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Many clinical and psychological constructs are conceptualized to have multivariate

higher-order constructs that give rise to multidimensional lower-order traits. Although

recent measurement models and computing algorithms can accommodate item

response data with a higher-order structure, there are few measurement models and

computing techniques that can be employed in the context of complex research

synthesis, such asmeta-analysis of individual participant data or integrative data analysis.

The current study was aimed at modeling complex item responses that can arise

when underlying domain-specific, lower-order traits are hierarchically related to multiple

higher-order traits for individual participant data from multiple studies. We formulated

a multi-group, multivariate higher-order item response theory (HO-IRT) model from a

Bayesian perspective and developed a newMarkov chainMonte Carlo (MCMC) algorithm

to simultaneously estimate the (a) structural parameters of the first- and second-order

latent traits across multiple groups and (b) item parameters of the model. Results from

a simulation study support the feasibility of the MCMC algorithm. From the analysis of

real data, we found that a bivariate HO-IRT model with different correlation/covariance

structures for different studies fit the data best, compared to a univariate HO-IRT model

or other alternate models with unreasonable assumptions (i.e., the same means and

covariances across studies). Although more work is needed to further develop the

method and to disseminate it, the multi-group multivariate HO-IRT model holds promise

to derive a commonmetric for individual participant data frommultiple studies in research

synthesis studies for robust inference and for new discoveries.

Keywords: higher-order IRT, multivariate IRT, multi-group IRT, Bayesian estimation, individual participant data,

meta-analysis

INTRODUCTION

Item response theory (IRT; Hambleton and Swaminathan, 1985; Van der Linden and
Hambleton, 1997; Embretson and Reise, 2000) is a modern psychometric theory that provides
a statistical modeling framework for expressing observed item responses as a function of latent
(unobserved) traits (e.g., abilities, attributes, psychological constructs). IRT has been extensively
used in educational testing and measurement, psychological assessment, and health outcomes
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measurement (Bartolucci et al., 2015; Gibbons et al., 2016). The
present study draws from the IRT literature to retrospectively
establish a common metric across independently conducted
studies with different items and response options. Having a
common metric or understanding of how scores from different
studies can be made comparable is important in comparative
effectiveness research. However, in part because it is difficult to
observe and quantify unobserved latent traits, different measures
for assessing the same trait have proliferated in the literature. For
example, more than 280 different depression scales have been
developed and used in the past century (Fried and Flake, 2018).
Any measurement differences between studies ultimately need to
be taken into account when interpreting effect sizes. However,
it is virtually impossible to empirically tease apart the sources
of between-study heterogeneity because study-level differences
are often confounded with one another (e.g., some of the trials
aimed at seriously ill patients may have used outcome measures
intended to capture more serious symptoms). Consequently,
any resulting interpretation of treatment effect sizes obtained
from studies that used different outcome measures would be
subjective and difficult to verify. Therefore, combining effect sizes
from different outcome measures in meta-analysis has long been
discouraged (Hedges and Olkin, 1985).

Prospectively, it is possible to link different items from
multiple surveys and questionnaires by testing them using
the single group design or the anchor test design (Streiner
et al., 2015; e.g., Choi et al., 2014 for depression). Other
non-IRT methods also exist to link items. However, the
existing approaches have limited utility when there is no
established “standard” metric to compare measures against,
and when the number of utilized measures is high because it
would be impractical to study all measures. More important,
these approaches require preplanning to establish measurement
equivalence in a separate investigation. Therefore, there is a
need for new methods and approaches that directly address
the measurement challenge for meta-analysis studies combining
individual participant data (IPD) or for integrative data analysis
(IDA; Curran and Hussong, 2009).

ADVANCES IN IRT AND CHALLENGES FOR
IPD META-ANALYSIS

Traditionally, IRT involves a unidimensional underlying trait,
denoted as θ. The two most basic and common unidimensional
IRT models are the Rasch model and the two-parameter
logistic (2PL) model. There are two major assumptions
involved in IRT—unidimensionality and local independence.
The unidimensionality assumption of IRT requires that a single
latent dimension θ substantially accounts for the way participants
respond to items. The local independence assumption describes
that items should be conditionally independent given θ. The
IRT models for binary item response can be extended to
accommodate polytomous item response in a number of related
models (Bacci et al., 2014).

Further, as an extension of the unidimensional IRT model,
multidimensional IRT (MIRT) models can accommodate joint

modeling of multiple dimensions, typically expressed as θ. The
bifactor IRT model (Gibbons and Hedeker, 1992) is one of the
most well-known MIRT models. Although MIRT models have
greater generality and may provide greater flexibility in real data
applications, they are associated with more complexity in terms
of both model parameterization and estimation, compared to
traditional unidimensional IRTmodels. MIRTmodels can also be
modified to accommodate multidimensional discrete latent traits
(instead of continuous latent traits θ) so that the lower-order
latent traits are construed as latent classes, which can be seen
as a latent class IRT model. A number of studies pertaining to
multidimensional latent class IRT models have become available
in recent years. For example, Bartolucci (2007) proposed a class
of MIRTmodels that measures discrete latent traits in the context
of binary items. More recently, Gnaldi et al. (2016) extended the
model to incorporate item response data nested within students
that are nested in schools.

More broadly, there are a number of new IRT models and
factor analysis (FA) models and software programs that can
account for multidimensional data with a higher-order structure
(e.g., Sheng and Wikle, 2008; de la Torre and Song, 2009; de la
Torre and Hong, 2010; Huang and Wang, 2013, 2014; Huang
et al., 2013; Rijmen et al., 2014). Other recent models can also
accommodate respondents’ or testlets’ effects inmultilevel, multi-
group, and/or mixture IRT models (e.g., van der Linden, 2007;
Klein Entink et al., 2009; Cho and Cohen, 2010; Azevedo et al.,
2015; Camilli and Fox, 2015; Fox and Marianti, 2016; Schmidt
et al., 2016). In addition, Bayesian estimation is possible using
general purpose software programs, such as Mplus (with Bayes
estimator; Muthén and Muthén, 1998-2018), Stan (Bürkner,
2017), or WinBUGS (Lunn et al., 2000).

