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This paper investigates how the major outcome of a confirmatory factor investigation is

preserved when scaling the variance of a latent variable by the various scaling methods.

A constancy framework, based upon the underlying factor analysis formula that enables

scaling by modifying components through scalar multiplication, is described; a proof is

included to demonstrate the constancy property of the framework. It provides the basis

for a scaling method that enables the comparison of the contribution of different latent

variables of the same confirmatory factor model to observed scores, as for example, the

contributions of trait and method latent variables. Furthermore, it is shown that available

scaling methods are in line with this constancy framework and that the criterion number

included in some scaling methods enables modifications. The impact of the number of

manifest variables on the scaled variance parameter can be modified and the range of

possible values. It enables the adaptation of scaling methods to the requirements of the

field of application.

Keywords: scaling, variance parameter, variance of latent variable, confirmatory factor analysis, structural

equation modeling, scaling methods, constancy framework

INTRODUCTION

In evaluating the results of factor analysis, the focus is usually on the factor loadings as related to
the magnitude and the direction of the relationship to the latent variable. While also a parameter
of the model, under factor analysis, the variance of the latent variable is largely ignored as a source
of information for evaluation. A reason for ignoring the variance as a source of information is
its dependency on the indicator selected for scaling in order to achieve model identification. It is
well-known that modifying scaling by replacing one indicator by another one changes the value
of the variance among other consequences (e.g., Gonzalez and Griffin, 2001; Steiger, 2002). Such
dependency does not endorse the variance of the latent variable as a reliable source of information.

Despite the dependency on indicator selection, factor variance can be an important piece of
information for evaluation. Even though it is commonly ignored, the variance of a latent variable
has been recognized as a useful source of information for some specific areas, in particular,
longitudinal research and invariance analyses (McArdle and Cattell, 1994; Schmitt and Kuljanin,
2008; McArdle, 2009). For example, the variance of a latent variable is used for evaluating
development across time and for gaining insight about differences between groups. Besides these
statistical approaches, there are further analysis strategies that may profit from comparisons of the
variances of latent variables, such as the multitrait-multimethod approach (Marsh and Grayson,
1995) and the bifactor approach (Reise, 2012). Especially when using a multitrait-multimethod
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design, it may be important to know how large the trait variance
is in comparison to the method variance. This information
reveals the relative contributions of different measures to the
representation of a construct.

The particular interest in the scaling of latent variables has
given rise to several specific methods that satisfy the needs of
the corresponding areas of research (Little et al., 2006). For
example, in longitudinal research (McArdle and Cattell, 1994)
it is useful to scale the variance in such a way that it is set
equal to one at the first measurement occasion. This approach
establishes a baseline, and changes from the baseline to successive
measurement occasions are more readily interpretable. Thus,
different scaling methods may be of interest to achieve specific
goals based upon the design under consideration. However,
despite the different goals giving rise to different scalingmethods,
all methods must be able to preserve the major outcome of
a confirmatory factor investigation while scaling transforms a
statistic into a new reference system. Therefore, it should be
possible to relate the various scaling methods to each other and
to integrate them into a common framework.

The available methods for scaling variances (either implicitly
or explicitly) include a definition of the relationship between
the factor loadings and the variance of the corresponding
latent variable (Little et al., 2006). Such a definition is also
required in confirmatory factor analysis for specifying the
model of the covariance matrix1 (Jöreskog, 1970). Therefore,
this model is considered as the framework that may preserve
the major outcome of an investigation and is suitable for
investigating scaling methods. We discuss this point in greater
detail in the following sections where different scaling methods
are considered and consequences of possible modifications
are demonstrated.

SCALED VARIANCES AS SOURCES OF
INFORMATION

In order to be regarded as an important source of information,
the variance of the latent variable must be scaled; i.e., it
must be adapted to the reference system of interest. This
kind of adaptation requires that a content area is identified
that potentially profits from the availability of scaled variances.
Some content areas for scaling are already mentioned. In this
section the perspectives of models of measurement are used for
considering areas that may profit from scaling the variances
of latent variables. Furthermore, scaling in confirmatory
factor analysis (CFA) is compared with standardization for
obtaining meaningful weights in linear regression analysis.
Standardized regression weights enable the comparison of the
contributions of independent variables to the explanation of the
dependent variable.

Before detailing the process, the specificity of the variance
characterizing a latent variable needs to be addressed. Both the
latent variable and the variance are parts of a tested model and,

1The model of the covariance matrix refers to the form of the 6 matrix of

relationships included in the general factor analysis formula, typically written as:

6 = 383‘+ ⊖ and defined in Equation (6).

therefore, to some degree are shaped by the characteristics of this
model. The variance of the latent variable is assigned the role of
a parameter of a model that is thought to reflect dispersion, but
is not equivalent to the variance defined as the sum of squared
deviations (Verbeke and Molenberghs, 2003; Stoel et al., 2006).
For ease in communication, we stay with the term variance.

