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Item leakage has been a serious issue in continuous, computer-based testing, especially

computerized adaptive testing (CAT), as compromised items jeopardize the fairness

and validity of the test. Strategies to detect and address the problem of compromised

items have been proposed and investigated, but many solutions are computationally

intensive and thus difficult to apply in real-time monitoring. Recently, researchers have

proposed several sequential methods aimed at fast detection of compromised items, but

applications of these methods have not considered various scenarios of item leakage.

In this paper, we introduce a model with a leakage parameter to better characterize the

item leaking process and develop a more generalized detection method on its basis.

The new model achieves a high level of detection accuracy while maintaining the type-I

error at the nominal level, for both fast and slow leakage scenarios. The proposed model

also estimates the time point at which an item becomes compromised, thus providing

additional useful information for testing practitioners.

Keywords: computerized adaptive testing, CAT, compromised item detection, generalized linear model,

test security

1. INTRODUCTION

Due to advances in information technology, continuous testing has been offered for many
large-scale testing programs, and test takers can take such exams nearly any time during the year.
Although continuous testing provides test takers with considerable flexibility and convenience, it
also raises serious security concerns. Individuals who take the test earlier in a testing window could
share the items orally or online (e.g., via social media platforms), which would benefit subsequent
test takers, jeopardizing the validity and fairness of the test. Studies have shown the severe and
negative impact of compromised items (Chang and Zhang, 2002, 2003; Davey and Nering, 2002;
McLeod et al., 2003; Yi et al., 2008; Guo et al., 2009; Zhang et al., 2012). Items administered
frequently are vulnerable to leakage, and many methods have been proposed to control item
exposure to protect test security (Sympson and Hetter, 1985; Stocking, 1994; Stocking and Lewis,
1995; Mills and Stocking, 1996; Hetter and Sympson, 1997; Way, 1998; Chang and Zhang, 2002,
2003; Davey and Nering, 2002; Chen et al., 2003). Sympson-Hetter (SH) method (Sympson and
Hetter, 1985) is one of the widely used applications of this strategy. SH method needs an upper
cutoff proportion (e.g., 20%) as a parameter. Only those items that are exposed to <20% of all test
takers can be selected. This way, SH method is able to prevent the over exposure of an item to
the public, which in return reduces the potential damage caused by the item compromise. Since
then, researchers have developed many exposure-control strategies following the same direction.
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Although these methods are generally effective in keeping items
from being over exposed, they are only preventive measures
and do not directly address the problem of items that have
been compromised.

Alternatively, many methods have been developed to
proactively detect item preknowledge (McLeod et al., 2003;
Belov et al., 2007; Belov and Armstrong, 2010, 2011; Obregon,
2013; Belov, 2014). These methods allow testing practitioners to
determine whether an examinee has preknowledge of a set of
suspicious items by comparing the estimates of the examinee’s
ability with and without suspicious items. As examples, Drasgow
et al. and Armstrong et al. proposed detection methods using
likelihood-based person fit statistics (Drasgow et al., 1985;
Armstrong et al., 2007), Levine and Dragsgow proposed another
method based on Neyman-Pearson lemma (Levine and Drasgow,
1988), and Belov et al. proposed to use Kullback-Leibler
divergence for detection (Belov and Armstrong, 2011). However,
in practice, there are two major limitations with the application
of these methods. First, it is difficult to identify a set of suspicious
items without context or prior information, especially when
considering that the item set varies from examinee to examinee.
Second, these methods rely heavily on the estimation of the test-
taker’s ability. When the true ability of the test taker is known,
the method usually performs well. In practice, however, the test-
taker’s true ability is unknown and needs to be estimated. In
the case of severe item leakage, the estimation of an individual’s
ability can become biased, which in turn can lead to inefficiency
in detecting item preknowledge.

The above-mentioned proactive methods focus on individual-
level test statistics, but in recent years, several item-level
sequential methods have been proposed to detect compromised
items in computerized adaptive testing (CAT) (Zhang, 2014;
Zhang and Li, 2016; Choe et al., 2018). These methods focus on
monitoring the change of the expected probability of getting a
correct response for an item. To enhance the sensitivity of the
detection procedure, they suggest imposing a moving window
to select a group of responses from the nth response to the
(n + m)th, where n is the starting point of the window and m
is the size of window. Then a hypothesis test is performed to tell
whether the expected probabilities of getting an item correct are
the same before and within this window. The item will be flagged
as compromised if the change is significant. One advantage
of this sequential algorithm is that it is computationally fast
and hence can be used for real-time detection. Existing studies,
however, are limited in several ways and warrant further study.
First, these methods require specification of the best window
size, which may be challenging for test professionals. Second,
the simulation considers only the scenario where the expected
probability of a correct response has a sharp increase after an
item is compromised. The utility of these methods in the face
of a gradual change of the expected probability is unknown.
Third, the current sequential detection method can only tell
when the leakage is detected but cannot estimate when the
item is compromised, from which test practitioners can review
the impact of the leakage and re-evaluate test-takers’ ability
estimation. For example, an item compromised at day t1 can be
detected as an compromised item at day t2. There is a t2 − t1

lag in between before a significant conclusion could be drawn. In
this case, t2 is the detection day, which is known. And t1 is the
compromised day which is not known.

Therefore, there is need for a new, flexible method to
account for various item-leaking processes in real life, where
compromised items can spread at different rates and item leakage
can result from many causes. The new method should be able to
detect leakage under different scenarios, and provide an estimate
of when an item is leaked.

First, compromised items may spread at different speeds,
and the expected probability of correctly response to an item
may not jump abruptly to a fixed, high value. For example, a
posting on a popular social media website could quickly spread
preknowledge of an item, whereas sharing within a small group
of acquaintances might result in slower spreading. Therefore,
to make the sequential detection approach more robust, it
is important to develop a flexible method that takes these
underlying dynamics into consideration.

