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Human listeners must identify and orient themselves to auditory objects and events
in their environment. What acoustic features support a listener’s ability to differentiate
the great variety of natural sounds they might encounter? Studies of auditory object
perception typically examine identification (and confusion) responses or dissimilarity
ratings between pairs of objects and events. However, the majority of this prior
work has been conducted within single categories of sound. This separation has
precluded a broader understanding of the general acoustic attributes that govern
auditory object and event perception within and across different behaviorally relevant
sound classes. The present experiments take a broader approach by examining
multiple categories of sound relative to one another. This approach bridges critical
gaps in the literature and allows us to identify (and assess the relative importance
of) features that are useful for distinguishing sounds within, between and across
behaviorally relevant sound categories. To do this, we conducted behavioral sound
identification (Experiment 1) and dissimilarity rating (Experiment 2) studies using a
broad set of stimuli that leveraged the acoustic variability within and between different
sound categories via a diverse set of 36 sound tokens (12 utterances from different
speakers, 12 instrument timbres, and 12 everyday objects from a typical human
environment). Multidimensional scaling solutions as well as analyses of item-pair-level
responses as a function of different acoustic qualities were used to understand what
acoustic features informed participants’ responses. In addition to the spectral and
temporal envelope qualities noted in previous work, listeners’ dissimilarity ratings were
associated with spectrotemporal variability and aperiodicity. Subsets of these features
(along with fundamental frequency variability) were also useful for making specific
within or between sound category judgments. Dissimilarity ratings largely paralleled
sound identification performance, however the results of these tasks did not completely
mirror one another. In addition, musical training was related to improved sound
identification performance.
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INTRODUCTION

Successful perception of speech (Creel and Bregman, 2011),
music (McAdams and Giordano, 2009) and auditory scenes
(Bregman, 1990; Bizley and Cohen, 2013) relies on identifying
sound sources. That is, a listener’s perceptual and cognitive
systems must transform acoustic signals into mental constructs,
which help organize information from the environment.
Regardless of the specific kind of sound one hears (whether it
is speech, music, or another environmental sound) this process
appears to involve (1) a multidimensional set of acoustic cues,
(2) a process of matching cues to representations of objects
and events stored in memory, and (3) the use of those object
representations to organize auditory scenes (McAdams, 1993).
While a large and important body of work has examined the
perception and psychophysics of different acoustic attributes
(Moore, 2012) it is still unclear how specific acoustic qualities
contribute to the formation of auditory object and event
representations for the wide array of natural stimuli relevant to
human listeners. A better understanding of this process can help
improve our knowledge of how humans navigate and interact
with their auditory environment. This in turn might improve
machine intelligence algorithms and assistive hearing therapies,
both of which are increasingly vital for our aging and technology-
immersed society.

Our current understanding of auditory object and event
perception has been greatly advanced by the analysis of metrics
that code differences among pairs of items. Dissimilarity
data can come directly from behavioral ratings provided by
participants (the more dissimilar two stimuli are, the higher the
dissimilarity rating; Giordano et al., 2011), or from confusion
rates in identification tasks (the more similar two stimuli are,
the higher the degree of confusion; Giordano and McAdams,
2010; Sell et al., 2015). Such approaches provide rich data
that often come in the form of a matrix representing how
dissimilar all the possible pairs of items are within a set
(or of interest for a particular study). Links can then be
made between a listener’s perception (ratings or confusions)
and the physical qualities of the stimuli they observed. This
can be uncovered by correlating the physical attributes of
the items with their positions in a derived multidimensional
space (Shepard, 1980), or by directly correlating the observed
matrix of dissimilarities with other item-pair-level dissimilarity
matrices that correspond to differences among the stimuli in
terms of their physical qualities or computational representations
(Kriegeskorte and Kievit, 2013). The former analysis is known
as multidimensional scaling (MDS) and the latter is known
as representational similarity analysis (RSA). Thus, these
approaches help provide an understanding of what stimulus
characteristics participants use to perceive, represent, and
distinguish complex natural stimuli.

