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Number series reasoning items have been frequently used in educational assessment.
This study reviewed the previous literature investigating features relating to item difficulty
and developed a new automatic generator for number series reasoning items. Ninety-
two items were generated and administered to 466 students. The results showed that
the test achieved acceptable reliability. Items requiring two arithmetic operations were
of particularly high difficulty. All stimulus features implemented in the automatic item
generator proved to be significant predictors of item difficulty, explaining 77% of the
total variance. This suggests that the automatic number series reasoning item generator
was capable of generating items of considerably predictable difficulty. More importantly,
the resulting items covered a wide range of difficulty levels, meeting the particular need
for items of high difficulty.
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INTRODUCTION

In educational assessment, reasoning tests have been extensively employed to evaluate fluid
intelligence. The number series completion problem is one of the most frequently used reasoning
tasks (Horn and Noll, 1997). However, despite its wide application, there are known challenges
in the development of number series reasoning items, including the significant time and effort
required to generate items of high quality (Rudner, 2010). Particularly, items that are developed
manually are usually limited by the ability level of their developers, and thus often found to be
similar and to have low psychometric properties, covering only a narrow range of difficulty levels
(Hornke and Habon, 1986; Wainer, 2002). Since the 1980s, researchers have pioneered research on
automatic item generation, aiming at relieving the burden on item developers (Irvine and Kyllonen,
2002). This new approach is considered a handshake between cognitive science and psychometrics,
enabling effective control of item difficulty based on cognitive processes involved in assessment,
and leading to improved test development and educational measurement.

Automatic Item Generation (AIG)
Automatic item generation (AIG) relies on computer programs to automatically generate items
of predictable difficulty according to specific requests made by test developers (Embretson, 2002;
Embretson and Yang, 2006). It usually consists of two phases. In the first phase, test development
experts propose item stimulus features that affect the cognitive processes involved in assessment.
Subsequently, item models are constructed on the basis of these features. In the second phase, items
are derived from the item models through feature manipulation carried out by computer programs
(Gierl and Lai, 2012).
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There are two common approaches to AIG, the item model
approach and the cognitive design system approach (Embretson
and Yang, 2006). In the item model approach, item models are
pre-specified based on existing tests that have been empirically
shown to be reliable and valid. New items are constructed by
replacing features that are not relevant to the problem solving
process, such as the names of objects and specific numbers. The
Educational Testing Service (ETS) has reported that they have
successfully employed this approach to enlarge their item pool
(e.g., Bejar, 1996, 2002; Sinharay and Johnson, 2005). However,
researchers have argued that items created by the item model
approach do not necessarily possess comparable psychometric
properties (Arendasy et al., 2007). It is also possible for test takers
to learn item models through extensive practice, resulting in an
invalidated item pool (Morley et al., 2004).

Compared to the practically simple item model approach,
the cognitive design system approach takes a different and
more complex route. This approach strives to bridge cognitive
psychology with psychometrics by systematically modifying
stimulus features when generating new items. Cognitive
psychology focuses on the mental processes of problem solving,
whereas psychometrics is concerned with the quality of the
measurement tools. The cognitive design system aims at
understanding the cognitive processes that test takers employ to
complete a test and identify the stimulus features that affect these
cognitive processes as well as their influences on item properties
and the overall test results (Embretson, 2004; Embretson and
Yang, 2006; Gorin, 2006). When new items are generated, their
difficulty levels can be modeled and predicted on the basis of these
features. This approach also allows for extensive combinations
of effective and irrelevant features, resulting in more diversified
items than is possible with the item model approach.

The cognitive design system approach uses the Linear Logistic
Test Model (LLTM) to predict item difficulty (Fischer, 1973;
Freund et al., 2008; Holling et al., 2009). The LLTM is a linear
combination of multiple stimulus feature difficulties,

P(xij = 1) =
exp

[
θj −

(∑
m ηmqim + d

)]
1+ exp

[
θj −

(∑
m ηmqim + d

)]
wherein P(xij = 1) is the probability of participant j correctly
answering item i; θj is the ability parameter of participant j;
ηm is the difficulty of stimulus feature m of item i; qim is the
weight of the difficulty of stimulus feature m of item i; and d is
a normalization constant.

