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In this Hypothesis and Theory paper, we consider the problem of learning deeply

structured knowledge representations in the absence of predefined ontologies, and in

the context of long-term learning. In particular, we consider this process as a sequence

of re-representation steps, of various kinds. The Information Dynamics of Thinking theory

(IDyOT) admits such learning, and provides a hypothetical mechanism for the human-like

construction of hierarchical memory, with the provision of symbols constructed by

the system that embodies the theory. The combination of long-term learning and

meaning construction in terms of symbols grounded in perceptual experience entails

that the system, like a human, be capable of memory consolidation, to manage the

complex and inconsistent structures that can result from learning of information that

becomesmore complete over time. Such consolidation changesmemory structures, and

thus changes their meaning. Therefore, memory consolidation entails re-representation,

while re-representation entails changes of meaning. Ultimately, the theory proposes

that the processes of learning and consolidation should be considered as repeated

re-representation of what is learned.

Keywords: re-representation, memory consolidation, meaning construction, creativity, information dynamics

1. INTRODUCTION: REPRESENTATION AND
RE-REPRESENTATION

This paper is about representation and re-representation, from the perspective of computational
modeling of cognitive process.

The word “representation” is problematic in the interdisciplinary context of this article, because
itsmeaning to computer scientists differs from itsmeaning to psychologists. The difference will bear
strongly on the explanatory nature of themodel proposed. In both fields, a representation (cognitive
or computational) is a description of a thing, concept or state of affairs, respectively either in the
memory of a computer or in the memory of a brain. But in computer science, the term also refers
to the scheme or language, formal or otherwise, used to express that description—for example, a
consistent set of objects and predicates capable of describing some (possibly unbounded) set of
things is termed “a representation,” even before anyone has attempted to describe anything specific
using it, in the sense of “a representation system.” In computer science and artificial intelligence,
also, there is an element to the representation of knowledge which is usually referred to as
“semantics.” This is strongly related to the idea of “semantic memory” in psychology and cognitive
science, but different: the semantics is a way of writing down the meanings expressed using the
representation (scheme) in such a way as to formally and consistently be able to compute with them.
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Mathematical logics are the most common schemes in
which to express such semantics, and the representation
schemes themselves are often derived from the same source
(Brachman and Levesque, 1985, 1992).

The hypothetical process described here is intended to
capture the process of formation of cognitive affordances that
correspond, in a brain, with representation schemes (as above)
in a computer. Having done so, it is then possible to build
mathematical structures using such schemes which correspond
with representations (in the conventional psychological sense)
in brains. However, it should be noted, in comparison with, for
example, Hawkins (2004) and George and Hawkins (2009) that
the attempt here is not to model brain structure: functionality is
modeled, but neurophysiology is not.

This is important not only because it bears upon the core
contribution of the paper, but also because it entails questions
about the meaning of the word “re-representation.” In the
current paper, every sub-process, including the construction of
representation schemes, may be viewed as re-representation,
either of representational affordances, or of representations
themselves, or, more commonly, both at the same time. In
other words, the process of understanding the world is cast as
a process of successive, stepwise re-representation. Perhaps the
most unusual aspect of the theory, at least from the perspective
of machine learning, is its emphasis on memory consolidation
and creativity: the overarching principle is that cognitive
representations enable creativity, and that re-representing them
during consolidation can be creativity in its own right, and/or
that re-representing can enable new creativity where previously
none was possible. Evidence for this effect in humans is given, for
example, by Lewis et al. (2018).

In the following sections, we first introduce the methodology
behind the work. Then we introduce the background to the
theory, which falls into the category of predictive cognition
models (Clark, 2013). We then present the formalism used to
describe memory representation and re-representation, showing
where creativity is afforded. We give examples of tests which
might be applied to this hypothetical model, falsifying it or
supporting it in terms of the corresponding human behaviors,
and we introduce some very preliminary evidence supporting the
approach. Finally, we discuss the consequences of the theory for
creativity in humans and machines.

2. METHODOLOGY: COMPUTATIONAL
MODELING FOR HYPOTHESIS
DEVELOPMENT AND TESTING

The methodology followed in the current work is as follows.
Based on a broad range of interdisciplinary background
(Wiggins, 2018), and attempting to answer specific questions
raised by the work of Pearce (2005), summarized below, a
quantitativemodel is constructed, based on rigorous hypothetical
cognitive principles. That model is then implemented as a
computer program, which makes predictions of human behavior.
Some predictions may turn out to be unexpected, and it is these
that are selected for testing by comparison with human behavior
(Honing, 2006). Thus, can the model be falsified, or more likely

modified into a new hypothesis, presenting a properly scientific
trajectory of theory development (Popper, 1959; Lakatos, 1978).
Further detail of the methodology used here is given by Wiggins
(2011, 2018).

The current paper contributes specifically to the trajectory
of the work by opening the descriptive1 “black box” of the
PPM* algorithm (Bell et al., 1990), used in statistical language
processing, and by Pearce (2005, 2018) to allow his IDyOM2

system tomake predictions about musical melody from statistical
models. It builds on earlier papers (Wiggins and Forth, 2015;
Forth et al., 2016; van der Velde et al., 2017) to continue the
theoretical exposition of a hypothetical cognitive mechanism to
replace PPM* as a more explanatory3 cognitive model.

3. BACKGROUND: THE INFORMATION
DYNAMICS OF THINKING

3.1. Context: Information Dynamics in
Cognition
3.1.1. Predictive Models of Cognition
The work is placed in a context of predictive models of cognition,
as eloquently espoused by Clark (2013), and implemented over
musical data using extended Markov models (Conklin and
Witten, 1995; Pearce, 2005, 2018; Pearce et al., 2005; Whorley,
2013; Whorley et al., 2013; Hedges and Wiggins, 2016; Hedges,
2017). However, the core models used in that series of research
are not restricted to music (Wiggins, 2012), and nor is the current
one. Wiggins (2018, §2) explains why music was a good starting
point for this research: music has a rather special status as a
cognitive phenomenon, and affords an excellent space in which
to explore ideas. Other on-going work in the area relates to the
idea of “free energy” (Friston, 2010) and intrinsic motivation
(Schmidhuber, 2010).

Before proceeding, it is worth noting two further potential
lexical confusions.

First, the word “prediction”. The cognitive model presented
here is predictive in two senses. Firstly, it simulates human
predictions of what will be sensed next in the world in which it
works: it simulates cognitive function that manages information
received from the world by predicting what comes next, so as
to make processing more efficient (Clark, 2013; Wiggins, 2018).
Secondly, the model can be used to make scientific predictions
about the human predictive behavior that it simulates: that is,
it can predict what humans will predict when presented with a
certain sequence of sensory inputs in context of a learned model.

1Wiggins (2011) defines a descriptive model of a cognitive process as one which

predicts its input-output relation correctly, but which makes no claim to explicate

its mechanism. On the other hand, an explanatory model does claim to explicate

mechanism, at a level of abstraction which is less than that of a corresponding

descriptive model, though not necessarily in full detail.
2Information Dynamics of Music.
3Wiggins (2011) describes a research methodology based on the alternation

of descriptive and explanatory cognitive models as one moves from very high

level descriptions of effects (e.g., the Gestalt principles) to detailed explanations

of the operation of neurons (as in the Human Brain Project https://www.

humanbrainproject.eu/), by progressive, incremental steps of understanding, each

at a different level of abstraction.
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Second, the word “model.” There are two places in this work
where “model” can be reasonably used, corresponding with the
two uses of “prediction.” The first is the whole theory: it is a
model that simulates human perceptual predictive processing.
The second is the “model” that the system builds of its own
experience, which is intended to simulate human memory.

