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Distracted driving consists in performing a secondary task while driving, such as
cell-phone conversation. Given the limited resources of the attentional system, engaging
in a secondary task while driving increases the risk to have car accidents. The secondary
task engagement while driving can depend on or be affected by different factors,
including driver’s individual characteristics, necessities, environmental conditions, and
so forth. In the present work, the neuroimaging studies that investigated the brain areas
involved in simulated driving during the execution of a secondary task (visual and overall
auditory tasks) were reviewed in light of driving settings. In general, although there are
also differences in decrease and increase brain activations across studies, due to the
varieties of paradigms used (simulators, secondary tasks and neuroimaging techniques),
the dual-task condition (simulated driving plus secondary task), as compared to the
simulated driving-alone condition, was generally found to yield a significant shift in
activations from occipital to fronto-parietal brain regions. These findings show that
when a secondary task is added during driving the neural system redirects attentional
resources away from visual processing, increasing the possibility of incorrect, dangerous
or risky behavioral responses. The shift of the attentional resources can occur even if
driving behavior is not explicitly affected. Limits of the neuroimaging studies reviewed
and future research directions, including the need to explore the role of personality
factors in the modulation of the neural programs while engaging distracted driving, are
briefly discussed.

Keywords: distracted driving, language, audio, visual, attention, prevention

INTRODUCTION

Driving is a complex activity that involves several mental cognitive processes requiring the
coordination of different abilities, such as visuo-spatial attention, visuo-motor, and auditory skills
(Graydon et al,, 2004). In particular, the driving task is based on continuous adjustments and
reallocation of attention, that can be affected by different sources of distraction. In the real-world,
distraction may be due to different factors that generally lead drivers’ eyes or mind off the road,
such as traffic density, speed, driver psychophysiological conditions (e.g., sleepiness, mood), type
of road, weather and so forth (Oron-Gilad and Ronen, 2007; McGehee, 2014). In addition, despite
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the complexity of the driving task, drivers usually engage in
secondary tasks for different reasons, including the attempt
to make the time spent on the roadway more productive
(Reschovsky, 2004). These secondary tasks include more
traditional activities, such as talking to passengers, listening to
the radio, eating, drinking, lighting a cigarette, applying makeup
(e.g., Stutts et al., 2003), as well as cell-phone related activities,
that is having conversations by mobile, surfing the internet,
sending and receiving e-mails, or faxes and texting. Thus, the
secondary task generally involves removing cognitive resources
off the immediate driving task and sometimes also removing
drivers eyes off the road or hands off the wheel (National
Highway Traffic and Safety Administration (NHTSA), 2015).
It generally increases the working memory load and is not
appropriate for maintaining alertness (Oron-Gilad et al., 2008).

In this vein, activities performed using new technologies
(e.g., Smartphone) are more distracting because they are
more cognitively engaging and are performed over longer
periods of time (Strayer et al., 2006). According to different
experts and studies the use of cellular phones while driving
enormously contributes to collisions between motor vehicles
(e.g., Violanti and Marshall, 1996). For example, holding
a complex conversation by cell-phone also affects driving
performance (e.g., McKnight and McKnight, 1993). Even
processing of a single, verbally presented word was found to
negatively affect driver braking response (Rossi et al., 2012). For
these reasons, different countries (e.g., Brazil, Israel, Australia,
Italy) prohibited using smartphones/cellular phones (hand held)
while driving. However, Dingus et al. (2011) revealed that eating
or reaching for objects in the vehicle while driving were also
associated with high increased odds of having a motor vehicle
collision or near-crash.

