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Many traditional educational assessments use multiple-choice items and
constructed-response items to measure fundamental skills. Virtual performance
assessments, such as game- or simulation-based assessments, are designed recently
in the field of educational measurement to measure more integrated skills through
the test takers’ interactive behaviors within an assessment in a virtual environment.
This paper presents a systematic timing study based on data collected from a
simulation-based task designed recently at Educational Testing Service. The study is
intended to understand the response times in complex simulation-based tasks so as
to shed light on possible ways of leveraging response time information in designing,
assembling, and scoring of simulation-based tasks. To achieve this objective, a series
of five analyses were conducted to first understand the statistical properties of the
timing data, and then investigate the relationship between the timing patterns and the
test takers’ performance on the items/task, demographics, motivation level, personality,
and test-taking behaviors through use of different statistical approaches. We found that
the five analyses complemented each other and revealed different useful timing aspects
of this test-taker sample’s behavioral features in the simulation-based task. The findings
were also compared with notable existing results in the literature related to timing data.

Keywords: trialogue, response time, hierarchical modeling framework, cluster analysis, motivation,
rapid-guessing behavior

INTRODUCTION

Many traditional educational assessments use multiple-choice (MC) items and
constructed-response (CR) items to measure fundamental skills, such as verbal and quantitative
skills. The MC and CR items in the same form are assembled to measure the same construct
but usually are not attached to a common scenario throughout the test. There is an increasing
interest in the field of educational measurement in developing new capabilities for new task
formats and assessment types to measure more integrated skills, such as problem-solving
and critical thinking, which may not be directly assessed by those traditional educational
assessments. Virtual performance assessments (VPAs), such as game- or simulation-based
assessments, are often used to serve the purpose (Baker and Clarke-Midura, 2013; Mislevy
et al,, 2014). In a VPA, a test taker’s proficiency is assessed based on his/her interactions with
the virtual environment. As such, good understanding of how the test taker interacts with the
virtual environment is essential for developing psychometrically sound scoring rules for VPAs,
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and for designing and assembling VPAs to support the intended
scoring rules. In this paper, we aim at better understanding the
test taker’s interactions with the virtual environment from the
perspective of their response time (RT) to the items in a VPA.

There is rich literature on RT research concerning the design,
assembly, and scoring aspects of traditional MC tests that are
digitally based (for review papers, see, e.g., Schnipke and Scrams,
2002; Lee and Chen, 2011; Kyllonen and Zu, 2016; De Boeck
and Jeon, 2019). These literature also suggests that RTs contain
rich information about test takers’ response processes, test-taking
behaviors and strategies, and motivation. One reason is that
test takers’ timing behaviors reflect person-task interactions.
When the major assessment outcomes to be scored are the final
responses to items, test takers may adjust their timing behaviors
or strategies to cope with the test conditions in order to optimize
their test performance. The adjustment in behavior or strategy
may occur before people take a test (during practice exams) or
during a live test (Lee and Haberman, 2016). Thus, compared to
item responses, their timing behaviors tend to be more sensitive
to test context and content, test/item type, and test conditions.
RTs have been used as ancillary information for improving
precision of parameter estimation and validity of measurement
beyond what is available based on item responses: For example,
for tests that are intended to measure both speed and accuracy,
RTs may be used to derive scores together with item responses
(Maris and van der Maas, 2012; van Rijn and Ali, 2018). To
have better control on test speededness, RTs may be utilized for
assembling test forms in non-adaptive testing and selecting items
in adaptive testing (e.g., van der Linden et al., 1999; Choe et al.,
2018). In addition, RTs have been used in test security analyses
and examination of general test-taking behaviors (e.g., solution
behavior vs. rapid-guessing behavior, due to test speededness or
low motivation).

To our knowledge, test takers’ timing behaviors in VPAs
have been less explored psychometrically, possibly due to limited
access to large-scale empirical data from VPAs. Educational
Testing Service (ETS) researchers have conducted a timing
study of simulation-based tasks in the context of the National
Assessment of Educational Progress (NAEP; Jia and Lee, 2018).
The study focused on two simulation-based tasks, each with
four items given with a time limit to around 2,000 students;
the tasks assessed technology and engineering literacy of grade
eight students in the United States. This study had three primary
findings. First, the items that asked the students to conduct
simulations or experiments (referred to as simulation items
henceforth) required much more time to complete than the
rest of the items did, but the simulation items did not appear
to be especially difficult. Second, rapid-guessing behavior was
not an issue for these simulation-based tasks, although the
assessment was considered low-stakes to the students. Third,
the correlation between the observed task time and performance
was positive but almost negligible. Note that each of the two
NAEP simulation-based tasks was used as part of a test form for
assessing technology and engineering literacy and the scores were
not reported at the task level. While RTs have also been examined
in other fields, the focuses tend to be different from those in
educational measurement—for example, to study varying student

interactions in computer-supported collaborative learning (e.g.,
Jeong, 2004) or to assess learning in intelligent tutoring systems
(e.g., Beck et al., 2000).

The simulation-based tasks considered in Jia and Lee (2018)
were relatively short and simple. In this current work, we
furthered the effort on RT analysis to study a more complex
simulation-based task that has a complete storyline about how
a test taker investigates volcano eruption in a virtual geology lab.
This simulation-based task was developed as part of an effort to
assessing collaborative problem-solving (CPS) skills in science,
the ETS Collaborative Science Assessment Prototype (ECSAP;
Hao et al., 2015, 2017; Liu et al., 2015). In ECSAP, there are two
parallel simulation-based tasks. One is intended for individual
test takers to respond, referred to as the single-user version. The
other is for dyadic teams to respond collaboratively, referred to as
the collaborative version. Both the individual and collaborative
versions of the simulation-based tasks were modified from an
earlier simulation-based task about volcano science designed
to assess students’ science inquiry skill (Zapata-Rivera et al.,
2014). In the single-user version, each participant responded to
11 items without any time limit, and their item responses and
item RTs were captured. In the collaborative version, two human
participants collaborated through a chat box to interact with
two virtual agents to complete the same task. In the previous
research, the foci were primarily on the collaborative version of
the simulation-based task to explore CPS skills and collaboration
engagement through the online chats (e.g., content, frequency,
and chat time) between team members and their item responses
(see the CPS references above, and Halpin et al., 2017), while the
single-user version was simply used as a control. No systematic
timing analysis has been carried out using data collected from
either version of the tasks.