3.1.2. What Is Dynamic About Information?
Information is not the same as data. Information, unlike data,
is relative to a receiver, and relative to the receiver’s knowledge
of the transmitter(s). An extreme example is this: if Gillian
and George have both read “War and Peace,” then Gillian can
transmit the ideas therein to George with just those three words.
If George has not read the book, it will take her somewhat longer,
and many more words will be needed. Thus, shared knowledge
improves the efficiency of transmission. It follows from this that
as either George or Gillian learns new things, the information in
a given transmission between them can change.

Shannon (1948) quantified, in the context of transmission
of data along wires, how communication could be made more
efficient by shared knowledge. Shannon measured information
in binary integers (bits): one bit is the smallest possible unit
of information. The aim of efficient communication, therefore,
is to use the smallest number of bits necessary to transmit a
given message. Shannon’s key insight was that the entropy, H,
associated with a transmitted symbol, s, drawn from an alphabet
A, can be estimated from its likelihood in context:

H(s) = −
∑

s∈A

ps log2 ps, (1)

where ps is the probability of s appearing after the time point
in question. MacKay (2003) points out that this formula can be
adapted to estimate the information content, h, of the actual
symbol transmitted, at the time point in question:

h(s) = − log2 ps. (2)

Explicit in these formulae is that information content and
entropy of a sequence of symbols is context-dependent: the
existence of the prior distributions from which ps is drawn
expresses the effect of the context. In information dynamics
models (and, we and other similar researchers claim, in predictive
cognition), this distribution changes with time, each received
symbol updating the model and its prediction as time proceeds.
Thus, given a higher-order statistical model of a language, it is
possible to compute a distribution over the words used therein,
not just over the alphabet (or lexicon), but also, dynamically, over
sequences in the language. Thus, at any point between two words
in a sentence, we can compute a distribution expressing what is
more or less expected next (by a listener who has not yet heard
the next word) in terms of relative probabilities. Ungrammatical
continuations will be improbable; everyday clichés will be likely;
other continuations will be in between.

Thus, entropy need not be calculated from the static (zeroth-
order) statistics of a model, but from dynamic distributions,
changing in response to context. It is the basic contention of
this kind of modeling that changes in information measures are

sensed by the brain and used in its basic operation, and also
available to qualia as experienced sensation (Huron, 2006).

3.1.3. Information-Dynamic Measures Predict

Observable Cognitive Phenomena
Models that measure the dynamics of information have been
shown to predict syntactic boundaries in language (Sproat
et al., 1994) and music (Assayag and Dubnov, 2004; Pearce
et al., 2010b). Information content (Equation 2) predicts
unexpectedness inmusic (Pearce andWiggins, 2006; Pearce et al.,
2010a), and measurable electrical activity in the centro-parietal
region (Pearce et al., 2010a). Entropy (Equation 1) seems to
predict uncertainty in music (Hansen and Pearce, 2014). The
same measures seem to predict some emotional responses to
music (Dubnov et al., 2006; Egermann et al., 2013). All this
evidence points to one clear underlying principle: brains seem
to be sensitive on several levels to information dynamics, in
these two particular senses (Huron, 2006). Wiggins et al. (2015)
suggest how these properties may be implicated in the evolution
of creative behavior.

In the current paper, we elaborate a hypothetical process by
which both representational affordances and the representations
they afford, built using hierarchical information-dynamic
chunking (Sproat et al., 1994; Wiggins and Forth, 2015), may,
post-hoc, be revised and adapted to be, in a certain specific
sense, better. In doing so, the meanings that the representations
represent may change. In other words, the hypothesis proposes
an explanation of how re-representation changes memory, and
how changes in memory may induce changes in meaning.
Changing meaning entails changing interpretations and perhaps
understanding, and, given a mechanism to detect such change,
such as a Global Workspace framework (Baars, 1988), we can
relate the process of change, and the process of detection,
respectively, to incubation and inspiration, in the creativity
theory of Wallas (1926).

3.1.4. Optimisation: Information-Efficient

Representations Are Desirable Representations
A key principle in the modeling proposed here is that
of information efficiency. The most information-efficient
representational affordances are those which represent a given
set of data using the fewest bits possible, in terms of Shannon’s
equations. It is easy to see, intuitively and mathematically
(Equation 1) that the number of bits required to represent a
symbol increases logarithmically with the number of symbols
in an alphabet. Information efficiency will be an important
heuristic in the following exposition. Specifically, the heuristic
will be the ability of the model to predict the data from which
it was learned. This is commonly applied in machine learning
as cross-validation, in which parts of the data are held out,
and tested against models based on the rest of the data, to
verify that a particular technique is in some sense capturing the
structure of the data; in statistical models, this is implemented
as cross-entropy: the mean number of bits per symbol required
to represent the data. Here, as explained in detail by Pearce and
Wiggins (2012) the aim will be for the model to predict its own
data as accurately as possible under re-representation, while
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keeping its mean information content, h̄, as low as possible.
Thus, the fewest possible bits are used to store the data in a useful
form Wiggins et al. (2015) argue that this heuristic corresponds
with an evolutionary pressure based on the biological expense
of evolving, maintaining and using nervous tissue: more
information-efficient is less expensive.

It is worth adding a caveat here. The aim is not simply to
reduce h̄. It is to find the most information-efficient model of the
data that still allows statistically appropriate distinctions between
percepts to be made. Reduction of h̄ is the measure of success, not
the goal in itself.

4. IDYOT MEMORY: SEQUENCE AND
MEANING IN A SELF-DEFINING
SYMBOLIC SYSTEM

4.1. Overview of the Information Dynamics
of Thinking
The theory discussed here, the Information Dynamics of
Thinking (IDyOT: Wiggins, 2018), is a statistical learning model.
However, it differs from most statistical learning models in that

it has related but distinct representations of sequence in time
(time is itself a distinguished dimension) and of semantics,
and that it is deeply hierarchical. IDyOT maintains both
sequential and semantic memory, the latter being derived from
the former according to particular mathematical principles. Both
representations and representational affordances are constructed
from sequential input, using information-theoretic measures.
This process is described in outline byWiggins (2018, p. 7.2), and
summarized in the current section.

The IDyOT hypothesis enjoys the following desirable features.
Some existing theories (Vernon, 2014) share some of these, but
none shares all of them (Wiggins, 2018).

• It is entirely bottom-up: no assumptions about innate domain-
specific properties.
• It is realistically situated in time: it learns consequence by

example, so all rules it uses are learned.
• It maintains distinct sequential and semantic memories, like

humans.
• It learns its memory representations bottom-up,

independently of domain.
• It explicates multiple cognitive phenomena, emergent from

three regular underlying mechanisms.

FIGURE 1 | Overview of IDyOT components and operation cycle. Rounded boxes are the main IDyOT processes. Cloud shapes represent the phenomena explicated.

Arrows are labeled with the operations that connect the main processes. The whole is guided by the information efficiency criterion.
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• It explicates semantic composition, problematic in many
theories, in terms of simple association coupled with
hierarchical abstraction and memory consolidation.
• It is driven by one uniform heuristic: information-efficiency.

This gives it an evolutionary raison d’être, but also drives the
way it discovers structure in data.

These properties mean that IDyOT is not simply programmed
to copy observed human behavior. Instead, it is programmed
to do things that the hypothesis claims cause human behavior.