Given these implications, the understanding of factors
that lead drivers to get engaged in distracted driving (e.g.,
driver’s individual characteristics, driving experience, necessities,
environmental conditions) is extremely important to better
implement strategies aimed at preventing fatal accidents. For
example, as concerns personality traits, Parr et al. (2016)
revealed that in teens high openness and conscientiousness
predicted the secondary task engagement while driving, such
as texting frequency and interacting with a phone, whereas low
agreeableness predicted lesser texting frequency and interacting
with a phone; in older adults, extraversion predicted talking
on and interacting with a phone. However, the engagement in
secondary tasks requiring drivers to look away from the road
ahead is generally more risky for novice than expert drivers
(Klauer et al., 2014). Interestingly, the individual attitude toward
daydreaming/mind wandering can also be risky while driving,
especially under monotonous driving circumstances. In such
cases, the engagement in a secondary task can be the lesser of
the two evils, reducing the chance of mind wandering to intrude
the primary activity, when the driving setting is monotonous
(Nijboer et al., 2016).

Although the study of the role of factors related to the
drivers’ individual characteristics or environmental conditions
in distracted driving appears to be crucial, research in the
field is scarce. In addition, the way in which such factors
affect neural correlates of distracted driving is even more

neglected by the experimental research. In the last two decades
the application of neuroimaging techniques has been used
in association with simulated driving and multitasking using
different methodologies, but no study has considered the
modulation of personality factors. Only some studies considered
to some extent the environmental conditions associated to the
secondary task engagement, mainly using simulation contexts.
In this direction, more insights might be gained moving from
the general driving settings. Therefore, in the present paper the
brain systems that are mostly involved in distracted driving are
explored in light of the driving setting, that is, on the basis of the
type of the primary driving task (that also relies on the driving
scene) combined with the secondary task. More specifically, here
we aimed at understanding whether brain activations associated
with driving decrease when a secondary task is added, in spite of
driving and distracting tasks draw on different cortical areas. This
would allow to understand if during distracted driving changes in
brain activations occur also in absence of behavioral changes.

INCLUSION CRITERIA FOR PAPERS

The literature was reviewed using a systematic method. PubMed,
Science Direct and Web of Science were used as databases with
the following strings “driving and multitasking” or “distracted
driving” plus one of the following words: “neuroimaging;’
“IMRI” “MEG”. Sixteen papers were found. The a priori
inclusion criteria were seven: (1) neuroimaging studies had
to be based on fMRI and Magnetoencephalography (MEG)
techniques. These studies were preferred because of their relative
satisfactory spatial and temporal resolution; on the contrary,
Positron Emission Tomography (PET), Single Photon Emission
Computed Tomography (SPECT) were not included due to their
very low temporal resolution, whereas Electroencephalography
(EEG) and Near-infrared Spectroscopy (NIRS) studies were not
included due to their very low spatial resolution. (2) Studies
had to include at least one condition in which participants were
specifically instructed to drive and simultaneously to perform
on a secondary task (e.g., visual, auditory in nature); thus,
neuroimaging studies focused on driving only were excluded.
(3) All participants in the studies had to be healthy adults. (4)
All neuroimaging studies had to include a control condition
(baseline), that is an appropriate matched control condition (e.g.,
driving + secondary task vs. driving only), to exclude all the
activations that were not directly connected to distracted driving.
(5) Only group studies were included, that is studies with at
least five participants. (6) There could be no pharmacological
manipulation. (7) Only peer-reviewed original articles published
in established scientific journals were included; conference
papers were excluded.

Using these criteria, we selected 11 papers, 9 fMRI, and 2 MEG
papers (see Table 1).

DRIVING SETTINGS

In some studies the driving setting consisted in straight driving
(Sasai et al., 2016), also on real world highways (Graydon et al.,
2004; Bowyer et al., 2009; Hsieh et al., 2009). In other studies it
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(80 km/h) on a straight road
with very few distracting

elements, without changing

lanes

Inferior frontal gyrus and the superior
temporal gyrus enhanced activation

78.5 + 11.7%;

For Calculation Task: 84.8 & 10.9%

t-test (PASW Statistics 18), p

0.196

DE, driving experience; SD, simulated driving.