In this paper, we present a systematic study on the RTs
collected from the single-user version of the simulation-based
task. Our goal is to understand the RTs in complex
simulation-based tasks so as to shed light on possible ways
of leveraging RT information in designing, assembling, and
scoring of simulation-based tasks. To achieve the objective, a
series of five analyses were conducted to first understand the
statistical properties of the timing data, and then investigate the
relationship between the timing patterns and the test takers’
performance on the items/task, demographics, motivation level,
personality, and test-taking behaviors through use of different
statistical approaches. As will be shown, the five analyses
complement each other and reveal different timing aspects of this
test-taker sample’s behavioral features in the simulation-based
task we studied. The behavioral features observed in this
simulation-based task may be quite different from those in
traditional educational assessments, and the comparisons will
benefit RT researchers as well as researchers who are interested
in the same or similar datasets.

It is worth noting that the study concentrates on timing
and response data in the simulation-based task, although in
general, a simulation-based task may have many assessment
metrics beyond RTs and responses that are worth exploring.
Also, this study is not intended to evaluate the potential of
simulation-based tasks or VPAs beyond timing and response data
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for use in the field of educational measurement. For more general
discussion about VPAs, please see, for example, Baker and Clarke-
Midura (2013) and Mislevy et al. (2014). The rest of the paper
is organized as follows. The next section provides information
about the simulation-based task and the data under study. The
series of five analyses are then described in detail regarding
the methods and results. The Discussion section concludes the
findings, addresses the implications of the results for the design,
assembly, and scoring of simulation-based tasks, and discusses
possible directions for future research.

DATA

As mentioned earlier, this study is based on a secondary
analysis of the existing data on the simulation-based task
about volcano science published in Hao et al. (2015, 2017)
and Liu et al. (2015). The simulation-based task (referred
to as the task henceforth) was designed to measure science
inquiry skills on volcano science and delivered to 463 test
takers on Amazon Mechanical Turk. Each test taker interacted
with two virtual agents to complete 11 items embedded in
a common scenario. The task began with an introduction to
scientific information about volcano eruptions, followed by
seven selected-response items on knowledge assessment (Items
1-7), and then four CR items on a simulation (Items 8-11).
Among the four items about the simulation, the test takers
were supposed to conduct a simulation on Item 8, in which
they had to decide on the number of seismometers they
wanted to use to monitor the volcano and then placed them
in different regions around the volcano to collect data; they
were then asked to explain why they chose that number of
seismometers and the time duration they wanted to collect the
data on Items 9 to 11. Table 1 presents the type and format
of the 11 items, with some details (e.g., number of options
per MC item and what actions were required per CR item)
that will be used in discussing the analysis results. In this
study, all items were scored dichotomously as 0 (incorrect) or

TABLE 1 | Information about the 11 items in the task.

Item Type Format Note Chance-level

proportion
correct

1 MC Single selection 1 out of 4 options 1/4

2 MC Single selection 1 out of 4 options 1/4

3 MC Multiple selection 2 out of 3 options 1/3

4 MC Order order 5 options 1/120

5 MC Single selection 1 out of 4 options 1/4

6 MC Single selection 1 out of 4 options 1/4

7 MC Single selection 1 out of 4 options 1/4

8 CR Simulation item 0

9 CR Explain the design 0

10 CR Explain the design 0

iR CR Explain the design 0

The chance-level proportion correct refers to the expected probability of answering
the item correctly by guessing. This information is used in Analysis 5.

1 (correct). For Item 8, the score was based on the correctness
and completeness of the simulation. As will be shown, such
items may not be difficult but are typically time-consuming.
It is noteworthy that, as compared to traditional educational
tests, the level of task complexity—in terms of multiple item
types and formats, and the actions required to achieve a correct
answer to the embedded items—is unusual. Thus, some findings
in this study are likely unique to simulation-based tasks and not
necessarily generalizable to traditional educational tests with MC
and/or CR items.

The test takers could only take the items in the delivery order
and were not permitted to revisit earlier items in the task. There
was no time limit imposed on the task and everyone completed
the task, so the data involved no missing item responses and
RTs. For each test taker, the overall task time comprised two
portions—one portion involving the time spent listening to
scientific information about the common scenario, and the other
portion involving the time spent working on the embedded
items. The former portion was a fixed amount of time paced
by the system, and was ignored in the rest of the study. The
latter portion consisted of the item RTs under evaluation. In
this study, we chose to consider the item-level RTs as the
starting point to navigate the person-task interactions in the task,
together with item-level responses. This choice facilitated the
comparison of findings across items within the simulation-based
task, and between the simulation-based task and the traditional
educational tests examined in the RT literature. In this paper,
for each individual, the task score refers to the sum of the
responses to the 11 items, and the task time refers to the sum of
the 11 item RTs.

In addition to the task, the test takers also responded
to a standalone test for general science knowledge (with
37 single-selection MC items, referred to as the MC test
henceforth), a demographic survey (including questions about
their motivation level when completing the task), and a 10-item
personality survey (Gosling et al., 2003). For more details about
these different task/test/surveys, see Hao et al. (2017). The scores
on the MC test and the responses to the survey questions were
available for 445 of the 463 test takers, and this additional
information was used as person covariates in the study. Thus,
data from the 445 test takers were used in all analyses. Below is
some information about the composition of the test-taker sample
under study:

(a) About 63.6% of them were male.

(b) Their age ranged from 18 to 51, with a median of 24.

(c) They could be classified into four major ethnic
groups—White (75.5%), Asian (12.8%), Black (6.1%),
and others (5.6%).

(d) Regarding their career plan after college'—about 70.8%
planned to work or worked full time, about 22.3% planned

'The original question and options were as follows: “What do you expect your
main activity will be in the year after you leave college? A. Working full time; B.
Attending graduate school; C. Serving in the military; D. Other.” Given the age
range of the test takers, it was assumed that the test takers selected the option
that best described their situation at the time they took the task, which either had
occurred or had been planned.
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to attend or attended graduate school, and the rest
had other plans.

(e) On the three motivation questions—did you find the task
engaging? Did you find the task interesting? Did you learn
something new from the task?—the fractions of the test
takers answering 1, 2, or 3 (from agreeing most to least)
was about 60%, 35%, and 5%, respectively.