At first, the possible advantage of scaling the variance of
the latent variable of a one-factor confirmatory factor model is
considered. This model relates the p×1 vector x representing the
centered observations to the product composed of the p×1 vector
λ representing the factor loadings and of the latent variable
ξ and to the p×1 vector δ representing the error influences
(Graham, 2006):

x = λξ + δ. (1)

There is also an extended version of this model (Miller, 1995;
Raykov, 1997). It additionally includes the p×1 vector µ of latent
intercepts and applies to the non-centered observationsX instead
of the centered observation x:

X = µ + λξ + δ. (2)

This unidimensional model mainly serves the investigation
of the structural validity and also of the convergent and
discriminant validity of scales. Examinations are expected to
provide information on the correctness of this model with respect
to the given data. If the information suggests correctness (as
shown by acceptable fit), it is retained; otherwise it is rejected. No
further information requiring scaling is necessary unless there is
a repeated application of the model.

The model of measurement of Equation (2) is designed
according to the assumption that there is only one systematic
source of responding. It ignores, for example, the well-
known impurity problem that was observed in cognitive
measures (Jensen, 1982; Miyake et al., 2000). It states
that it is virtually impossible to complete many cognitive
items without stimulating auxiliary processes besides the
intended cognitive process. In other words, it is quite
likely that there is at least one other process influencing
the responses besides the process reflecting the construct,
which is in the focus of the scale. This second process
needs to be represented in the model of measurement as
another source of responding by an additional component.
Enlarging the model of measurement of Equation (2) gives
the following:

X = µ + λfirst source ξ first source + λsecond source ξ second source + δ (3)

where the labels first source and second source distinguish as
subscripts between the construct source reflecting the intended
cognitive process and the other source, the auxiliary process.

In the case of the two-factor confirmatory factor model, it
may not be sufficient to know that the model is correct because
there are two different sources showing different qualities. In the
case of the second source being unrelated to the source captured
by the scale, the two sources are a “good” source (related to the
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construct of interest) and a “bad” source (clouding measurement
of the construct) and, therefore, it is at least important to
know whether the good one dominates the response, and it
is even better to be able to show that the influence of the
bad source is a minor influence on the responses. This means
that the two latent variables constitute a reference system
for scaling.

Distinguishing between good and bad sources is not just
an idea but a real problem of substantive research. There are,
for example, impure measures of working memory capacity
showing this characteristic. We mention one major case of
controversy that highlights the importance of quantifying the
contributions of the additional sources to responding: there
are now a number of studies reporting very high correlations
between working memory capacity and intelligence suggesting
more or less equivalence of working memory capacity and fluid
intelligence. However, there is also good reason for suspecting
that measures of working memory capacity do not only tap
working memory capacity but also processing speed (Chuderski,
2013, 2015). Using a very large sample in an investigation
focused on this issue, it was possible to demonstrate that
minimizing the possible influence of processing speed lowered
the correlation substantially. That processing speed is a threat
to the validity of a measure is not only a problem of cognitive
research but also of assessment in general. If there is a time
limit in testing, processing speed is likely to contribute to
performance (Oshima, 1994). The combination of a time limit in
testing and processing speed impairs the validity of measurement
(Lu and Sireci, 2007).

A similar situation is noted in linear regression analysis with
two or more independent variables. The dependent variable
is explained/predicted by the independent variables, and it
is of interest to know about the relative contributions of
the individual independent variables. These contributions are
reflected by the regression weights. For demonstrating the
structural similarity with the model of Equation (3), assume
the dependent variable Y, the independent variables X1 and
X2, the intercept b0 and the error e (notation according to
Osborne, 2017) that relate to each other according to the
following equation:

Y = b0 + b1X1 + b2X2 + e (4)

where b1 and b2 are the regression weights. Standardized
regression weights signify the contributions of independent
variables to the explanation of the dependent variable.
These regression weights can be compared. For
example, the weights can be used for evaluating
contributions of independent variables that, for example,
may be considered as variables reflecting good and
bad sources.

The confirmatory factor model of Equation (3) includes
equations showing a structure similar to Equation (4), as
is obvious when using a more detailed way of presenting
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(5)

There are factor loadings serving more or less the same purpose
as the regression weights in regression analysis (λi instead of bi).
Although the estimation methods used in confirmatory factor
analysis and linear regression analysis may differ from each other
and lead to somewhat differing estimates, factor loadings, and
regressions weights show some functional similarity.

