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Quasi-orders are reflexive and transitive binary relations and have many applications.

Examples are the dependencies of mastery among the problems of a psychological

test, or methods such as item tree or Boolean analysis that mine for quasi-orders in

empirical data. Data mining techniques are typically tested based on simulation studies

with unbiased samples of randomly generated quasi-orders. In this paper, we develop

techniques for the approximately representative sampling of quasi-orders. Polynomial

regression curves are fitted for the mean and standard deviation of quasi-order

size as a function of item number. The resulting regression graphs are seen to be

quadratic and linear functions, respectively. The extrapolated values for the mean

and standard deviation are used to propose two quasi-order sampling techniques.

The discrete method matches these location and scale measures with a transformed

discrete distribution directly obtained from the sample. The continuous method uses the

normal density function with matched expectation and variance. The quasi-orders are

constructed according to the biased randomized doubly inductive construction, however

they are resampled to become approximately representative following the matched

discrete and continuous distributions. In simulations, we investigate the usefulness of

these methods. The location-scale matching approach can cope with very large item

sets. Close to representative samples of random quasi-orders are constructed for item

numbers up to n = 400.

Keywords: quasi-order construction, random sampling, representative quasi-order, regression, location-scale

matching

1. INTRODUCTION

We begin with motivating ordered structures and representative quasi-orders, and outline the
content and broader scope of the paper.

1.1. Ordered Structures
Why are ordered structures such as the quasi-orders important? Quasi-orders are reflexive and
transitive binary relations (e.g., Davey and Priestley, 2002). They can model, for instance, the
dependencies among the items or problems of a psychological test. Dependencies in this context
are statements “The mastery of problem y of a test I implies the mastery of problem x of the test
I,” where this statement is modeled as the item pair in relation, x ≤ y, for a quasi-order ≤ on
I. A psychological test, equipped with a quasi-order, can be used for the computerized adaptive
assessment and training of knowledge. This is realized in knowledge or learning space theory (KLST)
(Doignon and Falmagne, 1985, 1999; Falmagne and Doignon, 2011; Falmagne et al., 2013). The
basic idea of KLST is that some pieces of knowledge may imply other pieces of knowledge.
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An example may be the knowledge domain of elementary
algebra. The mastery of an algebra problem e [e.g., graph the line
with slope−7 passing through (−3,−2)] may imply the mastery
of an algebra problem b [e.g., mark the point at the coordinates
(1, 3)], in particular if the skills required to master problem emay
also be sufficient to master problem b. This is modeled as the item
pair b ≤ e of a quasi-order ≤ on the item set. Because of this
interpretation, a quasi-order is also called a surmise relation in
KLST. This example could consist of six elementary algebra items
and may have the following (empirically plausible) quasi-order
representation (Figure 1).

Ordered structures also play an important role in other
fields, for example in decision theory (Fishburn, 1972; Peterson,
2011), in economics (Varian, 2002) and computer science
(Rob and Coronel, 2009), and in sociological questionnaire
development (Wiley and Martin, 1999; Martin and Wiley, 2000).

1.2. Representative Quasi-Orders
Why are representative random quasi-orders important? In
KLST, quasi-orders can be derived by the exploratory data
analysis methods of inductive item tree analysis (IITA) (van
Leeuwe, 1974; Schrepp, 1999, 2003; Sargin and Ünlü, 2009),
by querying experts or from postulated theoretical assumptions
(e.g., Düntsch and Gediga, 1996; Albert and Lukas, 1999; Cosyn
and Thiéry, 2000; Heller, 2004), and based on the connection to
skill assignments (e.g., Düntsch and Gediga, 1995; Korossy, 1997;
Heller et al., 2013, 2017). In the latter context, of data analysis
with skills and knowledge structures, the work by Spoto et al.
(2016) is pertinent, which introduces an iterative, data-analytic
construction procedure for skill maps. In that work, simulation
studies are reported, in which the representative sampling of
quasi-orders and, more generally, knowledge structures may be
important. Other related problems, where randomly generated
representative quasi-orders or knowledge structures may play a
role, are the evaluation of general measures to describe the fit
of a quasi-ordinal knowledge space to data (Schrepp, 2007), and
the effects of errors on the construction of knowledge spaces
by querying experts (Schrepp and Held, 1995). In general, any
work that uses simulation studies manipulating the quasi-orders
(i.e., quasi-ordinal knowledge spaces) or knowledge structures to
be reconstructed in those studies, should preferably base their
simulations on representative collections of ordered structures.

Our application focus is on IITA. IITA comprises data
mining algorithms for the derivation of surmise relations from
binary data. The goal of IITA is to reconstruct by data analysis
of the observed noisy response patterns, the underlying true
dependencies among the items. The input of any IITA analysis
is a binary data matrix (subjects represented by rows, items
represented by columns), and the output is a quasi-order on
the item set. The IITA item hierarchy mining techniques are
computational, and typically, evaluated and compared based on
extensive simulation studies (Ünlü and Schrepp, 2015, 2016a,
2017). At the basis of these simulation studies is a large set
of randomly generated quasi-orders, each of which is posited
to represent the true dependencies underlying the simulated
data. The simulation studies then aim at assessing the ability
of the IITA algorithms to reconstruct these known quasi-
orders. To control for this dependency on quasi-order structure

necessitates the use of representative random quasi-orders. With
representative samples, each quasi-order has the same chance of
being included in the simulation study, so you ensure that no
interesting quasi-order has been missed.

The representativeness of a randomly generated subset, or
sample, of quasi-orders on an item set means that each quasi-
order on the item set has equal probability of being selected as
part of the sample. Ünlü and Schrepp (2015, 2016a, 2017) showed
that the use of non-representative samples of quasi-orders
led to biased or erroneous conclusions regarding the recovery
and coverage qualities of the IITA algorithms in simulation
studies. These authors were able to correct the problems induced
by non-representative samples with the use of representative
random quasi-orders. Thus, it is essential to base any principled
simulation study conducted for the reliable, sound comparisons
of algorithms used to mine for quasi-orders on unbiased or
representative quasi-order samples. In this paper, we introduce
two random processes, the normal and discrete location-scale
matching methods, for the generation of close to representative
samples of random quasi-orders.

1.3. Content and Broader Scope
This paper is structured as follows. In section 2, we recapitulate
the state-of-the-art techniques available for sampling quasi-
orders. In section 3, we discuss polynomial regression analyses
for the mean and standard deviation of quasi-order size as a
function of item number. (For a set X, |X| denotes the size
of X, that is, the number of elements of the set). In section
4, the normal location-scale matching method and the discrete
location-scale matching method are introduced. In section 5, we
present the simulation results obtained for these methods used to
sample quasi-orders. In section 6, we conclude with a summary
and suggestions for further research.