It is worth mentioning that the test takers on Amazon
Mechanical Turk were recruited to complete the task, the MC
test, and the surveys. The MC test had several items designed to
monitor if the test takers paid enough attention to the test and
that might affect the payment. One example item was as follows:
Which of the following cannot be found on earth? (a) Ocean; (b)
moon (key); (c) dessert; and (d) woods. Those items were so easy
that any test taker in the sample who considered them were able
to answer correctly. All of the test takers included in this study
answered the attention-track items correctly. Thus, it is expected
that the test takers would be motivated in completing the task
to some extent, although they experienced no consequences for
their performance on the task and the MC test.

ANALYSES AND RESULTS

In this section, we present five analyses that were intended to
investigate the following aspects of the task times and item RTs
collected from the task:

(1) Statistical properties of the task times and item RTs.

(2) How did the task times relate to the test takers
performance on the task/MC test, demographics,
motivation level, and personality?

(3) How did the item RTs and responses relate to each other?

(4) Did the test takers show different timing patterns across
items? Did they inform differences in strategies/time
allocation on the task?

(5) Did the test takers show rapid-guessing behavior on this
task? Was there a clear motivation issue in this dataset?

ANALYSIS 1: STATISTICAL PROPERTIES
OF THE TIMING DATA

Because the task was given without time limits, the first question
to answer was how the task times and item RTs varied for
different test takers. Descriptive statistics of task scores and item
responses were evaluated to complement the timing analysis
at different levels. In addition, how the timing variables were
distributed was of interest, as later analyses involved modeling
of task times and RTs.

Methods

Basic summary statistics were computed for task times and item
RTs. Boxplots were made to show possible differences in the
RT distributions for the 11 items. Preliminary results suggested
that the histogram of task times and the histograms of item
RTs had unimodal, right-skewed shapes. Thus, the distribution

of task times and the distributions of item RTs were examined
via QQ-plots and the Kolmogorov-Smirnov test, with respect
to three theoretical models with these properties—lognormal
model, gamma model, and Weibull model. These are three
popular parametric models in time-to-event studies in survival
analysis (Kalbfleisch and Prentice, 2002). The Kolmogorov-
Smirnov test is a non-parametric test of the equality of
continuous probability distributions that can be used to compare
the empirical distribution function of a sample with a reference
(theoretical) probability distribution. The type I error rate was set
at 0.05 for evaluating the Kolmogorov-Smirnov test results.

Results

Regarding the task-level data, the task times were typically short,
ranging from 1.5 to 18.3 min. The first quartile, the median, and
the third quartile of the task times were equal to 3.3, 4.2, and 5.3,
respectively. The task scores ranged from 0 to 11, with the first
quartile, the median, and the third quartile of the task scores equal
to 6, 8, and 9, respectively. Overall, the test takers had decent
performance on the items without spending much time. These
test takers also performed well on the MC test, with the middle
50% of test takers scoring between 25 and 32 on a 0-37 scale.

Regarding the item-level data, Figure 1 (left panel) shows
the boxplots of RTs by item (with 23 observations with RTs
greater than 150 s excluded from the plot to make the RT
patterns clearer to see). It is clear that the RT distributions varied
across items in terms of both central location and dispersion,
although the majority of the RTs were below 50 s for all items
except Item 8 (this item took more time relative to other items).
These RTs were generally short, as compared to those in the
traditional educational assessments discussed in the RT literature.
As depicted in Figure 1 (right panel), the items were easy for the
test takers. All of the items, except the last one, had a proportion
correct greater than 0.5 (four were above 0.85). Items 7 and
8 present a clear contrast concerning time-consumption and
difficulty—both items were very easy; but for the majority of the
test takers, Item 7 could be answered in 10 s, while Item 8 took
about 30 to 62 s. As shown in Table 1, these two items are very
different in terms of item type: Item 7 is a single-selection MC
item, while Item 8 is a simulation item.

Regarding the distribution of the timing data, the empirical
timing distributions were compared to three theoretical models—
lognormal model, gamma model, and Weibull model. Figure 2
presents three QQ plots that compared the empirical distribution
function of the task times with the best fitting distribution of
the three models. Among the three QQ plots, the lognormal
model approximated the task times very well and outperformed
the other two models—all of the points lay on the reference
line except for 8 outliers (<2%) at the right tail. Results of
the Kolmogorov-Smirnov test also suggest that the lognormal
model supported the observed task times. The Kolmogorov-
Smirnov test statistics for the best fitting lognormal model and
gamma model were equal to 0.04 (p-value = 0.13) and 0.06
(p-value < 0.001). Similarly, the lognormal model generally
supported the RTs per item, although different central locations
and dispersion levels should be considered for different items.
Overall, results from this analysis indicate that simple statistical
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FIGURE 1 | Boxplots of RTs by item (left) and proportion correct by item (right).
models, such as lognormal regression, are appropriate for e Three variables from the motivation questions—did you
modeling the task times (Analysis 2) and for modeling the item find the task engaging? Did you find the task interesting?
RTs (Analysis 3) in this task. Did you learn something new from the task? All were
treated as nominal variables, each with three categories’.
e Ten personality variables from the personality survey.

ANALYSIS 2: HOW DID TASK TIMES All were treated as nominal variables, each with
RELATE TO PERFORMANCE AND five categories"

OTHER INFORMATION AVAILABLE FOR Three models were considered. There was a base model

THE TEST TAKERS? that only included an intercept and no predictor. Model 1
_ . N 4 included an intercept and eight predictors that were chosen
As noted in the Data section, additional data were available  gybjectively from the 27 possible covariates. The eight predictors

for the test takers. Because the focus of this study was on the yere the task score, age, gender, ethnicity, career plan after
test takers’ timing data, variables derived from the additional college, and the three motivation variables. Compared to
information, including task score, were used as person covariates

(L,e" P I‘edICtOI‘S.) in this analYSIS to lnves,tlgate their relatlonshlp 3The responses (1-3) to the three motivation questions were ordinal in nature.
with the task times. The research question was to what extent Treating each motivation question as an ordinal variable had the advantage

the variations in the task times can be explained by these of estimating 1 fewer parameter, but it assumed that the successive response
person covariates. categories were equally spaced (Long a1.1d Freese, 2006, p. 421) and had r'nonot.onic
effects on the log-transformed task times. To assess the effect of this variable
treatment, in addition to the models presented in Table 2, Models 1 and 2
MethOds with the three motivation variables treated as ordinal were also considered. The

. . ; ; 2
To examine the effects of the person covariates on the task corresponding adjusted R* were equal to 0.02 (11 degrees of freedom) and 0.05 (9