However, in confirmatory factor analysis, the two sources that
are to be compared with each other show not only one factor
loadings, but p of them. This means that the factor loadings
need to be integrated into one statistic. The variance can be
this statistic since factor loadings and the variance of the latent
variable depend on each other, as is demonstrated in the next
section. The dependency is established by a framework. Bymeans
of this framework it becomes possible to relate variances scaled
with respect to multiple indicators to the initially mentioned
scaling by fixing one indicator (e.g., Gonzalez and Griffin, 2001;
Steiger, 2002). Given this framework, it is shown in one of the
following sections that it possible to achieve scaled variances,
which can serve for comparisons like those by standardized
regression weights, by one of the scaling methods.

CONSTANCY DUE TO SCALAR
MULTIPLICATION

This section addresses the issue of constancy regarding the
reproduction of the empirical covariance matrix by the model of
the covariance matrix, despite scaling variance parameters. It is
argued that constancy despite scaling by means of the various
methods is accomplished by means of scalar multiplication.
Scalar multiplication denotes the multiplication of a scalar and a
matrix. The usefulness of scalar multiplication is detailed below.

Constancy is considered with respect to the model of the
covariance matrix (Jöreskog, 1970) that is often symbolized by
6. This matrix (i.e., model of the covariance matrix) is denoted
as the p × p model-implied covariance matrix for p manifest
variables (6 ∈ ℜp×p) and is specified to reproduce the p ×

p empirical covariance matrix S (S ∈ ℜp×p). Under CFA, the
definition of the model 6, is given by the following equation:

6 = 383′
+ 2 (6)

where 6 is defined as the sum of 383′ and 2. The product
383′ is composed of the p × q matrix of factor loadings 3

(3 ∈ ℜp×q) (and its transpose 3′) and the q × q matrix 8
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(8 ∈ ℜq×q) consists of the variances and covariances of q latent
variables. The second component in the equation is the p × p
diagonal matrix of error components 2 (2 ∈ ℜp×p), which is
linked additively to the first component.

The reasoning regarding constancy concentrates on 383′

since constancy of this part of the model with respect to a specific
empirical covariance matrix S implies that 2 is also constant.
Scaling the variance parameters of 383′ in a manner that
assures constancymeans that the product (as a whole) is constant,
although the factor loadings and the variance and covariance
parameters may change.

A constancy framework for scaling. Assume the p× qmatrices
of factor loadings denoted 3 and 3∗ and the q × q matrices of
the variances and covariances of latent variables denoted as8 and
8∗. Constancy in the sense of equality of 383and 3

∗

8
∗

3
∗

,

383′
= 3∗8∗3∗′, (7)

is given if there is a scaling constant c
(

c ∈ ℜ>0
)

such that

3
∗

= c 3

and
8

∗

= 1/ c2 8.

Scaling is achieved by multiplying both 3 and 8 with c
respectively the inverse of its square. In the following section it is
demonstrated that the available scaling methods can be described
in terms of this framework.

In order to ensure that the stated equality is correct, a proof is
provided. The proof consists of three parts:

a) transformation of the left-hand side of Equation 7 to the
right-hand side to illustrate equivalence (Proof 1)

b) demonstration that the products of matrices included in
Equation 7 produce matrices of the same size (Proof 2), and

c) demonstration that all entries of the two products of matrices
are the same (Proof 3).

Proof 1. First, c ∈ ℜ>0 is introduced into the left-hand side of
Equation 7:

383′
= 1× 383 ′

=
c× c

c× c
× 383′

= c×
1

c2
× c× 383′

The × symbol is used for explicitly emphasizing some cases
of multiplication. As c is a scalar, 3 and 8 are matrices
and the entries of the matrices are real numbers. Thus, the
commutative and associative properties of scalar multiplication
enable reordering of the scalars:

c×
1

c2
× c× 383′

= c× 3 ×
1

c2
× 8 × c× 3′

= (c× 3) ×

(

1

c2
× 8

)

×
(

c× 3′
)

= (c3)

(

1

c2
8

)

(

c3′
)

Finally, a product term is achieved that includes components that
are in line with the replacement rules introduced in combination
with Equation (2), 3

∗

= c 3 and 8
∗

= 1/ c2 8:

(c3)

(

1

c2
8

)

(

c3′
)

= 3∗8∗3∗′.

Proof 2. Since the product of the matrix of factor loadings and of
the matrix of variances and covariances (and also the transpose
of the matrix of factor loadings) is an additive component of
the sum that constitutes the model of the covariance matrix
according to Equation 6, the size of 383′ is the same as the
size of 6 that is, a p × p matrix. It remains to demonstrate that
3∗8∗3∗′ is also a p × p matrix. Since c is a scalar, it does not
change the size of the matrix to which it serves as multiplier. This
means that the size of c 3 is the same as the size of 3, the size of
1/ c2 8 the same as the size of 8, and the size of c 3′ the same as
the size of 3′. Consequently, for 3∗ = c 3 and 8∗ = 1/ c2 8, the
size of 3∗8∗3∗′ is the same as the size of 383′.