Our work can be embedded into, at least, two broader
domains. One is in computer science and bioinformatics, the
other in computational combinatorial mathematics (see also the
first paragraph of section 6.2). In (bio)informatics, the work we
present can be seen as a special application in the field of random
generation of complex algorithmic structures—for example,
Flajolet et al. (1994), Denise et al. (2003), Rodionov and Choo
(2003), Duchon et al. (2004), Ponty et al. (2006), and Bassino
and Nicaud (2007). This field of research deals with the question
of how complex objects encountered in computer science
or bioinformatics can be randomly generated, with certain
desired properties of their distributions. The objects can be
combinatorial structures (e.g., trees) or genomic sequences (i.e.,
strings of symbols that fulfill specific restrictions). Typical use
cases for such generated structures are tests for algorithms that
operate on these sorts of structures or the detection of structural
information. In (computational) combinatorial mathematics, the
problem of sampling quasi-orders can also be put in the broader
context of the random generation of complex combinatorial
or discrete-mathematical structures—for example, Harary and
Palmer (1973), Nijenhuis and Wilf (1978), Dixon and Wilf
(1983), Kerber et al. (1990), Brinkmann and McKay (2002,
2005), Pfeiffer (2004), and Roberts and Tesman (2009). There the
primary focus is on enumeration or counting the structures (e.g.,
graphs), rather than uniformly constructing them. However, the
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FIGURE 1 | A plausible surmise relation ≤ on the elementary algebra domain {a, . . . , f}. For example, the mastery of problem b is a prerequisite for the mastery of
problem e (i.e., b ≤ e).

works by Dixon and Wilf (1983) and Kerber et al. (1990) studied
the uniform generation of unlabeled general graphs.

The above two broader domains cannot be directly applied
to the present context, and thus, we have indeed contributed
to these domains. In our special case, the mathematical objects
considered are the quasi-orders, which should be generated based
on the uniform distribution, and the main application of this is
a test of algorithms of inductive data analysis, in particular of
IITA. For example, we have also contributed to the theory of
graphs. Quasi-orders correspond to transitive directed graphs,
or finite topologies. It is their counts for different numbers of
points that has been studied in the literature (especially of the
second broader domain) only, rather than developing feasible
algorithms for (close to) uniformly constructing them, even for
large numbers of points, as we have done in the present work.

2. EXISTING SAMPLING METHODS FOR
QUASI-ORDERS

We recapitulate the methods currently available for
sampling quasi-orders, categorized into direct, ad hoc, and
inductive methods.

2.1. Direct and ad hoc Methods
To construct all possible quasi-orders on an item set and then
to draw a random sample from the constructed set is the most
direct approach to creating representative random quasi-orders
(census-like uniform sampling). Another direct method is to fill

the entries of the relational matrix uniformly at random (entry-
wise uniform sampling). But obviously, these approaches are only
feasible for very small item sets (Schrepp and Ünlü, 2015). Thus,
other ad hoc random processes (normal and uniform variants)
were tried (Schrepp, 1999; Sargin and Ünlü, 2009) to overcome
this limitation. However, Ünlü and Schrepp (2015) showed that
these ad hoc procedures generally do not yield representative
quasi-order samples.

2.2. Uniform Extension Method
The first, feasible for larger n method, called the uniform
extension method (UEM), was proposed by Schrepp and Ünlü
(2015). This method works fine for item numbers up to
n = 15, but for larger n, it too becomes computationally
intensive. Therefore, Ünlü and Schrepp (2016b) introduced the
more feasible simple resampling method (SIRM) and stratified
resampling method (STRM). With the latter two methods, quasi-
order samples were generated up to n = 50 items. In the present
paper, we propose the new normal location-scale matching
(NLSM) and discrete location-scale matching (DLSM) procedures,
which extend the range for feasible item numbers up to n = 400.

In the sequel, the UEM, SIRM, and STRM methods will be
reviewed. The UEM is inductive. It starts with a representative
sample Q(l) of quasi-orders on a sufficiently small number
of items l, and constructs from these, by forming random
reflexive extensions, a new collection Q(l + 1) of quasi-orders
on l + 1 items. More precisely, a relational matrix r in Q(l) is
extended with a new randomly filled (l + 1)th column and a
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new randomly filled (l + 1)th row, except for the diagonal entry
r′l+1,l+1

: = 1, and leaving intact the original values of r. This
random reflexive extension is checked for transitivity; if not
transitive it is discarded from further analysis, and if transitive it
is added to Q(l + 1). Since random reflexive extensions are used,
it can be shown that the sample Q(l + 1) is representative too
(Schrepp and Ünlü, 2015, p. 4, Proposition). The UEM method
then constructs from Q(l + 1), again by taking random reflexive
extensions, a collection Q(l + 2) of representative quasi-orders
on l + 2 items, and so forth, until the desired item number
n is achieved.

2.3. Randomized Doubly Inductive
Construction
We briefly recapitulate the basics of the SIRM and STRM
methods, but for details refer the reader to the work
by Ünlü and Schrepp (2016b), which introduced these
methods meticulously. The SIRM and STRM are defined
based on the randomized doubly inductive construction (RDIC)
(Ünlü and Schrepp, 2016b, section 4.1). The RDIC procedure can
be explained as follows. Just like in the UEM, a quasi-order rn on
n items is extended to n+ 1 items by forming a random reflexive
extension. Let the random reflexive, but not necessarily transitive,
extension of rn be denoted by r′n+1. That is, r

′
n+1 extends the

quasi-order rn with an extra (n+ 1)th column and (n+ 1)th row,
the entries of which are randomly filled (except for the diagonal
entry, which is 1). In contrast to rejecting the non-transitive
extensions as with the UEM method, the RDIC procedure
corrects these random reflexive extensions to satisfy transitivity.

This is achieved in the following way. Let r1,n+1, . . ., rn,n+1, the
new (n + 1)th column, and rn+1,n, . . ., rn+1,1, the new (n + 1)th
row, be the relevant entries of r′n+1 that need to be corrected
if necessary. In this given order and entry by entry (Figure 2),
two transitivity conditions (C1 and C2) are checked for the
(n + 1)th column, and for the (n + 1)th row three transitivity
conditions (R1a, R1b, and R2) are examined. The transitivity
conditions referred to are (Ünlü and Schrepp, 2016b, section 3.1),
for k = 1, . . . , n:

Condition C1(k), when rk,n+1 : = 1. For all i ∈ {1, . . . , k− 1}, it
holds that ri,k = 0 or ri,n+1 = 1.

Condition C2(k), when rk,n+1 : = 0. For all i ∈ {1, . . . , k− 1}, it
holds that rk,i = 0 or ri,n+1 = 0.

Condition R1a(k), when rn+1,k : = 1. For all i ∈ {1, . . . , n} \ {k},
it holds that ri,k = 1 or ri,n+1 = 0.

Condition R1b(k), when rn+1,k : = 1. For all i ∈ {k + 1, . . . , n},
it holds that rk,i = 0 or rn+1,i = 1.

Condition R2(k), when rn+1,k : = 0. For all i ∈ {k+ 1, . . . , n}, it
holds that ri,k = 0 or rn+1,i = 0.

Let x be a value in the sequence r1,n+1, . . ., rn,n+1, rn+1,n, . . .,
rn+1,1. If the value x does not fulfill the respective transitivity
condition(s), we replace it with the complementary value
1 − x, which then must satisfy the transitivity condition(s)
(Ünlü and Schrepp, 2016b, p. 8, Proposition 2). On the other

hand, if the value x is in accordance with the transitivity
condition(s), we keep it unchanged. The resulting corrected
matrix C(r′n+1) = rn+1 is the relational matrix of a quasi-order on
n+ 1 items, in contrast to the random reflexive extension r′n+1 of
the UEM approach. This quasi-order rn+1 too has the quasi-order
rn as its trace on n items.