& 1 L . loved to fit the 1 degrees of freedom), respectively. This version of Model 2 selected the same final
1mes, normal linear regression was employed to ¢ log- predictors except for “Did you find the task interesting?” which did not enter the

transformed task times with different sets of predictors®. There  model, and this version performed slightly worse than the Model 2 in Table 2.
were 27 possible covariates for the test takers: An alternative approach was considered that replaced the three separate ordinal
motivation variables with their sum score in Models 1 and 2, but this replacement
e Two scores, one on the task and the other on the MC test.  also did not improve the model fit. Thus, treating the motivation questions as
The correlation between these two scores was equal to 0.43 separate nominal variables was preferred with this dataset.
“The test takers were asked to rate the extent to which they agreed or disagreed
(p-value < 0.0001). ) : . ) !
with the statement in each personality question from 1 (disagree strongly) to 5
e Twelve demographic variables, including age, gender, (agree strongly). When treating them as ordinal variables, one could compute the
ethnicity, high school type, experience in science, career  Pearson correlation between the responses to a pair of questions. It was found
plan after college, and home environment (related that the Pearso'n correlations bet.ween any two of the 10 personality vanab'les
R ] « were below 0.4 in absolute value (i.e., weak correlation), except for two cases with
to science learnmg). All but age were treated as correlations of —0.48 and —0.66. There was no difference in handling each of the
nominal variables. 10 personality variables as original or nominal in Model 2 in terms of adjusted R?.
However, replacing the 10 separate personality variables with their sum score in
2Fitting normal linear regression with the log-transformed task times or fitting ~ Model 2 led to an adjusted R? equal to 0.02 (3 degrees of freedom), with only one
lognormal regression with the task times did not yield noticeable differences in the  predictor selected (How many books at home?). Thus, this version of Model 2 was
results, so only the former case was discussed. not discussed further.
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the rest of the person covariates, these eight predictors are
more commonly available in different large-scale educational
assessments, so their effects on the task times were of interest
and assessed in Model 1. The second model concerns a stepwise
regression (Draper and Smith, 1998, ch. 15) that identified
useful predictors from all 27 possible person covariates. The
predictors were added one by one to the model only if
the F statistic for a predictor was significant at the 0.05
level, which is recommended by Draper and Smith (1998),
p. 342) for stepwise linear regression. The same criterion
was used for removal of predictors. The final model is
referred to as Model 2. The residual root mean squared error
(RMSE), the estimated coefficient of determinationR?, and the
estimated adjusted R?> were reported for each model. The
RMSE represents the variability of the log-transformed task
times once all useful predictors are included. Adjusted R* was

considered, because it combines information about model fit
with number of parameters. Other measures, such as information
criteria (Akaike, 1974; Schwarz, 1978), might be employed for
the same purpose.

Results

Table 2 summaries the model-fitting results. The stepwise
regression approach selected 4 predictors out of 27 and
outperformed Model 1, in which the 8 predictors were chosen
subjectively. The final 4 predictors in Model 2 and the
estimated effects on the (log-transformed) task times are as
follows:

e Career plan after college? Test takers who worked full time
or attended graduate school tended to have shorter task
times than those with other plans.
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TABLE 2 | Model-fitting results for task times.

Model Number of Model RMSE R? Adjusted
predictors degrees of R2
freedom
Base 0 0 0.38 0.00 0.00
Model 1 8 14 0.37 0.05 0.02
Model 2 4 1 0.36 0.08 0.06

The model degrees of freedom refers to the number of coefficients associated with
the predictors and does not include the intercept.

e Personality variable—disorganized/careless? Test takers
who strongly agreed that they were disorganized/careless
spent less time than those who did not agree strongly.

e How many books at home? Test takers with enough books
to fill one shelf, 11-25, tended to spend longer task times
than did those with fewer or a lot more books.

e Did you find the task interesting? Test takers who chose
2 spent slightly less time than those who chose 1 (agreed
most) or 3 (agreed least) did.

Although interesting, Model 2 explained only about 6% of
the variability in the log-transformed task times and did not
substantially reduce the RMSE relative to the base model. It
was therefore concluded that none of the person covariates
available in the dataset had clear effects on the test takers time
on task, and further details about the parameter estimates in
Model 2 are omitted.

ANALYSIS 3: HOW DID ITEM RTS AND
RESPONSES RELATE TO EACH OTHER?

There are many ways to examine the relationship between the
observed RTs and item responses. If one assumes that the task
may measure two latent traits per test taker, ability and speed,
then a possible approach is the hierarchical framework for joint
modeling item responses and RTs (van der Linden, 2007). This
framework assumes that each test taker operates at fixed levels of
speed and ability in a test. It tends to be adequate for tests with
generous time limits (van der Linden, 2007, p. 292) or without
any time limits—that is, the task under study.

Methods

The hierarchical framework assumes that the task measures two
latent traits for each test taker j, one for ability 6; and the other
for speed T; which may be correlated among a group of test takers
of size ] = 445. It also assumes that each item i, 1 <i < I =11,
can be characterized by such parameters as difficulty b;, time-
intensity p;, time-discrimination «;, and so on, some of which
may be correlated among items in a test. Let Yj; and Tj; be test
taker j’s response and RT on item i, respectively. The hierarchical
framework assumes that, conditioning on the parameters for test
takers and for items, item responses Yj; and RTs Tj; on the task
items are independent and can be modeled separately at Level 1
of the framework by an IRT model (for item responses Yj;)
and a timing model (for RTs Tj;). At Level-2 of the framework,

the correlation between person parameters (i.e., ability 6; and
speed Tj) across test takers and the correlations between item
parameters across items are captured in the multidimensional
prior distributions and can be estimated from the data.

Due to the small sample size and short test length, the Rasch
model was employed to model item responses Yji, with the
conditional probability equal to

1
1+exp[— (8 —b)]

P (Yiil;, bi) =

According to the results in Analysis 1, the item RTs supported
a lognormal model reasonably well but tended to have different
central locations and levels of dispersion in the distributions
for different items. Thus, a lognormal regression model with
two item parameters, one for time-intensity P; (to describe
possible differences in the central location) and the other for
time-discrimination o; (to describe possible differences in the
dispersion), was chosen to model the RTs. More specifically, the
regression of the logarithm of Tj; on test taker j’s speed tj and
item 7’s time-intensity i may be expressed as

log (Tji) = Bi — 7 + i

where the random error g; ~ N (0, o ). Parameter T; indicates
the speed of test taker j, larger ; for faster respondents. Parameter
Bi represents the time-intensity of item i: the larger the B;, the
more time item i requires for the test takers to respond. Parameter
a; represents the discriminating power of item i in RTs, and
larger a; corresponds to less variable Tj; across test takers. The
probability density function (PDF) of Tj; is equal to

. 2
F i) = = exp |~ flog 0 - (5~ ).