Proof 3. This proof requires the demonstration that the
entries of 383′ are the same as the entries of 3∗8∗3∗′. Both
products of matrices are considered as the true part of a p × p
model-implied covariance matrix (i.e., the summand, excluding
error of Equation 6); therefore, the entries of the ith row and jth
column are represented by σ τ ij and σ ∗

τ ij across the two matrices,

respectively. Given the research interest in investigating the
variance at the latent level,8 is assumed to be a diagonal matrix2.

In the case of q latent variables and diagonal 8, the true (i.e.,
population) part of the ith row and jth column σ τ ij is given by:

στij = λi1Φ11λj1 + ...+ λiqΦqqλjq. (8)

Analogically, the true part of the entry of the ith row and jth
column σij

∗ is described by the following equation:

σ ∗
τij = λ∗i1φ

∗
11λ

∗
i1 + ...+ λ∗iqφ

∗
qqλ

∗
iq. (9)

The next steps make use of scaling constant c as introduced in
combination with Equation (7). Since 3∗ is set equal to c3, the
entry of the ith row and jth column of 3∗ (i.e., λij

∗) can be
replaced by the entry of the ith row and jth column of c3 (i.e.,
cλij). Furthermore, as 8∗ corresponds by definition to 1/c2 8,
the entry of the ith row and jth column of 8∗ that is φij

∗ can be
replaced by the entry of the ith row and jth column of 1/c2 8 that
is 1/c2φij such that:

σ *
τij = cλi1

1

c2
φ11cλj1 + ...+ cλiq

1

c2
φqqcλjq.

Because scalar multiplication is also distributive, the equation can
be further transformed into:

σ *
τij = c×

1

c2
× c×

(

λi1φ11λj1 + ...+ λiqφqqλjq
)

.

Since the sum given in parentheses of the right-hand side of this
equation corresponds to the right-hand side of Equation (8), it
can be replaced by the left-hand side of Equation 8:

σ *
τij = c×

1

c2
× c× στij.

2In this investigation, we are assuming orthogonal factors to place the focus on the

decomposition of the latent variance in non-overlapping parts. This assumption

is in line with the majority of models of measurement employed in assessment

research (Graham, 2006). The omission of the interaction term helps to keep the

illustration succinct and of manageable size.
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In the final step, coefficients are arranged to provide a ratio that
amounts to one:

σ *
τij =

c2

c2
× στij = στij �

THE INTEGRATION OF THE SCALING
METHODS INTO THE CONSTANCY
FRAMEWORK

Given that the proof applies to all p × q matrices of factor
loadings 3, it also applies to all p × 1 matrices of factor
loadings, referred to as p × 1 vectors of factor loadings (λ). In
this case, the matrix of variances and covariances, 8, reduces
to the scalar, φ. This scalar is the variance parameter which
represents the variance of the latent variable in the model of
the covariance matrix. The status of this parameter as variance
has been questioned since it can be assigned a negative value in
the process of parameter estimation (Verbeke and Molenberghs,
2003; Stoel et al., 2006).

In this case of a p × 1 vector of factor loadings, Equation (7)
reduces to:

λφλ′
= λ∗φ∗λ∗ ′ (10)

if there is a scaling constant c ∈ ℜ>0such that λ∗ = c λ and φ∗

= 1/c2φ.
The one-factor version of the constancy framework, as

described by Equation (10) in combination with the two
replacement rules, provides the basis for the following equation
that related the scaled variance parameter φsc to the scaling
constant c and to the original variance parameter φ:

φsc =
1

c2
φ. (11)

Scaling the variance parameter through use of Equation
(11) is a general scaling method, as c may be selected to
represent different scaling methods. Furthermore, this equation
can be used to investigate the properties of specific scaling
methods and to compare their effects. The following subsections
relate this approach to available scaling methods, including
the marker-variable method, the reference-group method and
criterion-based methods (e.g., effect-coding method; Little et al.,
2006; Little, 2013). In the following subsections, each method
is described.

The Marker-Variable Method
This frequently used method for scaling the variance parameter
states that a value of one is assigned to one of the factor loadings
(i.e., a marker variable) while the other factor loadings and the
variance parameter of the latent variable are freely estimated.
Such a configuration of free and fixed factor loadings is illustrated
by Figure 1. A double circle identifies the factor loading selected
for serving as indicator.