This claim can be tested by building IDyOT and comparing

its observable behavior with equivalent human behavior. We
believe that IDyOT is the first theory to explicate all these

components in one uniform cognitive architecture. It does

so using just four inter-related mechanisms: categorization;
segmentation; abstraction; and prediction. Figure 1 illustrates

the overall structure of the system in terms of components and

functions. It is the aim of this paper to explain these functions
in detail, and so show how their combined operation enables
the extraction of meaning from data, in a process of successive
re-representation.

It is also appropriate to mention that IDyOT theory currently

explicitly excludes a theory of forgetting, except in as far as it may
be caused by consolidation (described before). This is deferred

for future work.
Figure 2 illustrates IDyOT memory hypothetically generated

by the speech fragment, “John loves Mary.” Detail of “loves”

is omitted to avoid clutter. The audio spectrum is chunked
into phonemes, then morphemes, then words, presented here
in idealized form: reality is messier. As chunking proceeds, new
layers are built above lower ones. As each level grows, it is
chunked, building a structural representation of the input: the
result is shown in black. The colored trajectories, corresponding
with sequences, are in different conceptual spaces (Gärdenfors,
2000), one for each layer. Each conceptual space is a spectral
representation of the layer below, so that sequences of different
lengths may be compared as points in metric space. Symbols
in sequential memory correspond with regions in spaces, so
any symbol can be traced back to its origin in perception by
following down the memory layers. In a fuller example, parallel
sequences of other sensory information relating to the situation
would allow associations to be developed between multiple
dimensions. Wiggins (2018) shows how the combination of
associative memory, hierarchical abstraction, and retrospective
memory consolidation in IDyOT gives rise to the cognitively
important operation of semantic composition, where meanings
are combined to produce new meanings.

In this paper, we use examples that are based on discrete
symbols, but if a cognitive architecture such as IDyOT is to
be realistic, it must deal with continuous inputs from the
world (Wiggins, 2018). It is worth mentioning, therefore, that
the process of transduction, that is, of transferring sensory
information from outside to inside IDyOT is included in the
process of re-representation. The system works bottom-up, with

FIGURE 2 | Illustration of IDyOT memory generated by speech input “John loves Mary.” Reproduced from Wiggins (2018, Figure 2) under CC-BY license.
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a fine-grained discrete internal representation of the continuous
input signal, which is progressively abstracted into larger scale
symbols. Wiggins (2018) and van der Velde et al. (2017) explain
this in detail.

In the next section, the processes of memory formation
in IDyOT are formalized, as follows. Input sequences at the
lowest level of representation, directly transduced from (possibly
multidimensional) input signals, are segmented using boundary
entropy. Each segment may equivalently be represented as
a trajectory in a geometrical space of dimension and scale
appropriate to this particular input type; this space is the
ground semantic space for the modality in question. As the
sequence is so described, a superordinate semantic layer is
constructed, from vectors determined by spectral (e.g., Fourier)
transforms of the multidimensional sequences at the subordinate
layer. The representations are spectral because this mathematical
approach allows comparison of sequences of varying lengths,
each represented by a single point in the superordinate space. The
geometry of the superordinate space is constructed by selection
of an inner product function that induces a norm (distance) that
models similarity in this particular space in such a way as to
maximize information efficiency.

4.2. Formalization
4.2.1. Introduction
The first novel contribution of this paper is a formal
specification of IDyOT memory formation, which allows the
subsequent specification of a hypothetical mechanism for
memory consolidation. We begin with the construction of
sequential memory, showing first how it gives rise to semantic
memory, then to chunking, and then to hierarchical memory
in turn. The key point to observe is how representational
affordances (inherent in semantic spaces) are inferred from
representations (derived from data by means of existing
semantic affordances).

4.2.2. Representation
IDyOTmaintains a literal record of its sensory input. In humans,
of course, this is not the case; however, such a record can be more
easily removed or ignored than it can be reconstructed, so it is
included in the formal model. The key factors of the model are
as follows.

Time, in terms of sequential time units with a duration, is
divided into discrete moments, denoted τ below; a given τ should
be thought of as marking the start of the moment. Boundaries of
moments are identified using the segmentation process described
below. Real-time elements of IDyOT are discussed by Forth et al.
(2016), and is not covered here.

Sensory input, divided into moments, is then viewed as a
single multidimensional entity, the coincidence of values in its
dimensions being potential evidence of correlation. Dimension
number is denoted δ.

IDyOT memory is hierarchical, and the method for
constructing the hierarchy is one of the novelties of the theory.
Hierarchical abstraction (for the levels capture progressive
representational abstraction in a particular sense: Wiggins and
Forth, 2015) is denoted α. Abstraction will entail construction

FIGURE 3 | A schematic representation of IDyOT sequential memory for a

single dimension, the dimension parameter being omitted. τi denote the ith

moment in the time as it is memorized, and time proceeds from left to right.

The arrows within the layers denote sequence in time. The structures between

the layers denote the segmentation relationship between the layers, described

below. Note that moments at different layers can have different lengths.

of new dimensions, so where there is an α parameter, there is a
matching δ.

Given these parameters, a symbol in IDyOT’s sequential
memory is denoted Sδ,α

τ . The alphabet, A, from which these
symbols drawn is strictly partitioned on δ and α, denoted
Aδ,α . Furthermore, A is dynamic, and it is this capacity for
change that admits consolidation and re-representation. In the
following discussion, a set of dimensions representing audio
input (specifically, speech), will be used for illustration. The
dimension parameter, δ, is used here to identify a fresh sequence
of symbols at any level, α: thus, an input sequence has a δ value,
and so does a new sequence drawn from a new alphabet, created
as described below. The level α = 0 dimensions used to represent
an audio signal (in the illustration a spectral transform, such as
Fourier, simulating the effect of the Organ of Corti) are, in the
terms of Gärdenfors (2000), an integral set of dimensions. That is
to say, the information contained in each dimension has meaning
only in context of the other dimensions in the set. Here, they
define a conceptual space of sound (Gärdenfors, 2000). As such,
we can, for the purposes of illustration, think of them as one.
In this illustration, too, we assume that the difficult problem of
source separation has been solved4: the notional input is a clean
representation of an isolated voice.

Given this notation, and simplifying to one δ dimension,
IDyOT sequential memory, may be thought of as being like the
layered structure shown in Figure 3.

4.2.3. Prediction in Sequence
We now formalize the idea of prediction. A simple bigrammodel
(Manning and Schütze, 1999, Ch. 9), Mδ,α , can be constructed
over alphabet Aδ,α from any (integral set of) dimension(s), δ,
and any layer, α, for a structure such as that in Figure 3. The
contiguity requirement implicit in a standard bigram model

means that a simple notation will be useful: τ
δ,α
+i denotes the

moment of the ith symbol following τ in dimension δ, level

4This problem will be a future target for IDyOT research.
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α; similarly, τ
δ,α
−i denotes5 the moment of the ith symbol

preceding τ δ,α . Thus, the modelMδ,α associates each contiguous
pair of symbols in the sequence with the likelihood that pair
of symbols appears contiguously, counted from the memory6:
〈Sδ,α

τ , Sδ,α
τ+1

, pδ,α
τ+1
〉 ∈ Aδ,α × Aδ,α × [0, 1]. Given Mδ,α , we

can compute a distribution Dδ,α
τ over Aδ,α at any moment τ ,

expressing the expectation inferred from the model, of what
is to come at moment τ+1. Then, using Equation 1, we can
compute the Shannon entropy on dimension δ, at level α during
moment τ :

H(δ,α, τ ) = −
∑

〈Sδ,α
τ ,Sδ,α

τ+1 ,p
δ,α
τ+1 〉∈M

δ,α

pδ,α
τ+1

log2 p
δ,α
τ+1

, (3)

noting the unusual notation, which expresses the values in
terms of particular points in IDyOT memory, rather than of the
alphabet Aδ,α , as is more common. Similarly, using Equation 2
the information content of the symbol at moment τ in level α is:

h(δ,α, τ ) = − log2 p
δ,α
τ , (4)

where

〈Sδ,α
τ−1

, Sδ,α
τ , pδ,α

τ 〉 ∈ M.