V2T

Level-2 of the framework involves joint models of the person
parameters and of the item parameters. The joint distribution of
the test taker’s ability 6; and speed 1}, 1 < j < ], was assumed to
follow a bivariate normal distribution,

e.
( J) ~ N2 (1, Zp)
T

with the mean vector x, = (0, 0)" and covariance matrix

2
3, = (09 092‘)‘
Opt O%F

Let pgr = og;/ (000t) be the correlation between ability 6; and
speed Tj across j. Similarly, for item parameters, a bivariate
normal distribution was assumed for item difficulty b; and time-
intensity f5, 1 <i <1,

b; N
(Bi) Ny (wg, Zp)

with the mean vector pu; = (i, Mﬁ)/ and covariance matrix

2

0. O]
= "0 ).

Obp 05
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Let ppp = opg /(cbcs) be the correlation between difficulty b;
and time-intensity B; across i. The item parameter moments
were constrained from the general case, which includes
time-discrimination «; in the item parameter vector. In this
study, time-discrimination o; was estimated separately. The o
was assumed to be independent of b; and B; for two reasons.
First, previous studies (e.g., Bolt and Lall, 2003; Fox et al.,, 2014)
indicate that the correlations between the time-discrimination
a; and the other item parameters (b; and f;) provide negligible
information about the item quality or person latent traits,
especially the relationship between speed and accuracy among
test takers. Thus, by following the convention of jointly
estimating an RT model and an IRT model, the covariances
related to time-discrimination o; were ignored. Second, forcedly
estimating the covariances related to time-discrimination o;
might cause an over-fitting issue with complex hierarchical
modeling, which might yield untrustworthy person parameter
estimates. Thus, the mentioned constraints were applied.

A software program that implements a Bayesian MCMC
approach with Just Another Gibbs Sampler (JAGS; Plummer,
2015) was employed to estimate the model parameters (Man et al.,
2019). The prior distributions for estimating the mean vector and
the covariance structure of the item difficulty and time-intensity
were specified as follows:

Wp ~ N (0,2),pug ~ N (4.5,2), Xy ~ IW (Ig0, Vio) ,

andoy ~ InvGamma (1, 1),

where IW denotes the inverse-Wishart distribution, InvGamma
denotes the inverse-gamma distribution, Iy is a 2 x 2 identity
matrix, and vy indicates the degree of freedom, which in this
case is 1. Likewise, the prior distribution for estimating the
covariance structure of the person parameters is defined as PP
~IW (I, vio), the same distribution as X; given above. Model
parameters were estimated by the posterior mean, or the expected
a posteriori (EAP) estimate, through the algorithm.

The R2jags package (Su and Yajima, 2015) was utilized to run
JAGS in R (R Core Team, 2016). The potential scale reduction
(PSR) factor was used for evaluating the model parameter
convergence (Gelman et al., 2003).

Results

For parameter estimation with this dataset, the MCMC approach
involved two chains, each with thinning of 5 using 15,000 total
iterations with a 5,000 burn-in. In this study, a PSR value
of a parameter estimate lower than 1.1 indicates satisfying
convergence (Gelman and Rubin, 1992a,b). Figure 3 shows that
the estimation of all of the parameters converged, as all the PSR
values were lower than 1.1. The current choice of hyperpriors
N (0,2) and N (4.5, 2) for pup, and pg seemed suitable for the
dataset with the use of the Rasch model and the two-parameter
lognormal RT model as the two chains reached their convergence.
Also, the current setting of priors follows the convention of
fitting IRT and RT models with Bayesian estimation (e.g., van
der Linden et al., 2010; Natesan et al., 2016; Luo and Jiao, 2018).
However, whether such hyperpriors generally work for jointly

1000
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Potential scale reduction (PSR) factor values

FIGURE 3 | Histogram of the values of the potential scale reduction factor
based on the fitted joint model.

modeling RTs and responses in the hierarchical framework needs
to be addressed by additional sensitivity analysis.

The histogram of the EAP estimates of the ability parameters
(Figure 4, left panel) was skewed to the left, while the histogram
of the EAP estimates of the speed parameters (Figure 4, right
panel) was roughly symmetric. Both histograms had mean equal
to 0 due to the imposed constraints for identifiability of the model
parameters, but the EAP estimates of the ability parameters
were much more variable than were the EAP estimates of the
speed parameters.

On the other hand, there was a tiny, but statistically
significant, positive correlation between the ability and speed
parameters among the test takers. Based on the estimated
Level-2 model parameters in Table 3, the estimated correlation
Por = Gor/ (6o6¢) = 0.04/ (0.85 - 0.08)"/2 = 0.17, with a 95%
credible interval (0.034, 0.302). A positive correlation between the
ability parameter and the speed parameter for a test-taker sample
implies that more proficient test takers tended to work faster
on the task. This level of correlation is very weak compared to
many reported studies based on the same hierarchical framework.
For instance, Klein Entink et al. (2009) reported an estimated
correlation of —0.76 for a low-stakes assessment and an estimated
correlation of 0.3 for a personality questionnaire; Wang et al.
(2013) found an estimated correlation of 0.71 for a high-stakes
adaptive test; Zu et al. (2016) showed estimated correlations of
0.59 for a high-stakes Listening test and of 0.86 for a high-
stakes quantitative reasoning test. The authors noted that the
correlation between ability and speed probably depends on the
test context and content, type of test, type of item, and the test
conditions. There are many possible reasons for the finding of
a weak positive correlation observed in this dataset, such as
different item types among the 11 items (especially simulation
items vs. others), no time limit on the task, and not a challenging
task to the test takers so that spending more or less time did not
affect the accuracy of their responses substantially.

Based on the estimated Level-2 model parameters in Table 3,
the estimated correlation between the items difficulty and
time-intensity, ppg = 6pp/ (60p) = 0.24/ (2.77 - 0.43)"/2 =0.22
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TABLE 3 | Estimates of item parameters and level-2 model parameters.