Second, there are many probable causes of item leakage. A
common scenario as detailed above could involve a test taker
who posts the items received on a website, where future test
takers could gain preknowledge on those items. A more severe
case is organized item theft, which has been discussed in Yi
et al. (2008). In this case, profit-driven organizations may send
thieves to take the exam at the early stage in a testing window.
The thieves will intentionally memorize the items they receive,
aiming to profit from disclosing the items to future test takers.
In the “random item leakage" scenario, the time when an item
becomes compromised is random. In the “organized item theft"
scenario, on the other hand, the leakage usually happens at
the very beginning of a testing window. When investigating
the performance of detection methods, these different scenarios
should be considered.

We therefore propose a newmethod for proactive detection of
compromised items that largely addresses the stated limitations
of existing approaches. Our method uses generalized linear
modeling with complementary log-log transformation (cloglog)
as the link function, and it takes the potential leaking mechanism
into consideration. Compared with existing methods, it has the
following advantages: (1) It can handle more complicated item
leakage mechanisms, both fast and slow; (2) Unlike existing
sequential approaches, it does not need a moving window to
boost the detection sensitivity, and thus saves the trouble of
determining the best window size; instead, it improves the
detection accuracy by utilizing complete testing information.
(3) It enables the estimation of the “compromise time,” i.e.,
the time point at which the item was compromised. (4) It
is computationally more efficient compared with those item
preknowledge detection methods since it does not depend on the
selection of suspicious items.

The model is validated by both simulation data and real
data in practice. For simulation, the test is performed with
simulations under different scenarios and parameters. The
simulated datasets are generated as diverse as possible. First,
the model we use for simulating data is purposefully designed
to differ from our model for leakage detection, in order to
test the robustness of our leakage detection method when
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the underlying leaking mechanism is unknown. Second, our
simulation covers two distinct leakage scenarios, organized item
theft and random item leakage. Third, for each simulation
scenario, we investigated the values of the leakage rate in a wide
range, in order to mimic different spread speeds in practice.
In addition of all simulation studies above, we also showed an
application of our proposed method to a real large-scale testing
dataset. Both studies, i.e., simulation and real data, perform
well. In our study, an application based on the estimation of
the compromised day, t1, is also proposed, which successfully
links the compromised item detection with the person-level
preknowledge detection. Simulation results show that t1 can
provide important information for the preknowledge detection
in CAT and significantly improve the accuracy of the person’s
ability estimation.

2. METHODS

We detect compromised items by monitoring the responses
of test takers. When an item is compromised, the expected
probability for test takers to answer it correctly will increase.
Instead of assuming all responses to always be correct (Yi et al.,
2008) or to be a constant probability (Zhang, 2014) immediately
after an item becomes compromised in simulation, we propose a
gradual change model as a function of time, hereafter referred
to as the leakage model. The leakage model acknowledges the
fact that responses to a compromised item may not always be
correct right after its compromise. Instead, as more people are
exposed to this compromised item over time, the probability for
the item to be correctly answered will gradually increase to 1. This
increase can be slow or fast, depending on the rate parameter.
When this rate is large, our model will degrade to the previous
models mentioned above.

2.1. Generalized Linear Model for Detection
In computerized adaptive testing, the probability for a test taker
to give a correct response to an uncompromised item can be
modeled by a three-parameter logistic (3PL) item response theory
(IRT) model (Lord, 1980):

P(U = 1|θ) = c+ (1− c)
1

1+ e−1.7a(θ−b)
, (1)

where θ is the latent ability of a test taker, a is the discrimination
parameter, b is the difficulty parameter, and c is the pseudo-
guessing parameter. It has been shown (Birnbaum, 1968) that
the item will be assigned to test takers whose provisional ability
estimate is close to

θ0 = b+
ln(1+

√
1+8c
2 )

1.7a
, (2)

when the maximum item information method is used to select
the next item. The expected probability for test takers to answer
the item correctly is (1+

√
1+ 8c)/4. Thus, the probability to

answer the target item correctly should fluctuate roughly around
this expected probability. When an item is compromised, the
expected probability will increase accordingly. In practice, since

the ability estimate may not be sufficiently accurate at the
beginning of the test, the expected probability to correctly answer
the item might not be exactly (1+

√
1+ 8c)/4 initially. On the

other hand, to control the potential damage from item thieves
during high stakes exams, an item exposure control component
will be implemented, which is a random factor on top of the
item selection criterion. Therefore, it is rare that the very item
expected to exhibit the largest Fisher information would actually
be selected and administered. One of the items with higher
information will, though. As the test progresses, however, and if
the item pool is sufficiently large, the expected probability should
hold, a property that could be used to detect the compromised
item. A similar idea was also discussed in Zhang (2014).

In this study, the proposed detection algorithm concerns only
the time series of responses of a single item, and all items are
treated independently. Unless stated otherwise, we will use a
representative item to hereafter illustrate the detection model.

Suppose the expected probability for a test taker to answer
this item correctly is 1 − πt on day t (i.e., the probability to get
an incorrect answer is πt). Therefore, the number of incorrect
answers yt should approximately follow a binomial distribution,
yt ∼Bin (nt ,πt), where nt is the total number of examinees taking
this item on day t. Thus, the overall log-likelihood for all T testing
days for the item of interest is

l = log L =
T
∑

t=1

[

yt logπt + (nt − yt) log(1− πt)
]

, (3)

where t = 1, 2, · · · ,T. Please note that although we are using
days as the unit of t for illustration, t actually can be any time
units. For example, t can be hours instead as long as there are
enough samples within the time interval.