Multidimensional scaling and RSA have typically been
employed in the study of specific subsets of sound stimuli
in isolation from one another (e.g., studies of speech sounds
or of musical instrument timbres). Because of this, inferring
what features are useful for natural sound perception across
categories requires comparing findings across studies that

involve different methods and participants. This presents two
fundamental roadblocks to furthering our understanding of
human auditory object and event perception, which our
work addresses. First, it is currently difficult to determine
what features are most influential for auditory object and
event perception across (e.g., features useful for comparing
instrument vs. instrument sounds and comparing speech vs.
speech sounds) or between different sound categories (e.g.,
features useful for comparing instrument vs. speech sounds),
and it is unclear what the relative level of importance of
different acoustic features is in each of these contexts. Second,
the predominant focus on individual sound classes in the
literature obscures potentially important perceptual cues for
distinguishing between categories of sound. As we demonstrate
here, these between category distinctions are important for
organizing how the listener distinguishes sounds and this process
relies on specific cues that are not obvious from examining
individual sound categories. An improved understanding of
how stimuli from different sound categories relate to one
another (1) could help inform interpretations of neural data
or category specific cognitive processes, (2) could support the
generation of new hypotheses regarding general perceptual
mechanisms of natural sound perception and (3) could help
illuminate valuable acoustic processing stages that cut across
different domains of auditory research (see Ogg and Slevc, 2019,
for a review).

The Acoustic Basis of Auditory Object
and Event Perception Within Different

Categories of Sound

Dissimilarity-rating and identification (or confusion) data have
been particularly useful in furthering our understanding of
the perception of different musical instrument sound sources
(Giordano and McAdams, 2010; Siedenburg et al., 2016b), or
the musical quality known as timbre (McAdams and Giordano,
2009; Siedenburg and McAdams, 2017). Distinguishing among
instruments has been shown to depend on two primary
acoustic dimensions: a temporal dimension related to a sound’s
attack or onset time (often its logarithm) and a spectral
dimension related to the center of gravity, or centroid, of a
sound’s frequency spectrum (Iverson and Krumhansl, 1993;
McAdams et al., 1995; Lakatos, 2000). The degree of variability
(or “flux”) in a sounds frequency spectrum (Grey, 1977;
Grey and Gordon, 1978) as well as the attenuation of even
numbered harmonics have also been found to influence timbre
perception (McAdams et al, 1995), albeit less consistently
(Caclin et al., 2005).

Investigations of vocal sounds (including speech and speaker
perception) have also relied on dissimilarity data. Speech is
a rich auditory signal that involves a high level of acoustic
redundancy. This allows a large degree of lexical (linguistic),
phonetic and indexical (speaker-identifiable) information to be
conveyed in a limited amount of time, such as within the
few hundreds of milliseconds of a vowel (Fox et al., 1995;
Iverson and Kuhl, 1995; Owren and Cardillo, 2006). Vowels
are differentiated by the spectral positions of their formants,
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which are intentionally controlled during speech production
by vocal tract changes. These vocal tract changes alter the
spectral shape of the signal generated by a speaker’s vocal folds,
or glottis (Hillenbrand et al,, 1995; Ladefoged and Johnson,
2015). The make up of a speaker’s vocal tract and vocal folds
are also constrained by that individual’s unique physiology,
which imparts cues in the speech signal that are useful for
speaker identification (Bachorowski and Owren, 1999; Johnson,
2005; Smith and Patterson, 2005). However, the same acoustic
redundancy that makes speech so robust to acoustic distortion
or interference (Shannon et al., 1995) poses some difficulty for
defining the set of specific cues that support a listener’s speaker
identification abilities, since the parameter space is very high.
That is, not every cue that could potentially identify a given
speaker needs to be used at the same time, nor are the same
cues even used consistently by the same listener (Kreiman et al,,
1992). Nonetheless, findings based on dissimilarity data and
acoustic analyses suggest that speaker identification relates to
fundamental frequency (determined by the vocal folds), formants
in the frequency spectrum (determined by the vocal tract), and
spectral slope (Matsumoto et al., 1973; Murry and Singh, 1980;
Van Dommelen, 1990; Baumann and Belin, 2010; Sell et al.,
2015). These are often simplified to glottal (source) and vocal
tract (resonant) dimensions (Matsumoto et al., 1973; Baumann
and Belin, 2010). Meanwhile, the vowels within each speaker
are distinguished from one another based the different spectral
positions of formants (Hillenbrand et al., 1995; Johnson, 2005;
Ladefoged and Johnson, 2015).