RT Rasch

Time-intensity Time-discrimination Difficulty

EAP SE EAP SE EAP SE
B 3.06 0.02 aq 4.02 0.30 by -0.72 0.12
B> 2.60 0.03 ap 512 0.37 b, —0.58 0.1
Bz 2.59 0.03 ag  3.68 0.27 bz —0.93 0.12
Bs 3.49 0.02 as  7.58 0.57 bs —0.43 0.12
B 2.81 0.02 as  6.28 0.46 bs —-3.07 0.22
Bs  2.96 0.02 ag  5.59 0.40 bs —2.05 0.16
B 194 0.02 a7 7.45 0.57 b7 —=3.90 0.30
ps  3.76 0.02 ag  3.80 0.27 bg —2.94 0.22
Bo 327 0.03 ag  2.65 0.19 bg —0.32 0.1
Bio  2.31 0.02 aip 10.03 0.83 by -0.18 0.1
p11 3.31 0.03 a1 3.16 0.23 b11 1.30 0.13
Covariance matrix of item parameters
o 277
opp 024
of 043
Covariance matrix of person parameters
of 085
op.  0.04
¢? 008

T

For each item parameter, the EAP and SE are the posterior mean and posterior
standard deviation, respectively.

with a 95% credible interval (—0.376, 0.710). Thus, there was no
clear relationship between the items’ difficulty and time-intensity.
Item type is likely a key factor for this finding. In addition to the
Level-2 model parameters, Table 3 also summarizes the estimates
of all item parameters. To better associate the combinations of
the estimated item difficulty and time-intensity with the 11 items,
Figure 5 depicts their EAP estimates by item. For example, the
least time-consuming item (Item 7, a single-selection MC item)
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FIGURE 5 | EAP estimates of item difficulty and time-intensity by item.

was the easiest item in the task, but the most time-intensive item
(Item 8, a simulation item) was also very easy. It is common
for simulation-based tasks to include simulation items, which
ask the test takers to follow specific instructions to conduct an
experiment or a simulation, and such items are usually scored
based on the completeness of the experiment/simulation. Relative
to other item types, simulation items may not be difficult, but
they are typically time-consuming. In the task under study, the
most time-intensive but very easy item was indeed one such
item, which asked the test takers to decide on the number and
locations of seismometers to be placed around a volcano in order
to collect proper data for later analyses. The simulation items in
the two NAEP simulation-based tasks revealed the same pattern
of time-intensive but easy (Jia and Lee, 2018).

Figure 6 presents the item characteristic curve based on the
fitted Rasch model with the observed proportion correct for the
11 items. To evaluate the observed proportion correct, the test
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FIGURE 6 | Item characteristic curve (solid blue line) with observed proportion correct (black dots line) for the 11 items.

takers were classified into 6 equal-size groups based on their
EAP estimates, and then the fraction of correct responses was
computed per group for each item.

ANALYSIS 4: DID THE TEST TAKERS
SHOW DIFFERENT TIMING PATTERNS
ON THE TASK?

The preceding section considers a parametric approach to jointly
modeling item responses and RTs. The hierarchical framework
in van der Linden (2007) makes assumptions that each test taker
operates at fixed levels of speed and ability, and is not designed to
detect different test-taking behaviors/strategies or potential latent
classes. In practice, test takers may employ different strategies
to allocate their time across items. Cluster analysis is a useful
approach to studying different patterns of the trend and variation
in RTs across items among a test-taker sample. Test takers
showing similar RT patterns would be identified as a cluster.
Through examination of the identified clusters, the analysis may

suggest differences in strategies/behaviors across test takers and
changes in strategies/behaviors across items.

Methods

This analysis examined the RT patterns across the 11 items
to look into possible trends and variations of the test takers
response processes. Each test taker’s RT pattern spanned an 11-
dimensional space, and a hierarchical cluster analysis was applied
to the RT patterns of all test takers to find out how they clustered
in the 11-dimensional space. After experimenting using a number
of clustering methods and distance metrics, it was found that
a hierarchical clustering approach with the Euclidean distance
calculated from the RTs and the Ward linkage (Ward, 1963) led to
the most interpretable clustering of test takers. By using the Ward
linkage, a pair of clusters being chosen to be merged at each step
of the hierarchical clustering process will minimally increase the
total within-cluster variance. We determined the final number
of big clusters based on the elbow point of the inter-cluster
distances. After the clusters were identified, given a cluster, the
mean of RTs was computed for each item, and the 11-dimensional
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mean RT vector was graphed to depict the trend and variation of
the general RT pattern for the cluster. To evaluate if the clusters
had different overall performance in terms of accuracy and timing
or item performance, the test takers’ task times, task scores, and
item responses were compared by cluster. The person covariates
used in Analysis 2 were also considered for further investigation
of the clusters.

Results

Figure 7 shows the cluster dendrogram. Based on the elbow point
of the linkage (Figure 8), three clusters were identified. For each
cluster, the average time spent on each item is shown in Figure 9.
One may observe that cluster 1 (with 12 test takers) corresponded
to a “slow” response pattern, as those test takers spent more time
on average on almost all items. Cluster 2 (with 222 test takers)
corresponded to a “fast” response pattern, as the test takers spent
less time on average on every item. Cluster 3 (with 211 test takers)
corresponded to a “moderate” response pattern, as their average
RTs lie between the average RTs of those in cluster 1 and cluster
2 on most of the items. All three clusters shared a somewhat
similar timing trend on most items but deviated from the trend
on specific items. The common timing trend generally follows
the patterns of item time-intensity observed in the boxplots of
items in Analysis 1 (Figure 1) and estimated in the hierarchical
framework in Analysis 3 (Figure 5). The differences among the
test takers’ RT patterns translated into different estimated speed.
The existence of the three clusters with different RT patterns
did not distort the RT distributions for individual items: the RT
distributions of clusters 2 and 3 overlapped and did not appear
as distinct peaks; cluster 1 only had 12 test takers and their RTs
tended to appear as outliers in the overall RT distribution per
item rather than a second mode. Thus, there was no evidence
against using a lognormal distribution in modeling RTs (see
section “Results” in Analysis 1), and the fact that the estimation of

the model parameters converged successfully in the hierarchical
modeling (Analysis 3) provided a sign of reasonable fit.