In order to design an effective model to detect the leakage
pattern in real data, we worked with the researchers in the
large-scale testing company in this study. Figure 1 shows four
typical curves from the empirical data analysis. These curves
are selected from a large-scale operational CAT program that
has 2905 items records. The item pool was rotated every 10
days in order to secure the test from item compromise (For
more information of this dataset, please see section REAL DATA
APPLICATION). The error bars are the 95% confidence interval
of the probability of incorrect response of that day, which is

calculated by 1.96

√

π̂(1−π̂)
n (Agresti, 2013). Figure 1A is an item

without leakage. Figures 1B,C represent the leakage with two
different leakage rates: slow and fast. Figure 1D shows a scenario
where the expected probability goes back up after a significant
decrease. For both Figures 1B,C, a sigmoid-shaped pattern curve
could be used to model the probability change. For scenario
d, although the probability goes back after a significant dip,
this scenarios should also be flagged out as well, since: (1) in a
continuous test, we can only make our decision based on the
data we have at hand. (2) a significant decrease of the expected
probability should always be alarmed and carefully investigated,
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FIGURE 1 | Representative Curves for Different Scenarios. (A) Item without any leakage; (B) Item with slow leakage; (C) Item with fast leakage; (D) Item with leakage

that goes back thereafter.

to enhance the security of the test. In this case, a sigmoid-
shaped pattern curve can also be used to model the part before
it goes back.

To detect the gradual change of the expected probability, two
possible methods could be used to model the probability πt as a
function of time: logit

logit
πt

π0
= β(t − t0), (4)

or cloglog

cloglog
πt

π0
= β(t − t0), (5)

where π0 is the expected probability before leakage and β is
a coefficient that controls the speed of the leakage. Here t0 is
the point at which the item is compromised. Figure 2 illustrates
the shape of πt under different combinations of π0 and β for
both logit and cloglog functions. In general, πt decreases in a
sigmoid manner when β is negative, and a larger absolute value
of β corresponds to a faster decrease, suggesting a faster leakage
of the compromised item. In the beginning, πt presumably
changes relatively faster than later in the test cycle. This is
when some test takers who are eager to obtain preknowledge
of the compromised item would like to take the test, since the
compromised item likely is still available. In such case, it will
induce a faster drop of probability of incorrect response when
leakage starts. For this reason, the asymmetry of the cloglog
function is favored in this study and will be selected to model
πt . When t = t0, πt = π0(1− e−1), which is around 0.63 of
the expected probability before leakage. Note that Equation 5 is
actually equivalent to the following model

cloglog
πt

π0
= βt + α. (6)

That is, log(−log(1− πt
π0
)) = βt + α, which gives

πt = π0(1− e−e
βt+α

). (7)

For a compromised item, a negative β is expected. Therefore,
the problem of detecting a compromised item is converted to
performing the following hypothesis test:

H0 :β = 0 vs. Ha :β < 0. (8)

Note that our test is one-sided, since a positive beta corresponds
to an increasing πt , which is not a desired pattern we want to
flag out.

In order to perform the hypothesis test, we need β̂ , as
well as the estimate of its variance or standard error. β̂
and σ̂β are obtained via maximum likelihood estimation.
Since there is no closed form analytical solution, we use the
coordinate-wise Newton-Raphson method to obtain a numerical
solution. Compared with the conventional Newton-Raphson that
updates all model parameters at the same time, the proposed
method successfully avoids the calculation of the inverse of the
Hessian matrix, which can be near-singular and cause numerical
instability. Our approach has proved to be efficient and stable in
all our simulation studies.

Let 9 be the coefficients in our model that need to be
estimated. We have 9 = (ψ1,ψ2,ψ3)

T , where ψ1 = π0, ψ2 = β
and ψ3 = α. In this way, we can use one general symbol 9 to
represent all three parameters. The steps of the coordinate-wise
Newton-Raphson algorithm are as follows:

1. Initialize model parameters with random starting values. We

use π
(0)
0 = 0.5, β(0) = 0 and α(0) = 0 for all our

simulation studies.
2. Update 9 by updating each of its elements consecutively.

That is,
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FIGURE 2 | Comparison of link functions with logit and cloglog transformations.

(a) First, keep β̂ and α̂ unchanged, update π̂0;
(b) Then, keep π̂0 and α̂ unchanged, update β̂ ; and
(c) Third, keep π̂0 and β̂ unchanged, update α̂.

Each of the above updates is given by

ψ̂k ← ψ̂k −
∂ l(9)
∂ψk

∣

∣

9=9̂
∂2l(9)

∂ψ2
k

∣

∣

9=9̂
. (9)

(See the Appendix for more details about this equation.)
3. Repeat Step 2 until convergence. The convergence is checked

by calculating the change of the log-likelihood after each
iteration. If the change is less than a threshold, e.g., 0.001,
the model has converged. Then the element of the Fisher
information matrix (see Appendix for detail) is

[Ik1k2 (π0,β ,α)] = −E
[∂2l(π0,β ,α)

∂ψk1∂ψk2

]

, (10)

where k1, k2 = 1, 2, 3. According to the co-factor method of
getting the inverse matrix of I, we have

σ̂β =
√

I11 · I33 − I13 · I31
det(I)

. (11)

Given β̂ and σ̂β , the Wald statistic is given by

z = β̂ − β0
σ̂β

∼ N(0, 1). (12)

When the null hypothesis is rejected (one-sided test), the item
will be flagged as compromised. The time from when the item
starts to leak, i.e., the “compromised time,” to when a leaked
item is flagged, is defined as “detection lag.” This definition of
detection lag is the same as that in Zhang (2014) and Shao
et al. (2015). Note that the compromised time, denoted as tc, is

unknown in real applications. We propose an estimate of it, t̂c, as
the time when πt drops to a certain percentage, say ǫ, of π0. Based
on our model in Equation 7, it is easy to show that

t̂c =
ln(ln 1

1−ǫ )− α̂
β̂

. (13)

Especially, we use ǫ = 90%. The bias of this estimate is defined as
the “estimation lag”.