Successful navigation of the environment also requires quickly
recognizing (and potentially reacting to) a great variety of objects
and events beyond music and speech. Indeed, investigations
of such sounds from a typical human environment (which
we will refer to as human-environmental sounds) frequently
involve diverse sets of sound stimuli encompassing anything
from mechanical or tool sounds to animal vocalizations and
background noises (Ballas, 1993; Giordano et al., 2010; Kaya
and Elhilali, 2014; Huang and Elhilali, 2017). Gygi et al
(2004, 2007) used identification and dissimilarity-rating data to
find that different environmental sounds can be distinguished
based how the sounds vary in their periodicity, loudness,
spectral and temporal envelopes and the overall degree of
change in the frequency spectrum. Hjortkjeer and McAdams
(2016) also found that the perception of the material that
generated an environmental sound was related to the sound’s
spectral envelope (spectral centroid), while the perception
of the sounds action was related to its temporal envelope
(temporal centroid). Indeed, perception of both the action
and resonating material of a sound appear to be the primary
drivers of environmental sound perception (Gaver, 1993;
Lemaitre and Heller, 2012, 2013).

Finally, a related body of work has illustrated the importance
of joint spectral and temporal variability rates, called modulation
power spectra, in timbre (Elliott et al, 2013; Thoret et al,
2016, 2017), speech (Elliott and Theunissen, 2009; Venezia et al.,
2016) and natural sound perception (Singh and Theunissen,
2003; Theunissen and Elie, 2014). These powerful representations
summarize rates of change in the sound’s spectrogram and appear

to be similar to computations carried out in early acoustic
processing stages in auditory cortex (Chi et al., 2005; Patil et al.,
2012; Theunissen and Elie, 2014).

As noted above, these findings are predominantly based on
separate studies that focused on individual categories. Only a
few studies have examined multiple categories of sound together;
however, these were either limited in their scope so as to focus
only on two sound categories (speech and music Chartrand
and Belin, 2006; Agus et al., 2012; Suied et al., 2014), or were
not designed to compare sounds among these categories to
facilitate an analysis of what cues were influential within and
between different classes (Gygi et al., 2004, 2007; Bigand et al.,
2011; Ogg et al,, 2017). Again, this obscures an understanding
of how different acoustic qualities might be important in
differentiating natural sounds across or particularly between
different categories.

The Current Investigation: Auditory
Object and Event Perception Across

Sound Categories

The present studies aimed to relate previous work on individual
domains of auditory research to one another via dissimilarity
ratings of sounds from multiple categories. Like previous work,
participants in this study were presented with a pair of sounds
on each trial and were asked to simply rate how dissimilar
the two sounds in the pair were from one another. While
the task itself is simple, ratings are generally obtained for
all possible pairs of sounds within the stimulus set, which
often entails a large number of trials. Here, ratings were
obtained for a curated set of sounds so as to facilitate the
examination of auditory object and event perception both within
and between the sound classes of vocal sounds (vowels from
different human speakers), musical instruments, and human-
environmental sounds (everyday objects and materials). The
goal was to obtain a broader view of the acoustic features that
undergird auditory object and event perception in humans than
has been obtained previously.

Examining such a large variety of stimuli presents a
number of non-trivial logistical and conceptual challenges. First,
increasing the number of stimuli in a pairwise dissimilarity-
rating task exponentially increases the number of trials and
time required of participants (see Giordano et al., 2011, for
discussion). Second, the relative importance or arbitrariness of
some features, especially fundamental frequency, varies across
categories. That is, fundamental frequency is likely a useful
cue for the identification of some sound sources, such as for
distinguishing speakers (Baumann and Belin, 2010), but it varies
more arbitrarily when identifying others such as instruments, or
can even be altogether absent or unreliable, such as for human-
environmental sounds. We overcame these issues by using a set
of careful experimental design choices informed by prior work on
sound identification.

To address the issue of time demands, we relied on short
duration sounds (250-ms, including the sounds’ onsets).
While this may appear to be a quite restricted duration,
findings from gating paradigms demonstrate that durations
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over 200-ms support asymptotic performance for many
sound identification tasks (Gray, 1942; Robinson and
Patterson, 1995a,b; Suied et al, 2014; Ogg et al, 2017),
and this sort of controlled, limited duration has commonly
been used in many neuroimaging studies (e.g., Formisano
et al., 2008; Leaver and Rauschecker, 2010; Ogg et al., 2019).
We focused on sound onsets because they have been shown
to carry a large amount of information important for sound
perception (Iverson and Krumhansl, 1993; Hjortkjeer and
McAdams, 2016) and identification (Saldanha and Corso,
1964; Wedin and Goude, 1972; Lemaitre and Heller, 2012;
Ogg et al, 2019) and this choice naturally focuses our
investigation on the critical timescales when real-world
identification is taking place (i.e., after a sound has been initiated
in the environment).