However, the influence of the marker variable is incorporated
into the variance of the latent variable. Integrating this specific

FIGURE 1 | Illustration of a confirmatory factor model with a factor loading

constrained according to the marker-variable method.

FIGURE 2 | Illustration of a confirmatory factor model with the variance of the

latent variable constrained according to the reference-group method.

method into the constancy framework requires the choice of c
with respect to the originally selected factor loading λi such that:

1 = λ∗

i = cλi (12)

where λi refers to the left-hand part of Equation (10) and λ∗i
to the right-hand part. If λi > 0 then c ∈ ℜ>0. Given the
original variance parameter, φ, the scaled variance parameter φsc

is obtainable by means of Equation (11).

The Reference-Group Method
The reference-group method requires that the value of one
is assigned to the variance parameter (i.e., standardized latent
variables) while all factor loadings are freely estimated. This
means that

1 = φsc =
1

c2
φ. (13)

Figure 2 includes the graphical illustration of major parts of a
model of measurement with the variance parameter φ set equal
to one.

If φsc corresponds to the original variance parameter φ, c is
equal to one. Otherwise, if φ is given, c is obtainable by means of
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a reordered version of Equation (11):

c =

√

φ

φsc
.

Criterion-Based Methods
Methods including a criterion number, pc, are referred to as
criterion-based methods. The number selected as criterion is
related to the sum of factor loadings or the sum of squared factor
loadings. Criterion-based methods differ from each other in the
number selected as the criterion and the way of summing the
factor loadings. First, there is the effect-coding method (Little
et al., 2006) that is equivalent to effect-coding used in analysis
of variance where factor loadings are replaced by numbers that
represent the coding of the effect. These numbers must be
adjusted in such a way that their sum equals the number of
manifest variables (p) and the adjusted numbers are used in the
estimation of the variance parameter. In an example provided
by Little et al. (2006), each one of the factor loading is set
equal to one. It is highlighted that the estimate of the latent
variance corresponds to the average of the indicator variables’
variances (p. 63).

Equation (14) gives the formal representation of the basic
characteristic of this method; that is, the selection of constraints
such that the sum corresponds to pc. In considering the
scaling constant, c, the method is related to the outlined
constancy framework:

pc = 1′λ∗

coding_constraints = 1′
cλcoding_constraints (14)

where 1 is a p × 1 vector of ones, λ∗

coding_constraints the vector of

adjusted numbers serving as factor loadings and λcoding_constraints

the vector of original numbers selected for coding the effect. The
scaling constant c is necessary whenever the numbers selected for
coding the effect do not directly sum to pc.

A second criterion-based method relates the criterion number
to the sum of squared factor loadings that was suggested for
investigations focusing on variances and covariances (Schweizer,
2011). The number of manifest variables p is set equal to
the product of the p × 1 vectors of adjusted factor loadings
λ∗, respectively the vectors of original factor loadings λ with
multiplier c:

pc = λ ∗
′λ∗ = cλ′cλ. (15)

Using principles of scalar multiplication, the cs can be put in front
of the product of vectors so that:

pc = c2λ′λ. (16)

The product of vectors reveals that in this case the scaling aims
at the variance explained by the factor. Given pc and λ, c is
obtainable by means of a reordered version of Equation (16).

The graphical illustration for demonstrating the criterion-
based methods includes products of the scaling constant c and
λ (see Figure 3).

If λ originates from parameter estimation and not from effect
coding, it may be necessary to estimate the value in the first step
and fix it for scaling in the second step.

FIGURE 3 | Illustration of a confirmatory factor model with all factor loadings

constrained according to the criterion-based methods.

THE EFFECT OF THE CRITERION
NUMBER ON THE OUTCOME OF SCALING

While the marker-variable method and the reference-group
method are rather restricted, the criterion-basedmethods include
a criterion number that enables the adjustment to special
expectations regarding the size of scaled variance parameters.
This adjustment does not violate the constancy property.
Although this criterion number is set equal to the number of
manifest variables for good reasons in the version provided by
Little et al. (2006), the number is changeable and may be changed
to achieving variance values that vary within a smaller or larger
range of possible values for the scaled variance parameter.

To demonstrate the effect of different choices of pc, let pcA and
pcB (where pcA > pcB) be two criterion numbers selected for the

scaling of the variance parameter. Given the product λλ
′

and the
initial inequity of pcA and pcB, Equation 16 suggests that

c2Aλ′λ > c2Bλ
′λ.

Because both sides of the inequity include the product λλ
′

, the
inequity can be reduced to

c2A > c2B.

The consequence of this inequity for the scaled variance
parameters φscA and φscB when computed according Equation
(11) is described by the next inequity:

φscA =
1

c2A
φ < φscB =

1

c2B
φ (17)

The scaled variance parameter φscA is smaller than the scaled
variance parameter φscB since φscA includes the larger scaling
constant c as divisor. This inequity reveals that the larger pc, the
smaller the scaled variance parameter.