Further, the variance of t̂c is given by

var(t̂c) =
(∂ t̂c

∂α̂
,
∂ t̂c

∂β̂
) · 6̂ ·

(

∂ t̂c
∂α̂
∂ t̂c
∂β̂

)

, (14)

where 6̂ is the variance-covariance matrix of (α̂, β̂), and

∂ t̂c

∂α̂
= − 1

β̂
,

∂ t̂c

∂β̂
=
α − ln(ln 1

1−ǫ )

β̂2
.

The elements of 6̂ can be easily estimated by the inverse matrix
of I, similar to how the variance of β is derived in Equation 11.

2.2. Leakage Simulation Model
Our primary goal for introducing a different leakage model
is to test the effectiveness of the proposed detection method
with unknown underlying leakage rates. The leakage simulation
model should have these two features: (1) After the item is
compromised, the expected probability to get a correct response
will increase; (2) The spread rates of the compromised item may
differ across items. In this study, the leaking process is simulated
using an exponential function as follows,

P(a test taker already knows the answer|λ, t0) = 1− e−λ(t−t0),
(15)
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where λ is the leakage parameter that regulates how fast the item
will be exposed to the public, t0 is the time point at which the
item is compromised, and t − t0 is the time interval since the
item was first compromised. The probability for any test taker
to have item preknowledge is a function of t, or P(t). Therefore,
after integration with the 3PL IRT model, the overall probability
for a test taker to correctly answer an item can be captured in a
mixture model as follows:

P(U = 1|θ , λ, t0) = (1− e−λ(t−t0))+ e−λ(t−t0) ·
[

c+ (1− c)
1

1+ e−1.7a(θ−b)
]

. (16)

If the test taker already knows the answer to the item due to
item preknowledge, the response process is described by the first
component of Equation 16, which is 1 − e−λ(t−t0). Otherwise,
the process follows the 3PL IRT model with a probability of
e−λ(t−t0). Therefore, the total expected probability for a test taker
to correctly answer the item is given by Equation 16. Again, the
first component of Equation 16 is a function of time and therefore
captures the leakage process, where λ controls the speed of the
leakage. For example, given a moderate leakage parameter λ and
a compromise time point t0, responses to the compromised item
will contain increasingly more 1 s (i.e., correct responses), as
time t increases. With a large λ, the responses will almost always
be 1 after item compromise, as assumed by previous studies (Yi
et al., 2008). Thus, the gradual change model is more flexible
and general.

Note that, in this study, simulation model is only used to test
the detectionmodel, not to detect the leakage. Compared with the
detection model, simulation model is more complex with extra
parameters including a person’s ability θ . Although we can also
use the leakage model to fit the curve and run the hypothesis test
thereafter, a simultaneous estimation of person’s ability will make
the fitting less efficient than the detection model. Since we only
care about the detection of probability curve’s leakage pattern,
the proposed detection model is more straightforward and easier
to converge.

3. SIMULATION DESIGN

Simulation studies are conducted to investigate the performance
of the proposed detection method. The parameters in our
simulation were chosen according to previous publications (du
Toit, 2003; Yi et al., 2008; Zhang, 2014). A total of 400 randomly
generated items serve as the item pool. The underlying IRTmodel
is 3PL with item parameters generated as follows:

a ∼ lognormal(0, 0.5), b ∼ N(0, 1), c ∼ U(0, 0.25). (17)

The discrimination parameters are generated by lognormal
distribution. An exposure control procedure is implemented
to prevent items from being over-exposed and to protect test
security. The exposure rate for an item is defined as

ρ = # of times an item has been administered

total number of test takers
. (18)

In this study, the exposure control parameter is set to be 0.2,
meaning only items with exposure rate lower than 0.2 are eligible
for administration. Items in the bank belong to three content
areas with percentages 40, 30, and 30%, respectively. Test length
is set at 40. A content control procedure is implemented in the
simulation to ensure that 40, 30, and 30% of items are selected
from each content area for every test taker (i.e., 16, 12, and
12, respectively). The item with the lowest exposure rate in the
desired content area will be selected as the first item for the
incoming test taker. A sample of 500 test takers (θs) are generated
each day to take the exam, whose abilities follow standard normal
distribution. The simulation is replicated 10 times and all the
distribution figures presented in the remainder of this paper are
generated based on results aggregated over replications.

A test item could become compromised for a variety
of reasons. The interest of this study is to investigate the
effectiveness of the detection algorithm in general. In order to
achieve this goal, we studied two common scenarios, which form
the core of this paper:

1. Organized item theft. Organized item theft is one of the most
severe item leakage scenarios in computer-based testing (Yi
et al., 2008). Since organized theft usually occurs early in
one testing window for maximal gain, 20 item thieves are
randomly generated in the first 4 days of the exam cycle. A
simple assumption that each thief can randomly remember 10
items is used here, although professional item thieves could
remember more. The items will be treated as compromised
when they are remembered. Leakage simulation model will be
applied thereafter.

2. Random item leakage. Some test takers simply share the items
that they have memorized with the public. In this instance, the
leakage could occur any time. For the purpose of this study,
20 such item sharers are randomly selected during one testing
window. A testing window is so defined that no item pool
maintenance such as rotation or replenishment occurs within
that window. In other words, the item bank remains the same
throughout the window. In this study, the testing window
is set to be 30 days (one month). In practice, this number
highly depends on the operation of testing company. It might
not be a fixed value even for the same test. For simulation,
we use monthly rotation to demonstrate the methodology.
On average, we assume each item sharer could remember at
random 10 out of the 40 items and share these with the public.
Usually the motivation to share items is weak near the end
of a testing window. For this reason, this simulation study
assumes that such random sharing behavior happens only in
the first 25 days.