An advantage of this notation is that it makes very clear a
difference in meaning between the Mackay’s two applications of
Shannon’s idea (MacKay, 2003): H is a quantity which in some
sense refers to the next moment, because it is a function of the
current one; h, however, is a value associated with the current
moment as it appears in context.

The within-layer bigram model afforded here is substantially
simpler than that used in successful modeling of musical syntax
by Conklin andWitten (1995) and of music perception by Pearce
and Wiggins (2006). This extra complexity of the earlier models,
inside the black box of the PPM* algorithm (Bell et al., 1990)
is displaced into interactions between the abstraction layers, α,
in IDyOT, and the detail of its operation is not central to the
argument presented here. Suffice it to say that predictions at
any given layer may be modulated by predictions in neighboring
levels, in the way similar to that in which distributions from
different representations may modulate each other in Conklin’s
viewpoint system (Conklin andWitten, 1995; Pearce et al., 2005).

Given these mathematical tools, the next section explains the
construction of semantic memory in IDyOT.

4.3. Semantic Memory in IDyOT
4.3.1. Semantic Space
Wiggins (2018) section 7.2 introduces IDyOT semantic memory.
Semantic memory, as in most cognitive architectures (Vernon,
2014), is memory for meanings, abstracted away from the events
stored in the sequential memory. It may be thought of as
simulating the feeling of meaning, as opposed to memory of

5The notation τ+i is used instead of the more obvious τ+1 because it is not always

the case that τ+i = τ + i—see Figure 3.
6From an implementation perspective, this can be implemented efficiently by

updating a matrix incrementally as input is processed.

specific events. It is semantic memory that allows IDyOT to
represent similarity and difference between percepts and objects,
and thus become a reasoning entity (Gärdenfors, 2000). IDyOT
semantic memory is constructed as follows.

At level α = 0, the semantic memory is the direct
representation of the percept, as measured in the input: it is, at
this level, its own meaning. For example, in the case of audio, the
input is in the form of short-term spectra, one for each moment,
representing input to the lowest level auditory cortex from
the organ of Corti. These spectra, and other quasi-continuous
perceptual inputs, may be viewed as vectors in a Hilbert space
(Hilbert, 1992), denoted in general Vδ,α , and specifically Vδ,0,
here. Such a space is composed of three elements: a set of vectors,
an inner product function over that set, and a norm, which is
analogous to a distance in physical space, within Vδ,α . The inner
product defines the geometry of the space; the norm is induced
from the inner product. So, in general,

Vδ,α = 〈Sα
, ×i, ||.||i〉 (5)

where i is an index that admits the existence of multiple vector
spaces, with different inner product functions, over the same
set of vectors, thought of as a library of possibilities. In this
way, IDyOT can support multiple views7 over its raw data. For
example, musical pitch may be considered, simultaneously, as
a line of pitch height, a circular scale position, and/or a spiral
that combines the two, and any of these may be considered
alongside intensity. The precise nature of ×i depends on various
factors, and is a matter for future study in IDyOT. Clues
already exist: (Kemp and Tenenbaum, 2008) propose that certain
mathematical structures are preferred within human brains;
while multiple attempts exist in music signal processing8 to
attempt to infer similarity of various kinds by inferring the
necessary inner product from empirically derived partial norms
and sets of data points. Wiggins (2018) section 7.25 explains
why the mathematical power of Hilbert space representations is
appropriate here.

It is important to understand that the semantic spaces are,
at this low level, not the same as the denotational semantics of
linguistics. Rather, they capture the grounding of meaning in
sensation. Recall, also, that in the general case, input to IDyOT
will be from multiple sensors, so that statistical associations
between sensory inputs, moment by moment, may also be
calculated. It follows that the meaning that these points represent
may not have a specific name, but instead a complex description
related to their source, such as “the color we picked in Photoshop
at 5:30 p.m. yesterday.”

The key idea, here, is that each vector in the semantic space
captures the sensory meaning experienced in the moment to
which it corresponds, and the geometry of the space captures the
similarity relation between those meanings, as follows.

7This capacity is analogous to the viewpoints of Conklin and Witten (1995) of the

structure in each level.
8See http://ismir.net.
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4.3.2. Similarity and Categorization in Semantic

Space
Given at least one Vδ,α , it is now possible to discuss similarity,
which is defined by the norm, ||.||i, under the procedure described
here. Gärdenfors (2000) suggests that convex regions in spaces
such as these correspond with natural cognitive concepts, such
as colors and sizes; the norms may be used, analogously with
distance between points in a Cartesian space, to identify the
centroid (or other mathematical summary) of a set of points, as
a conceptual prototype. By measuring the distance from such a
prototype, one might measure typicality, and eventually decide
which particular points were included in, or excluded from, the
concept. Gärdenfors (2000) argues convincingly that the key issue
here is betweenness: that is to say, it should be possible to identify
an item that is between any two others in the same category, and
the function of such perception that justifies its evolution is the
ability to distinguish between things.

The formation of such conceptual categories is fundamental to
the operation of an IDyOT. The bigram model constructed from
a set of vector pairs such as that described in the current audio
example would be hopelessly sparse, because there is a very low
likelihood that any two spectra would be identical. Therefore, to
construct a meaningful model, Aδ,1, from Aδ,0, it is necessary to
partition Aδ,0 into equivalence classes, or regions in V1, allowing
the data to be represented less sparsely, though approximately.
These regions can be labeled with a representative point, such
as their centroid, so that identifying them is a simple equality
test. This simulates the beginning of categorical perception, and
constitutes the first (very simple) example of re-representation in
the model. The question, of course, is: which vectors should be in
which subset?

The overall effect of this partition, whose relation is in general

denoted 5
δ2 ,α+1
δ1 ,α

, is to reduce the effective size of Aδ,1, which
in turn has the effect of reducing expected information content.
To see this, observe the case of maximum entropy, when the
distribution across the alphabet (of any level) is uniform, denoted
Ĥα . Then, probabilities decrease with increasing alphabet size,
and so Ĥα increases. Thus, partitioning Aδ,0 as described reduces
the size of the required alphabet and moves the layer in the
direction of the information-efficiency heuristic. However, the
logical extreme of this transformation is to include all symbols in
the same category, reducing h̄δ,α to zero, but rendering the model
vacuous. This would be undesirable.

