency toward
the human–based synthetic performance prevents us from
reaching a definitive conclusion regarding the effectiveness of
the model until the causes for these unexpected results can
be verified.

A deeper investigation of the results does offer fruitful
insights, however. Ratings for the measure of perceived
distinction between audio clips was generally high across all
comparisons. For C1, in particular, its mean value was 3.31
and standard error, 0.12 (on a scale of 1–5). This strongly
suggests that participants were able to perceive differences
in the renditions, but still reached conflicting decisions.
Reflecting upon this fact and contrasting the melodies present
in our dataset against pieces typically found in benchmark

datasets (e.g., as used by Oore et al., 2018) point to two
main causes for participant disagreements: (1) the lack of
expressive features such as variable attack–time, vibrato, and
timbre variations, which often work in conjunction with
the modeled features, facilitating their interpretation; and (2)
the use of pieces written for an ensemble (namely violin
and piano) without the accompanying instruments, which
removes the melodies from their contexts and also limits
the range for expression because of the requirement of
musician synchronization.

This view is reinforced by some participant comments. One
of them states, after declaring preference for the deadpan
rendering over the human–based one: “Little big ambiguous;
A is more flat and regular, but it kind of depends on the
context whether this would be appropriate or not.” A, in that
case, being the deadpan performance. Another one commented:
“I prefer the dynamics in B and the time in A. It’s easy to
distinguish them, but no one sound more human than the
other.”(sic). In this case, B was a human–based rendering, and
A, a deadpan one. Some comments can also be found which
favor the modeled rendering, e.g., “I prefer the dynamics in
A and the time fluctuation in B.” for a comparison where A
corresponds to the modeled rendering, and B, to the human–
based rendering.

From the musicians’ results graph, it can be seen that the
percentage of choices favoring the deadpan renditions is smaller
in this subset than in the full result set, which could reflect a
higher ability of the musicians in interpreting the performances
even out of context. Furthermore, what is encouraging in the
musicians’ data is that the percentage of choices favoring the
modeled performance is larger than in the full set, which is a
hint of evidence in the direction of our own perception that the
proposed modeling approach can yield convincing results under
some conditions.
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FIGURE 5 | Subset of perceptual survey results for musically active participants.

TABLE 2 | Summary of all datasets used.

Name Instrument Total time Num. instances Notation

DS1 Violin 6′43′′ 68 MusicXML

DS2 Violin 13′01′′ 192 MusicXML

DS3 Piano 57′08′′ 2706 MIDI

4. FURTHER NUMERICAL EVALUATIONS
WITH AUGMENTED AND NEW DATASETS

4.1. Materials and Methods
For further analysis, the previously presented dataset (DS1) was
complemented by the recordings of the first violin from the
String Quartet number 4, opus 18 by Ludwig van Beethoven
contained in the public dataset collected by Marchini et al.
(2014) as part of their study on ensemble performance. As in
the previous setting, the scores were manually transcribed into
MusicXML format using the MuseScore software. The super set
containing recordings from both sources constitutes dataset DS2
and includes a total of 13 min of audio.

Finally, for a look at the model’s performance under a large
collection of data, a random sample of approximately 1 h of
audio was taken from the 2017 recordings in the Maestro dataset
(Hawthorne et al., 2018) even though it consists entirely of piano
pieces. We refer to this collection as DS3. The summary of each
dataset’s characteristics is shown in Table 2.

For ensuring consistently–sized test sets in spite of a larger
variance in piece durations, all testings in both DS2 and DS3
were effectively 10–fold cross–validations on phrases, that is,
datasets were split into 10 subsets by random sampling phrases
without repetition, and each of those was used as test set in a
different round. As in the previous scenario, note–level mean
absolute errors between performance andmodel predictions were
the chosen metric for all modeled expressive features.

To observe how the proposedmodeling approach fares against
more conventional models that rely on note features rather
than phrase features, we computed 41 note features from score
information and derived musicological inferences using dataset

TABLE 3 | Performance of note–level algorithms vs. proposed phrase–level

method on DS2.

Algorithm r (34 feat.) MAE (34 feat.) MAE (41 feat.)

SVM 0.4557 15.44 14.11

ANN 0.3789 22.71 20.08

kNN 0.5910 13.17 12.57

Random forest 0.7319 11.18 10.49

Phrase-level kNN (ours) 0.2956 16.82 —

DS2, and employed the resulting feature vectors for predicting
note velocity values and local tempi using various algorithms
as implemented in the Weka machine learning software tool,
version 3.8.3 (Frank et al., 2016). Code for reproducing the
feature extraction andmodel building steps is available at a public
Github repository6.

As an exploration of the impact of larger datasets in the
model performance, motifs from DS3 were uniformly sampled
without replacement into an increasingly larger subset. This
growing subset of DS3 was used for model training, and mean
absolute errors in dynamics predictions were recorded for tests
using cross–validation as well as the training sets themselves with
various subset sizes up to the size of the full DS3, and varying
parameter k in the k-nearest neighbors from 2 to 8.

4.2. Results
Table 3 summarizes the results for the different note–level
models implemented in Weka as well as the proposed phrase–
level model using DS2: the second and third columns indicate
Pearson’s correlation and mean absolute errors obtained using
only the input features related to melodic and rhythmic content
of a piece, thus semantically similar to the information used in
the melodic similarity calculation of our method. The rightmost
column refers to errors measured after modeling with all features
available, thus including score annotations such as dynamic

6http://github.com/fabiozeh/expressiveViolin
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markings, articulations, and slurs. The bottom row corresponds
to the results of our method using k = 3.