For each test taker, the first item is selected from the item

bank that has the lowest exposure rate at that time from
the desired content areas. The probability of the test taker to

give a correct answer to the target item is calculated based

on the mixture leakage model (Equation 16). Then a uniform

distributed random number will be generated within (0, 1). If
its value is less than the mixture probability, the response will
be 1 (i.e., a correct answer). Otherwise, the response will be
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0. The expected a posterior (EAP) method (Bock and Mislevy,
1982) is used to estimate an individual’s ability given this
person’s previous responses. After the first item, the standard
CAT procedure using maximum item information method
(Lord, 1980) is adopted to select the next item according to
the estimated θ̂ .

In some extreme cases, the probability of getting an item
correctly after it is compromised is 1 for all test takers. But, in
practice, item leakage could be a gradual change process. In this
study, leakage parameter λ (see Equation 15) are set to be 0.05,
0.1, 0.3, 0.5, 0.7, 1, and 1.5 to regulate the differential speed of item
leakage. When λ is large, e.g., λ = 1.5, the simulation represents
a severe leakage scenario, in which nearly all responses will be
correct once an item has been compromised.

4. RESULTS

As illustrated in the Method section, the proposed leakage
detection model intentionally uses Equation 7, which differs
from the true underlying model (Equation 16) that is used to
generate the item responses. Parameter λ controls the speed of
leakage. The days to reach the probability’s half-drop can be
approximately estimated by − 1

λ
log(0.5), which are around 14,

1.4, and 0.5 when λ is 0.05, 0.5, 1.5, respectively.

4.1. Organized Item Theft
Asmentioned earlier, this study assumes that all item thieves have
taken the test in the first 4 days within a testing window. Table 1
shows the results of detection accuracy and corresponding type-I
error in this case. Detection accuracy is defined as the proportion
of compromised items correctly identified as such. Type-I error
is the proportion of uncompromised items that are incorrectly
identified as compromised items.

accuracy = # of compromised items that are correctly flagged

# of total compromised items

(19)

type-I error =
# of items that are incorrectly flagged as compromised items

# of total uncompromised items

(20)

For a desired 95% confidence interval, the detection accuracy is
about 99% for those λs larger than 0.05. When λ = 0.05, the
detection accuracy drops to 93.70%. This is because λ = 0.05
represents a very slow leakage process, which is hard to detect
within the 30-day window. On the other hand, the type-I errors
for all λs are well controlled at ∼5%, consistent with the desired
95% confidence interval. Figure 3 represents the distribution of
the detected date of item compromise for different λs within
the 30-day window. Overall, when λ is small, the distribution
shows large variability. When λ is large, the detection is rather
accurate, i.e., pinpointing compromise within the first 4 days. In
addition, when λ = 0.05, the distribution of detected dates for
compromised items shows a significant portion of items being
truncated by the end of the 30-day testing window. Figure 3

TABLE 1 | Detection accuracy and Type-I error for organized item theft (standard

error is given in parenthesis).

Leakage rate (λ) Accuracy (%) Type-I error (%)

0.05 93.70 (0.54) 4.49 (0.37)

0.10 99.86 (0.09) 6.56 (0.56)

0.30 99.93 (0.06) 7.67 (0.70)

0.50 99.43 (0.27) 4.09 (0.76)

0.70 99.61 (0.13) 4.89 (0.74)

1.00 99.04 (0.16) 4.99 (0.34)

1.50 98.85 (0.26) 4.32 (0.83)

provides a direct explanation why the detection accuracy is only
93.70% when λ is small. It is expected that, given more time,
more compromised items would be detected and the detection
accuracy would be higher.

Table 2 shows the detection lag and the estimation lag.
According to Table 2, the mean detection lag is more than 10
days when λ is small (0.05 and 0.10 in our study). When λ ≥
0.3, the detection lag drops to ∼4 days. The probabilities for a
coming test taker to have preknowledge of the item are estimated
using Equation 15 with λ and average detection lag. Although the
detection lag for small λ is large, the impact of the large lag is
actually smaller than the cases with large λs. On the other hand,
the estimation lag is about 1 day for all λs. All the above results
are obtained using ǫ = 90% in Equation 13. When ǫ = 85%
or ǫ = 95% is used, the estimation lag is slightly worse yet still
quite comparable.

Figure 4 shows the distribution of items that are incorrectly
flagged as compromised (type-I error) as a function of item
difficulty, at different leakage rates. It suggests that, in general,
easier items are much more prone to type-I error. Since most
of the test takers could correctly answer an easy item without
any preknowledge, the majority of the responses will be 1 s
regardless of item leakage. In this case, the detection algorithm
will capitalize on the randomness of item responses, which in
turn triggers more false positives.

Further, given the estimation of an item compromise point,
test practitioners could re-evaluate a test-taker’s ability by
removing the responses to the suspicious items from ability
estimation. Suspect items are defined as those compromised
items administered to test takers who take the test after the
item compromise point. For example, if an item is flagged as
being compromised on day 3 and it was assigned to a test
taker on day 4, this item will be classified as a suspicious item
for that test taker. Figure 5 compares the ability estimation
with and without suspicious items. The results indicate that,
after removing the suspicious items, the ability estimation is
significantly better than the one in which all items are used,
as evidenced by higher correlation between true and estimated
ability, and smaller RMSE in ability estimates. Figure 5C shows
the effective number of items for ability estimation, meaning the
number of items left after removing suspicious items. Under the
organized item theft scenario, the effective test length could drop
to as low as 22 items, which is about half of the original test length
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FIGURE 3 | Distribution of the detection day for organized item theft.

TABLE 2 | Detection lag and estimation lag for organized item theft (standard

error is given in parenthesis).