The LLTM enables the difficulty parameters of individual
stimulus features to be predicted. Item difficulty, which is a linear
combination of the difficulties of stimulus features involved in
the item, can also be predicted. If the item difficulties predicted
by the LLTM are highly correlated with those derived from the
Rasch model (Rasch, 1960) or an Item Response Theory model
(which empirically estimates item difficulty from participants’
response data), we can assume good performance of the AIG
system. In another words, a substantial proportion of the variance
in item difficulties can be explained by the stimulus features
modeled in the LLTM, suggesting that the difficulty levels of new
items are primarily influenced by model stimulus features rather

than unspecified or irrelevant features. Consequently, a large
number of new items with predictable difficulty levels can be
conveniently generated.

Stimulus Features of Number
Series Reasoning Items
The number series completion problem, as an important type
of reasoning tasks, aims at assessing test takers’ ability to
detect patterns within number series (Klauer, 1996). Simon
and Kotovsky (1963); (Kotovsky and Simon, 1973) proposed a
cognitive framework for the letter series completion problem,
which was later extended to number series by Holzman et al.
(1983). The framework includes four components: relation
detection, discovery of periodicity, pattern description, and
extrapolation. First, during relation detection, test takers attempt
to make a hypothesis about the relations among the numbers in
the series. After they discover the periodicity, they identify either
a single number series or several intertwined series. Subsequently,
they process the initial elements and the relations between
adjacent elements in their working memory in order to depict the
pattern. Finally, the missing number is derived by extrapolation
based on the hypothesis that was previously confirmed.

Based on this cognitive framework, Holzman et al. (1983)
suggested a range of stimulus features involved in individual
phases, including working memory demands, period length,
pattern description length, relational complexity, category of
arithmetic operation, and string length. These features are not
independent. For example, working memory demands are related
to relational complexity; the more complex the relation, the
greater the demand on working memory. Similarly, Arendasy
and Sommer (2012) reported four stimulus features that affect
the difficulty of number series reasoning items: periodicity, rule
span, number of rules, and rule complexity. Periodicity refers to
the number of periods to be discovered. Rule span denotes the
number of arithmetic operations per linked elements. Number of
rules specifies the number of different rules to be inferred. Rule
complexity is concerned with relational complexity, particularly
with respect to different categories of arithmetic operation.
In addition to the commonly used ideas of arithmetic and
geometric progression, Verguts et al. (2002) drew on four new
rules in their number series construction: addition, Fibonacci,
interpolation, and multiplication.

Automatic Generation of Number Series
Reasoning Items of High Difficulty
There is a high demand for number series reasoning items,
as this item type has been frequently employed in aptitude
tests and other high-stake examinations. AIG offers considerable
benefits in improving item generation (Huff et al., 2013). It not
only lowers the item exposure rate, reducing concerns around
test security, but it is also more fair and produces more
accurate scores, as parallel items can be produced more easily.
More importantly, new items can be created on the basis of
item models rather than individual items, which significantly
enhances efficiency and reduces the costs incurred during item
development and pilot testing.
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Automatic item generation has been applied to the
development of a variety of item types. For example, Arendasy
and colleagues successfully employed AIG to develop algebra
verbal reasoning items (Arendasy et al., 2006, 2007), matrices
reasoning items (Arendasy and Sommer, 2005), word fluency
items (Arendasy et al., 2012), and mental rotation items
(Arendasy and Sommer, 2010). AIG has also been used to
generate abstract reasoning items (Embretson, 2002), figural
analogy items (Blum et al., 2016), Latin square tasks (Zeuch
et al., 2011), and probability verbal reasoning items (Holling
et al., 2009). In particular, Arendasy and Sommer (2012)
developed an automatic number series item generator, with
which they introduced four item features (as described above)
and created 30 item models.

There is an urgent need for difficult mathematical questions
in China, as students in many regions of the country exhibit
high mathematical aptitude. For instance, in the PISA 2012 test,
students from Shanghai (the only region in mainland China that
participated) achieved an average score of 613 on Mathematics –
117 points higher than the average score across OECD countries
and ranking them 1st in the world (Kelly et al., 2013). When the
Wechsler Intelligence Scales were adapted in China, the most
difficult items were considered only moderately difficult, and
more challenging items had to be developed (Zhang, 2009; Cui
et al., 2017). Most existing number series reasoning items are not
sufficiently difficult for these students; hence, we often find ceiling
effects and poor discrimination among high achievers. Such items
are not applicable to assessment scenarios in China.