The overall RDIC sampling procedure, depicted in Figure 2,
starts with (the anchoring) a given set Q(l) of quasi-orders on a
sufficiently small item number l (e.g., l = 2). The quasi-orders
in Q(l) are successively extended, in each step by one more item,
forming and correcting random reflexive extensions as described
above. This yields new sets of quasi-ordersQ(l+1) for l+1 items,
Q(l+2) for l+2 items, and so forth, until the desired item number
n, with a sample of quasi-orders Q(n), is achieved.

With the RDIC procedure, one can generate, quickly and
efficiently, samples of quasi-orders on very large item sets.
This is an advantage of the RDIC method. However, the RDIC
procedure has the disadvantage that the applied corrections
are of discrete, combinatorial type. Therefore, the samples
constructed according to it are biased (cf. also Figures 6–
8). For this purpose, bias correction techniques have been
proposed (Ünlü and Schrepp, 2016b). Two alternatives for bias
correction of the RDIC derived samples are the SIRM and STRM
methods. The SIRM and STRM are computationally viable
and efficient procedures and provide close to representative
quasi-order samples.

2.4. Simple Resampling Method
Before we can define the methods SIRM and STRM, we need to
introduce the notion of a biasing position. Let the entries r1,n+1,
. . ., rn,n+1, rn+1,n, . . ., rn+1,1 of a random reflexive extension
be tested in the successive order given according to the RDIC
procedure above (Figure 2). Traversed in this order, a position
of this sequence is called biasing if one, and only one, of the
values 0 or 1 satisfies the transitivity condition(s) for this position
(Ünlü and Schrepp, 2016b, p. 9, Definition 3).

Then, the following two results hold:

1. According to Ünlü and Schrepp (2016b, p. 8, Part 1 of
Proposition 2), for any of the tested entries r1,n+1, . . ., rn,n+1,
rn+1,n, . . ., rn+1,1, at least one of the values 0 or 1 must always
satisfy the transitivity condition(s).

2. Let rn+1 be a quasi-order randomly generated from a
trace quasi-order rn according to the RDIC sampling
procedure. It can be shown (Ünlü and Schrepp, 2016b, p.
11, Proposition 4) that the probability for sampling rn+1

is P(rn+1) = 2B(rn+1)/22n, where B(rn+1) is the number
of the biasing positions among the entries r1,n+1, . . .,
rn,n+1, rn+1,n, . . ., rn+1,1 of rn+1. The weights 2−B(rn+1)

and 2−B(sn+1) for two randomly generated quasi-orders
rn+1 and sn+1 on n + 1 items can be used as the bias
correction factors, to adjust for representative or close to
representative quasi-order sampling. In this case, we have
P(rn+1) · 2−B(rn+1) = 1/22n = P(sn+1) · 2−B(sn+1).

We define the SIRM method. Suppose a biased multiset (with
repetitions) Q of quasi-orders has been generated according to
the RDIC procedure. To correct for biases, in the SIRM approach,
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FIGURE 2 | The RDIC procedure exemplified with l = 2 items. For one inductive step leading from l to l + 1 items, and with four and six inductive steps relative to the
trace quasi-orders rl×l and r(l+1)×(l+1), respectively. This leads to random reflexive extensions of rl×l on three items and of r(l+1)×(l+1) on four items. The symbols ⋆i
and ⋆′i denote the added entries that are randomly filled with 0’s and 1’s.

we apply weighted resampling with replacement on this multiset.
That is, the weight assigned to an element r of Q is

wr : =
2−B(r)

∑

r′∈Q 2−B(r′)
. (1)

The values wr are the probability weights for drawing the quasi-
orders r ∈ Q. The multiset resulting from this weighted
resampling with replacement is the SIRM bias-corrected sample.
It consists of close to representative random quasi-orders.

2.5. Stratified Resampling Method
The STRM method applies bias correction on this multiset
Q generated according to the RDIC procedure based on
stratification, whereby Q is partitioned into strata as follows. Let

BQ : =
{

b = B(r) : r ∈ Q
}

(2)

be the set of the unique numbers of the biasing positions of quasi-
orders in Q. A partition of Q, consisting of the strata, is then
given by

S : =
{

Sb : b ∈ BQ
}

, (3)

with, for b ∈ BQ,

Sb : =
{

r ∈ Q :B(r) = b
}

(4)

the submultiset (i.e., stratum) of quasi-orders in Q with the same
number of biasing positions b.

With the STRM method, bias correction of the multiset
Q is realized by weighted resampling with replacement
after stratification, followed by simple random sampling with
replacement within the sampled strata. By definition, weighting
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and resampling the strata Sb ∈ S can be implemented by
weighting and resampling the numbers of the biasing positions
b of BQ. Then, the weight assigned to an element b of BQ is

wb : =
|Sb| · 2−b

∑

b′∈BQ |Sb′ | · 2
−b′

, (5)

with |Sb|, b ∈ BQ, denoting the size of Sb, including repeated
membership. The values wb are the probability weights for
drawing b ∈ BQ. Let a sample resulting from this weighted
resampling with replacement after stratification be denoted by BS.

Simple random sampling with replacement within these
obtained strata is realized as follows. Let B′S be the set of the
unique elements of the multiset BS. For each b∗ ∈ B′S, m(b∗)
stands for the number of occurrences of b∗ in BS. From every
stratum Sb∗ , b

∗ ∈ B′S, a simple random sample with replacement
of size m(b∗) is taken. (The discrete uniform distribution on
Sb∗ , b

∗ ∈ B′S is used.) The resulting bias-corrected sample, and
multiset, of close to representative random quasi-orders is the
solution of the STRMmethod.

3. POLYNOMIAL REGRESSION FOR MEAN
AND STANDARD DEVIATION OF
QUASI-ORDER SIZE

Throughout this paper, “quasi-order size” (number of item pairs
in relation) always includes the reflexive item pairs, and the
inductive constructions are always anchored/started with the set
of all four (labeled) quasi-orders on two items.

3.1. Fitting Regression Curves
We perform regression analyses for the mean and standard
deviation of quasi-order size as a function of item number. In
Table 1, we catalog the quasi-order size means and standard
deviations for n = 2, . . . , 20 items. For n = 2, . . . , 6, the
true means and true standard deviations were computed in the
populations of all possible quasi-orders, which can be constructed
for these cases. For n = 7, . . . , 10, the mean and standard
deviation averages were taken over ten quasi-order samples each
with N = 10, 000 quasi-orders simulated with the UEMmethod.
For n = 11, . . . , 20, the averages were computed with 100
samples of N = 100, 000 quasi-orders generated according to
the SIRM method. The samples generated with the UEM and
SIRM methods are (close to) representative in regard to the
quasi-order size evaluation criterion (see Schrepp and Ünlü,
2015; Ünlü and Schrepp, 2016b). Thus, the values reported in
Table 1 are good estimates of the true quasi-order size means and
standard deviations and can be used for regression analyses.

Ünlü and Schrepp (2016b) observed that the graph for the
mean quasi-order size as a function of the item number was
following a quadratic polynomial function. We can see the same
trend (top panel of Figure 3). Figure 3 displays the means and
standard deviations reported in Table 1.