The solution to this issue is to reduce theAδ,α+1 incrementally,
and only when doing so corresponds with appropriate clustering
of the latest symbol in at least one Vδ,α+1. To put this another
way: a new symbol may be merged with an existing one only
when they both fit naturally into a semantic category, and in
line with this, we term the process categorization. Categorizing
a number of symbols into one Gärdenforsian concept must be
licensed both by a decrease in h̄δ,α , and also the existence of
at least one ×i under whose norm the two symbols may be
considered in the same category. The primary candidates for
categorization are pairs of symbols which have at least one
predecessor in common, and which therefore have h(δ,α, τ ) >

0, though all combinations with the newest symbol must be
considered (Figure 4): an appropriate heuristic measure would

be to order candidates by decreasing h(δ,α, τ ). Given such a pair,
one or more corresponding Vδ,αs must be selected, according
to the following rules. Candidates may be ruled out using
Gärdenfors’ convexity criterion: they cannot be considered for
categorization if there exists a member of the Aδ,α , outside the
candidate set, which is closer to the centroid of the resulting
candidate set than a convex hull around the candidate points:
the extent of that hull beyond the points themselves is defined
by a parameter, ρ, which determines how willing the IDyOT
is to reject possible categorizations. The effect of this is that
two candidates cannot be categorized together if doing so
would create a non-convex region in the radius of ρ. The
candidate sets are considered sequentially, ordered by total mean
information content, highest first. If any suchVα+1 can be found,
corresponding new dimensions at level α+ 1 are created. If none
is found, then the categorization fails. The heuristic selection is
illustrated in Figure 4.

Since the relation between two layers in categorization
is essentially the subset relation, in the event that multiple
categorization layers are created, without segmentation
layers (explained in the next section) between, they may be
compressed into one single layer, thus simplifying computational
implementations. However, it is convenient to keep the full
construction history visible in the mathematical statement of
the theory.

4.4. Chunking/Segmentation by Boundary
Entropy
Given a layer of categorized symbols as generated above, it is
possible to segment the sequence of a given layer by means of
boundary entropy. The rationale for this is as follows. In order
to cope with the vast amount of information available in the
world, it is necessary for a perceiving organism to compress
it. A good method of compression is to recognize repeated
structures, ideally where approximate repetition is included. If
the sequential inputs of IDyOT contain repeated structures, then,
statistically, as a repeated segment is processed, the symbols in it
become progressively less and less unlikely; in Shannon terms,
they convey progressively less information, and they become
more and more certain. However, when the end of a repetition
is reached, the next symbol becomes less predictable. Shannon
entropy and information content can be used to segment both
language and music (Sproat et al., 1994; Wiggins, 2010; Pearce
et al., 2010b) in ways that correspond with analyses by linguists
and musicologists, respectively. To do this, one examines the
time-variant signal produced by the Shannon formulae, and
identifies sharp increases in entropy or information content
(Pearce et al., 2010b), with respect to local context (Pearce
et al., 2010b) or an absolute value (Wiggins, 2010, 2012). The
exact specification of the detector required is a matter for
further empirical study, since there is currently no clear winning
candidate in the literature; here, it is denoted by 1δ,α

τ . It yields a
Boolean value (true, iff τ is the first moment in a new segment).
The definition we will use for illustration here is as follows; it
combines entropy and information content:
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FIGURE 4 | An example of h̄δ,α reduction by heuristic selection. (i) shows a very simple example of IDyOT memory (the assumption here is that this is the entire

memory). Shown first, in (i), is the memorized sequence along with the information content of each moment. This example is simplified, because the model is derived

from the entire string, post-hoc. In a working IDyOT, the statistics would be changing as the string was read. Shown next is the alphabet, Aδ,α . Finally, the bigram

model, Mδ,α , is shown (missing pairs of symbols have zero likelihood). It is clear, in this simple case (but also in general), that the uncertainty in the model arises from

the choice following a given symbol, here a b; therefore, this is where an attempt should first be made to reduce the alphabet. This is shown in (ii), where 5
δ2,α+1
δ1,α

is a

partition of Aδ1,α , so that d and e are in the same partition, called p. In this instance, all the uncertainty is removed, and h̄δ,α for this memory is 0. A new expectation is

created for the following symbol, c, which was not available before the categorization, and this is the first glimmer (however small) of creativity caused by

re-representation. However, it is possible that this transformation might be vetoed by appeal to the convexity of the resulting region in Vδ2 ,α+1; if so, case (ii) is

discarded. Case (iii) shows, for comparison, the effect of categorizing a random pair of symbols, a and b, earlier in the process. Clearly, here, h̄δ,α increases, and it is

easy to see why: the change introduces new uncertainty into Mα+1 which directly affects h̄δ,α of the memory, and therefore this potential categorization should be

rejected. For completeness, case (iv) shows the case where all the symbols are categorized into one partition. This should never arise in practice, under the above

procedure, because it is highly unlikely that h̄δ=,α0 would be achievable for a non-trivial example.

1δ,α
τ =







true if H(δ,α, τ−1) < H(δ,α, τ ),

true if H(δ,α, τ−1) ≥ H(δ,α, τ ) ∧ h(δ,α, τ ) < h(δ,α, τ+1),

false otherwise.

Given 1δ,α
τ , as shown in Figure 5, we can detect candidate

boundaries, either along a complete layer, or incrementally, as
the layer is assembled. The latter is the approach taken in
IDyOT: the aim at this point is to model ongoing, waking,
non-conscious perception. Necessarily, and especially at the
beginning of an IDyOT’s memory, the incremental nature of
the process will result in sub-optimal learned model, because
the predictions of the model are not informed of the future.
However, this is a price worth paying in comparison to the

computational cost of constantly revising the memory as it is
updated, or frequent repeated stopping of the learning process
in order to consolidate, using the procedure proposed below.
The former would either require excessive expenditure of neural
capacity or an organism that acts more slowly, making an
organism vulnerable to predators. The latter would require
frequent regular short periods of unconsciousness, again placing
an organism in danger of predation. As such, neither is likely
to be favored by evolution over maximal waking activity.
Instead, the compromise experienced by modern humans is
modeled9: rapid, continual on-line learning during waking time,
followed by sustained periods of consolidation during sleep. The

9Other solutions exist: for example, dolphins sleep with just half of their brain at

any one time.
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FIGURE 5 | An example of IDyOT seqmentation. For illustrative clarity, as in Figure 4, Mδ,α is constructed statically post hoc, and not incrementally. The figure shows

levels α and α + 1 for an example sequence similar to that in Figure 3. H is not calculable for a symbol which has not been encountered as the first element of a

bigram, so no value can be given for the last symbol. Note that the sequence “e e” arises more than once: this is enough to suggest that it might be treated as a

segment at a higher level. Note also that h̄δ,α of layer α + 1 is lower that of layer α, and that layer α is impervious to more grouping under the current definition of 1α
τ ,

so the process stops.

consolidation phase reduces the importance of the correctness of
individual segmentation decisions, on the grounds that if they are
incorrect, they can be corrected later.

Segmentation will, below, allow the construction of the
hierarchy illustrated in Figure 3. First, however, it is necessary
to consider the meaning of segments. Chella et al. (2008) address
the problem of modeling sequences in conceptual space theory,
in the context of robot movements10. The issue here is that it is
necessary to identify a range of slightly different movements as
essentially the same movement, when it is so, notwithstanding
local variations of location and speed. Chella (2015) extends
the same notion to music perception, both at the levels of
pitch and timbre, and at the level of musical phrase (that is,
of sequences of notes). The mechanism proposed here builds
on these ideas to explain how the models are constructed.
Chella’s key idea is to use spectral transforms to abstract out
the temporal element of sequences that may be of arbitrary
length, and convert them tomore abstract representations, where
sequences become points in (more abstract) conceptual spaces.