Figure 10 shows the boxplot of task times by cluster (left
panel) and the mean task score by cluster with the associated 95%
confidence limits (right panel). The task-level timing differences
among the three clusters agreed with the findings regarding the
item-level timing patterns discussed above (Figure 9). One may
find that, despite the different timing patterns, the accuracy (as
reflected by the task scores) was comparable across the clusters—
this result suggests that, although the test takers in different
clusters might have approached the items in different ways and
that resulted in differences in RTs, their performances were not
much affected. This finding is consistent with the observed weak
positive correlation between the test taker’s speed and ability
estimated in the hierarchical framework. More importantly,
results from the cluster analysis revealed variations in different
clusters’ RT patterns across items, especially between cluster 1
and the rest of the test takers (Figure 9). The test takers in cluster
1 spent a lot more time to figure out what to do with Item 8,
which is the simulation item that asked the participants to decide
on the number of seismometers they want to use to monitor
the volcano and then place them in different regions around
the volcano. Besides the longer RTs on average, the test takers
in cluster 1 did not do as well on Item 8 as those in clusters
2 and 3—the proportions correct for clusters 1, 2, and 3 were
0.67, 0.92, and 0.96, respectively. The 12 test takers in cluster 1
also tended to spend more time on two follow-up CR questions
about the simulation (Items 9 and 11) and perform slightly worse
on these items. In general, such information may be leveraged
to supply valuable formative feedback to students, teachers, and
assessment developers to help identify potential learning gaps
or design issues. With respect to the person covariates, the
only more noticeable difference among the three clusters was
their gender decomposition: only one-third of cluster 1 (4 out
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of 12) were male, while almost two-thirds of either cluster 2 or
3 were male (which tracked the gender decomposition in the
overall sample well).

ANALYSIS 5: DID THE TEST TAKERS
SHOW RAPID-GUESSING BEHAVIOR ON
THE TASK?

Analysis 4 employed cluster analysis to identify clusters with
different timing patterns. The analysis in this section focuses on

two specific test-taking behaviors, solution behavior and rapid-
guessing behavior. As noted in the Introduction section, RTs
have been used to differentiate rapid-guessing behavior from
solution behavior. Test takers exhibiting rapid-guessing behavior
on an MC item typically spend little time relative to the majority
of the test takers, and their probability of answering the item
correctly is likely close to the chance-level proportion correct
(i.e., the expected probability of answering an item correctly
by guessing). Thus, more effective approaches to identifying
rapid-guessing behavior consider both item responses and RTs
(e.g., Ma et al, 2011; Lee and Jia, 2014; Wang and Xu, 2015;
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Guo et al, 2016). There are many reasons that may lead to
the presence of rapid-guessing behavior on a test: a common
issue for high-stakes assessments is test speededness, whereas
a common concern for low-stakes assessments is motivation.
The analysis in this section is intended to assess the extent of
rapid-guessing behavior in the task. Because the task was given
without time limits, clear presence of rapid-guessing behavior
is more likely to indicate motivation issues. If rapid guessing
is negligible or not present in a dataset, then motivation is
unlikely a concern.

Methods

The non-model-based procedure in Lee and Jia (2014) was
originally developed for MC tests. It was adapted by Jia and
Lee (2018) to examine rapid-guessing behavior and motivation
issues in the two NAEP simulation-based tasks. This procedure
examines the items on a test one by one. For each item,
it defines a time threshold through visual inspection of the
RT distribution with the information of proportion correct
evaluated at every observed RT (i.e., conditional proportion
correct). For MC items, an identified time threshold for an
item should classify the test takers into two groups: One
group, which is assumed to exhibit solution behavior, has RTs
greater than the time threshold and their proportion correct
should be clearly greater than the chance level (i.e., for a
4-option single-selection MC item, the chance-level proportion
correct is about 0.25). The other group, which is assumed
to exhibit rapid-guessing behavior, has RTs shorter than the
time threshold and conditional proportion correct close to
the chance level. For items that are unlikely to be answered
correctly by guessing (e.g., CR items), the chance level may
be set at 0, and the rest of the procedure remains applicable
(Jia and Lee, 2018).

Data with larger fractions of RTs falling below the
corresponding time thresholds indicate more substantial
levels of rapid guessing on the test. If no item involves the
patterns of short RTs and chance-level proportion correct, or if

the fraction of identified rapid guesses is negligible, then rapid
guessing is considered not a concern for the test.

Results

The procedure was applied to each of the 11 items to identify
possible time thresholds based on the item-level RT histograms
and the associated results of conditional proportion correct.
Figure 11 presents the RT distributions of all 11 items overlaid
with the conditional proportion correct represented in red points.
As the identification of rapid guesses focuses on shorter RTs, the
RT distributions were truncated at the 90th percentile for each
item. According to Table 1, the chance-level proportions correct
for the MC items are as follows: 0.25 for Items 1, 2, 5, 6, and 7;
1/3 for Item 3; and 1/120 for Item 4. Items 8-11 were CR items,
so their chance-level proportions correct were set at 0.

Based on Figure 11, one could, in a strict sense, identify time
thresholds of 6 and 8 (seconds) for Items 9 and 11, respectively,
which classified the test takers into the two behaviors—solution
behavior vs. rapid-guessing behavior. However, the size of the
respective resulting group for rapid-guessing behavior was almost
ignorable, that is, 1 (0%) for Item 9 and 8 (<2%) for Item 11.
None of the other items had an identifiable time threshold that
clearly separates the two behaviors. In fact, most of the items
had decent proportions correct for pretty short RTs. Thus, it was
concluded that no clear rapid-guessing behavior was detected in
this dataset using timing and response data, and motivation is
unlikely an issue.

DISCUSSION

This paper presents a systematic RT study on the simulation-
based task about volcano science, and investigates different
timing aspects of this test-taker sample’s behavioral features at
the task level and the item level. The goal is to understand
the RTs in complex simulation-based tasks so as to gain
insights into possible ways of leveraging RT information in
designing, assembling, and scoring of simulation-based tasks.
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Information about the test takers’ performance on the items/task,
demographics, motivation level, and personality was also
considered. The task involved 11 items of various types associated
with a common scenario, and was delivered without time limits.
The majority of the test takers spent 6 min or less on the 11 items
and performed well.