To demonstrate the practical consequences of selecting
different values for pc, the empirical consequences of changing
pc are reported in the following section for a number of
different conditions. The computations are conducted according
to Equations (11, 15). The outset is given by setting the original
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TABLE 1 | Sizes of scaled variance parameters for criterion numbers set equal to

the number of manifest variables (p) or proportions of it (r) in combination with

different sizes of the factor loadings and numbers of manifest variables.

Proportion

of r

Number of

manifest

variables p

Sizes of scaled variances

Factor loading

of 0.2

Factor loading

of 0.4

Factor loading

of 0.6

1/1 4 0.04 0.16 0.36

1/1 8 0.04 0.16 0.36

1/1 12 0.04 0.16 0.36

1/2 4 0.08 0.32 0.72

1/2 8 0.08 0.32 0.72

1/2 12 0.08 0.32 0.72

1/4 4 0.16 0.64 1.44

1/4 8 0.16 0.64 1.44

1/4 12 0.16 0.64 1.44

variance parameter equal to one and the factor loadings to 0.2,
0.4, or 0.6. Furthermore, the number of manifest variables is
set to 4, 8, or 12. In the first step, it is investigated how pc as
proportion of p, that is defined to correspond to the number
of manifest variables, influences the size of the scaled variance
parameter. Three proportions are considered: 1, 1/2, and 1/4. The
proportion of 1 requires the consideration of pcs of 4, 8 and 12,
the proportion of 1/2 pcs of 2, 4, and 6, and the proportion of 1/4
pcs of 1, 2, and 3.

The results are reported in Table 1. The first to third rows
give the results for the original size of the criterion number, the
fourth to sixth rows for the half of the original size and the
seventh to ninth rows for the quarter of the original size. The
inspection of the individual sections of Table 1 reveals that the
number of manifest variables has no influence on the size of the
scaled variance parameter, whereas the increase of factor loadings
leads to an increase of the scaled variance parameter. The results
suggest that the larger the factor loadings, the larger the scaled
variance parameter. In contrast, the comparison of the sections
shows that the smaller the proportion of pc, the larger the scaled
variance parameter. This increase is predicted by the inequity of
Equation (17). In the smallest proportion the factor loadings of
0.6 even lead to scaled variance parameters larger than one.

Furthermore, there is the opportunity to define the criterion
number pc independent of the number of manifest variables. In
order to explore this possibility, the criterion number is set equal
to 1, 5 and 10. Additionally the numbers of manifest variables (4,
8, 12) and the sizes of factor loadings (0.2, 0.4, 0.6) are varied.

The results are reported in Table 2. This table shows the
same structure as Table 1. The comparisons of the three sections
display an overall decrease of the scaled variance parameter from
the first to the last one. This decrease is in line with the inequity
of Equation (17). Furthermore, within the sections there is an
increase of the scaled variance parameter from four manifest
variables to 12 manifest variables. As also observed in Table 1,
there is an increase of the scaled variance parameter associated
with the increase of factor loadings.

TABLE 2 | Sizes of scaled variance parameters for criterion numbers (pc)

independent of the number of manifest variables combined with different sizes of

the factor loadings and numbers of manifest variables.

Criterion

number

Number of

manifest

variables

Sizes of scaled variances

Factor loading

of 0.2

Factor loading

of 0.4

Factor loading

of 0.6

1 4 0.160 0.640 1.440

1 8 0.320 1.280 2.880

1 12 0.480 1.920 4.320

5 4 0.032 0.128 0.288

5 8 0.064 0.256 0.576

5 12 0.096 0.384 0.864

10 4 0.016 0.064 0.144

10 8 0.032 0.128 0.288

10 12 0.048 0.192 0.432

Taken together, the results show that the increase of the factor
loadings leads to an increase of the scaled variance parameter and
that an increase of the criterion number leads to a decrease of the
scaled variance parameter. Furthermore, the comparison of the
results of Tables 1, 2 reveals that linking the criterion number
to the number of manifest variables leads to constancy of the
scaled variance parameter whereas otherwise, (i.e., when there is
independency of the number of manifest variables) an increase of
the number of manifest variables leads to an increase of the scaled
variance parameter.

SCALING FOR ACHIEVING VARIANCES
FOR COMPARISONS

The achievement of scaled variances for comparing the influences
of latent variables on responding like standardized regressions
weights in regressions analysis is presented as a major aim in
the second section of the paper. For reaching this aim we resort
to a basic method of factor analysis for estimating the variance
explained by a factor. This method suggests the computation of
the sum of squared factor loading λ′λ. It can alternatively be
achieved by the trace of the corresponding matrix:

λ′λ = trace
(

λλ′
)

.