The current study aimed at identifying the appropriate
stimulus features of number series and designing an automatic
item generator capable of creating number series reasoning
items of high difficulty. Based on 18 item models, 4 item
sets were generated and administered. Subsequently, an item
difficulty prediction model was constructed and evaluated with
the empirical data, in order to examine the reliability and validity
of the item generator.

MATERIALS AND METHODS

Development of the Automatic
Item Generator
Focusing on arithmetic operation(s) and number elements,
which are essential to number series, the current study proposed
three classes of stimulus features: type of number element, type
of arithmetic operation, and number of arithmetic operations.
Specific features (i.e., rules) were carefully designed so as to
broaden the difficulty range. We introduced three types of
number elements: integers, fractions, and irrational numbers
(square roots of integers such as

√
2). Fractions and irrational

numbers have rarely been used in number series; hence, we
expected that they would increase the level of difficulty. We
used four types of arithmetic operations: arithmetic sequences
(with a constant increment between consecutive numbers;
e.g., 2, 4, 6, 8, 10); geometric sequences (with a constant
ratio between consecutive numbers; e.g., 2, 4, 8, 16, 32);
addition sequences (with each number being the sum of the

two immediately preceding numbers, except for the first two
numbers, similar to a Fibonacci sequence; e.g., 2, 3, 5, 8, 13); and
multiplication sequences (with each number being the product of
the two immediately preceding numbers, except for the first two
numbers; e.g., 2, 3, 6, 18, 108). Each number series required either
one or two steps of arithmetic operation. Combinations of these
stimulus features gave rise to a total of 18 item models.

As it is not easy to add irrational numbers, we did not include
such numbers in our arithmetic sequences or addition sequences.
Ten item models required only one step of arithmetic operation
to deduce the answer (see Table 1).

When confronting items requiring two steps of arithmetic
operation, test takers needed to first calculate the increments
or ratios between consecutive numbers; doing so would form
another number series (i.e., a derivative series, which was shorter
than the primary series by one number). The same four types of
arithmetic operation as used in items requiring one arithmetic
operation were employed in the derivative series. Only integers
were used in such series. In total, eight item models requiring two
steps of arithmetic operation were created (see Table 2).

Procedures and Materials
During item generation, in order to avoid unnecessary load
incurred by arithmetic operation, we limited all starting numbers,
increments and ratios (as well as numerators and denominators
in fractions and numbers within a square root in irrational
numbers) to a maximum value of 5. All number series had five
number elements, with a periodicity of 1.

Six items were generated for each item model requiring
one arithmetic operation (S1-S60). Four items were derived for
each item model requiring two arithmetic operations (D1-D32).
The resulting 92 items were divided into four item sets, each
containing a number of anchor items so that all item sets could
be linked (see Table 3 for details). Item sets 1 and 2 contained
35 items requiring one arithmetic operation, whereas the other
two sets contained 44 items of requiring both one and two
arithmetic operations.

After completing the number series reasoning items, test
takers were asked to answer five matrices reasoning problems
selected from Raven’s Standard Progressive Matrices (Raven et al.,
1988; Zhang and Wang, 1989) – one of the most commonly
used measures of reasoning ability. The test includes five sets
of matrices, each containing 12 items arranged according to
difficulty. Only the 10th item in each set was used in the
current study so as to shorten the test while maintaining a wide
range of difficulty.

Sample
To ensure that the sample resembled the target audience of the
item generator, we reached out to a varied student population and
selected a mixed group of participants with diverse educational
backgrounds. A total of 211 participants were recruited from a
vocational high school and an evening college in Beijing. Of these,
21.6% were male, and 78.4% were female. The average age was
22.54 years (SD = 6.05). A further 255 university students were
also recruited. Of these, 21.2% were male, and 78.8% were female.
The average age was 19.91 years (SD = 1.30). Item sets 3 and 4
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TABLE 1 | Description of item models requiring only one step of arithmetic operation.