Despite the advances noted above, it is challenging to apply
existing IRT or FA models and associated computing algorithms
to item-level IPD obtained from independently conducted
studies (see Huo et al., 2015; Mun et al., 2015). Some of the major
challenges include study-level missing data, limited item overlap
across studies, and other between-study differences (Hussong
et al., 2013; Mun et al., 2015). These challenges associated
with analyzing IPD from multiple sources have been discussed
extensively elsewhere (e.g., Hussong et al., 2013; Mun et al.,
2015; Brincks et al., 2018; Siddique et al., 2018). In spite of
the challenges, it is of critical importance that commensurate
measures for participants from multiple studies be established as
the first major step toward ensuring the same data interpretation
across studies for IDA or meta-analysis of IPD.

MULTIVARIATE HO-IRT MODEL FOR ITEM
RESPONSE DATA FROM MULTIPLE
STUDIES

We focus on psychological constructs with a multivariate higher-
order structure, which give rise to multidimensional lower-order
traits in the present study. A multivariate higher-order item
response theory (HO-IRT) model is developed to estimate trait
scores of participants from multiple studies and tested using
a Markov chain Monte Carlo (MCMC) estimation approach.
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We use the term “multidimensional” to indicate that multiple,
possibly related traits give rise to observed item response data.
A “hierarchical structure” or “higher-order structure” is said
to exist when multiple lower-order traits can be expressed
as function of an overall, higher-order trait. When there are
two or more higher-order traits, a “multivariate” higher-order
structure exists.

It has been noted that a lack of new methods and
application examples to address the challenges of analyzing
data from multiple studies has hindered the broader adoption
of IDA by applied researchers despite its promise (Curran
et al., 2017). On one hand, it is difficult to fully grasp the
unique challenges of analyzing IPD from multiple studies and
to be motivated to develop new methods and algorithms,
yet; on the other hand, without the algorithms designed
for IPD obtained from multiple studies, there would be
no reports to share, resulting in a “catch 22” situation. If
there were more options available, applied researchers could
choose more appropriate analytic approaches to meet their
needs in the context of subsequent analyses, which would
be more preferable than either invoking unreasonable data
assumptions or not considering research synthesis even when it
is feasible (Mun and Ray, 2018).

In sum, the present study is aimed at addressing the
aforementioned gaps in available methods by developing
a multivariate HO-IRT model and associated computing
algorithm. Our rationale for the development of the multivariate
HO-IRTmodel is two-fold. First, many clinical and psychological
constructs have been conceptualized to have multivariate
higher-order constructs that give rise to multidimensional
lower-order traits; yet most of the available measurement
models for the purpose of analyzing existing data from
multiple studies are unidimensional and non-hierarchical.
Second, the multivariate HO-IRT model may be appealing
for certain research applications because it estimates multiple
trait scores at the higher-order, as well as lower-order, levels,
thereby achieving data reduction. Having more options in our
methodological tool box can empower researchers in the field
of psychology in their pursuit of fully maximizing available data
for new discoveries. In the following sections, we describe the
multivariate HO-IRT model, MCMC estimation, results from
a simulation study, and application results from a motivating
data example.

MULTIVARIATE HO-IRT MODEL: MODEL
SPECIFICATION

In univariate HO-IRT models (de la Torre and Song, 2009;
de la Torre and Hong, 2010), θ(d) is the domain-specific, first-
order latent trait for the dth domain with d = 1, 2, . . . , D.
The D dimensions of θ can be linked to a single overall
latent trait ω via a weighted linear function: θi(d) =

λ(d)ωi + εi(d), where the subscript [i] indexes participant,

λ(d) is the regression coefficient, and εi(d) is the residual
term conditioned on ωi. However, θ may not be sufficiently
captured by a single overall latent trait. In such a case, we

need to extend the univariate HO-IRT model to accommodate
a vector of higher-order latent traits (i.e., ω) when describing
relationships between first- and second-order latent traits.
Figure 1 graphically shows the structure of the multivariate HO-
IRT model for multiple groups with the subscript g indicating
group (or study).

In this paper, we use the hierarchical, multi-unidimensional
two-parameter logistic item response theory (2PL-MUIRT)
model as the item response function (Huo et al., 2015), where
each item individually measures a single dimension and all items
collectively measure the D dimensions of θ . Specifically,

P
(

Xi(g)j(d) = 1
∣

∣

∣
θi(g)(d), αj(d), βj(d)

)

=
exp

[

αj(d)

(

θi(g)(d) − βj(d)

)]

1+ exp
[

αj(d)

(

θi(g)(d) − βj(d)

)] ,

where Xi(g)j(d) is the response of respondent i in group g to the

jth item of the dth dimension; θi(g)(d) is the dth component of

vector θ ig = {θi(g)(d)}; αj(d) and βj(d) are the discrimination

and difficulty parameters, respectively, of the jth item of the dth
dimension; j(d) = 1(d), 2(d), . . . , J(d); and

∑D
d=1 J(d) = J.

All item parameters are assumed to be the same across the g =

1, 2, . . . , G groups. The likelihood of the data matrix Xg (g =

1, 2, . . . , G) is given by

L
(

Xg

∣

∣θ g , α, β
)

=

D
∏

d=1

N
∏

i=1

J(d)
∏

j(d)=1

P
(

Xi(g)j(d) = 1
∣

∣

∣
θi(g)(d), αj(d), βj(d)

)Xi(g)j(d)

×
[

1− P
(

Xi(g)j(d) = 1
∣

∣

∣
θi(g)(d), αj(d), βj(d)

)]1−Xi(g)j(d)
.