For both the scatterplots, polynomial regression lines were
fitted. In each case, we see a very good fit. In the plots, the R-
squared (R2) and adjusted R-squared (R2adj) are virtually 1. The

TABLE 1 | Quasi-order size means and standard deviations for item numbers
n = 2, . . . , 20.

n Mean Standard deviation

Population

2 3.000 0.816

3 5.483 1.326

4 8.361 1.855

5 11.612 2.384

6 15.220 2.901

UEM

7 19.149 (0.046) 3.408 (0.032)

8 23.512 (0.094) 3.896 (0.029)

9 28.176 (0.077) 4.407 (0.067)

10 33.174 (0.112) 4.872 (0.053)

SIRM

11 38.519 (0.172) 5.353 (0.091)

12 44.237 (0.202) 5.832 (0.111)

13 50.303 (0.315) 6.323 (0.167)

14 56.730 (0.412) 6.811 (0.203)

15 63.497 (0.544) 7.335 (0.283)

16 70.641 (0.625) 7.826 (0.325)

17 78.065 (0.779) 8.320 (0.349)

18 85.933 (0.896) 8.809 (0.412)

19 94.049 (1.221) 9.331 (0.584)

20 102.497 (1.446) 9.852 (0.691)

For n =2, …, 6, the true population values are reported. For n =7, …, 10, the UEM

method was used, and the mean and standard deviation averages were taken over ten

quasi-order samples of size N =10,000. For n =11,…,20, the averages of the means

and standard deviations were computed over 100 samples of N =100,000 quasi-orders
generated with the method SIRM. Standard deviations are in parentheses. The values are

plotted in Figure 3.

resulting quadratic function in the top panel has the equation
q(x) = −1.116 + 1.673x + 0.176x2. The linear function in the
bottom panel is l(x) = −0.121+0.497x. Subsequently, we will use
these equations to predict the mean quasi-order size and quasi-
order size standard deviation for any item number, respectively.

3.2. Predictive Analysis
In Figure 4 (mean quasi-order size) and Figure 5 (quasi-order
size standard deviation), we test the prediction quality of the
regression results with samples generated under the SIRM and
STRM methods, for the item numbers n = 3, . . . , 30. Especially
the item range n = 21, . . . , 30 (right to the solid gray lines)
is informative, since these item numbers were not used in the
fitting process. For each item number, one sample of N =
500, 000 quasi-orders was simulated under any of the methods
SIRM and STRM.

In Figures 4, 5, we see that, even for n = 21, . . . , 30, the fitted
regression lines describe the data very well. The computed means
and standard deviations all fall close to the fitted lines. For the
quadratic function (Figure 4), we obtain R2 = 0.9999091 (SIRM)
and R2 = 0.9995668 (STRM). For the linear function (Figure 5),
the values are R2 = 0.9985419 (SIRM) and R2 = 0.9984818
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FIGURE 3 | Mean quasi-order size (first row plot) and quasi-order size
standard deviation (second row plot) as a function of item numbers
n = 2, . . . , 20. The values are taken from Table 1. Fitting polynomial regression
through the scatterplots yields quadratic (R2 = 0.9999989, R2adj = 0.9999988)

and linear (R2 = 0.9998774, R2adj = 0.9998702) regression lines, respectively.

Here, R2 and R2adj are the R-squared and adjusted R-squared, respectively.

(STRM). Thus, we can assume quadratic or linear relationships
between the mean quasi-order size or quasi-order size standard
deviation and the item number, respectively.

4. MATCHING METHODS

Two matching methods are described, that is to say, the normal
and discrete variants. But before we introduce these methods
below, let us first summarize the general idea behind them.

What we can observe, in simulations, is that the true (or
approximately true) quasi-order size distributions (for larger
item numbers) are roughly bell-shaped and symmetric. These
distributions have true means, as their locations on the size
axis, and true variances, as their scales or spreads. These two
parameters (position on the size axis and shape) determine the
graph of the distribution. In the case of such a bell-shaped,
symmetric distribution as the normal distribution, specifying
the mean (location or position) and variance (scale or spread)
determines that distribution uniquely. For any item number,

FIGURE 4 | Prediction quality of the quadratic regression line for the mean
quasi-order size, for the SIRM and STRM, in first and second row plots,
respectively. For any item number n = 3, . . . , 30, one sample of N = 500, 000
quasi-orders was simulated based on each of the methods. In every case, the
R-squared is approximately 1. The vertical solid lines in gray at 20.5 highlight
the item range n = 21, . . . , 30.

the regression predicted mean and standard deviation measures
are used to gauge these true location and scale parameters,
respectively. This is the meaning of the regression analyses in this
paper. Having gauged these true values (by regression), we know
where on the size axis the true distribution is located (position)
and what its spread (shape) is. Thus, it makes sense (we want to
estimate the true distribution), in a next step, to try tomatch these
two summary statistics or properties of the true distribution. This
is why we want to match the mean and standard deviation of the
predicted regression.

We have to define what we mean by matching. We introduce
two definitions, the continuous normal and discrete sample cases
(details will be given below). The normal case is defined by
using the normal distribution, with the regression predicted true
values as its direct (plug-in) mean and variance parameters.
As a consequence, this distribution matches the true values, in
the sense that these values are reobtained when computing the
mean and variance of that distribution. Thus, the corresponding
normal probability density function is a good, properly located
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FIGURE 5 | Prediction quality of the linear regression line for the quasi-order
size standard deviation, for the SIRM and STRM. For any method, and any
item number n = 3, . . . , 30, one sample of N = 500, 000 quasi-orders was
simulated. In each case, the R-squared is approximately 1. The item range
n = 21, . . . , 30 is highlighted by the vertical solid lines in gray (at 20.5).

and spread, proxy for the true quasi-order size distribution.
(At this point, note that the true distribution is discrete and
approximated by the normal probability density function, which
is continuous. This parallels the practice in data analysis when a
density function is plotted as an approximation of a histogram.)
In particular, we can evaluate this continuous normal proxy
(defined on a continuum including the discrete quasi-order sizes)
in the discrete sizes directly, to sample the latter. To preserve
the approximating normal probability density function curve
(including location and scale), we use normalized sampling
weights (division by the sum of function values) for the drawn
quasi-order sizes (Equation 7).

The discrete case is not so straightforward. We do not have
a symmetric discrete distribution with explicit mean (location)
and variance (scale) model parameters that could be allocated
with the regression predicted true values (as we did for the
continuous normal distribution). However, we can operate on
the observed quasi-order sizes (the sample) directly. The crucial
question then is, whether the observed discrete size distribution
can be transformed in a way such that a new discrete distribution
results, which has, that is, matches, the regression predicted

true values as its computed mean and standard deviation. The
answer is yes, and the transformation achieving this is defined
by Equation 8. As proved there, this transformation satisfies the
pertinent Equation 9, for the matched location, and Equation 10,
for the matched scale. Thus, the purpose of this transformation
(Equation 8) is to manufacture this properly located and spread
new discrete distribution. Albeit their discrete supports differ
(the transformed values are not integers in general), the new
discrete distribution can be viewed as a good, that is, properly
located and spread, proxy for the true discrete distribution. We
have two discrete distributions, which coincide approximatively
in their location and scale properties. This remains so, if we
turn this discrete distribution obtained after transformation into
a piecewise linear, continuous function, by linear interpolation,
in order to permit the integer-valued observed sizes. Just like
in the normal case, the latter continuous function (which is a
general function, neither a distribution nor density function) can
be viewed as a good proxy for the true discrete distribution.
To preserve this curve approximating the true distribution,
the sampling weights used for the drawn quasi-order sizes are
normalized (Equation 11).