Item model Type of number element Type of arithmetic operation Model description∗ Example

1 Integer Arithmetic sequence an+1 = an+ k 3, 6, 9, 12, 15

2 Integer Geometric sequence an+1 = an × k 3, 6, 12, 24, 48

3 Integer Addition sequence an+2 = an+1+ an 3, 3, 6, 9, 15

4 Integer Multiplication sequence an+2 = an+1 × an 3, 3, 9, 27, 243

5 Fraction Arithmetic sequence an+1 = an+ k 1/2, 1, 3/2, 2, 5/2

6 Fraction Geometric sequence an+1 = an × k 1/2, 1/4, 1/8, 1/16, 1/32

7 Fraction Addition sequence an+2 = an+1+ an 1/3, 2/3, 1, 5/3, 8/3

8 Fraction Multiplication sequence an+2 = an+1 × an 1/3, 2/3, 2/9, 4/27, 8/243

9 Square root Geometric sequence an+1 = an × k
√

3, 3, 3
√

3, 9, 9
√

3

10 Square root Multiplication sequence an+2 = an+1 × an
√

2,
√

3,
√

6, 3
√

2, 6
√

3

∗k is a constant. In the current study, k was an integer no larger than 5. an, an+1, and an+2 were consecutive elements in the number series.

TABLE 2 | Description of item models that require two steps of arithmetic operations using only integers.

Item Type of arithmetic Type of arithmetic

model operation at Step 1 operation at Step 2 Model description∗ Example

11 Arithmetic sequence Arithmetic sequence an+1 = an+bn, bn+1 = bn+k 3, 4, 7, 12, 19

12 Arithmetic sequence Geometric sequence an+1 = an+bn, bn+1 = bn × k 2, 3, 5, 9, 17

13 Arithmetic sequence Addition sequence an+1 = an+bn, bn+2 = bn+1+bn 3, 4, 6, 9, 14

14 Arithmetic sequence Multiplication sequence an+1 = an+bn, bn+2 = bn+1 × bn 2, 3, 5, 7, 11

15 Geometric sequence Arithmetic sequence an+1 = an × bn, bn+1 = bn+k 1, 2, 8, 48, 384

16 Geometric sequence Geometric sequence an+1 = an × bn, bn+1 = bn × k 2, 2, 4, 16, 128

17 Geometric sequence Addition sequence an+1 = an × bn, bn+2 = bn+1+bn 3, 3, 6, 18, 90

18 Geometric sequence Multiplication sequence an+1 = an × bn, bn+2 = bn+1 × bn 1, 2, 4, 16,128

∗k is a constant. In the current study, k was an integer no larger than 5. an and an+1 were consecutive elements in the primary number series, whereas bn, bn+1, and
bn+2 were consecutive elements in the derivative number series, which were formed by increments or ratios derived from the primary number series.

were expected to be more difficult than item sets 1 and 2 due
to the inclusion of items requiring both one and two arithmetic
operations. Hence, university students were randomly assigned
to item sets 3 or 4, whereas the vocational and evening college
students were randomly assigned to item sets 1 or 2.

All participants received the paper-and-pencil test in the
classroom and were informed that arithmetic equations were
permissible answers (e.g., 3∗3∗3 instead of 27), in order to
reduce the load on arithmetic operations. All participants under
16 years old have parental permission to participate in the test. All
participants over the age of 16 volunteered to take part. Written
informed consent was obtained from all participants over the
age of 16 and from the parents/legal guardians of all participants
below the age of 16.

TABLE 3 | Description of the four item sets.

Item Unique Anchor Anchor Anchor Anchor Anchor

set items items items items items items

1 S11-S15 S1-S10 S16-S35

2 S46-S50 S16-S35 S36-S45

3 D1-D8 S1-S10 S51-S60 D9-D24

4 D25-D32 S51-S60 S36-S45 D9-D24

Items staring with S indicate items requiring one arithmetic operation, whereas
items starting with D indicate items requiring two arithmetic operations.

RESULTS

Seven items were excluded from the final analysis. Six showed
extremely high accuracy rates (>0.95), indicating a lack of
discrimination. The seventh item (number series 2, 5, 7, 12, 19)
was supposed to require two steps of arithmetic operation,
but turned out to require only one; hence, it was removed
from the analysis.