To take multiple groups into account, the following function
can be used to connect θ to ω: θi(g)(d) = λ(g)(d)ωi(g)(h) +

εi(g)(d). The subscript h = 1, 2, . . . , H denotes the hth

dimension of ω. When H takes the value of 1, 2, or 3 or more,
the multivariate HO-IRT model can be described specifically
as univariate, bivariate, and multivariate models, respectively.
Figure 2 shows the essential parameters of the multivariate
HO-IRT model to be estimated from a Bayesian perspective.
The proposed multivariate HO-IRT model shares the same
item response function with the hierarchical 2PL-MUIRT model
but differs in its approach to estimating covariance structures
among first-order latent traits across groups. In the hierarchical
2PL-MUIRT model, the correlation or covariance structures of
the first-order latent traits are directly estimated as unknown
parameters. In contrast, in the proposed multivariate HO-
IRT model, the correlation or covariance structures of first-
order latent traits are estimated indirectly as a function of
the estimated regression coefficients relating first-order traits
to second-order traits and the variances of the first-order
latent traits.
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FIGURE 1 | The higher-order structure of the bivariate HO-IRT model for multiple groups. The second-order latent trait for group g, ω(g), is bivariate with the

correlation matrix ρω(g)
, whereas the first-order latent trait, θ (g), is D-dimensional. The first higher-order component, ω(g)(1), are related to the first k components (i.e.,

dimensions) of θ , whereas the second higher-order component, ω(g)(2), to the remaining (D− k) components. Further, the components of the first-order trait θ (g) are

assumed to be independent conditional on the second-order traits ω(g).

MARKOV CHAIN MONTE CARLO
ESTIMATION

Prior, Posterior, and Conditional
Distributions
We use the hierarchical Bayesian formulation with the following
prior distributions:

µ(g)(d) ∼ MVN (µH , 6H) ,

where µH was set to 0 and ΣH was a correlation matrix with the
off-diagonal element set to 0.5;

σ 2
(g)(d) ∼ U (0, 1) ;

λ(g)(d) ∼ U (−1, 1) ;

ωi(g)∼MVN

((

0
0

)

,

(

1 0
0 1

))

;

θi(g)(d) ∼ N
(

µ(g)(d), σ 2
(g)(d)

)

;

αj(d) ∼ 4Beta
(

υ0α , ω0α , a0α , b0α
)

; and

βj(d) ∼ 4Beta
(

υ0β , ω0β , a0β , b0β
)

,

where 4Beta indicates the four-parameter beta distribution with
υ and ω as shape parameters and a and b as the location
parameters defining the support of the distribution. ρω(g)

needs

to be transformed from 6ω(g)
, which we describe later in this

section. Here,

6ω(g)
∼ Inverse Wishart

(

ν0 = D+ 2, 3−1
0 =

(

1 0.2
0.2 1

))

.

The priors were chosen based on previous studies (e.g., de la
Torre and Patz, 2005; de la Torre and Song, 2009; Huo et al., 2015)
and adapted to meet the goals of the current study.

The joint posterior distribution of interest is as follows:

P
(

θ , ω, µ, σ 2, λ, ρω, α, β|X
)

∝





G
∏

g=1

L
(

X(g)

∣

∣

∣
θ(g), α, β

)

P
(

θ(g)

)

P
(

ω(g)

)

P
(

µ(g)

)

P
(

σ 2
(g)

)

P
(

λ(g)

)

P
(

ρω(g)

)





×P (α) P (β) ,

which cannot be fully simplified into an explicit distribution from
which samples can be drawn directly. Therefore, we decompose
the joint posterior distribution into several full conditional
distributions for samples to be drawn more easily by using
either the direct sampling approach (i.e., Gibbs sampling; Casella
and George, 1992) or the indirect sampling approach (i.e.,
Metropolis-Hasting [M-H] algorithm; e.g., Chib and Greenberg,
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FIGURE 2 | The parameters of the bivariate HO-IRT model for multiple

groups. Lower-order trait scores θ (g)(d) can be seen as a direct function of

higher-order latent traits ω(g)(h) and characterized by regression coefficients

λ(g)(d) that relate θ (g)(d) to ω(g)(h) as well as by the mean vector and

covariance matrices µ(g)(d) and σ 2
(g)(d)

. Item parameters αj(d) and β j(d) are

also displayed.

1995). The full conditional distribution of θ(g) is

P
(

θ(g)

∣

∣

∣
X(g),ω(g), µ(g), σ 2

(g), λ(g), α, β
)

∝ L
(

X(g)

∣

∣

∣
θ(g), α, β

)

P
(

θ(g)

∣

∣

∣
ω(g), µ(g), σ 2

(g), λ(g)

)

.

The full conditional distribution of ω(g) is

P
(

ω(g)

∣

∣

∣
X(g), θ(g), µ(g), σ 2

(g), λ(g), α, β
)

∝ P(ω(g))P
(

θ(g)

∣

∣

∣
ω(g), µ(g), σ 2

(g), λ(g)

)

.

The full conditional distribution of µ(g) is MVN
(

µ1(g),61(g)

)

,

where the parameters can explicitly be expressed as

µ1(g) =
(

3−1
0(g)

+ N(g)6
−1

(g)

)−1
(

3−1
0(g)

µ
0(g)

+ N(g)6
−1
(g)

θ(g)

)

;

61(g) =
(

3−1
0(g)

+ N(g)6
−1

(g)

)−1
.