Leakage

rate (λ)

Detection lag

(days)

Estimation

lag (days)

Probability of

preknowledge

0.05 17.47 (0.16) 0.61 (0.19) 0.58

0.10 10.61 (0.11) –0.46 (0.11) 0.65

0.30 4.69 (0.06) –0.95 (0.04) 0.76

0.50 3.47 (0.05) –1.07 (0.03) 0.82

0.70 3.03 (0.05) –1.13 (0.02) 0.88

1.00 3.11 (0.08) –1.07 (0.02) 0.96

1.50 4.96 (0.14) –1.00 (0.01) 1.00

40. Since the number of effective items will affect the accuracy
of the ability estimation, it is expected that the estimation
should be more accurate when λ is small (when there are more
effective items left, as shown in Figure 5C), corresponding to
an increase in correlation and decrease in RMSE as shown in
Figures 5A,B.

4.2. Random Item Leakage
Results from studying the random item leakage conditions
show common patterns with those of the organized item theft
conditions. However, unlike the scenario of organized item theft,
random item leakage does not always start at the beginning of
the item bank rotation. The leakage can occur any time before
the rotation of the item pool. Therefore, more data are available
before the leakage. This part of the study examines how themodel
performs under such a scenario. Table 3 shows the detection
power when random item leakage happens in the first 25 days.

As with organized item theft, the detection accuracy is very
close to 100% when λ ≥ 0.3. Due to the shortage of detection
time when λ is small, the detection accuracy drops significantly
given the 30-day simulation window. Therefore, it is difficult
to effectively detect slow leaking items when the compromise
date is close to the end of the test cycle. For example, if a test
taker decides to share the test items assigned to him/her at
day 25, πt will not change much from day 25 to 30 when λ is
small. When λ is large, however, a significant change of πt could
still be observed within 5 days. Figure 6 shows the distribution
of the detection days under the random leakage conditions.
Compared with Figure 3, the distribution has large variability.
The truncation of the detection day is severe in this case when
λ is small.

Table 4 shows the detection lag and the estimation lag of
the compromise time for random item leakage. The detection
lags are about 1 day shorter than in the case of organized
item theft, which suggests the model works better for the
random leakage scenario. This is because, for the organized
item theft scenario, the detection could not start until day 4,
since all the item theft is assumed to happen in the first 4
days. As a consequence, for those items compromised at day
1, the earliest detection day is day 4 (i.e., the lowest possible
lag is 3 days). On the other hand, although the assumption
of organized item theft affects the detection lag, it does not
significantly affect the estimated compromise time very much.
The method used to estimate the item compromise time shows
similar results in both scenarios, which is about 1 day. Similar
to Figures 4, 7 also shows that most of the type-I errors are
related to those easy items under random leakage scenario
as well.
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FIGURE 4 | Item distribution of Type-I error items for organized item theft.

FIGURE 5 | Ability Estimation with/without Suspicious Items for Organized Item Theft. (A) correlation of estimated θ̂ with true θ ; (B) RMSE of estimated θ̂ ; (C) effective

number of items after removing suspicious items. (X axis is log scale).

Figure 8 compares the ability estimation with and without
those suspicious items. Similar to the scenario of organized
item theft, the ability estimation is significantly improved
after removing suspicious items. Figure 8C shows that the
effective test length is about four items longer than the other
scenario above.

5. REAL DATA APPLICATION

In this study, we demonstrate the use of the proposed methods
with real data from a large-scale operational CAT program
that offers continuous testing. Item response data for about 10
days from two operational item pools are used for the analysis.
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There are 2905 items in total and only 32 items are flagged
as being compromised, with nominal alpha level at 0.05. This
result indicates that this operational testing program is rather
secure, with only slightly over 1% (32 out of 2905) of potential
leakage detected. Although the nominal Type-I error is 0.05,
the empirical alpha level may be different due to many factors,
e.g., the short testing interval (10 days). For all four typical
curves illustrated in Figure 1, dashed lines indicate when the
leakage is detected by our proposed method. There are 14, 4,
and 8 flagged items, respectively, in Types b, c and d. Since
the method is designed to monitor the probability change
sequentially, information after the detection (dashed line) is not
used for fitting the model. In contrast to Types b and c, Type
d items are challenging to interpret. They may not necessarily
be compromised but the large fluctuation that triggered the flag
for these items suggests testing practitioners should investigate
further these items closely in case there is a leakage. The Type

TABLE 3 | Detection accuracy and Type-I error for random item leakage (standard

error is given in parenthesis).

Leakage rate (λ) Accuracy (%) Type-I error (%)

0.05 67.63 (2.61) 2.02 (0.44)

0.10 87.00 (1.98) 4.54 (0.43)

0.30 96.64 (1.03) 5.14 (0.92)

0.50 98.80 (0.33) 4.67 (1.27)

0.70 99.13 (0.50) 4.85 (0.50)

1.00 99.79 (0.10) 5.22 (0.90)

1.50 99.74 (0.14) 4.01 (0.83)

d scenario might indicate group preknowledge of the item of
interest. One conjecture is that those who cheat often also
attempt to time the item pool rotation. For example, they try to
schedule and take tests as soon as they have certain amount of
preknowledge of items after the pool rotation, to improve their
chance of seeing some of the leaked items before the pool rotates
again. Since future responses are not foreseen and we can only
draw conclusions based on the response data currently at hand,
in practice, once an item is flagged (no matter if it is Type b, c, or
d), it should be removed from the item pool at least temporarily.
When an item is flagged, one cannot be sure if its probability
curve will eventually go back up or not. Test practitioners need
to balance between being conservative and liberal. Given the
importance of test security, if only a small number of items are
flagged as being potentially compromised, the cost to exclude
those items from test administration is limited so the choice
is obvious.