The five timing analyses revealed the following interesting
findings. First, the timing data at both the task level and the
item level showed good distributional properties, which made it
possible to employ relatively simple statistical models that are
unimodal and right-skewed, such as lognormal regression, to
analyze the relationship between the timing data and other data
available for the test takers. Second, the number of observations
being identified as associated with rapid guessing was negligible.
Thus, it was concluded that no clear rapid-guessing behavior
was observed in this dataset, and motivation was not an issue
for this sample-task combination. Third, the items were not
time-consuming for this sample, and there was little variability
in the task times for this sample. None of the available person
covariate (i.e., task performance, demographics, self-reported
motivation levels, and responses to personality questions) was
useful in explaining the variability in the task times, so there was
no notable difference in the task times among any demographic
subgroups. The two major clusters identified in the cluster
analysis also did not present differences in the RT patterns
among the demographic subgroups. Fourth, the results of the
hierarchical modeling framework indicated a weak positive

correlation estimated between the test takers ability and speed.
The three clusters identified in the cluster analysis also exhibited
different RT patterns across the 11 items but comparable task
scores. All three clusters shared a somewhat similar timing trend
on most items but deviated from the trend on specific items. Last
but not least, the hierarchical modeling framework revealed no
clear association between the items’ time intensity and difficulty.
The simulation item had a very different combination of difficulty
and time-intensity (easy but very time-consuming) compared to
the other items in the task.

There are several implications of the results concerning the
design, assembly, and scoring of simulation-based tasks. First,
the good distributional property of the timing variables may be
attributed to the “no time limit” condition, which implies no
constraint on the timing variables and that results in no missing
data due to lack of time in both timing and responses. Thus,
censoring, a common issue in time-to-event studies in survival
analysis (see, e.g., Kalbfleisch and Prentice, 2002; Lee and Ying,
2015), is not a concern in this dataset. Imposing no time limit
to a simulation-based task may allow test takers to choose their
own pace in working on the items. In contrast, for tasks/tests
with an overall time limit, as is the case for typical educational
assessments discussed in the RT literature, the presence of time
limits may lead to missing item responses and RTs, some extent of
speededness, truncated times at the test level and even at the item
level, or may introduce between-item dependencies among each
test taker’s RTs. As a result, more sophisticated statistical models
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may better describe RTs and responses in time-limit tests (e.g.,
Ranger and Ortner, 2012; Lee and Ying, 2015; Bolsinova et al.,
2017; Molenaar et al., 2018).

The finding of no clear association between the items’ time
intensity and difficulty was interesting but not surprising. Among
many possible factors, test type and item type may play an
important role in this finding, as the simulation item had a
very different combination of difficulty and time-intensity (easy
but very time-consuming) compared to more traditional MC
and CR items. The contrast between simulation items and more
traditional MC and CR items in the time spent and difficulty was
also discovered in the two NAEP simulation-based tasks studied
in Jia and Lee (2018). Thus, this finding is possibly unique to
simulation-based tasks, and is not necessarily generalizable to
traditional educational tests with MC and/or CR items.

On the other hand, the weak positive correlation estimated
between the test takers’ ability and speed in this sample suggests
that task scores (or item responses) and task times (or RTs) may
reveal different useful information about the test takers on the
task. The cluster analysis resulted in similar conclusions. Perhaps,
two scores may be reported, one about accuracy and the other
about speed/efficiency, to describe a test taker’s performance on a
simulation-based task. The finding of no notable difference in the
task times, or in the RT patterns of the two major clusters, among
any demographic subgroups indicates that fairness in terms
of timing was not an issue for this sample-task combination.
However, it is unclear how test takers would change their
behaviors when they were told that all process data would be
examined and scored. Further research is needed to evaluate
such impact on person-task interactions. As already mentioned
in Analysis 3, this level of correlation is unusual as compared to
existing findings in the RT literature. There are many possible
factors for this observation. For example, test type and item
type (especially simulation items vs. others) are likely relevant.
Test design and condition may be another factor—the task was
delivered without time limit and was not high-stakes, so the test
takers were not urged to complete accurately and quickly. Range
restriction (e.g., Raju and Brand, 2003) is another possibility.
The dataset under study came from a test-taker sample that
seemed proficient in the task. This factor may also explain the
lack of association between the test takers’ time spent on the
task and the available person covariates. Further empirical studies
should focus on different simulation-based tasks and/or different
test-taker populations to assess the generalizability of the weak
positive association observed in this study.

One potential issue with scoring the current simulation-based
task is that the task length may be too short to produce reliable
scores on any aspects of the task performance. The sample
size was also limited in this dataset. The short task length
probably results from practical constraints on the overall task
time, which not only includes the time spent responding to the
embedded items but also includes the time spent listening to
information about the common scenario. Our study indicated
that the 11 items were generally not time-consuming for this
test-taker sample. Thus, it may be adequate to include a few
more non-simulation items to better assess what the test takers
know and can do while not making the overall task time overly

excessive. Designing the simulation-based task with more items,
together with a larger sample, would also open up the possibility
of using more complicated statistical models to capture the more
complex person-task interactions. For instance, the simulation
in the task may introduce additional dependencies among the
associated items, or the test takers may change their behaviors
across items of different types. Extensions of the hierarchical
framework (van der Linden, 2007) with more complex IRT
models may better describe the additional dependencies among
the associated items. Mixture models may be used to detect
heterogeneous behaviors with multiple classes underlying the
responses and RTs (e.g., Molenaar et al., 2018), or to detect the
test takers’ shifting between solution behavior and rapid-guessing
behavior with two underlying classes (e.g., Wang and Xu, 2015).
Further work in this direction is worth considering.

Analysis 5 in the study concluded no notable rapid-guessing
behavior or motivation issue in this dataset. Possible explanations
include that this task was more engaging to this sample of test
takers, the task was not too challenging to the test takers so
they were willing to work on the items, and so on. Jia and Lee
(2018) also found no issue with rapid-guessing behavior in the
two NAEP simulation-based tasks. It is likely that simulation-
based tasks are more interesting and engaging to test takers,
but more research with different datasets—in terms of different
tasks, different test-taker populations, different test conditions,
and so on—is needed to further investigate the benefit of using
simulation-based tasks in various settings. It may also be useful
to retrieve more fine-grained data at the action level, including
timing, processes, and others, to look further into person-task
interactions (see, e.g., Ercikan and Pellegrino, 2017; Man and
Harring, 2019). In any case, it will be valuable to conduct a
systematic RT study similar to the one presented herein to
assess different timing aspects of a test-taker sample’s behavioral
features in the simulation-based task of interest. Findings from
such an RT study will lead to a better understanding of the
person-task interactions and therefore offer insights into possible
ways to leverage RT information in designing, assembling, and
scoring of the simulation-based task of interest.
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