4.1. Normal Location-Scale Matching
As mentioned in section 2, the samples generated according to
the RDIC procedure are biased. This can be seen in Figures 6–8
(cf. also Ünlü and Schrepp, 2016b). In Figures 6–8, the RDIC
method is represented by the dashed lines, the STRM method
by the filled circles. The normal probability density functions
with matched means and standard deviations (see below) are
shown in solid lines. The mean quasi-order sizes under the
three approaches are depicted as vertical lines, dashed for
the RDIC, and solid for the (virtually coincident) STRM and
normal method.

In Figures 6–8, we see that, for any item number n, the normal
probability density function

fµ,σ (x) =
1

σ
√
2π

exp

(

−
1

2

(

x− µ

σ

)2
)

(6)

with mean µ : = q(n) and standard deviation σ : = l(n) set to
the values predicted by the fitted quadratic and linear functions
q(n) = −1.116 + 1.673n + 0.176n2 and l(n) = −0.121 +
0.497n, respectively, provides a good approximation to the
reference STRM quasi-order size distribution. We will use these
normal densities to sample quasi-orders. A remark is in order.
It is not important to have the normal distribution. We could
consider any other symmetric, bell-shaped distribution with
direct (explicit model parameters) location and scale measures.
The normal choice, which satisfies these requirements, is a
plausible and convenient one, typically used in statistics. In our
application context, the normal distribution fits the data well, as
can be seen in the afore mentioned figures.

The normal method, in its formulation of this paper, has at
the basis the RDIC generated quasi-order samples. (Instead of the
RDIC, other methods for generating the quasi-orders underlying
the normal (and also discrete) method could be investigated,
as we allude to in the last paragraph of section 6. However,
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FIGURE 6 | For item numbers n = 10 and 15, the relative frequencies (y-axes)
of the quasi-order sizes (x-axes) are shown. For any n, the relative frequencies
are observed in one sample of N = 500, 000 quasi-orders generated under
the STRM (filled circles), and in one sample of N = 50, 000 quasi-orders
constructed with the RDIC (dashed lines). The normal probability density
functions with mean and variance parameters set to the values predicted by
the fitted quadratic and linear regression functions, respectively, are depicted
in solid lines. The vertical solid and dashed lines visualize the sample mean
quasi-order sizes for the STRM and RDIC, respectively. The mean quasi-order
sizes predicted based on the quadratic regression function under the normal
method are virtually the same as for the STRM and represented in vertical solid
lines.

every quasi-order generation procedure, in order to be applicable
with the normal (and also discrete) method, has to cope with
the problem/remark mentioned in the penultimate paragraph of
section 5). Why has the normal method the RDIC at its basis?
This method resamples the RDIC constructed quasi-orders to
follow the normal probability density function with regression
predicted mean and standard deviation parameters (for details
see below). The normal method can also be viewed as a variant
of bias correction [for other bias correction approaches, see
(Ünlü and Schrepp, 2016b)]. That is, we leave the sample biased
obtained based on the RDIC, and bias correction is realized
through location-scale matching. The latter means shifting
combined with stretching or contracting the graph of the quasi-
order size distribution implied by the RDIC procedure, to yield

FIGURE 7 | For item numbers n = 20 and 25, the relative frequencies of the
quasi-order sizes are displayed. For each item number, the relative frequencies
are observed in one sample of N = 500, 000 quasi-orders under the STRM
(filled circles), and in one sample of N = 50, 000 quasi-orders with the RDIC
(dashed lines). The normal probability density functions with regression
predicted mean and variance parameters are fitted through the STRM
scatterplots (solid lines). The vertical solid and dashed lines are the sample
mean quasi-order sizes for the STRM (≈ normal method) and RDIC,
respectively.

the more representative normal density with regression predicted
location and scale parameters (cf. also Figure 11).

We introduce the normal location-scale matching (NLSM)
method. We start with a sample QN(k) of quasi-orders on
k items of size N, obtained based on the RDIC. Let S =
{

|rk| : rk ∈ QN(k)
}

be the set of the unique quasi-order sizes.
Consider the normal density function fµ=q(k),σ=l(k)(x) with
regression predicted location µ = q(k) and scale σ = l(k)
parameters. The latter are the extrapolated mean quasi-order size
and quasi-order size standard deviation for k items. We take a
sample of the specified size N from the elements of S, drawn
with replacement. The weight assigned to an element s ∈ S is
(cf. second and third paragraphs of section 4)

ws : =
fµ=q(k),σ=l(k) (s)

∑

s′∈S fµ=q(k),σ=l(k) (s′)
. (7)
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FIGURE 8 | For item numbers n = 30 and 35, the quasi-order size relative
frequencies are shown. For any n, the relative frequencies are observed in one
STRM sample of N = 500, 000 quasi-orders (filled circles), and in one sample
of N = 50, 000 quasi-orders constructed with the RDIC (dashed lines). The
normal probability density functions with mean and variance parameters set to
the values predicted by regression are depicted in solid lines. The sample
mean quasi-order sizes are visualized by the vertical solid (STRM and normal
method) and dashed (RDIC) lines.

The values ws are the probability weights for drawing the
elements of S. Let the resulting sample, and multiset, of size N
be written as S′.

What now follows is simple random sampling with
replacement. Let S′′ be the set of the unique elements of
the multiset S′. For every s∗ ∈ S′′, let the number of occurrences
of s∗ in S′ be c(s∗). In particular,

∑

s∗∈S′′ c(s
∗) = N. For every

s∗ ∈ S′′, consider the submultisetQs∗ : =
{

rk ∈ QN(k) : |rk| = s∗
}

of quasi-orders in QN(k) with the same quasi-order size s∗. From
each multiset Qs∗ , s∗ ∈ S′′, a simple random sample with
replacement of size c(s∗) is taken (The discrete uniform
distribution on Qs∗ , s∗ ∈ S′′ is used. All quasi-orders of Qs∗ ,
with the same size s∗ ∈ S′′, have the same probability of being
sampled, 1/|Qs∗ |). All quasi-orders obtained in this way are
collected in a bias-corrected sample of size N, of approximately
representative quasi-orders on k items. This quasi-order sample
constitutes the solution of the NLSMmethod.

4.2. Discrete Location-Scale Matching
There is another approach that can match the mean and standard
deviation measures inferred from the polynomial regression. It is
the discrete location-scale matching (DLSM) method. Again, we
start with a multiset QN(k) of quasi-orders on k items of size N,
obtained based on the RDIC (cf. also last paragraph of section
6). Let S =

{

s = |rk| : rk ∈ QN(k)
}

be the underlying set of the
unique quasi-order sizes. For any s ∈ S, consider the submultiset
Qs : =

{

rk ∈ QN(k) : |rk| = s
}

. These Qs, s ∈ S, form a partition
of the sample QN(k). Let |Qs|, s ∈ S, stand for the total number
of elements, including repeated membership. Let the relative
frequencies f = (fs)s∈S be fs : = |Qs|/|QN(k)| = |Qs|/N, for s ∈ S.
In particular, probabilities are specified, 0 ≤ fs ≤ 1, s ∈ S, and
∑

s∈S fs = 1. We define the sample mean quasi-order size µ : =
∑

s∈S(sfs) and the sample quasi-order size standard deviation

σ : =
√
∑

s∈S((s− µ)2fs). Let the predicted regression mean and
standard deviation be µt : = q(k) and σt : = l(k), where q and l
are the fitted quadratic and linear functions, respectively.