Samples can be drawn directly from this distribution using Gibbs
sampling. The full conditional distribution of σ 2

(g) is

P

(

σ 2
(g)

∣

∣

∣

∣

X(g), θ(g), ω
(g)

, µ(g), λ(g), α, β

)

∝ P
(

σ 2
(g)

)

P
(

θ(g)

∣

∣

∣
ω(g), µ(g), σ 2

(g), λ(g)

)

,

and similarly the full conditional distribution of λ(g) is

P
(

λ(g)

∣

∣

∣
X(g), θ(g),ω(g), µ(g), σ 2

(g), α, β
)

∝ P
(

λ(g)

)

P
(

θ(g)

∣

∣

∣
ω(g), µ(g), σ 2

(g), λ(g)

)

.

As previously noted, ρω(g)
needs to be drawn from 6ω(g)

, which

has a full conditional distribution of

P
(

6ω(g)

∣

∣

∣
ωg

)

∝ P
(

6ω(g)

)

P
(

ωg

∣

∣

∣
6ω(g)

)

,

and can be directly sampled using Gibbs sampling. To draw
ρω(g)

, first, samples are drawn from the conditional distribution

of 6ω(g)
, as in the Inverse Wishart distribution (see Gelman

et al., 2004), and the sampled 6ω(g)
is then transformed into

the corresponding provisional ρω(g)
, which is evaluated by the

M-H acceptance criteria. This method was originally developed
by Liu (2008) and Liu and Daniels (2006), and utilized in Huo
et al. (2015). Finally, the full conditional distribution of the item
parameters is

P (α, β|X, θ)

∝

N
∏

i=1

G
∏

g=1

D
∏

d=1

J(d)
∏

j(d)=1

L
(

Xi(g)j(d)

∣

∣

∣
θi(g)(d), αj(d), βj(d)

)

×P
(

αj(d)

)

P
(

βj(d)

)

.

For the full conditional distributions for θ(g), ω(g), σ 2
(g), and

λ(g), the M-H algorithm can be used to indirectly draw samples

from the corresponding distributions. The multivariate HO-
IRT model with multiple groups formulated above is a full
model containing the multivariate higher-order latent traits for
multiple groups. Details of the MCMC algorithms are shown in
the Appendix.

Estimation Indeterminacy
We note two unique challenges to address when estimating
a multivariate HO-IRT model for multiple groups. The first
challenge involves addressing estimation indeterminacy. We set
constraints on the latent distributions by selecting an anchor
group, setting its mean to be 0, and constraining its covariance
matrix to be equivalent to a correlation matrix. Along with
the estimation of the correlation matrix for the anchor group,
the mean vectors and covariance matrices of the remaining
groups are directly estimated by modifying the relevant MCMC
algorithms (Liu and Daniels, 2006; Liu, 2008), and adapting them
to the multivariate HO-IRT model. Alternatively, constraints can
be imposed on item parameters (e.g., fixing one discrimination
parameter to 1 and one difficulty parameter to 0; e.g., Fox
and Glas, 2001) without setting any particular anchor group.
Although both options address estimation indeterminacy, we
chose the first, which is more consistent with the IRT tradition of
constraining the latent distributions (i.e., structural parameters)
rather than the item parameters.

The second challenge is in constructing the
correlation/covariance structures of θ |ω. For each group,
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conditioned on ω, θs are independent from one another. The
conditional variance of θ (d)|ω is σ 2

(d)
(1 − λ2

(d)
). However, the θs

are not marginally independent across dimensions. The elements
of the correlation or covariance matrices can be derived from
σ 2
(d)

for θ(d). Given that the covariance matrix of the anchor

group is constrained, the covariance matrix θ(d) for the anchor

group is equivalent to the correlation matrix because σ 2
(d)

= 1.

Therefore, for any two θs (e.g., θd and θd′ , d 6= d′) sharing
the same higher-order ω, their covariances can be estimated
as σ(d)σ(d′)λ(d)λ(d′). If two θs do not share the same ω, the

covariances can be estimated as σ(d)σ(d′ )λ(d)λ(d′)ρω.

SIMULATION STUDY

Simulation Design
A simulation study was conducted to evaluate the feasibility of
the MCMC algorithms for the bivariate HO-IRT model with
multiple groups. In this simulation study we examined the
bivariate HO-IRT model with multiple groups in the saturated
form, that is, different means and covariance structures for
bivariate second-order latent traits across groups. In other
words, the feasibility of the most comprehensive MCMC
algorithm for a saturated (full) model was examined because any
reduced models are special cases of the saturated model with
constraints. More specifically, for the simulation design, three
groups with each having 1,000 participants were specified. The
second-order latent trait, ω(g), for the three groups was set to be

identical. Specifically, the underlying distribution for the second-
order latent trait was bivariate normal with µ = 0, 6 = R, and
ρ = 0.5. The first-order latent traits θi(g)(d) were generated from

MVN
(

µ(g)(d) + λ(g)(d)σ(g)(d)ωi(g)(d), σ 2
(g)(d)

(

1− λ2
(g)(d)

))

.

The true parameters of µ, λ, σ 2, and covariance matrices
are presented in Table 1. Note that the first group was
designated as the anchor group with a zero mean vector
and a correlation matrix.

The complete item responses were generated based on
θs and item parameters. Thirty items were randomly drawn
from 80 2PL item parameters in an item pool. The item
parameters were constructed based on our prior experience
of analyzing similar data. Their discrimination and difficulty
parameters are presented in Table 2. To ensure that item quality
is identical across dimensions, these 30 items were repeated
five times and used in the simulation phase as a 150-item
test set, measuring five correlated traits. All three groups (a
total sample size of 3,000) had complete responses on all 150
items. A total of 25 replication data sets were generated and
analyzed. All estimation codes were written and implemented
using Ox, an object oriented programming language (Doornik,
2009), and can be made available to interested readers
upon request.