6. MODEL COMPARISON

We compare our proposed detection method with the existing
method (Zhang, 2014), using both simulation data and real data.
Zhang’s sequential model requires setting of two parameters, the
length of burn-in period and the size of the moving window.
We follow Zhang’s simulation study and set them as 150 and 50,
respectively. Our proposed cloglog detection model, on the other
hand, contains no tuning parameters and the detection starts
automatically at day 4 since the model has three coefficients to fit.

First, we apply Zhang’s detection model to our simulation
data with a leakage process taken into consideration. Tables 5,
6 summarize the results on the random leakage scenario and the

FIGURE 6 | Distribution of the detection day for random item leakage.
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organized theft scenario, respectively. Firstly, we notice that in
all scenarios, the type-I error is much larger than the α value,
the nominal type-I error. For example, under α = 0.05, the
type-I error is larger than 70% under every simulation scenario.
This means that Zhang’s method did a poor job in controlling
the type-I error. Secondly, even if we ignore the inflation of
type-I error, Zhang’s method still has a lower power than our
method. The difference in power of the two methods is especially
large when the leakage rate is small. For example, under the
random leakage scenario with a low leakage rate (λ = 0.05),
the power of our method is 67.63%, while Zhang’s method
is 37.44% when the type-I error is reasonably low (< 2%
achieved under α = 0.0001). This agrees with our expectation:
sliding-window-based methods are not as efficient in capturing
slow leakage as methods that describe and utilize the shape of
probability change.

TABLE 4 | Detection lag and estimation lag for random item leakage (standard

error is given in parenthesis).

Leakage

rate (λ)

Detection

lag

(days)

Estimation

lag (days)

Probability of

preknowledge

0.05 12.42 (0.15) 0.66 (0.16) 0.46

0.10 7.76 (0.08) 0.18 (0.08) 0.54

0.30 3.88 (0.05) –0.90 (0.05) 0.69

0.50 3.00 (0.04) –1.00 (0.04) 0.78

0.70 2.66 (0.04) –1.16 (0.04) 0.84

1.00 2.38 (0.04) –1.14 (0.03) 0.91

1.50 2.64 (0.07) –1.17 (0.03) 0.98

We also apply Zhang’s sequencial method to the real dataset
we used in the section of “Real Data Application”. Figure 9 shows
how the number of items flagged as compromised increases as the
nominal type-I error level increases. Strange enough, while the
number of leaked items flagged by our method shows a roughly
linear increase as the nominal α value increases, the number
of leaked items flagged by Zhang’s method shows a dramatic
increase when the nominal type-I error is in the range of 0.02
and 0.05. When α is 0.05, Zhang’s method flagged over 600 items
as compromised, which is more than 20% of the entire item pool.
Although it is hard to make any conclusive statement on a real
dataset with no knowledge about which items are truly leaked,
based on results from our simulation study it is not completely
unreasonable to suspect that this high rate of detection may be
due to severe inflation of the type-I error.

7. CONCLUSION AND DISCUSSION

In this study, we have proposed a general detection model that
considers the practical dynamics of the item leaking process.
The method shows, through all our simulation studies, a strong
detection power for various leakage rates with well-controlled
type-I error. The model also provides a way to estimate the time
point at which an item is compromised, which may be helpful for
testing practitioners to better secure the testing process.

The goal of our method is to detect the item leakage
for various leakage rates with unknown underlying leaking
processes. Therefore, the simulation model of the leakage is
purposefully designed to differ from the compromised item
detection model. The results show that the proposed model
for detection performs very well under such scenarios, which

FIGURE 7 | Item distribution of Type-I error items for random item leakage.
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FIGURE 8 | Ability Estimation with/without Suspicious Items for Random Item Leakage. (A) correlation of estimated θ̂ with true θ ; (B) RMSE of estimated θ̂ ;

(C) effective number of items after removing suspicious items. (X axis is log scale).

TABLE 5 | Application of Zhang’s sequential method to random leakage scenario.

Leakage rate α = 0.05 α = 0.01 α = 0.001 α = 0.0001

Accuracy(%) Type-I(%) Accuracy(%) Type-I(%) Accuracy(%) Type-I(%) Accuracy(%) Type-I(%)

0.05 99.68 89.87 94.50 48.36 73.95 8.90 37.44 1.58

0.1 99.87 84.29 98.08 42.37 91.78 9.75 71.31 2.95

0.3 99.40 77.97 99.31 39.00 97.18 9.30 90.51 2.98

0.5 99.93 77.89 99.74 37.83 98.01 8.56 92.05 2.75

0.7 99.94 74.96 99.68 32.80 97.78 6.79 93.06 2.46

1.0 100.00 76.40 99.41 35.60 96.81 8.11 91.46 2.46

1.5 99.93 74.40 99.01 32.38 95.74 7.47 91.36 1.98

TABLE 6 | Application of Zhang’s sequential method to organized theft scenario.

Leakage rate α = 0.05 α = 0.01 α = 0.001 α = 0.0001

Accuracy(%) Type-I(%) Accuracy(%) Type-I(%) Accuracy(%) Type-I(%) Accuracy(%) Type-I(%)

0.05 100.00 81.81 99.81 36.89 91.75 9.04 44.80 2.63

0.1 99.93 72.07 98.86 36.41 95.32 9.66 56.41 3.89

0.3 99.93 75.37 99.93 40.17 92.22 11.56 64.05 4.51

0.5 99.93 76.72 99.63 41.27 90.39 11.92 61.03 3.10

0.7 99.68 79.17 99.65 42.74 83.88 10.96 60.33 2.80

1.0 99.54 76.60 96.63 40.86 80.73 9.96 61.54 2.56

1.5 99.19 77.48 93.23 43.83 74.96 10.34 56.59 1.88

is a strong indicator of the generality and powerfulness of our
detection method. Estimates of both detection accuracy and
detection lag are close to the expected value when the leakage rate

is not too small. When the leakage is very slow, we have observed
a longer detection lag time. The impact of this lag, however, can
be quite mild in real data applications: When λ is small, the
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FIGURE 9 | Number of items that are flagged as compromised with different α

for two models.

change in probability of getting a correct answer is not large even
with a relatively large detection lag. Further, this lag is inevitable:
Determining whether an item is compromised when the leakage
is slow is intrinsically difficult, no matter what method is used.