Reliability
Data from the four item sets were analyzed with the Rasch model,
using the software Conquest 2.0 (Wu et al., 2007). Concurrent
equating was achieved given the presence of sufficient anchor
items among the four sets. The results indicated good fit with
the Rasch model, as most items (except three) showed acceptable
infit and outfit indices between 0.8 and 1.4 (Linacre and
Wright, 1994). Separation reliability was 0.98, whereas EAP/PV
reliability was 0.87, suggesting satisfying reliability (Adams, 2005;
Wu et al., 2007).

The Rasch model assumes the local independence of items.
Violations of local independence can lead to inflated estimates
of reliability and undermine construct validity. In order to check
for local independence, we calculated Q3 fit statistics (Yen, 1984),
which are the most widely used indicators of local dependence.
Items generated from the same item model were used as testlets.
Average Q3-values within and between testlets were 0.128 and
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0.028, respectively; as these were both smaller than the critical
value of 0.2 (Chen and Thissen, 1997; Makransky et al., 2014;
Finch and Jeffers, 2016), we concluded that there was negligible
dependence between items from the same item models and
between items from different item models. Therefore, we were
convinced that the assumption of the local independence of items
was not violated.

Validity
Five items from Raven’s Progressive Matrices were included
in the current study. Cronbach’s alpha for these items was
0.612. The correlation coefficient between the EAP ability
estimates from the Rasch model of the number series items
and the raw scores of the Raven items, after correcting for
attenuation, was 0.70 (p < 0.001), suggesting acceptable construct
validity. A moderate correlation was expected, as the two tests–
although both measuring the reasoning ability–differed in stimuli
format (figures and numbers, respectively). Therefore, it was not
surprising to observe that only 49% of variance (0.70∗0.70) was
explained between the two tests.

Estimation of Item Difficulty
Differences in Item Difficulty Between Items
Requiring One and Two Arithmetic Operations
Item difficulty parameters were estimated using the Rasch model.
The results revealed a significant difference in item difficulty
between items requiring one and two arithmetic operations,
t(83) = −6.29, p < 0.001. Items requiring two steps of arithmetic
operation (average difficulty 1.28) were more difficult than those
requiring one step (average difficulty−0.70).

Difficulty Levels of Items Requiring
One Step of Arithmetic Operation
A two-way ANOVA (type of number element ∗ type of
arithmetic operation) was conducted on the difficulty estimates
of items requiring one arithmetic operation. The results showed
that the main effect of the type of number element was
significant, F(2,45) = 51.21, p < 0.001; the main effect of the
type of arithmetic operation was significant, F(3,45) = 7.15,
p < 0.01; and the interaction between the two variables was

also significant, F(4,45) = 4.66, p < 0.01. All three effects
accounted for 74.7% of the variance. Post hoc analysis with
Bonferroni correction revealed significant differences in difficulty
level between arithmetic sequences with integers and arithmetic
sequences with fractions, t(45) = 7.18, p < 0.001; between
addition sequences with integers and addition sequences with
fractions, t(45) = 4.08, p < 0.001; between geometric sequences
with integers and geometric sequences with square roots,
t(45) = 5.48, p < 0.001; and between multiplication sequences
with integers and multiplication sequences with square roots,
t(45) = 4.35, p < 0.001. None of the remaining comparisons
was significant.

Notably, Figure 1 reveals that number series with integers and
number series with fractions displayed distinctive patterns across
different arithmetic operations. It was more challenging for test
takers to solve geometric sequences with integers than to solve
arithmetic sequences with integers. The pattern with fractions
was completely opposite. Our explanation for this is that fractions
must be reduced to a common denominator before they can be
added, whereas fractions can be multiplied by simply multiplying
nominators and denominators, respectively. Therefore, it is more
difficult to solve arithmetic sequences with fractions than to solve
geometric sequences.