Simulation Results
Four MCMC chains were simultaneously run to monitor their
convergence. Each chain had 25,000 iterations and the first 10,000

TABLE 1 | True parameter values of µ, λ, and σ2 for the first-order traits θ (d) in

the simulation study.

Group λ µ σ2 Covariance

1



















0.837

0.837

0.837

0.837

0.837





































0

0

0

0

0





































1

1

1

1

1





































1

0.7 1

0.7 0.7 1

0.35 0.35 0.35 1

0.35 0.35 0.35 0.7 1



















2



















0.837

0.837

0.837

0.837

0.837





































0.3

0.4

0.5

0.6

0.7





































0.75

0.75

0.75

0.75

0.75





































0.75

0.53 0.75

0.53 0.53 0.75

0.26 0.26 0.26 0.75

0.26 0.26 0.26 0.53 0.75



















3



















0.837

0.837

0.837

0.837

0.837





































−0.3

−0.4

−0.5

−0.6

−0.7





































1.25

1.25

1.25

1.25

1.25





































1.25

0.88 1.25

0.88 0.88 1.25

0.44 0.44 0.44 1.25

0.44 0.44 0.44 0.88 1.25



















Underlying distribution for the second-order latent traits is bivariate normal with µ = 0,

6 = R, and ρ = 0.5.

TABLE 2 | Item parameters used in the simulation study (First 30 items).

Discrimination Difficulty Discrimination Difficulty

Item (α) (β) Item (α) (β)

1 1.288 0.193 16 1.554 0.693

2 1.320 −0.080 17 1.390 1.076

3 1.260 0.881 18 0.930 −0.668

4 1.092 1.300 19 0.906 −0.028

5 1.120 0.164 20 1.366 1.852

6 0.995 1.096 21 1.258 1.821

7 1.010 0.562 22 0.919 1.797

8 1.366 1.488 23 0.944 1.751

9 1.110 −1.351 24 1.253 −0.654

10 0.956 1.557 25 0.910 −1.013

11 1.050 0.134 26 0.977 −0.942

12 0.937 −0.408 27 0.974 −0.244

13 0.682 1.503 28 1.231 −0.604

14 1.125 1.504 29 0.780 −1.236

15 1.105 1.746 30 1.099 −1.162

iterations were discarded as burn-in. The Gelman–Rubin (G–
R) diagnostic statistics (Gelman and Rubin, 1992) across all
parameters were <1.1 (when tested with a single replication and
one chain), suggesting that convergence was achieved. Table 3
presents the estimation results. The MCMC estimates of the
means were almost identical to their true values. The computed
standard errors (SEs) were small and generally comparable across
different µs. The estimates of λs for the three groups ranged
from 0.827 to 0.840, which indicates a fairly good estimation
recovery of their true value, 0.837. The SEs were generally small
and consistent across dimensions and groups. The estimates of
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TABLE 3 | Estimated parameters and SEs of the simulated bivariate HO-IRT

model for three groups (data averaged across 25 replications).

Group 1 Group 2 Group 3

ω ρ̂ω1
SEρ̂ω1

ρ̂ω2
SEρ̂ω2

ρ̂ω3
SEρ̂ω3

0.500 0.013 0.496 0.014 0.497 0.009

θ λ̂1 SE
λ̂1

λ̂2 SE
λ̂2

λ̂3 SE
λ̂3

1 0.831 0.010 0.835 0.012 0.833 0.014

2 0.838 0.012 0.833 0.012 0.840 0.010

3 0.833 0.010 0.831 0.014 0.836 0.011

4 0.827 0.015 0.837 0.012 0.834 0.019

5 0.838 0.012 0.834 0.017 0.836 0.015

θ µ̂2 SEµ̂2
µ̂3 SEµ̂3

1 NA NA 0.300 0.014 −0.305 0.016

2 NA NA 0.403 0.016 −0.404 0.021

3 NA NA 0.505 0.015 −0.498 0.021

4 NA NA 0.605 0.013 −0.600 0.021

5 NA NA 0.704 0.013 −0.702 0.019

θ σ̂ 2
2 SE

σ̂ 2
2

σ̂ 2
3 SE

σ̂ 2
3

1 NA NA 0.759 0.027 1.283 0.047

2 NA NA 0.768 0.027 1.278 0.051

3 NA NA 0.757 0.025 1.273 0.044

4 NA NA 0.742 0.026 1.270 0.055

5 NA NA 0.758 0.027 1.267 0.042

True values can be seen in Table 1. NA, due to the constraints set for the anchor group.

TABLE 4 | Bias and RMSE of the discrimination and difficulty parameter estimates

of the 150 items.

Bias RMSE

θ Discrimination Difficulty Discrimination Difficulty

(α) (β) (α) (β)

1 −0.002 0.003 0.013 0.013

2 −0.008 0.004 0.014 0.014

3 −0.005 0.005 0.012 0.011

4 0.003 0.005 0.013 0.009

5 −0.001 0.004 0.010 0.012

Overall −0.002 0.004 0.012 0.012

σ 2s were also quite close to their respective true values, and
the estimated correlations between the two second-order traits
were very close to the true correlation (0.5) in all three groups.
Table 4 presents the bias and RMSE of the discrimination and
difficulty parameter estimates of the 150 items as well as for
the entire test. Overall, the magnitudes of the bias and RMSE
of the discrimination and difficulty parameter estimates were
very small (i.e., maximum absolute bias and RMSE of 0.008 and
0.014, respectively), indicating that these item parameters were
accurately recovered.