The resulting relation, in IDyOT theory, is called 3
δ2 ,α+1
δ1 ,α

, and

it stands in correspondence with 5
δ2 ,α+1
δ1 ,α

in the sequential

memory; that is, 5
δ2,α+1
δ1,α

and 3
δ2 ,α+1
δ1 ,α

serve a corresponding
purpose in the sequential and semantic memories, respectively:
to link a symbol or region, respectively, at a given level with a
sequence or trajectory, respectively, at the level below. It relates
regions in a given Vδ2 ,α+1 with trajectories in the corresponding

10Terminology: Chella et al. (2008) refer to knoxels, minimal regions in conceptual

spaces. Here, the symbols of any Aδ,α are the same thing.

Vδ1 ,α , or, equivalently, points in a given Vδ2 ,α+1 with trajectories
containing points in a corresponding Vδ2 ,α . By analogy with
geometry, this relation is termed “subtend”, in either memory,

so Aδ2 ,α+1 subtends the sequence in Aδ1 ,α under 5
δ2 ,α+1
δ1 ,α

and

Vδ2 ,α+1 subtends the trajectory in Vδ1,α under 3
δ2 ,α+1
δ1 ,α

. The
real-time element of this relation is handled separately from
other dimensions, as explained by Forth et al. (2016); this is not
relevant here.

A detailed example of IDyOT segmentation is given in
Figure 5. The input sequence used is constructed to include
something that could be construed as a word or some other
linguistic group: the sequence “e e” appears three times,
whereas other symbols show no regularity. The information-
theoretic chunking mechanism identifies this and creates a new
symbol to subtend the repeated sequence, thus reducing average
information content. However, the symbol chunking shown in
the figure is only part of the story. Layer α already has at
least one Vδ1 ,α , which means that it is possible to construct
a Vδ2 ,α+1 whose points are spectral transforms of the points
corresponding with the symbols from Aδ,α constructed into

(sometimes single-point) trajectories, as defined by 3
δ2 ,α+1
δ1 ,α

.

The same rules apply to the construction of Vδ,α+1 as in the
categorization phase, above: a suitable ×i must be found. Thus,
it becomes possible to link complex sequences of meanings
with individual summarizing concepts, and therefore the first
step to learning grammar11 is taken. Like categorization,

11This is very clearly not a Chomskian grammar, but something more based in

semantics, and learned bottom up.
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segmentation is a process of re-representation, because a new
level of representational affordance is generated, in which
sequences of symbols at the lower levels may be compared
and categorized.

4.5. Hierarchy Construction
Given the two re-representation processes proposed in the two
foregoing sections, it is now possible to specify an algorithm
for processing symbols as they appear, interleaving the processes
repeatedly until neither of them can go further, and the resulting
memory is irreducible. Doing so will produce a hierarchy of the
kind illustrated in Figure 3. It is implicit in this process that
different segments at one level of abstraction may be grouped
together at a higher level, if such grouping is licensed by an
appropriate semantic space. In this way, categories of similar
meanings may be constructed, providing the next step toward
grammar construction.

Both kinds of alphabet reduction, categorization and
segmentation, may involve choices. Alternatives can be dealt
with in several ways in the context of a process such as this:
(1) choose a representation, based on the heuristics introduced
above, and stick with it—this is called a greedy strategy in
studies of search methods; (2) explicitly represent the ambiguity
using multiple spaces (for categorization) or segmentations
(for segmentation) in parallel at any given layer; (3) allow the
system to backtrack, undo and redo decisions in the face of new
evidence. Definitive answers to these choice are a matter for
empirical research. However, an outcome consistent with the
principle of information reduction, and therefore that proposed
here, is that segmentation strategies will reduce wherever the
available evidence allows, taking the greedy option, and perhaps
allowing a minimum of local parallelism. Doing so means
committing to answers where there is ambiguity, thus sometimes
ruling out possibilities, and possibly missing preferable solutions.
But to avoid this option would mean expensive use of memory,
either to record which decisions were taken last, what they
were, and what was their context (and so allow decisions to
be unpick and redone), or to maintain multiple segmentations
in parallel. While multiple segmentations are indeed possible
in the formalism (because of multiple semantic spaces, δ, and
any given α level), their expense should be avoided wherever
possible, for the reasons already rehearsed above. Ambiguity, or
rather multiplicity, of categorization, however, is an active part
of cognitive construction of a world model, as demonstrated
by Saffran and Griepentrog (2001), and intuitively felt by any
experienced musician, in the context of musical hearing of
both relative and functional pitch12 at the same time; in speech,
examples are the ability to hear pitch, timbre and intensity as
separate features of a signal. Therefore, such representational
multiplicity, which admits cognitive flexibility, and the possibility
of analogy and metaphor (McGregor et al., 2015) should be
supported: the dimension labeling, δ, in the formalism makes
this possible.

12This latter is a percept that is learned by some musicians; it is, regrettably,

inexplicable to those who have not learned it.

It is for these reasons, of practical compromise, that
IDyOT theory includes a model of memory consolidation,
viewed as a process of optimisation of the memory
structure described above, so as to be self-consistent and
information-efficient. This model is the subject of the
next section.

5. HYPOTHESIS: A MECHANISM FOR
MEMORY CONSOLIDATION

The process of memory consolidation in IDyOT, like the rest
of IDyOT’s processes, is deliberately simple, constituting an
initial hypothesis as a starting point for empirical research.
However, as with the rest of IDyOT’s processes, because of
the recursive nature of the system, simple effects can have
major consequences. Here, as seen in a very small way in the
example of Figure 4, they can enable creativity, and they can
support the learning of sequential phenomena as complex as
human language.

During a period of learning, IDyOT will operate as described
above, greedily optimizing its learning. However, at some point,
it must stop and consolidate, loosely simulating the point
that humans must stop and rest or sleep. The aim of this
consolidation is to heuristically minimize the mean information
content,

∑

δ,α h̄
δ,α , of the entire memory. For any IDyOT with

the opportunity to develop over a long period, an analytical,
non-heuristic approach to this would mean very substantial
computation, which is not necessarily desirable in a cognitive
model: the aim here is not necessarily to achieve the smallest
∑

δ,α h̄
δ,α , but to represent the learned information in the way

that predicts the world best.
In order to implement consolidation, therefore, propose a

heuristic method based on information content. Overall, the aim
is to locate the part of the memory that models its data the
least well, and therefore has the highest information content,
and adjust a minimal number of symbols in such a way that
the model is better. A precursor of this idea was seen in
Figure 4ii where h̄δ,α was reduced by the categorization of
two symbols, which directly caused uncertainty and therefore
increased information content; categorizing those symbols
together (if such an act were licensed by the existence of an
appropriate semantic space) removed the uncertainty, and thus
reduced

∑

δ,α h̄
δ,α .

Once off-line, or receiving no data, the processes of
categorization and segmentation as described above may proceed
in a non-sequential manner: there is now no requirement to
function quickly, as events in the world unfold. This means
that the memory may be examined thoroughly, and the sources
of uncertainty and/or high information may be identified.
Furthermore, it means that repairs, which may take non-trivial
processing effort, may be applied. From the perspective of
computational implementation, these quantities are cheap to
calculate, so an efficient heuristic search may be made through
the memory.