We use the transformed values (cf. second and fourth
paragraphs of section 4)

t(s) : = σt
s− µ

σ
+ µt , for any s ∈ S. (8)

To each t(s) is assigned the probability fs, for s ∈ S. We obtain the
set of points {(t(s), fs) : s ∈ S}. We can show that

(a)
∑

s∈S
(t(s)fs) = µt , (9)

and

(b)

√

∑

s∈S
((t(s)− µt)2fs) = σt . (10)

That is, the discrete distribution {(t(s), fs) : s ∈ S} has the matched
mean (location) µt and standard deviation (scale) σt .
Re (a), we have:

∑

s∈S
(t(s)fs) =

∑

s∈S

((

σt
s− µ

σ
+ µt

)

fs

)

=
σt

σ

∑

s∈S
((s− µ)fs)+ µt

∑

s∈S
fs

=
σt

σ

(

∑

s∈S
(sfs)− µ

∑

s∈S
fs

)

+ µt

= µt .

Re (b), it holds:

√

∑

s∈S
((t(s)− µt)2fs) =

√

√

√

√

∑

s∈S

(

(

σt
s− µ

σ
+ µt − µt

)2

fs

)

=
σt

σ

√

∑

s∈S
((s− µ)2fs)

= σt .
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Thus, we have transformed the initial discrete distribution
{(s, fs) : s∈ S} to the discrete distribution {(t(s), fs) : s∈ S},
such that the mean and standard deviation match the
regression predicted values. However, we cannot directly
use this distribution to sample quasi-orders. In general, the
transformed t(s), s ∈ S, are not integer-valued. To include the
integer values s ∈ S, we perform linear interpolation for the
given set of points {(t(s), fs) : s ∈ S}. The resulting piecewise
linear function determined by these points is denoted by L. The
function L has as its domain the interval I : = [min{t(s) : s ∈
S}, max{t(s) : s ∈ S}]. That is, we do not use interpolation outside
the interval I.

We can use this function L to sample quasi-orders. We take
a sample of size N from the elements of S ∩ I, drawn with
replacement. The sampling weight for any s ∈ S ∩ I is

L(s)
∑

s′∈S∩I L(s
′)
. (11)

Following the line of reasoning for the NLSM method above, we
can infer in an analogous manner that a bias-corrected sample
of size N of approximately representative quasi-orders on k
items can be constructed. This quasi-order sample defines the
DLSMmethod.

5. SIMULATIONS

As the evaluation criterion used to assess representativeness,
we will primarily focus on the size of a quasi-order. Quasi-
order size distributions will be compared for the SIRM, NLSM,
DLSM, and the pointwise average taken over both the NLSM
and DLSM distribution functions. We will catalog the mean
as a location measure and the standard deviation as a scale
parameter for the regression results, the SIRM, NLSM, DLSM,
and their average. In addition, other criteria such as the
height (i.e., size of a longest chain) and number of maximal
elements (i.e., elements not in relation to any other element)
will be reported. We will simulate large quasi-orders for item
numbers up to n = 400. The computations were performed
in R (The R Core Team, 2018, www.R-project.org)
on an iMac 3.4 GHz Intel Core i7, with memory 32 GB
1,600 MHz DDR3.

5.1. Height and Number of Maximal
Elements
To begin with, it is important to note that the methods NLSM
and DLSM are only approximate, but flexible, and they are
defined essentially based on the size criterion. That is, by
matching the location and scale measures of a quasi-order size

TABLE 2 | Averaged mean height and averaged mean number of maximal elements for the NLSM and DLSM, with the true arithmetic means (“True”) and the UEM as the
references, for item numbers n = 3, . . . , 8.

Criterion NLSM DLSM True 1NLSM 1DLSM

n = 3

Height 2.412 (0.020) 2.397 (0.019) 2.414 −0.002 −0.017

Maximal 1.245 (0.024) 1.243 (0.030) 1.241 0.004 0.002

n = 4

Height 2.911 (0.031) 2.937 (0.032) 2.904 0.007 0.033

Maximal 1.348 (0.032) 1.290 (0.035) 1.465 −0.117 −0.175

n = 5

Height 3.321 (0.027) 3.358 (0.035) 3.310 0.011 0.048

Maximal 1.560 (0.034) 1.522 (0.035) 1.684 −0.124 −0.162

n = 6

Height 3.658 (0.033) 3.678 (0.040) 3.625 0.033 0.053

Maximal 1.763 (0.035) 1.757 (0.033) 1.899 −0.136 −0.142

Criterion NLSM DLSM UEM 1NLSM 1DLSM

n = 7

Height 3.968 (0.033) 3.969 (0.035) 3.897 (0.064) 0.071 0.072

Maximal 1.973 (0.037) 1.974 (0.041) 2.094 (0.050) −0.121 −0.120

n = 8

Height 4.237 (0.032) 4.241 (0.046) 4.103 (0.039) 0.134 0.138

Maximal 2.179 (0.039) 2.183 (0.046) 2.281 (0.068) −0.102 −0.098

The true mean values computed in the populations of all possible quasi-orders (n =3,…,6) are collected in the column “True”. For NLSM and DLSM (n = 3,…,8), the averaged mean

values were calculated using 100 quasi-order samples of size N =1,000. For UEM as the reference (n =7,8), we used ten samples each with N =1,000 simulated quasi-orders. The

differences “NLSM − True” and “NLSM − UEM” are denoted with 1NLSM, and 1DLSM stands for the differences “DLSM − True” and “DLSM − UEM”. Standard deviations are in

parentheses.
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distribution, these methods are designed to approximate that
size distribution. However, we can also compare the NLSM and
DLSM methods with respect to other evaluation criteria used to
assess representativeness.

In Table 2, we report the height and number of maximal
elements for item numbers n = 3, . . . , 8. For n = 3, . . . , 6,
the populations of all quasi-orders are known, and thus, the

true means are presented (“True”). For n = 7, 8, the UEM
was used as the reference, and the averaged mean values were
computed based on ten samples each of N = 1, 000 quasi-
orders. The mean (over 1, 000 quasi-orders) was computed in
each of the samples and averaged over the (ten) samples. For
the NLSM and DSLM, we used 100 quasi-order samples each of
size N = 1, 000.

FIGURE 9 | Quasi-order size distributions for the SIRM as the reference (solid lines), with NLSM (dashed lines) as the first column, DLSM (dashed lines) as the second
column, and the average of the NLSM and DLSM (“Average”) (dashed lines) as the third column, for item numbers (rows) n = 9, 12, 15, and 18. In each row (for each
n), the same quasi-order size distribution under the SIRM is plotted three times, for the NLSM, DLSM, and “Average” columns. The values K stand for the Kolmogorov
distances between the NLSM, DLSM, or their “Average” distributions and the SIRM distributions. For the SIRM, we used one sample of N = 500, 000 quasi-orders,
for any n. For the NLSM and DLSM, for any n, each method was based on one quasi-order sample of size N = 75, 000.
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In Table 2, we can see that the methods NLSM and DLSM are
only approximate. There are deviations, however the criterion
values obtained for the NLSM and DLSM lie not far away from
the “True” or UEM reference values. Similar results can also be
obtained for other quasi-order properties, for example the width
or number of minimal elements.