Figure 3 shows the scatter plots of the true and estimated
first-order latent trait scores from 3,000 respondents (from all
three groups) averaged across 25 replications. All five plots show
that the true and estimated trait scores were highly correlated

(Pearson’s r ≥ 0.985). Similarly, Figure 4 shows the scatter plots
of the true and estimated second-order latent trait scores for each
of the two second-order dimensions. The two plots in Figure 4

show that the true and estimated trait scores at this second-
order level were highly correlated (Pearson’s r = 0.914 and 0.884,
respectively, for the two second-order trait dimensions).

Although the simulation study illustrated the MCMC
algorithms for the bivariate HO-IRTmodel in the saturated form,
the MCMC algorithms can flexibly be adapted to fit reduced
(i.e., simpler) models. For example, a reduced model may be
a bivariate HO-IRT model with multiple groups with different
means and a common covariance structure across groups. This
reduced model may be needed for studies with small samples
or sparse data, because the estimation of different covariance
structures across groups may result in unreliable estimates under
challenging data situations. With a common covariance structure
assumed among multiple groups, it is straightforward to estimate
the reduced models. In this case, only one set of the common λ

and σ 2 needs to be specified in the model. Moreover, additional
model constraints can be imposed to the anchor group to
avoid estimation indeterminacy, which renders the common
covariance matrix being equivalent to the common correlation
matrix. The implied correlation between any two θs sharing the
same second-order ω simplifies to λ(d) × λ(d′), and between any
two θs stemming from two different ωs to λ(d) × λ(d′) × ρω1ω2 .

BIVARIATE HO-IRT ANALYSIS
APPLICATION

Data and Measures
We focus on the Alcohol Expectancies and Drinking Motives
constructs from Project INTEGRATE (Mun et al., 2015) in
the current study. Alcohol Expectancies and Drinking Motives
are closely associated constructs, although they are different
from each other conceptually. Alcohol Expectancies address the
positive or negative beliefs about alcohol’s cognitive, emotional,
and behavioral effects (e.g., It would be easier to express feelings),
whereas Drinking Motives address specific reasons for drinking
to achieve desired outcomes (e.g., I drink to be sociable). Based
on the literature and the preliminary exploratory data analysis,
we conceptualized Alcohol Expectancies and Drinking Motives
as second-order trait dimensions that are hierarchically and
linearly related to the following five first-order trait dimensions:
(1) Social Enhancement and Disinhibition Expectancies, (2)
Tension Reduction and Relaxation Expectancies, (3) Negative
Alcohol Expectancies, (4) Coping Motives, and (5) Social and
Enhancement Motives. The first three and the latter two first-
order dimensions represent Alcohol Expectancies and Drinking
Motives, respectively.

The entire item data pool consisted of a total of 126
items assessed in 19 studies from several questionnaires and
items. These items were originally from the Comprehensive
Effects of Alcohol Questionnaire (CEOA; Fromme et al., 1993),
the revised Alcohol Expectancies Questionnaire (AEQ; George
et al., 1995), the Sex-Related Alcohol Expectancy Questionnaire
(SRAEQ; Dermen and Cooper, 1994), the Expectancy/Context
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FIGURE 3 | Scatter plots of the true and estimated first-order latent trait scores from the simulation study.

Questionnaire (ECQ; Darkes and Goldman, 1993, 1998), and
the Drinking Motives Questionnaire Revised (DMQ-R; Cooper,
1994). For some of the questionnaires, the responses were
coded identically across studies and, for others, responses
were obtained using different response formats. Therefore, the
different polytomous response options were converted to binary
responses to harmonize item responses across studies, a standard
strategy in the field (e.g., Curran et al., 2008, 2014; Bauer, 2017).

Analyzing the entire data set in a single analysis was
challenging because the combined data were very sparse (i.e.,
a high rate of missing data at the item level due to different
study designs), which is typical in the analysis of existing IPD
from multiple studies. We followed the same strategies used in

Huo et al. (2015) to address this challenge. Briefly, we increased
common linkage among items and reduced the proportion
of missingness by identifying pairs of items eligible for item
collapsing, and then checked these collapsed items more closely
during the item calibration stage. For the purpose of illustration,
we chose a subset of the data with fairly good item coverage (93%)
across three studies in terms of data completeness. Most of the
missing data within this subset of data occurred at the participant
level; not at the group (study) level. Because the participants had
a subset of the item response data, we assumed that any missing
items in the data were missing at random, and that any inference
bias may be ignorable. Accordingly, we could reasonably expect
to obtain stable estimates. The data analyzed contained a total
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FIGURE 4 | Scatter plots of the true and estimated second-order latent trait scores from the simulation study.

of 49 items from three studies (studies 6, 15, and 16) out of the
full data set. The total combined sample size was 665 (N = 115,
263, and 287, respectively). There were 15 items on dimension
1; 6 items on dimension 2; 13 items on dimension 3; 5 items on
dimension 4; and 10 items on dimension 5.

Comparison of the Results From Univariate
and Bivariate HO-IRT Models
We analyzed the data using four different HO-IRT models:
univariate HO-IRT model with a common correlation structure
across groups (model 1); univariate HO-IRT model with
different correlation/covariance structures across groups (model
2); bivariate HO-IRTmodel with a common correlation structure
across groups (model 3); and bivariate HO-IRT model with
different correlation/covariance structures across groups (model
4). In eachmodel estimation, Group 1 was set as the anchor group
because it had moderate mean responses on average, compared
to the other two groups. A total of four chains with different
starting values were implemented to monitor convergence. Each
chain had 75,000 draws and the initial 10,000 iterations were
considered as the burn-in. The G-R statistics (Gelman and Rubin,
1992) for all parameters were <1.1, indicating that convergence
was reached for all models. To assess the extent to which the
samples drawn from a given chain were independent, the effective
sample sizes (ESS) were computed for all parameters of model 4.
The ESS ranged from 1535.93 to 6573.40 across the four chains,
with an average ESS of 2684.11.