consisted in driving on computerized roads at constant speed
(Chung et al., 2014; Choi et al., 2017), following a car at the
distance of 5m (Uchiyama et al., 2012), or even following traffic
light rules, and direction signs (Fort et al., 2010), including
left and right turns, from simple (Just et al., 2008) to more
complex driving scenes (Schweizer et al., 2013; Al-Hashimi et al.,
2015). The settings of simulated driving were implemented using
specific devices, such as, a trackball or mouse (Just et al., 2008), a
joystick (Uchiyama et al., 2012), a game controller (Al-Hashimi
et al,, 2015), a steering wheel and foot pedals to control the
accelerator and brake (Schweizer et al., 2013; Chung et al., 2014;
Choi et al., 2017), or more sophisticated simulators (e.g., wheel,
turning indicator, accelerator and brake pedal) (Fort et al., 2010).
The type of simulator device was not specified in Sasai et al.
(2016). In some studies only driving videos were presented,
that is participants were instructed to watch and actively attend
these videos without using a wheel or any other specific device
(Graydon et al., 2004; Bowyer et al., 2009; Hsieh et al., 2009).

SECONDARY TASKS

With the exception of Sasai et al. (2016), who presented a
radio show (with no questions to be answered), the most of
studies used auditory distracting tasks based on listening and
answering to questions. In general, questions were presented
through headphones (e.g., Just et al., 2008; Bowyer et al., 2009;
Hsieh et al., 2009; Uchiyama et al., 2012; Schweizer et al., 2013),
but also by radio broadcast (Fort et al., 2010) and using an
audio system attached to the MR-compatible driving simulator
(Chung et al., 2014; Choi et al., 2017). Different types of pre-
determined questions were used: true/false questions, such as
“A triangle has four sides?” (e.g., Just et al., 2008; Schweizer
et al., 2013); questions requiring to answer whether the subject
of the verb corresponded to the person in the paired words
(Uchiyama et al, 2012); questions about double-digit carry-
over calculation with sums <100 (Chung et al, 2014; Choi
et al., 2017). Answering the pre-determined questions required
to press true/false buttons or verbalize the response carrying-
over calculations. In addition, open questions were also used,
such as “...Do you have time to talk now?” or “What is your
address?” (e.g., Bowyer et al., 2009; Hsieh et al., 2009; Fort et al.,
2010), which were aimed at simulating short (1 question) and
long (multiple questions) conversations (e.g., Bowyer et al., 2009;
Hsieh et al., 2009). Participants were asked to covertly verbalize
their responses. Only two studies used visual distracting tasks
based on discrimination of signs, such as detecting red stimuli
(Graydon et al, 2004) or green circles among other colored
geometrical stimuli (Al-Hashimi et al., 2015) presented on the
driving screen.

NEURAL CORRELATES

In the study conducted by Fort et al. (2010) following traffic
lights rules while listening and answering to ordinary open
questions (dual task condition) yielded to decreased activations
in the dorsolateral prefrontal cortex, the right temporo-parietal
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junction and in the primary visual areas, compared to the
simulated driving-alone condition (single task). In addition,
following direction signs during driving produced reductions in
activations in the visual areas and in premotor area compared to
the single task condition. On the contrary, increased activations
were found in the left posterior parietal cortex both while
following traffic lights rules and direction signs as compared to
the single task condition.

In Uchiyama et al’s (2012) study, following a car while
answering questions about grammatical problems produced
decreased activations in the medial prefrontal cortex and the left
superior occipital gyrus as compared with the simulated driving-
alone condition; instead, increased activations were found in the
middle frontal gyrus. Interestingly, in this study the right inferior
parietal lobe and the bilateral lateral occipital complex were
found to correlate positively to the car-following performance
during the dual-task, with decreased activation associated with
worse performance.