Although a variance parameter is not considered, it can be
assumed being set equal to one (φ = 1) and being omitted for
convenience. In order to achieve similarity of the right-hand part
of this Equation and the left-hand part of Equation (10) and
also Equation (7), φ (= 1) is inserted in the right-hand part of
this Equation:

λ′λ = trace
(

λφλ′
)

. (18)

In the next step the matrix included in the parentheses is
transformed bymaking use of the second criterion-basedmethod
(Equation 15). The criterion number pc is set to 1:

1 = λ ∗
′λ∗ = cλ′cλ. (19)
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The scaling framework of Equation (10) respectively Equation
(7) enables the replacement of the vectors in the parentheses
of Equation (18) and the assignment of the scaling constant as
numerator to the variance parameter:

λ′λ = trace

(

λ ∗
φ

c2
λ ∗

′

)

Since the ratio of φ and c2 is a scalar, it can be removed from the
parentheses and is replaced by the scaled variance parameter φ∗:

λ′λ = φ ∗ trace
(

λ ∗ λ ∗
′
)

.

Because of setting the criterion number pc to 1, the trace must be
1 so that

λ′λ = φ ∗ ×1 = φ∗.

The contributions of all factor loadings are transferred to the
scaled variance parameter. If this method is applied to the
variances of two latent variables of the same model, as for
example to the latent variables of Equation (3), there are
two scaled variances that incorporate the contributions of all
factor loadings on the corresponding latent variables. It enables
the comparison of the influences of these latent variables
on responding.

EXAMPLE: SCALING TRAIT AND METHOD
LATENT VARIABLES WITH MTMM

We demonstrate consequences of employing different criterion
numbers for scaling the variance of the latent variable through
an investigation of a Multitrait-Multimethod (MTMM) design.
For illustration, the MTMM matrix from the classic article by
Campbell and Fiske (1959) was used; however, we recognize that
the original matrix was a synthetic example, and thus, may not
demonstrate optimal fit. Using the original MTMM matrix as
correlation matrix input for CFA and specifying the model of
measurement according to the correlated trait-correlatedmethod
model (Widaman, 1985) revealed two problems: (1) two negative
error variances and (2) relationships among standardized
error variances did not reflect expected relationships for the
complements of reliability estimates provided along the main
diagonal (0.89, 0.89, 0.76, 0.93, 0.94, 0.84, 0.94, 0.92, 0.85).
In order to assure positive values of the error variances and
to establish the expected relationship, the main diagonal of
the matrix was changed from (1, 1, 1, 1, 1, 1, 1, 1, 1) to
(1.145, 1.140, 1.145, 1.005, 0.965, 0.965, 0.940, 1.010, 0.980).
Following the argument in justifying the use of the ridge option
(Yuan et al., 2011), it was assumed the modification would
affect error components of variances but not the systematic
components themselves.

Furthermore, the insignificant correlations among the trait
and method latent variables were eliminated from the full
correlated trait-correlated method model. Only the correlations
of the second and third method latent variables (r = 0.52) and
the first and second trait latent variables (r= 0.31) remained. The

revised correlated trait-correlated method model yielded good
model fit, χ2(16) = 17.63, normed χ

2 = 1.10, RMSEA = 0.014,
SRMR = 0.065, CFI = 1.00, GFI = 0.99. This model estimated
factor loadings, while the variance parameters of the model were
set equal to one for identification.

Various methods for scaling are investigated3. At first, the
results of criterion-based scaling are reported. Since Equation
(14) was proposed for coding effects, Equation (15) guided the
computation. Setting the criterion number to 3, that is, to the
number of manifest variables for each construct and method led
to the following variance parameter estimates: φmethod 1 = 0.286;
φmethod 2 = 0.528; φmethod 3 = 0.527; φtrait 1 = 0.472; φtrait 2 =

0.481; φtrait 3 = 0.359. No reported variance estimate was larger
than one.

After setting the criterion number to 1, the following estimates
of the variance parameter were observed: φmethod 1 = 0.859;
φmethod 2 = 1.585; φmethod 3 = 1.582; φtrait 1 = 1.415; φtrait 2

= 1.444; φtrait 3 = 1.076. All estimates of the variances of the
trait latent variables were larger than one and two method latent
variable variances were larger than one. While not reported, the t
values for parameter significance testing were independent of the
criterion number.