Four consolidation operations may be applied here: (i)
categorization, as before, but applied in heuristic order along
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the entire memory; (ii) segmentation, as before, but applied in
heuristic order along the entire memory; (iii) re-categorization,
the converse of categorization, where it transpires that separating
elements of a category into two or more sub-categories is
desirable; and (iv) re-segmentation, in which existing segments
are themselves split as a result of new evidence. Note that these
operations may be chained so that symbols effectively move
from one category to another or from one sequence to another.
Each one of these may require processing at multiple levels and
in multiple parts of the memory. Furthermore, because IDyOT
memory is one interconnected network, each change is likely to
cause further changes that will ripple upwards through it, until
eventually a newly stable overall representation is reached, or
until time for consolidation is exhausted. In principle, it is clear,
new representations introduced as part of this process can change
the meaning of symbols, because their grounding in perception
can change, as can their relation to other categories in their
defining Vδ,α . Thus, new representations can be formed, new
categories within semantic space defined, and points may be
moved from one category to another.

Thus, the hypothetical algorithm proposed here is a therefore
a simple loop, shown inAlgorithm 1. In English: Take the symbol
with the highest information content. Attempt to categorize
it with others. Then attempt to segment around it. If either
or both attempts succeeded, choose the resulting symbol with
highest information content, and start again. If neither attempt
succeeded, choose the next highest information content and start
again. Repeat this process until the available time is exhausted.

Algorithm 1: IDyOTMemory Consolidation

Data: An IDyOT memory network, N;
a time limit, τ

Result: A consolidated IDyOT
memory network, N

L ← list of symbols in N, ordered by
decreasing h;
while (processing time < τ ) do

if (categorization criteria apply to
head(L)) then

re-categorize head(L);
update N if necessary;

end

if (segmentation criteria apply to
head(L)) then

re-segment head(L) ;
update N if necessary;

end

if (N was updated) then
L ← list of symbols in N,
ordered by decreasing h;

else
pop L;

end

end

6. TESTING THE HYPOTHESIS

6.1. Approach
For all this model may be explained in relatively simple terms,
because of its iterative nature, complex, long-term consequences
are difficult to predict. It is part of the methodology used here
that one should build the model, run it, and identify unexpected
predictions—the more unexpected the better (Honing, 2006);
these predictions should then be tested against human behavior,
to validate or falsify the model. However, equally, without an
implementation, one should be able to predict simpler outcomes.
This section gives an example of such an outcome, in word
re-segmentation.

It is a feature of human memory that the segmentation
of audio streams may be revised. To see this, consider the
word “inseparable.” Imagine an IDyOT that has not yet
encountered the negating prefix “in” or the word “separable”,
in its learning, and which is now learning the sentence, “They
are inseparable friends.” for the first time. Supposing that the
IDyOT is reasonably otherwise experienced13, it might produce
a representation as shown in Figure 6i, using the International
Phonetic Alphabet, AIPA, as a proxy for the categories learned for
low level speech by the IDyOT. Now suppose that, over a period,
the phrase “in a separable way” is encountered, along with other
instances of “in.” This will changeMIPA in such a way as to make
1IPA true at the start of the first moment of “separable.” In the
next consolidation phase, if there is enough time and if hIPA is
large enough, the initial input will be re-segmented is shown in
Figure 6ii. In this (rather contrived) instance, there need be no
further ripple effects: “inseparable" was already a segment at the
higher level. The identification of the distinct “in” prefix causes
a reduction in h for any IDyOT with knowledge of more than
two uses of it: for n such adjectives, there are 2n corresponding
symbols—the positive and negated versions–in the unseparated
form; with the distinct prefix “in”, there are n + 1. It also affords
a new representation, as shown in Figure 6iii, iv: a label with
which to associate the negation of concepts in general. What an
example on paper cannot show is other information from sensory
context and higher-order reasoning afforded by the higher layers
of IDyOT memory that conspire to represent the meaning of
the prefix “in” and the word “separable,” which, after (iv) are
necessarily associated with the corresponding sections of speech.
This, again, is a simple kind of creativity: while the discovery of
this idea is certainly prompted by its existence in the speaker of
the input language, from the perspective of the individual IDyOT,
its generation is, in the terms of (Boden, 2004), P-creative.

Such behaviors are observable in humans, and can be tested
using languages generated artificial grammars, to which an
IDyOT can be exposed in comparison with humans. Thus,
a programme of research can be designed in which memory
revision and consolidation in humans is compared with that
in IDyOT theory. The same method can be applied in music
(e.g., Pearce and Wiggins, 2006), though it is harder to dissociate

13Specifically: it is familiar with the other words in the sentence with enough

context to recognize them; and it has identified “s” as an ending.
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FIGURE 6 | Re-segmentation of the word “inseparable” under consolidation. The initial IDyOT memory (i) is revised on the basis of further evidence to explicitly

represent the negating prefix, yielding (ii). The corresponding semantic representations are shown in (iii,iv). Note that (iv) now affords a label to associate with the

concept of logical negation.

musical enculturation from human responses to pitch patterns
than with artificial “word” strings.

6.2. Some Very Preliminary Supporting
Evidence
In this section, we present some very preliminary supporting
evidence that IDyOT’s re-representation approach does indeed
contribute useful information. The evidence comes from an
implementation, which is work in progress by the second author.
At time of writing, the implementation covers only the sequential
aspect of IDyOT, replacing the subtlety of semantic spaces with
simple equality, and it includes only the effect of lower layers in
the sequence hierarchy on higher ones, and not the converse. It
contains no consolidation phase. Thus, the difference between
this proto-IDyOT and a simple bigram model is the stacking
of successive layers’ models, and the consequent passage of
segmentation information up the network.

6.2.1. Method
We have begun to implement IDyOT as a Java program, and our
results come from the empirical application of that programme.
We are considering here a well-defined data set, with clear
symbols and a clear ground truth, so as to run the system in a
readily verifiable context; thus can we understand its operation
better. More challenging data will come later.

Our data is three novels in English: The Time Machine
(H. G. Wells), Moby Dick (Herman Melville) and Pride and
Prejudice (Jane Austen), drawn from the Project Gutenberg

database14, including any surrounding material that Project
Gutenberg has added. The aim of the study is to segment these
books in such a way that words are correctly found, the ground
truth being the original texts, and the input data being the same
texts with all punctuation, spaces, and footnote/endnote markers
removed. In our study, we process each book individually. Each
book is loaded into IDyOT, the lowest representation level being
letters, and the resulting IDyOT sequential memory is then
examined to evaluate the contribution of the successive layers.

Our evaluation measure is the percentage of words that are
correctly found in their individually correct position in the text;
that is, we are counting tokens and not types, and the position
of the word in the text matters, so each occurrence of, for
example, “the” is counted separately, and each occurrence must
be individually correct to be counted. Thus, we use a stringent
measure. To assess the impact of the hierarchy, we also record the
lowest level at which each word is found. Position is important
because, in due course, we will want to study the dynamic process
of incremental learning that is recorded in IDyOT memory.
From this perspective, there are 36,128, 219,986, and 127,368
words in the three datasets, one for each book, respectively.
By way of baseline, we have computed two different empirical
chance outcomes, and to evaluate the contribution of the re-
representation in this case, we compare the number of words
found cumulatively at each successive layer.

14https://www.gutenberg.org
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TABLE 1 | Results of the preliminary study.