5.2. Size
We can investigate how well the quasi-order size distributions
obtained for the NLSM and DLSM approximate the size
distributions under the SIRM as a representative reference.
In Figures 9, 10, we compare these distributions for the item
numbers n = 9, 12, 15, and 18 and n = 21, 24, 27, and

FIGURE 10 | Quasi-order size distributions for the NLSM, DLSM, and their “Average”, each in dashed lines, with the SIRM as the reference in solid lines, for item
numbers n = 21, 24, 27, and 30. In each row, the same SIRM distribution is plotted three times (in the three columns). The values K are the Kolmogorov distances
between the NLSM, DLSM, or the “Average” distributions and the SIRM distributions. For any n, one sample of size N = 500, 000 quasi-orders was used for the
SIRM, with duplicates being removed. For the NLSM and DLSM, for any n, each used one quasi-order sample of size N = 75, 000.
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30, respectively. Under the SIRM (solid lines), for any n, we
simulated N = 500, 000 quasi-orders. For the NLSM and DLSM
(dashed lines), for any n, we used N = 75, 000 quasi-orders.
The pointwise average function of the two distribution functions
under the NLSM and DLSM is denoted by “Average” (dashed
lines) in Figures 9, 10. The “Average” will be seen to be the best
performing variant in terms of the size criterion, for smaller item
numbers. In Figures 9, 10, the Kolmogorov distances K of the
NLSM, DLSM, and “Average” distributions with respect to the
SIRM distributions were also computed.

As can be seen in Figures 9, 10, the NLSM and “Average”
provide better approximations to the representative SIRM
distributions compared to the DLSM. The distributions for the
DLSM are good approximations too, however they are slightly
shifted to the left. In Figure 9, the Kolmogorov distances are
smallest for the “Average,” followed by the NLSM, with worst
results obtained for the DLSM. We see that, for the specific item
range n = 9, 12, 15, and 18, the “Average” slightly outperforms
the NLSM. Hence, if this is the range of interest, the method
of choice could be the “Average.” For larger item numbers, the
NLSM is the best choice. Overall, across the item numbers n = 9,
12, 15, 18, 21, 24, 27, and 30, the NLSM, DLSM, and “Average”

provide approximate distributions close to the representative
SIRM. In addition, in Figures 9, 10, we can see that the mean and
standard deviation values obtained under each of the methods
are comparable; they are close to each other. This can also be seen
in Table 3.

Table 3 summarizes the means and standard deviations of the
quasi-order sizes computed for the regression solution, SIRM (for
any n, N = 500, 000 simulated quasi-orders), NLSM, DLSM, and
the average of the NLSM and DLSM (for any n, each with N =
75, 000 drawn quasi-orders), for item numbers n = 7, . . . , 30.

In Table 3, we can see that the location and scale measures
are very close to each other. Whereas the mean is virtually the
same across all methods, the standard deviation has a more larger
variation. But the standard deviation values are approximately
the same.

5.3. Large Quasi-Orders
Based on location-scale matching we can simulate large quasi-
orders for item numbers up to n = 400. In Figure 11, for
n = 100, samples of N = 50, 000 quasi-orders generated under
each of the methods NLSM, DLSM, and RDIC are considered.
The quasi-order sizes observed in these samples are plotted.

TABLE 3 | Location (µ) and scale (σ ) measures for the regression solution, SIRM, NLSM, DLSM, and the average of the NLSM and DLSM, for item numbers n = 7, . . . , 30.

n µt σt µSIRM σSIRM µNLSM σNLSM µDLSM σDLSM µAverage σAverage

7 19.198 3.361 19.203 3.401 19.228 3.327 19.334 3.641 19.194 3.397

8 23.505 3.858 23.524 3.895 23.525 3.803 23.545 3.972 23.421 3.771

9 28.162 4.356 28.177 4.365 28.206 4.323 28.206 4.422 28.133 4.290

10 33.171 4.853 33.209 4.834 33.209 4.821 33.202 4.920 33.135 4.799

11 38.531 5.350 38.522 5.342 38.525 5.314 38.527 5.380 38.419 5.257

12 44.242 5.848 44.259 5.813 44.238 5.844 44.257 5.917 44.115 5.755

13 50.304 6.345 50.289 6.365 50.319 6.305 50.330 6.395 50.186 6.228

14 56.717 6.843 56.734 6.776 56.744 6.815 56.726 6.845 56.553 6.704

15 63.482 7.340 63.555 7.270 63.493 7.322 63.494 7.398 63.320 7.219

16 70.597 7.837 70.734 7.687 70.584 7.791 70.625 7.861 70.449 7.711

17 78.064 8.335 77.878 8.226 78.094 8.344 78.086 8.363 77.869 8.215

18 85.882 8.832 85.718 8.943 85.888 8.809 85.905 8.874 85.750 8.733

19 94.050 9.330 94.747 9.473 94.095 9.345 94.086 9.494 93.815 9.225

20 102.570 9.827 103.114 10.137 102.543 9.859 102.619 9.940 102.180 9.643

21 111.442 10.324 111.835 10.701 111.429 10.340 111.478 10.385 111.083 10.119

22 120.664 10.822 120.987 11.626 120.684 10.777 120.727 10.940 120.537 10.727

23 130.237 11.319 129.842 12.021 130.166 11.292 130.226 11.504 129.788 11.147

24 140.162 11.817 139.449 12.128 140.149 11.784 140.139 11.908 139.855 11.672

25 150.437 12.314 149.895 12.394 150.462 12.260 150.573 12.624 150.070 12.155

26 161.064 12.812 160.905 12.713 161.125 12.831 161.124 13.045 160.737 12.676

27 172.042 13.309 171.870 13.180 172.027 13.317 172.114 13.375 171.484 13.076

28 183.371 13.806 183.631 14.075 183.463 13.753 183.470 13.899 182.941 13.577

29 195.051 14.304 194.889 14.594 195.017 14.292 195.005 14.677 194.430 14.121

30 207.082 14.801 207.239 14.795 207.071 14.805 207.097 15.042 206.581 14.658

The predicted regression mean and standard deviation are µt = q(n) and σt = l(n), with q and l the quadratic and linear functions, respectively. For any n, the mean and standard

deviation of the quasi-order sizes computed in one sample of N =500,000 quasi-orders generated under the SIRM are denoted with µSIRM and σSIRM, respectively. For n ≥ 19, for

the SIRM, duplicates were excluded. For any n, for the NLSM and DLSM, one sample consisting of N =75,000 quasi-orders was simulated under each of the methods. The mean

and standard deviation of the quasi-order sizes computed in these samples are denoted with µNLSM and σNLSM, and µDLSM and σDLSM, respectively. The respective values under the

pointwise average function of the NLSM and DLSM distributions are read as µAverage and σAverage.
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FIGURE 11 | In the first row plot, for n = 100, distributions of the quasi-order
sizes for one sample of N = 50, 000 quasi-orders generated under each of the
methods NLSM (gray), DLSM (black), and RDIC (dark gray) are plotted. The
vertical dashed lines in gray (NLSM), dark gray (RDIC), and in black (DLSM)
represent mean quasi-order sizes. In the second row plot, for n = 100, the
corresponding scatterplots of the quasi-order sizes for the NLSM (unfilled gray
circles) and DLSM (unfilled black circles) are shown. The vertical dashed lines
in gray and black portray the mean quasi-order sizes obtained under the
NLSM and DLSM, respectively. The vertical solid black line is the quasi-order
size mean value predicted by regression.