The assumption of the detection model is that, given an
infinitely long testing window, all test takers eventually will be
aware of the compromised item and hence be able to respond
correctly, which is implicit in Equation 7. In practice, it may
be the case that some portion of test takers will not gain any
preknowledge of the items, no matter the length of long the
testing window. Therefore, the probability of correctly answering
a compromised item ultimately may never reach 100%. In that
case, we can generalize our method to cover such a scenario as
follows:

cloglog
πt − πe
π0 − πe

= βt + α ⇒ πt = πe + (π0 − πe)(1− e−e
βt+α

),

(21)
where one more parameter πe is introduced to represent the
expected upper asymptote after the item has been compromised.
The πe could be any value between [0,π0].When πe=0, themodel
reduces to the simplifiedmodel in Equation 7. It will be our future
work to implement this more general model.

The validation of themodel was performed both by simulation
and real data. Through the simulation study we were able to
generate different leakage dynamics and test the effectiveness of
our proposed method in these scenarios. Note that, although
both models control the leakage speed, the parameter β in the
detection model is not mathematically related to the λ in the
simulation model. Actually, our proposed method essentially
focuses on detecting the leakage pattern. As long as the overall
pattern of the expected probability curve is similar to what we
proposed, the method should work. We also applied the method
to real data to demonstrate its utility in practice.

The simulation study shows that our proposed method is
powerful and reliable when applied to CAT using the maximum

item information method for item selection. But the method is
not limited to a particular item selection method. Letting g(θ)
represent the distribution of an individual’s ability assigned to
an item, the expected probability for a correct response of this
item is:

E(P(θ |a, b, c)) =
∫ ∞

−∞
P(θ |a, b, c)g(θ)dθ = F(a, b, c). (22)

The expected probability, therefore, does not depend on the
distribution of θ . Different item selection algorithms provide
different g(θ), but will still lead to a constant expected probability
of a given item. Furthermore, this method can also be applied to
a non-CAT scenario. Compared with the CAT scenario, where
individual’s abilities fluctuate around the item difficulty, the
distribution of non-CAT is expected to bemore spread out. Since,
for the CAT scenario, only test takers whose estimated abilities
are close to a certain value (see Equation 2) will be assigned to
this item, the distribution of their abilities is less variable than the
original g(θ). Therefore, it is expected that more data are required
if this detection model is applied, in order to draw a statistically
significant conclusion.

Although the time unit in this study is set at the day level, its
selection is very flexible and can be set at finer levels if necessary.
The best way to select a time unit depends on the property of
the test of interest and expert judgment of experienced testing
practitioners. For example, given a large number of scheduled
test takers per day, the time unit could be further divided by
hourly increments. This would allow for more time points to be
used for model fitting, subsequently leading to higher detection
sensitivity. On the other hand, instead of aggregating the data
by time, one could also choose to aggregate the data by a fixed
number of item responses, e.g., every 20 responses. In addition,
the type-I error for the hypothesis test is set to be 0.05 in this
study, following convention. In practice, the cutoff could be
chosen per test practitioners’ preference as well.

Our study shows that the ability estimation θ̂ can be
significantly improved by removing the responses of suspicious
items. A potential future study is to apply our method to
determine whether or not an examinee has preknowledge of
some test items. This could be accomplished by comparing the
ability estimates derived with and without the suspicious items
(i.e., items that are flagged by our method). As mentioned in
the introduction, many individual-level preknowledge detection
methods essentially compare the ability estimates obtained from
the secure vs. suspicious test items (Belov, 2016). Our method
allows practitioners to identify a set of suspicious items, which
is critical to the success of those individual-level detection
methods. A retest may be necessary for those test takers
whose ability estimates significantly differ with and without
suspicious items.

Comparing with the existing sequential method (Zhang,
2014), our method shows large performance boosts in all our
simulation data with a variety of leakage rates. On real data,
although it is impossible to evaluate and compare the true
performance of different methods, our method does not show
the apparently erroneous shape of the curve of how the number
of flagged items changes according to the nominal Type-I error.
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Further, Zhang’s method asks the user to set the window size
parameter, which can be almost unfeasible, our method does not
have such tuning parameters.
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APPENDIX

According to the chain rule of differentiation, the deduction could be divided into two parts: First derive the log-likelihood toward πt ;
then calculate the derivative of πt toward model parameters π0, β and α. Therefore, for convenience, let 9 = (π0,β ,α)

T and let

l = log L =
T
∑

t=1

[

yt logπt + (nt − yt) log(1− πt)
]

=
T
∑

t=1
f (πt , nt , yt), (A1)

where f (πt , nt , yt) is function of πt , nt , yt . Then we have,
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]

, k1 6= k2

(A2)

where k = 1, 2, 3 and t = 1, 2, . . . ,T. In addition, from equation 3 we get,
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(A3)

For convenience, let

� = π0 − πt
π0

⇒ πt = π0(1−�), (A4)

from both equations A2 and A3, we finally get, for π0
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(A5)

and for β ,
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and for α,
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and the derivatives for cross terms are,
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Therefore, the Fisher information matrix is,

[Ijk(π0,β ,α)] = −E
[∂2l(π0,β ,α)

∂ψj∂ψk

]

. (A9)

Take equation A2 into equation A9, and we have,
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(A10)

Since
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the Fisher information matrix could be simplified to

[Ijk(π0,β ,α)] =
T
∑

t=1

nt

πt(1− πt)
·
( ∂πt

∂ψk1

∂πt

∂ψk2

)

. (A12)
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