Dataset The Time Machine Moby Dick Pride and Prejudice

Words 36,128 219,986 127,368

Baseline A 0.09% 0.07% 0.06%

Baseline B 0.11% 0.08% 0.08%

1 §6.2.2 §4.4 §6.2.2 §4.4 §6.2.2 §4.4

α = δ = 0 6,416 (17.8) 5,885 (16.3) 36,105 (16.4) 31,601 (14.4) 24,459 (16.6) 20,171 (14.3)

α = δ = 1 4,377 (12.1) 4,133 (11.7) 29,938 (13.6) 25,821 (11.7) 20,003 (13.6) 18,497 (13.1)

α = δ = 2 1,018 (0.1) 1,804 (5.3) 8,149 (3.7) 15,348 (7.0) 5,243 (3.6) 8,947 (6.3)

α = δ = 3 44 (0.0) 526 (1.6) 336 (0.2) 4,539 (2.1) 270 (0.2) 2,079 (1.5)

α = δ = 4 0 (0.0) 52 (0.1) 4 (0.0) 556 (0.3) 1 (0.0) 401 (0.0)

α = δ = 5 0 (0.0) 4 (0.0) 0 (0.0) 45 (0.0) 0 (0.0) 27 (0.0)

α = δ = 6 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.0) 0 (0.0) 1 (0.0)

Total 11,855 (32.8) 12,652 (35.0) 74,532 (33.9) 77,911 (35.4) 49,976 (39.2) 50,123 (39.6)

6.2.2. Results
The results of the study are shown in Table 1.

Our chance baseline comparisons were computed as follows.
In Baseline A, we marked n − 1 boundaries at random positions
in each dataset. We then evaluated the segmentation result
as above, repeating the process and taking the mean of 100
such random segmentations. In Baseline B, we calculated the
observed likelihood of a boundary at each position, assuming a
uniform distribution.We then counted sequentially through each
dataset, marking each possible boundary as a boundary with that
probability. We then evaluated the result as above, repeating the
process and taking the mean of 100 such random segmentations.
The baselines are shown, with the rest of the results, in Table 1. It
is immediately clear that our results are substantially better than
either kind of chance.

Each row in the table shows the result of the application of
a bigram model for segmentation using two different boundary
detector functions, for each dataset. Each row shows the number
of words correctly identified for the first time at that level.
Two different boundary detection functions are shown: a simple
increase in h, thus, labeled after this section of the paper:

1δ,α
τ =

{

true if h(δ,α, τ ) < h(δ,α, τ+1),
false otherwise.

and the more complex 1 function defined in section 4.4, and
so labeled. The purpose of this comparison was exploratory:
Occam’s razor suggests that a simpler function would be
preferable, so it is appropriate to consider various possibilities.
More will be considered in future work.

We have shown the results for each layer of the hierarchy
in which words are found (none are found beyond level 6),
and for the total for each dataset. Figures in round brackets are
percentage success, in the terms described above.

Figure 7 shows a fragment of the IDyOT internal
representation, in the same form as illustrated throughout
this paper, for the text fragment “. . .marked. This puzzled me
very much at first. The alternations of night and day grew
slower. . . ”, taken at random from The TimeMachine. For clarity,
we have omitted higher levels at the beginning of the example,

because they carry forward information from earlier data, that is
not included in the example text.

6.2.3. Discussion
At the gross level, the first striking result is that the addition of
the simplest version of re-representation in IDyOT results in an
increase in successfully detected words by a factor of two ormore.
This is a substantial improvement, and it should be noted that it is
achieved without any extra machinery (and in particular without
ad hoc machinery): the Markov models are simply built in the
usual way, one on top of the other, incrementally, as described
above. While the absolute numbers do not compete with other
systems on word-identification tasks, that is not the point here:
the point is to demonstrate that re-representation, even in this
simple way, improves the predictive power of the model.

A second interesting result is that the complex 1, though
performing better than the simple one overall, does less well at
the lower levels. We speculate that this may lead us to use the
simpler function once consolidation is implemented.

Thirdly, it is interesting to note how uniform is the
performance of both the basic Markovian idea, but also of its
hierarchical extension in IDyOT, over our three datasets.

In all, this small demonstration serves to show that there is
promise in the IDyOT theory, though significantly more work is
necessary before strong claims can be made.

7. CONCLUSION: CREATIVITY,
REPRESENTATION AND CONSOLIDATION
IN THE INFORMATION DYNAMICS OF
THINKING

We now return to the central point of the current paper: that
both incremental learning and consolidation should be seen as a
process of repeated re-representation of an organism’s experience
of the world, whether the organism is natural or artificial. Put
another way: learning is a process of meaning-making, which
is performed by building representations, using representational
affordances, whose propriety in local context is inferred from
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the structure of the data as perceived. Such meaning-making
is incremental in time, because an organism needs to respond
in real time to the world (in order to survive). However, the
resulting memory model can be optimized, in terms of its
predictive power (and thus in terms of its utility to the organism),
by means of consolidation. Consolidation, in turn, may adapt
the semantic spaces and/or the resulting segmentations. IDyOT’s
information-efficiency criterion affords a heuristic to guide such
operations, which is independent of the domain of data. It is
therefore capable of unsupervised, or implicit, learning, as are
humans and animals.

The learning process formalized here encompasses both
segmentation (chunking) in time and the construction of
semantic representations. A fundamental point of the model
is that, when a new set of representational affordances (i.e., a
new semantic space) is constructed, the spaces from which it
was constructed are not discarded, but persist, permitting the
organism multiple different ways of conceptualizing its world,
simultaneously. Furthermore, multiple spaces can be generated
at any level of abstraction from any given stimulus, affording the
possibility of multiple views of the same data, as is self-evident
in human perception of speech and music. Conventionally, these
multiple dimensions are considered as given; IDyOT theory
proposes an account of how they are generated.

A corollary of the proposal above is that the representational
affordances of each semantic space must themselves be
constructed. Therefore, hypothesize, along with (Kemp and
Tenenbaum, 2008), that there should be atomic building-blocks
and construction operations for such spaces, which, in biological
organisms, are presumably the basic cognitive operations of the
wetware. The current paper goes a modest way to suggesting the
mathematical nature of these cognitive tools: future work will
investigate further.

There are multiple points where IDyOTmemory construction
operations offer the opportunity for creativity, interpreted
again as incubation and inspiration (Wallas, 1926). The most
important is the construction of concepts. This operation is often
presented as inference in the machine learning literature, but to
do so assumes that meaning exists in the world as a ground truth,
and this author does not subscribe to this view. Rather, concept
formation (the identification of a coherent concept by a natural
or an artificial cognitive entity) consists in the construction of a
semantic space in which dimensions and geometry coincide to
give it coherent meaning 15 . Another opportunity for creativity
is IDyOT’s capacity to move points from one category to another
within a space (Wiggins, 2018). This connotes the kind of
creativity in which an existing piece of knowledge is viewed
from a new perspective. Finally, the capacity for re-representation
within the process of learning affords creativity in its own right,
not only of concepts (as above) but of semantic/conceptual
spaces themselves (Gärdenfors, 2000). Because such spaces are
geometrical, they can be explored: new points can be interpolated
between, or extrapolated beyond, existing points, and thus can

15Perhaps this would translate to there being physical properties of a biological

neural substrate which support the oscillatory behavior that is modeled by IDyOT’s

Hilbert spaces?
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imagination and creativity be given a palette from which to draw
their metaphorical colors.

The kind of creativity that drives language and music (on both
everyday and world-changing levels) can perhaps be explained
by the sequential and predictive elements of IDyOT, and a
particularly unusual feature of the theory is the ability to reason
abstractly, at levels that represent multiple possible instantiations
of, perhaps, a sentence or melody. This is an important feature
of human reasoning, which is rarely addressed in AI research—
a notable exception being the “middle-out reasoning” of Bundy
et al. (2005). We contend that this an important aspect of human
creativity that needs to be reflected in autonomous artificial
creative systems of the future.
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