Driving at constant speed while responding to questions about
calculation problems yielded decreased activation in the left
middle frontal gyrus (Chung et al., 2014; Choi et al., 2017), the
middle occipital gyrus and the right superior parietal lobe (Choi
et al., 2017), the right inferior parietal lobe, the supramarginal
gyrus and the cuneus (Chung et al., 2014) as compared with
the simulated driving-alone condition. In addition, increased
activations were found in the orbitofrontal cortex, the bilateral
lateral prefrontal cortex, the frontal eye field regions, the
anterior and the posterior cingulate gyri, the lentiform and the
caudate nuclei (Chung et al., 2014; Choi et al., 2017), inferior
frontal gyrus and right superior temporal lobe (Choi et al., 2017).

Driving on computerized roads with left and right turns while
responding to true-false questions damped activations in the
bilateral superior parietal lobe, the bilateral intraparietal sulci,
the bilateral superior extrastriate occipital cortex (Just et al.,
2008) and the occipital visual regions (Schweizer et al.,, 2013)
as compared with the simulated driving-alone condition. In
addition, the bilateral temporal lobe, the left inferior frontal
regions, the right supplementary motor area (Just et al., 2008),
and the bilateral anterior brain areas, especially the dorsolateral
prefrontal cortex and the frontal polar region (Schweizer et al.,
2013) were found activated during dual-task as compared with
driving-alone condition.

Watching and actively attending driving scenes while
answering to open questions yielded decreased activations in the
right superior parietal lobe and in the visual areas (Bowyer et al.,
2009) as compared with the simulated drivingalone condition;
on the contrary, brain activity in language-specific areas was
found enhanced (Bowyer et al., 2009). Increased activations were
confirmed in language specific areas (i.e., Broca and Wernicke’s
areas) extending also to the orbitofrontal cortex, the bilateral
lateral prefrontal cortex, the frontal eye fields, the supplementary
motor cortex, the anterior and posterior cingulate gyrus, the
inferior frontal gyrus, the middle frontal gyrus, the right superior
parietal lobule, the right intraparietal sulcus, the right precuneus,
and the cuneus (Hsieh et al., 2009).

Watching and actively attending driving videos while
detecting visual stimuli yielded increased activations in the

superior parietal lobule, the bilateral precentral gyrus, the
bilateral superior frontal gyrus, the middle frontal gyrus, the
frontal eye fields, the cingulate cortex, the inferior parietal
lobule, and the cerebellum as compared with the simulated
driving-alone condition (Graydon et al, 2004). Driving on
complex computerized roads while detecting visual stimuli
confirmed the increased activation of the right superior parietal
lobule, compared to the simulated driving-alone condition
(Al-Hashimi et al., 2015).

DISCUSSION

In the present review the neural correlates of distracted driving
were explored on the basis of the type of the primary driving
task combined with the secondary distracting task, in order
to gain insights on some of the environmental characteristics
that can cause unsafe driving. The aim was to clarify if brain
activations associated with driving decrease when a secondary
task is added, even though the two tasks rely on different cortical
areas, in order to gain insight on changes of neural activities
even when driving behavior is not explicitly affected. Taken
together the neuroimaging results showed, with some exceptions,
that during the simulated distracted driving a significant shift
in activations occurs from the posterior to the anterior cerebral
regions. Actually, the occipital areas were less involved during
simulated distracted driving compared to the simulated driving-
alone condition; also, greater recruitment of frontal areas occurs
during simulated distracted driving (e.g., Just et al., 2008; Bowyer
et al., 2009; Uchiyama et al., 2012; Schweizer et al., 2013; Choi
et al., 2017). This general shift seems to be consistent across
studies, regardless the type of questions posed (i.e., closed or
open) and the type of response given (i.e., button press or vocal),
and sometimes occurs even in absence of clear change in driving
behavior, such as while driving following direction signs (e.g.,
Fort et al., 2010) or during straight driving (e.g., Schweizer et al.,
2013), with the implication that the risk of having car accidents
increases anyway.