Difficulty Levels of Items Requiring
Two Steps of Arithmetic Operation
Another two-way ANOVA analysis (type of first arithmetic
operation ∗ type of second arithmetic operation) was conducted
on items requiring two steps of arithmetic operation. The main
effect of the type of the first arithmetic operation was significant,
F(1,22) = 4.97, p < 0.05, showing that geometric sequences
were more difficult to solve than arithmetic sequences (with
average difficulties of 1.60 and 0.91, respectively). The main
effect of the type of the second arithmetic operation was also
significant, F(3,22) = 15.71, p < 0.001, with average difficulties
of−0.09, 0.67, 1.95, and 2.58 for arithmetic, geometric, addition,
and multiplication sequences, respectively. Post hoc analysis with
Bonferroni correction showed that arithmetic sequences were
significantly easier than addition and multiplication sequences,
t(22) = −4.621, p < 0.01; t(22) = −6.253, p < 0.001, and

FIGURE 1 | Rasch model estimates of item difficulties by type of arithmetic operation and type of number element.
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geometric sequences were significantly less difficult than multipli-
cation sequences, t(22) = −4.318, p < 0.01. The interaction
between the two was not significant, F(3,22) = 0.347, p = 0.792.
The two main effects accounted for 70.6% of the variance.

Prediction of Item Difficulty From
Stimulus Features
A Q-matrix was essential for the LLTM model to estimate
the difficulty of stimulus features. In Table 4, each column
presents one stimulus feature (i.e., rule). 1s and 0s indicate
the presence or absence of corresponding stimulus features,
respectively. There were 10 stimulus features in total, including
3 arithmetic operations, 2 additional arithmetic operations in
the case of items requiring two steps of arithmetic operation,
2 number elements, and 3 interactions between fraction numbers
and different arithmetic operations (as suggested in the ANOVA
analysis 3.3.2). As the interaction between the two steps of
arithmetic operation in items requiring two operations was
not significant (indicated in the ANOVA analysis 3.3.3), such
interaction terms were not included.

The Q-matrix below includes 18 item models, among which
10 models required one step of arithmetic operation and the
remaining 8 required two steps. Arithmetic operations at the
second step were exactly the same as those in items requiring one
step; hence, both types could be modeled in the same Q-matrix,
allowing for concurrent estimation with the LLTM. Arithmetic
sequences with integers were considered a baseline, so arithmetic
sequence and integer were not included in the Q-matrix. In the
table, arithmetic sequences with integers (item model 1) are
represented by the row with 0s in all cells.

TABLE 4 | Q-matrix of stimulus features.

Item

model GS AS MS AS2 GS2 F SR GS∗F AS∗F MS∗F

1 0 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0 0

3 0 1 0 0 0 0 0 0 0 0

4 0 0 1 0 0 0 0 0 0 0

5 0 0 0 0 0 1 0 0 0 0

6 1 0 0 0 0 1 0 1 0 0

7 0 1 0 0 0 1 0 0 1 0

8 0 0 1 0 0 1 0 0 0 1

9 1 0 0 0 0 0 1 0 0 0

10 0 0 1 0 0 0 1 0 0 0

11 0 0 0 1 0 0 0 0 0 0

12 1 0 0 1 0 0 0 0 0 0

13 0 1 0 1 0 0 0 0 0 0

14 0 0 1 1 0 0 0 0 0 0

15 0 0 0 0 1 0 0 0 0 0

16 1 0 0 0 1 0 0 0 0 0

17 0 1 0 0 1 0 0 0 0 0

18 0 0 1 0 1 0 0 0 0 0

GS, geometric sequence; AS, addition sequence; MS, multiplication sequence;
AS2, second arithmetic sequence; GS2, second geometric sequence; F, fraction
numbers; SR, square roots.

Based on the Q-matrix, the difficulties of stimulus features
were estimated by the LLTM. As shown in Table 5, the results
were consistent with our previous ANOVA analyses. Specifically,
items with fractions and square roots were more difficult
than items with integers. Arithmetic sequences, geometric
sequences, addition sequences, and multiplication sequences
were successively more difficult. A second arithmetic sequence
was easier than a second geometric sequence. The imposition of
a second arithmetic operation introduced more difficulty to an
item. All values were relative to the baseline level of items of a
single arithmetic sequence with integers.