We compared the model fit of the four models based on the
deviance information criterion (DIC; Spiegelhalter et al., 2002).
DIC is well-suited to compare models that were estimated from
the MCMC analysis, and can be treated as a Bayesian extension
of the Akaike information criterion (AIC; Akaike, 1974), with
lower scores indicating better fit. To compute DIC statistics, half
of the deviance variance was used as the effective number of
parameters (Gelman et al., 2004). The DIC values for models
1 through 4 were 35571, 32133, 35379, and 31976, respectively.
These results indicated that bivariate HO-IRT models (models 3
and 4) outperformed their univariate counterparts (models 1 and
2). In addition, the models with different correlation/covariance
structures (models 2 and 4) showed a much better model fit

TABLE 5 | Derived correlation matrices from the bivariate HO-IRT model (lower

off-diagonal) and from the univariate HO-IRT model (upper off-diagonal).

θ1 θ2 θ3 θ4 θ5

θ1 1 0.813 0.847 0.442 0.364

θ2 0.800 1 0.827 0.431 0.356

Group 1 θ3 0.829 0.809 1 0.450 0.371

θ4 0.447 0.436 0.452 1 0.193

θ5 0.372 0.362 0.375 0.219 1

θ1 1 0.783 0.645 0.615 0.506

θ2 0.792 1 0.646 0.616 0.507

Group 2 θ3 0.677 0.674 1 0.507 0.417

θ4 0.482 0.480 0.410 1 0.398

θ5 0.455 0.454 0.387 0.708 1

θ1 1 0.864 0.859 0.737 0.685

θ2 0.866 1 0.836 0.718 0.667

Group 3 θ3 0.862 0.840 1 0.713 0.663

θ4 0.723 0.705 0.702 1 0.569

θ5 0.689 0.671 0.668 0.725 1

In the bivariate HO-IRT model, the first three first-order trait scores (θ1, θ2, θ3 ) share

the same second-order trait ω1 and the remaining two first-order trait scores θ4 and

θ5 share ω2. Underlined numbers indicate the higher-order relationships. Group-specific

correlations between the two second-order latent traits were 0.961, 0.624, and 0.879,

respectively for Groups 1–3.

than the models with a common correlation structure across
groups (models 1 and 3). Both univariate and bivariate HO-
IRT models with different correlation/covariance matrices across
groups (models 2 and 4) showed noticeable between-group
differences, suggesting that the HO-IRT models with a common
correlation matrix were not ideal for the data. Overall, model 4
was the best fitting model. Because the DIC values of models 2
and 4 were relatively close, we report results frommodels 2 and 4
in Table 5.

Table 5 shows three sets of correlation matrices among five
first-order latent traits for the three groups for the bivariate
HO-IRT model (lower off-diagonal; model 4) and for the
univariate HO-IRT model (upper off-diagonal; model 2). In
both HO-IRT models, the correlations of the first three first-
order trait dimensions were strong in all three groups. However,
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the correlations of the last two first-order trait dimensions
varied across groups and across the two models. In Group 1,
the correlations from both HO-IRT models were rather weak
(0.219 and 0.193 for models 4 and 2, respectively). However,
in Group 2, they were 0.708 vs. 0.398 for models 4 and 2,
respectively; in Group 3, they were 0.725 vs. 0.569 for models 4
and 2, respectively. The results suggest that the bivariate HO-
IRT model better captured the expected relationships between
the first-order latent traits. In contrast, the univariate HO-IRT
model did not show evidence of a two-cluster hierarchical data
structure. This difference between the two HO-IRT models can
be attributed to different formulations of the second-order latent
traits in these models. The formulation of the two dimensions
at the second-order latent trait level in the bivariate HO-IRT
model provided greater flexibility in capturing the associations
between dimensions 4 and 5 at the first-order latent trait level
for Groups 2 and 3. Furthermore, the bivariate HO-IRT model
yielded group-specific correlations between the two second-order
latent trait levels: 0.961, 0.624, and 0.879, respectively, for the
three groups. When the correlation between the two second-
order latent traits was high (i.e., 0.961 for Group 1), both
the bivariate and univariate HO-IRT models produced similar
correlation/covariance matrices. However, when the correlation
was moderate (i.e., 0.624 for Group 2), the covariance matrices
for the first-order trait dimensions from the two HO-IRT
models diverged.

Finally, we implemented the posterior predictive model check
(PPMC) procedure to evaluate the model fit. We used the
proportion correct (i.e., the proportion of items endorsing the
“correct,” “agree” or “true” response) as a discrepancy measure
for this procedure. The posterior predictive p-values (ppp; Meng,
1994; Sinharay et al., 2006) for all items from the best fitting
model (model 4) fell between 0.025 and 0.975, suggesting that the
model was reasonable for the data.

DISCUSSION

The current study provides findings from a simulation study as
well as from real data analysis, which demonstrates the feasibility
of the MCMC algorithms and potential utility of the multivariate
HO-IRT model for multiple groups in connection with analysis
of IPD from multiple studies. In recent years, a number of
flexible IRT and FA programs have emerged for estimating
unidimensional or multidimentional 1PL, 2PL, 3PL, graded
response, partial credit, higher-order IRT, and bifactor models,
including BMIRT II, a component of a Bayesian multivariate
IRT (BMIRT) toolkit by Yao (2010); IRTPRO (Cai et al., 2011);
exMIRT (Cai, 2013); FLIRT (Jeon et al., 2014); a general-purpose
IRT program (Haberman, 2013); Mplus (with Bayes estimator;
Muthén and Muthén, 1998-2018); Stan (Bürkner, 2017); or
WinBUGS (Lunn et al., 2000).