In detail, in some studies that involve language-based
secondary tasks, the shift of activation is more consistent toward
the fronto-temporal language areas (e.g., Bowyer et al., 2009;
Hsieh et al, 2009; Choi et al, 2017), especially using open
questions and vocal responses. According to Liu et al. (2012) the
prefrontal cortex is involved in the preparation processing before
the turning behavior regardless of the cognitive load. However,
these authors also showed an increasing pattern of prefrontal
activation from the pre- to the post-turning throughout the
actual-turning period when participants had to follow verbal
instructions regarding turns (extrinsically driven cognitive load),
as compared with driving using a memorized map (intrinsically
driven cognitive load). Thus, the greater involvement of
frontal areas during distracted driving might reflect a
possible competition for limited resources and attentional
reallocation (Wickens, 2008). In particular, the prefrontal
cortex plays a key role on goal-directed stimulus selection and
response as a top-down attention control, coordination
of temporal order for task interference and mapping
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concurrent sensory information in terms of motor behavior
(e.g., Adcock et al., 2000; Stelzel et al., 2006).

This means that visual attention is sacrificed while people
are engaged in distracted driving, even though there are no
significant changes in some indices of driving behavior. This
view is supported by the evidence that the frontal eye field (e.g.,
Graydon et al., 2004; Hsieh et al., 2009; Choi et al., 2017) mediates
visual attention for visual fields, and visual attention influence
for the sensitivity of extrastriate visual cortex (Ruff et al., 2006;
Silvanto et al., 2006). In other words, a secondary task decreases
foveal attention to visual information while driving, even though
fixation is not affected (Strayer et al., 2003). In this direction,
the “inattention blindness” phenomenon (Simons and Chabris,
1999), that is the individual’s failure to see unexpected and often
salient stimuli that are in plain sight, has to be considered. Indeed,
the inattentional blindness occurs when one is simply attending
to something else, such as happens during distracted driving, and
can relate directly to specific road accidents, especially among
novice drivers.

Different studies also found increased activation in the
right superior parietal lobe during distracted driving, when the
secondary task was visual (e.g., Graydon et al., 2004; Al-Hashimi
et al., 2015) or auditory (Hsich et al., 2009) in nature. This area
is also involved in visual attention and awareness, as well as
into the modulation of the neural activity in extrastriate visual
cortex (Beck et al., 2006) and shifts in attention (Vandenberghe
et al,, 2001). Specifically, this parietal area may reflect attentional
engagement or cognitive control that subserve the switch
between the primary and secondary tasks (Shapiro et al., 1997;
Dux and Marois, 2009). However, other studies based on auditory
secondary tasks found that the activations of the right superior
parietal region decreased in the dual-task condition as compared
to the simulated driving-alone condition (e.g., Just et al., 2008;
Bowyer et al., 2009; Choi et al., 2017). This might suggest that the
activation of the right superior parietal lobe seems to be sensitive
to the type of the secondary task. However, the extent to which
this area is really crucial for attentional engagement should be
clarified by future studies.

Interestingly, a shift of activation seems to occur more
specifically in terms of motor areas. Indeed, on the one hand,
different regions of the motor systems were found activated
(e.g., Graydon et al., 2004; Choi et al., 2017); amongst others,
the supplementary motor cortex, that contributes to different
cognitive functions, such as the coordination of temporal
sequences of actions (Lee and Quessy, 2003) and bimanual
coordination (Serrien et al., 2002), was recruited using both
simple computerized and more complex real-world driving
scenes (e.g., Just et al., 2008; Hsieh et al., 2009). On the other
hand, the activation of the middle frontal gyrus, which is involved
in movement planning and execution, decreased during driving
at constant speed on computerized roads while performing
double-digit carry-over calculations (e.g., Chung et al.,, 2014). In
other words, during the distracting driving there are decreased
activations of the motor brain areas directly associated to driving,
with detrimental effects on vigilance, coordination, preparatory
components and timing of motor responses, and increased
activation of those brain areas that mediate error monitoring

and unnecessary movements control. This pattern of results
seems to occur regardless of the type of the secondary task and
questions posed.