Based on Table 5, we were able to estimate the difficulty levels
of all items by summing the difficulty estimates of corresponding
stimulus features. For instance, the difficulty of an integer item
with an arithmetic sequence at step 1 and an addition sequence
at step 2 was 5.58 (3.81+1.77); and the difficulty of a fraction
item with a geometric sequence was 2.35 [0.98+ 3.15+ (−1.78)].
Using the LLTM estimation results, the difficulty levels of all
items created by the item generator were predicted easily. Table 6
presents the item difficulties derived from the LLTM and those
estimated directly by the Rasch model for each item model.
Item-level difficulty estimates are available in the Supplementary
Appendix. Although the two estimations were on different scales,
Figure 2 shows that there was a high correlation between the two
sets (r = 0.97 on the item model level and r = 0.88 on the item
level, both ps < 0.001). In another words, 77.4% of the variance in
item difficulty (0.88∗0.88) was explained by the stimulus features
implemented in the automatic item generator. This suggests that
the automatic item generator was capable of generating items
with highly predictable item difficulty. More importantly, the
items created by the item generator covered a wide range of item
difficulty levels (from −3.46 to 2.69), indicating the potential to
generate items of high difficulty.

DISCUSSION

The current study successfully developed an automatic item
generator for the number series completion problem built
on a new set of stimulus features. While controlling for
irrelevant features, the generator proved capable of creating
items of a wide range of difficulty levels–particularly those of

TABLE 5 | Difficulty levels of stimulus features.

Stimulus feature Estimate SE t

Geometric sequence 0.98 0.12 8.17∗∗∗

Addition sequence 1.77 0.12 14.75∗∗∗

Multiplication sequence 2.12 0.10 21.20∗∗∗

Second arithmetic sequence 3.81 0.10 38.10∗∗∗

Second geometric sequence 4.26 0.09 47.33∗∗∗

Fractions 3.15 0.13 24.23∗∗∗

Square roots 2.22 0.09 24.67∗∗∗

Geometric ∗ fractions −1.78 0.16 −11.13∗∗∗

Addition ∗ fractions −1.35 0.15 −9.00∗∗∗

Multiplication ∗ fractions −2.33 0.15 −15.53∗∗∗

∗∗∗p < 0.001.
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TABLE 6 | Difficulty levels estimated from stimulus features and the Rasch model.

Item Type of number Number of arithmetic Difficulty Difficulty by Rasch (averaged

model element operations Type(s) of arithmetic operation by LLTM within the item model)

1 Integer 1 Arithmetic sequence 0 −3.46

2 Integer 1 Geometric sequence 0.98 −2.12

3 Integer 1 Addition sequence 1.77 −1.36

4 Integer 1 Multiplication sequence 2.12 −1.16

5 Fraction 1 Arithmetic sequence 3.15 0.11

6 Fraction 1 Geometric sequence 2.35 −1.00

7 Fraction 1 Addition sequence 3.56 0.44

8 Fraction 1 Multiplication sequence 2.94 −0.23

9 Square root 1 Geometric sequence 3.20 0.29

10 Square root 1 Multiplication sequence 4.34 0.76

11 Integer 2 Arithmetic sequence + Arithmetic sequence 3.81 −0.47

12 Integer 2 Arithmetic sequence + Geometric sequence 4.79 0.04

13 Integer 2 Arithmetic sequence + Addition sequence 5.58 1.53

14 Integer 2 Arithmetic sequence + Multiplication sequence 5.93 2.48

15 Integer 2 Geometric sequence + Arithmetic sequence 4.26 0.29

16 Integer 2 Geometric sequence + Geometric sequence 5.24 1.14

17 Integer 2 Geometric sequence + Addition sequence 6.03 2.27

18 Integer 2 Geometric sequence + Multiplication sequence 6.38 2.69

high difficulty levels. Results from the LLTM analysis showed
significant contributions of stimulus features to the difficulty
levels of resulting items. High correlation was observed between
the ability estimates from the Rasch model and the LLTM,
suggesting strong predictability of item difficulty. With increased
efficiency in developing new items of predictable difficulty,
the generator will benefit future test development relating to
numerical reasoning.

The current study investigated three classes of stimulus
features: type of number element, type of arithmetic operation,
and number of arithmetic operations. In addition to integers,
fractions and square roots were introduced into the number
series reasoning items, and this effectively increased item
difficulty. Four types of arithmetic operations were adopted:
arithmetic, geometric, addition, and multiplication sequences.
These different arithmetic operations exhibited varying difficulty
levels, probably due to inconsistent levels of familiarity as a

FIGURE 2 | Scatter plot of item difficulties predicted by the LLTM by Rasch
model estimates.

result of previous training. In an attempt to further elevate item
difficulty, we created items that required participants to carry out
two steps of arithmetic operation. As expected, these items were
significantly more difficult than those requiring one arithmetic
operation. Covering a broad range of difficulty, the items derived
from the generator accommodated both junior and advanced test
takers with variable ability levels.