Despite the advances, there is an unmet need for additional
tools to help address the challenges of analyzing item response
data to combine and synthesize IPD from multiple studies. The
existing approaches to establishing commensurate scores across
studies have been limited to unidimensional and first-order item

response data. For example, a two-parameter logistic IRT (2PL-
IRT) model (Curran et al., 2008), a moderated non-linear factor
analysis model (MNLFA; Bauer and Hussong, 2009; Curran
et al., 2014; Witkiewitz et al., 2016; Bauer, 2017; Hussong et al.,
2019 ), and a longitudinal invariant Rasch test (LIRT; McArdle
et al., 2009) are measurement models for unidimensional
or multi-unidimensional constructs without any second-order
constructs. The 2PL-MUIRT model (Huo et al., 2015) is also
unidimensional within each item (i.e., each item measures a
single dimension only), except that it can “borrow strength” from
related dimensions (i.e., multi-unidimensional) in the pool of
items under investigation. Therefore, the development of the
proposed multivariate HO-IRT model for multiple groups is a
step in the right direction for providing methodological tools to
advance the field.

The multivariate HO-IRT model reported in the current
study may be appealing as more investigators attempt to
combine IPD from different studies and to establish equivalent
scores at the participant level for complex item response
data. The multivariate HO-IRT model can correctly reflect
a theoretical higher-order model for a given construct while
estimating latent traits at different hierarchical levels across
studies, providing greater flexibility. We demonstrated that the
MCMC algorithm accurately estimated the item parameters,
and first-order and second-order latent trait scores, as well as
the parameters of the hierarchical structures (i.e., the means
and regression coefficients) in the simulation study. From the
real data application, we found that a bivariate HO-IRT model
with different correlation/covariance structures for studies fit the
data best as expected, compared with its counterpart univariate
HO-IRT model or with the bivariate HO-IRT model with
unreasonable constraints (i.e., the same means and covariances
across studies).

Note that although we used a multi-group approach to reflect
study-level differences, other approaches also exist, such as
adding individual-level and study-by-individual level covariates
into measurement models when deriving commensurate
scores as in MNLFA (Bauer and Hussong, 2009; Curran et al.,
2014, 2016). The multiple-indicator and multiple-cause model
(MIMIC) approach also accounts for the influence of both
categorical (e.g., study membership) and numerical covariates
when estimating individual scores. However, results from
both of the MNLFA and MIMIC approaches can be quite
challenging to interpret (see Lee et al., 2013; Bauer, 2017). In the
absence of individual participant data, others have attempted
to combine aggregate data, such as correlation/covariance
matrices, from multiple studies (e.g., meta-analytic structural
equation modeling, Cheung, 2014, 2015). More studies
are needed to develop new approaches and compare their
relative performance.

The multivariate HO-IRT model and the MCMC algorithms
in the present study were developed to address the measurement
and computational challenges in the original project. However,
the algorithms can be adapted to accommodate new features and
converted into program codes (e.g., Stan; Bürkner, 2017) and
developed further into a package for R (R Core Team, 2018) in
future studies for better accessibility.
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With regard to specific areas for model refinement in future
studies, first, the current study assumed that the means of the
higher-order latent traits are 0 s and their variances are 1 s
for model simplicity. Setting such model constraints is not the
only solution to handle estimation indeterminacy. Depending
on specific research requirements, different constraints can be
imposed. In the future, different mean levels of higher-order
latent traits, not necessarily 0 s, may be estimated to better
understand how higher-order structural parameters function in
multiple-group applications. Similarly, for even more complex
situations, such as third-order latent traits subsuming second-
order latent traits, more constraints may be considered to model
data parsimoniously.

Second, we assumed that the same items administered in
different studies had the same item parameters. This is the same
assumption made for the hierarchical 2PL-MUIRT model (Huo
et al., 2015). All participants in the data application were college
students from the same college campus who were assessed at
the same time or a year apart from one another, and their
demographic and alcohol-related characteristics were generally
similar. In addition, in an earlier larger study from Project
INTEGRATE, we found that there was no meaningful difference
between the model constrained to have the same item parameters
across studies and the model that allowed items to have different
item parameters (DIF items; see Mun et al., 2015 for detailed
discussion on the relationship between DIF and latent traits).
Therefore, the assumption that item parameters are the same
across studies may be reasonable for this study. In future studies,
it may be beneficial to further refine model parameterization and
estimation to test which of the items may function differently in
a large sample with limited missing data.

Finally, the simulation study was rather limited in scope.
We focused on demonstrating the feasibility of the MCMC
algorithms. It would be helpful to examine several key data
conditions under which the MCMC algorithms perform well in
a carefully designed simulation study. In sum, the multivariate
HO-IRTmodel for multiple groups has room to further improve.

Having described the areas to improve, we now highlight
the promise of this new method in broader terms. In the
field of clinical research, it is increasingly important to share
and link data across different systems measured in different
time scales for data-driven discoveries to deliver faster and
more individualized treatment decisions (i.e., the Precision
Medicine Initiative; Collins and Varmus, 2015). The National
Institutes of Health has long promoted the use of standard
measures of phenotypes, such as the PhenX toolkit (https://
www.phenxtoolkit.org/), in health research. When measures are
not the same across studies, the current paper shows how
to establish a “common metric” for complex item response
data. With new measurement models specifically developed
for such applications, it would be feasible to validly assign
psychometrically comparable scale scores to individuals from
different studies despite using different questions or surveys, as
long as at least some of the items across studies can properly
be linked. The new multivariate HO-IRT model for multiple
groups that we developed and tested in the current paper may

be instrumental for appropriately linking complex item responses
given by individual participants frommultiple studies to examine
them as a whole and expedite scientific discoveries (Hesse et al.,
2015; Goldstein and Avenevoli, 2018).
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