These preliminary neuroimaging results show that distracted
driving yields a reallocation of attentional resources at neural
level, with the possibility that incorrect or dangerous behavioral
responses are adopted while driving. Attentional resources are
re-directed away from visual or motor processing when a
secondary task is performed during driving, and some of the
neural programs going on can cause car accidents, even if
driving behavior is not explicitly affected. From this picture it
seems that attention and arousal at neural level are affected
earlier than observed behavioral measures. This new evidence
poses the issue of the extent to which distracted driving is
compatible with effective distributed attention resources. In
this direction, Sasai et al. (2016) found that when participants
were engaged in simulated driving while listening to radio
show (split task) the functional connectivity between the two
hemispheres decreased, giving rise to “functional split brain”
as normally occurs in patients with a Corpus callosotomy.
On the contrary, when participants listened to Global Position
System (GPS) instructions while driving (integrated task), the
connectivity between the two hemispheres increased. Well,
although from this study the decrease of functional connectivity
from high to low information integration is compatible with the
split in consciousness, that is with two independent functional
streams, the possibility that performing a secondary task absorbs
attentional resources primarily at neural level, making driving
unconscious, as on autopilot, with obvious consequences for
safety, should be considered.

In conclusion, from this review appears that more work is
necessary to clarify the extent to which the factors related to
driving settings affect neural correlates of distracted driving.
The number of studies available is scarce and the substantial
differences due to the varieties of paradigms used (simulators,
secondary tasks and neuroimaging techniques) make difficult to
draw definitive conclusions, even though it is possible to get some
indications for future research. The most important implication
of this review is that when a secondary task is added during
driving, the neural system re-directs attentional resources away
from the primary task, increasing the possibility for car accidents.
In addition, even though some studies have not collected RTs and
even miss rates for the tracking tasks (e.g., Graydon et al., 2004;
Just et al., 2008; Uchiyama et al., 2012; Choi et al., 2017), making
difficult to get a reliable effect of the secondary task on driving
at both neural and behavioral levels, it appears that distracted
driving yields to neural programs that reveal in advance possible
behavioral consequences. This can represent a new research line
in the understanding of human driving behavior, which usually
appears to be highly automated, but also highly modifiable in
terms of neural programs. The in-depth analysis of such an issue
can help to implement learning driving programs. In this vein,
since some behavioral studies revealed that there is a null effect
on lane keeping variation with increased cognitive load (for a
meta-analysis see Horrey and Wickens, 2006), the neuroimaging
studies reviewed in the present paper should be supported by
studies aimed at collecting on-road data. That is, the activations
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during simulated driving not necessarily reflect the exact pattern
of activations that would occur in real-world driving conditions.
Thus, decreases of activations in critical visuo-spatial areas (e.g.,
occipital regions) or the absorption of attentional resources in the
dual-task condition might be even stronger in real multitasking
driving. Future neuroimaging studies should better highlight the
relationships between more fine-graded behavioral indexes and
neural distracted driving correlates.

Finally, critical variables that might affect neural correlates
during distracted driving, such as the type of the distracting task
(e.g., passenger conversation and cell phone conversation) should
be compared in order to understand the differential impact on
neural mechanisms underpinning attentional processes. Despite,
some study found no difference between remote (cell phone)
and in-person (passenger) conversation in terms of attention
performance (Amado and Ulupinar, 2005), it is not possible
to exclude changes at neural level according to the type of
conversation. Personality (Parr et al., 2016), driving styles (e.g.,
Lucidi et al, 2010; Giannini et al., 2013; Pierro et al., 2013;
Sagberg et al., 2015), gender (Irwin et al., 2011; Cordellieri et al.,
2016), age (Thompson et al., 2012; Cordellieri et al., 2016) of
the driver, and the amount of driving experience (Klauer et al,,
2014) must be also considered to get more reliable results in
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