Figure 6 is a plot comparing velocity values from the reference
performance, the proposed model predictions, and the best
scoring note–level model predictions— both trained with DS2—
for Edward Elgar’s Chanson de Matin, opus 15, no. 1, bars 2–28.

Lastly, Figure 7 shows the evolution of mean absolute error
distributions in predictions as the training set size increases using
the larger DS3 and k = 3. The curve for errors in training set
predictions are also included to assist interpretation.

4.3. Discussion
Three of the four algorithms tested on note–level were able to
outperform our phrase–level model in terms of mean absolute
errors, and all five exhibit some prediction success if compared
to the deadpan MAE of 18.02. Despite the poor rank of our
model, these results are encouraging, since they indicate that the
majority of the relevant information for predicting expression
present in the note features was retained and summarized in the
phrase–level form of the dataset.

Visually inspecting the velocity values predicted by the best–
performing model, using random forests, against our phrase–
level predictions and ground truth values from a recording
(Figure 6), it can be seen that the note–level model captures
the oscillations in dynamics that happen between adjacent notes
whereas the phrase–level model predicts smooth transitions. This
partially explains the observed difference in performance, but
works in favor of the phrase–level model in our valuation, since
in the intended pedagogical application quick transitions are of
little use as performance guidelines to students. The appropriate
conclusion to draw from these observations, therefore, is that the
most adequate ground truth values with which to train a model
for such a specific application are not the raw values of dynamics,
but rather a smoothed version of them.

Results of the DS3 analysis show that MAE drop for larger
datasets but eventually stabilize at a plateau. Though the median

error level sits below baseline for large datasets, the large variance
(represented by the quartiles indicated as Q1 and Q3) shows
precision doesn’t improve as much. Using a higher number of
neighbors (k) only seems to increase the model bias, as we
observed higher errors on training set predictions (for k = 8,
median training set MAE was 9.824 using the entire DS3). These
results suggest that the path forward involves the inclusion of
more phrase features, and that, for the model’s current iteration,
increasing training set size further would not be enough to
improve its prediction accuracy.

5. GENERAL DISCUSSION

As we have argued and demonstrated in previous sections,
modeling expression in violin performance is a challenging task

FIGURE 7 | Mean absolute error distribution as a function of dataset size.

FIGURE 6 | Velocity predictions across notes in a violin piece vs. performed ground truth.
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in many ways. Some examples observed in our first dataset
include prolonged, loud notes which we found that sounded
harsh in the synthesized version used for perceptual evaluation,
but pleasant in the original recording due to the presence of
vibrato. We have also met difficulties with notes having very
slow attacks in the recordings, for which the placement of a
crisp onset in the synthesis inevitably led to rhythmically odd
melodies. In many such accounts, participants in the perceptual
evaluation rejected the human–based audio samples in favor
of the robotic–sounding renditions. Although these findings
prevented us from evaluating our modeling strategy as intended,
we feel that these results provide a valuable account of the
importance of preserving a cohesive set of expressive features as
well as the musical context where they appear in order to retain
the character in a performance.

Despite not having been able to predict the dynamics or
the timing deviations applied by our reference performer, our
modeling approach has produced some convincing suggestions
of expression, at times worthy of praise by listeners in a blind
setting, with considerably less training data than most state–
of–the–art models and virtually no time expenditure on model
training thanks to the musically coherent approach of processing
motifs rather than isolated notes. It is also relevant to highlight
that even score markings regarding performance such as
dynamics and articulation annotations have been ignored by the
model, which shows there is still much room for improvement
once this knowledge is incorporated into phrase features.

For the desired pedagogical applications, the ability to
produce musically valid expressive performances from few
examples gives it versatility, allowing students and teachers to
select the most relevant reference recordings to make up a
training set, for instance for studying the style of a particular
performer, or of a specific musical genre. When contrasting
the performance of phrase–level against note–level modeling,
our phrase–level approach was able to achieve comparable
results despite the resulting information compression that
comes from summarizing note features in terms of melodic
similarity. Additionally, the smoothness inherent in the curves
output by our model makes the expressive movements
represented by them much easier to follow in real–time
by a student.

Perhaps as important as the results concerning our modeling
approach are our findings about the methodology of evaluation
of expressive performance models for instruments other than
piano, for which realistic synthesis is an issue and expression
can potentially involve several variables. In those scenarios, we
conclude that the modeling is best evaluated if all relevant
expressive capabilities offered by the instrument are included in
the sound, and preferably modeled as a group to avoid conflicting
intentions in the different expressive outputs.

As melodic similarity is central to the expressive engine,
expanding the reference violin datasets to include a wide enough
variety of melodies, is a natural evolution of this work, in order
to investigate in detail the particularities of this instrument when
it comes to expression and how much can be improved in the
model as a performance predictor.

As briefly mentioned above, there are a number of features,
from score markings to the harmonic context of each motif
that can be incorporated as extra information to the model.
Marchini et al. (2014) and Gadermaier et al. (2016) offer good
examples of the type of variables that could be considered by our
model. Moving toward more complex melody characterization
as explored by Gulati et al. (2016) might also provide
interesting results.

Lastly, the exploration of different modes of student feedback
that can be provided with the outputs of this machine learning
model, from auditory to visual to tactile, is an important step to
understanding the functions our models should compute as well
as being essential to achieving our end goal of improving how
people learn and internalize expression in music.
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