Next, the marker-variable method was used. One of the three
factor loadings on each one of these latent variables was set equal
to one whereas the remaining factor loadings and the variance
parameter were free for estimation. Setting the first factor loading
on each factor to one led to the following estimates of the variance
parameter: φmethod 1 = 0.291; φmethod 2 = 0.534; φmethod 3

= 0.500; φtrait 1, = 0.711; φtrait 2 = 0.745; φtrait 3 = 0.517.
Results for setting the second factor loading on each factor to one
were: φmethod 1 = 0.245; φmethod 2 = 0.522; φmethod 3 = 0.543;
φtrait 1 = 0.361; φtrait 2 = 0.348; φtrait 3 = 0.299, respectively.
Finally, the selection of the third factor loading on each latent
variable for constraining values to one provided the following
estimates: φmethod 1 = 0.322; φmethod 2 = 0.529; φmethod 3 =

0.539; φtrait 1 = 0.342; φtrait 2 = 0.351; φtrait 3 = 0.260. In
sum, different selections led to different estimates of the variance
parameters. For example, selecting the first and second manifest
variables as markers revealed the variance of the first method
latent variable as the smallest one whereas in selecting the third
manifest variables as marker the variance of the third trait latent
variable was smallest.

The criterion-based method and the marker-variable method
were considered for scaling the variance parameters obtained
for Campbell and Fiske’s MTMM. Different properties of these
methods became apparent. The largest estimates were observed
for the criterion-based method when the criterion number was
one. Setting the criterion number to three led to overall smaller
estimates. The marker-variable method led to different rank-
orders of the variance estimates for different selections of marker
variables. A unique set of variance estimates was not obtainable
by means of this method. The reference-group method was not
considered since this method only makes sense if dependences

3All t values for parameter significance were large, with p < 0.05 for all tests. We

have eliminated t values to keep the focus on the variance estimates; however, t

values are available upon request.
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among the latent variables can be assumed as in longitudinal
research. In contrast, trait and method latent variables are
independent of each other.

DISCUSSION AND CONCLUSIONS

Although a variance parameter is a necessary component of
factor analysis models, researchers often do not consider the
effect that the scaling of this parameter has on the variance of
the latent variable. One major issue addressed in this paper is the
preservation of information when changing from one reference
system to another through scaling. Scaling the variance of a
latent variable must preserve the result regarding the structure
of the data while simultaneously improving interpretability and
comparability of the result. The consistency framework presented
in this paper reveals how the preservation occurs, and we provide
insight into the crucial role of scalar multiplication. Scalar
multiplication enables the change of parts of the model of the
covariance matrix that is basic to the confirmatory investigation
while exhibiting constancy of the product of these parts.

The investigation of the available methods for scaling the
variance parameter reveals that the available methods fit to
the constancy framework; however, methods present different
degrees of flexibility. Whereas, the reference group method
is totally fixed, the marker-variable method allows some
adaptability to the data in that the method enables the selection
of the indicator variable from the set of all manifest variables. We
understand that different methods of setting a marker variable
for identification may lead to different standard error terms for
parameters, and subsequently, different significance test (i.e., Z)
values (Gonzalez and Griffin, 2001), the method of scaling latent
variables is consistent in terms of fit and parameter estimates.

Criterion-based methods, however, are potentially adaptable
to specific needs as the criterion number may be changed to
meet a specific situation. The use of a criterion number provides
the opportunity to design the method for scaling the variance
parameter in such a way that it is possible to: (1) choose between

dependency and independency on the number of manifest
variables, and (2) opt for lower or larger values of the variance
parameter, i.e. different ranges of the possible sizes of the scaled
variance parameter, starting with zero.

The application of the scaling methods concentrated on the
MTMM provided by Campbell and Fiske (1959). All scaling
methods were considered; however, not all of them were able
to fit the MTMM matrix. The reference-group method does not
apply if there is only one sample; however, it provides a starting
point for scaling according to other methods as estimates of
the factor loadings are obtained by setting the variances of the
latent variables equal to one. The application of the marker-
variable methods requires the selection of marker variables;
results revealed that different marker-variables lead to different
values as the result of scaling. This is not a good property if
unique statistics (e.g., means, standard deviations) are expected.
Uniqueness of scaled variance estimates are achieved by the
criterion-based method.

The criterion-based method also provides an opportunity to
achieve scaled variances similar to eigenvalues. Using positive
integers as criterion numbers, the largest scaled variance
parameters are obtainable for one as criterion number. According
to the results of an empirical study, use of the value of
one as a criterion number leads to estimates of the variance
parameter that correspond to eigenvalues if the model for
investigating the data is unidimensional and specific procedural
properties are considered (Schweizer et al., 2017). This property
enlarges the range of possible applications of scaled variances.
Whereas, variance parameters scaled in another way can only be
compared with each other, the scaling in using one as criterion
number additionally enables comparisons of scaled variances
with eigenvalues.
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