The new item generator differed from the one developed
by Arendasy and Sommer (2012), as it paid more attention to
the essential elements of the number series than the cognitive
framework. Acknowledging the impact of stimulus features
on mental processes and working memory, the current study
clarified the terms of rule span, number of rules, and rule
complexity by proposing three classes of stimulus features that
elucidated the rules of the number series completion problem
(i.e., what are the numbers, how are they related, and how do
these two interact). It turned out that such rules were capable of
predicting item difficulty with considerably high accuracy. More
importantly, this approach greatly benefited the test construction.
Item difficulty could be easily predicted when items were
constructed, as all elements were included in the LLTM model.
Following the principle of assessment engineering (Luecht, 2013),
rule-based item models were considered expandable. When more
rules were introduced into the LLTM, item difficulties could be
predicted with a simple linear calculation.

Another strength of the new item generator was its capacity
to generate items of high difficulty. It is not common for number
series reasoning items to adopt fractions and irrational numbers.
As shown in the results, fractions imposed an additional
requirement for participants, particularly in items requiring
addition. The presence of square roots also substantially
increased item difficulty, as test takers were required to
understand the concept of square roots in order to solve the
problem. The generator incorporated four types of arithmetic
operation, yielding eight different item models requiring two
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steps of arithmetic operation. Participants had to not only
identify relations among adjacent numbers, but also maintain
increments or ratios in working memory and deduct a second-
order relation that could be the same or different from the initial
one. This complex process of completing a number series with
only five numbers proved extremely difficult.

Notably, the study carefully constrained irrelevant features.
For example, it has been suggested that cognitive load resulting
from pure arithmetic operation is not relevant to reasoning ability
(Arendasy and Sommer, 2012). Thus, in our study, we limited
the starting numbers, increments, and ratios to values below 5
so as to minimize the interference of arithmetic operation. We
also accepted formulae as answers, in order to reduce unnecessary
errors in arithmetic operation. In comparison to other automatic
item generators, our generator proved effective in generating
items of predictable item difficulty (with 77.4% of variance
explained) with a wide range of difficulty levels (above 6 theta
units from−3.46 to 2.69).

Nonetheless, it is noted that the items within the same item
models still exhibited variable difficulty levels, although they were
designed following the same rules. Future studies are warranted
to search for additional features that account for the currently
unexplained variance in item difficulty. For such purpose, more
items have to be generated, which would require an even larger
sample. The current study was restrained by the relatively small
sample size. It is also important to replicate the study in a
different, larger and more heterogeneous sample, preferably a
representative one, if the generator is going to be applied in
high-stake testing scenarios.

Moreover, the item generator was limited by the setting of a
periodicity of 1, as only one number series with five numbers was
present in each item. On the one hand, this helped ensure that the
number series were all of the same length. Had there been more
than one number series, the number of elements would have been
reduced, and this might have introduced confounding variables.
On the other hand, this practice prevented the generator from
creating items of even more difficult items including more than
one number series. In future research, we plan to broaden the
scope of item generation, expanding the periodicity to more
than 1. Additionally, it would be interesting to observe item
difficulty with larger variance on other features by, for instance,
incorporating more arithmetic operations (such as power and
factorial operations), including negative numbers, and requiring
more than two steps of arithmetic operation.

CONCLUSION

Number series reasoning items are extensively used in
educational assessment. In daily practice, test developers are

primarily concerned with the quality of the items. While
reliability and validity evidence is frequently reported, the
exact range of item difficulty levels is not always available,
although this is indeed pertinent to the reliability and validity
of a test. As automatic item generation becomes increasingly
popular, more attention is being paid to underlying cognitive
processes and the predictive power of the rules in the
item generator. This article described the design of a new
number series reasoning item generator that catered the
need for more challenging items. Specific stimulus features
that contributed to a high difficulty level were incorporated.
On the basis of rule-based item models, we not only
demonstrated that item difficulty could be effectively predicted
from the stimulus features, but we also ensured that the
resulting items covered a broad range of difficulty levels
that is required for test administration in specific contexts.
We hope that our unique approach is inspiring to test
developers and can be applied to the development of other
reasoning item types.
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