According to the top panel plot, we can gauge the effect of
location-scale matching. The RDIC (solid, in dark gray) sample
implies a mean 1,376.941 (dashed, in dark gray) and standard
deviation 189.310. The respective values predicted by regression
are 1,921.808 and 49.620. The RDIC graph is contracted and
shifted with the scale and location parameters, respectively, to
become the NLSM or DLSM graphs. The NLSM (solid, in gray)
yields a mean 1,919.630 (dashed, in gray) and standard deviation
48.180. The values for the DLSM (solid, in black) are 1,918.143
(dashed, in black) and 48.742, respectively. The bottom panel
scatterplots zoom in on the points of the size distributions and
show roughly bell-shaped distribution forms.

In Figure 12, for n = 3, . . . , 100, the means and standard
deviations of the quasi-order sizes computed in NLSM samples
of size N = 10, 000 quasi-orders (unfilled circles) are compared
with the values predicted by regression (solid lines).

FIGURE 12 | For item numbers n = 3, . . . , 100, the predicted by regression
(solid lines) and the observed in NLSM samples of size N = 10, 000
quasi-orders (unfilled circles) means and standard deviations of the
quasi-order sizes are compared, in top and bottom panels, respectively.

In Figure 12, we see a good agreement of the regression
predicted and NLSM observed values for the item numbers n =
3, . . . , 100. In particular, the mean quasi-order size is more stable
than the quasi-order size standard deviation.

In Figure 13, based on the NLSM method, we plot the quasi-
order size distributions obtained in samples of size N = 10, 000
quasi-orders, for the item numbers n = 200, 250, 300, 350,
and 400. For these plots, location-scale matching used for bias
correction was applied successively in each individual inductive
step of the RDIC procedure. At this point, a remark is in order.
For larger n, approximately n ≥ 150, the RDIC samples have
only a small overlap with or are separated and disjoint from the
NLSM and DLSM support ranges. This artifact can also occur
with other (e.g., ad hoc) sampling procedures (section 2), if we
use these in lieu of the RDIC in the formulation of the NLSM or
DLSM routines (cf. also last paragraph of section 6). Thus, there
are a limited amount of or no quasi-orders available that could
be resampled to become the NLSM or DLSM graphs. A solution
to this problem is to apply location-scale matching successively
in each inductive step of the RDIC procedure. In contrast to
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FIGURE 13 | For the NLSM method, the quasi-order size distributions are portrayed for the large item numbers n = 200, 250, 300, 350, and 400. One sample of
N = 10, 000 quasi-orders is simulated for any n. The five distributions are plotted using a common scale for the x-axis. The vertical dashed lines give means of the
quasi-order sizes computed in the samples.

other (e.g., ad hoc) sampling procedures, this is feasible with
the RDIC routine because of its inductive setup. This was done
for Figure 13.

In Figure 13, we can see, yet more clearly if we zoom in into
the separate plots, that the distributions of the quasi-order sizes
are roughly bell-shaped. A trend can be seen in Figure 13, in
which all five distributions are plotted together using a common
scale for the x-axis.

6. CONCLUSION

We summarize our findings and end with further
research directions.

6.1. Summary
This work is a third paper of a series of articles contributing
to the issue of representatively sampling quasi-orders. The
two prior publications on this issue are Schrepp and Ünlü
(2015) and Ünlü and Schrepp (2016b). In Schrepp and Ünlü
(2015), the uniform extension method (UEM) was proposed. In
Ünlü and Schrepp (2016b), the randomized doubly inductive
construction (RDIC), simple resampling method (SIRM), and
stratified resampling method (STRM) were introduced. In the
present paper, we have described two further alternatives, the
normal location-scale matching (NLSM) and discrete location-
scale matching (DLSM) methods.

TheUEM is the exactmethod, theoretically representative, but
only works for small item numbers, up to n = 15. The SIRM
and STRM methods, as bias correcting resampling strategies
on the RDIC procedure, are approximate and provide close to
representative quasi-order samples, computationally viable up

to n = 50. The NLSM and DLSM techniques, on the other
hand, significantly improve on the efficiency and feasibility of
the afore mentioned methods. The NLSM and DLSM are only
approximate methods, which we have demonstrated for item
numbers up to n = 400.

To sum up, we have addressed why ordered structures
including the quasi-orders are important, why we want to sample
random quasi-orders representatively, and the broader scope of
this paper (section 1). We have reviewed the currently available
sampling techniques for quasi-orders, especially the UEM, RDIC,
SIRM, and STRM methods (section 2). We have performed
polynomial regression analyses for the mean quasi-order size and
quasi-order size standard deviation as a function of item number
(section 3). For the mean and standard deviation, we have seen
that quadratic and linear relationships, that is, q(k) = −1.116 +
1.673k + 0.176k2 and l(k) = −0.121 + 0.497k, respectively,
do hold, with k the item number. We have introduced the
new methods NLSM and DLSM (section 4). If fµ,σ denotes the
normal probability density function with mean µ and standard
deviation σ , the defining probability weights of the NLSM
approach are given by fµ=q(k),σ=l(k)(s)/

∑

s′∈S fµ=q(k),σ=l(k)(s
′).

On the other hand, the DLSM method crucially rests on the
transformed values t(s) : = σt(s − µ)/σ + µt (for notation
details, see section 4). In simulations, the scope and usefulness of
the methods NLSM and DLSM have been investigated (section
5). We have seen that the NLSM is the better performing
method as compared to the DLSM. Forming their “Average” has
slightly improved on the methods, for smaller item numbers.
Overall, both the methods NLSM and DLSM have provided
good approximations to representative reference values, with
respect to criteria other than the size, but primarily in regard
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to representative quasi-order size distributions. The results
obtained for the location parameter have been more robust than
for the scale parameter. We have simulated large quasi-orders on
up to n = 400 items and have observed roughly bell-shaped size
distribution graphs.

6.2. Further Research
We conclude with suggestions for further research. A possible
direction for future research may be the unlabeled, or
isomorphic, sampling of quasi-orders. In this paper, only labeled
quasi-orders have been considered. This would necessitate
the development of some analog of the RDIC procedure,
for the combinatorial construction of the representatives
of all isomorphism classes and its proper randomization.
Furthermore, generating combinatorial structures uniformly
at random according to such procedures as the NLSM and
DLSM could also be studied for ordered structures other than
the quasi-orders. Examples are weak, partial, or linear orders.
Literature such as Harary and Palmer (1973), Dixon and Wilf
(1983), Kerber et al. (1990), Brinkmann and McKay (2002,
2005), Pfeiffer (2004), and Roberts and Tesman (2009) in
mathematics, and Flajolet et al. (1994), Rodionov and Choo
(2003), Duchon et al. (2004), and Bassino and Nicaud

(2007) in computer science may prove valuable for these
future research endeavors (section 1.3), albeit these works
may not be directly applied in the present context of sampling
quasi-orders (Ünlü and Schrepp, 2017).

Another interesting direction for further research may be the
comparison of other methods with the RDIC procedure used to
construct the quasi-orders underlying the NLSM and DLSM. In
their current formulations, theNLSM andDLSMhave at the basis
the RDIC generated quasi-order samples (section 4). For this
purpose, for instance the very flexible normal ad hoc sampling
procedure or a very efficient variant of the entry-wise uniform
sampling approach followed by taking the transitive closure
(section 2) could be applied, to build the underlying quasi-
orders that are being resampled according to the NLSM or DLSM
procedures. Then, it remains to be seen how representative such
modified NLSM and DLSM samples still are, if samples (for large
n) can be obtained at all (penultimate paragraph of section 5).
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