To address the differential importance of fundamental
frequency across different sound types, we matched the
fundamental frequency of each vowel utterance to instrument
tokens by having instruments play the nearest corresponding
note in the Western musical scale (or, for human-environmental
tokens without a clear fundamental frequency, the instrument
token played a note corresponding to the middle of the range
of vowel fundamental frequencies). This allows fundamental
frequency to vary naturally among auditory objects where
it is likely a useful or identifiable cue (such as among
speakers) while otherwise mitigating cross-category differences
along this dimension (i.e., equating fundamental frequency
among stimuli for which this is a more arbitrary cue).
Human-environmental sounds were generally noise based
and did not possess fundamental frequency information,
so these sounds were not constrained in the same way.
However, the degree of aperiodicity of the sounds was
incorporated into the analyses to quantify the influence of this
acoustic attribute.

Thus, we were able to control for a set of broad and
potentially confounding acoustic differences between sound
classes (fundamental frequency and duration), while allowing the
natural acoustic features useful for sound identification within
and between categories to vary. In doing so we were able to obtain
a high level accounting of the acoustic dimensions that support
auditory object perception.

Prior to describing the dissimilarity rating results, we first
present the results of a control study on the identification of
these sounds (Experiment 1). This preliminary study served as
a check that the stimuli we chose as well as the durations and
other acoustic controls we employed were representative of the
sound sources we selected, and that our choice in duration did
not distort the sound object or event that was conveyed by each
token. Next, we present the results of a pairwise dissimilarity-
rating study of the same stimuli (Experiment 2). This includes
analyses of the acoustic features participants employed to
distinguish these stimuli using both a typical MDS approach
as well as an RSA-based approach. Finally, while identification
and dissimilarity rating tasks are generally presumed to be
inversely related, some results suggest interesting differences
between these tasks that might inform our understanding of
auditory object and event perception (Gygi et al., 2004, 2007;

Siedenburg et al., 2016b). Thus, we conclude by comparing the
identification and dissimilarity-rating data.

EXPERIMENT 1: SOUND
IDENTIFICATION

Materials and Methods

Participants

We recruited 24 participants (10 female) from the psychology
department participant pool at the University of Maryland.
Participants were compensated with course credit. Data from
one participant were removed because they indicated they did
not have normal hearing. Data from two additional participants
were removed who reported possibly possessing perfect pitch.
This was done for comparability with Experiment 2 and to
mitigate a potential over-reliance on fundamental frequency
cues among these listeners. The inclusion or removal of these
participants did not alter the pattern of our results or conclusions.
Participant ages ranged from 18 to 21 (M = 19.57, SD = 0.98).
Participants were not selected based on their musical ability,
but the majority (71%) had experienced some degree of musical
training (M = 4.67 years, SD = 2.29), which is typical in a large
university population (Schellenberg, 2006; Corrigall et al., 2013).
The University of Maryland Institutional Review Board approved
this study and all participants provided informed consent prior
to participation.

Stimuli

We assembled a set of sound tokens representing 36 auditory
objects and events that were evenly divided among three
superordinate categories: (1) human vocal sounds (vowel
utterances from different speakers), (2) musical instruments, and
(3) sounds from everyday (human-environmental) objects and
materials. These were high quality, natural sound tokens obtained
from databases or via in-house recordings.

Vocal sound tokens were recorded in a sound treated room
using a studio quality microphone, preamplifier and audio
interface under conditions similar to Ogg et al. (2017). Three
male and three female speakers (raised in the Mid-Atlantic region
of the United States) read a randomized list of consonant-
vowel-consonant utterances which comprised the crossing of
the consonants /b/, /g/, and /h/ with the vowels /a/ and /i/, all
ending with the consonant /d/. One at least 250-ms excerpt of
an /a/ and /i/ was extracted for each speaker. The fundamental
frequency of each utterance was then calculated using the YIN
algorithm (De Cheveigné and Kawahara, 2002), and the median
fundamental frequency of each vowel (12 total) was matched to
the closest note in an equal-tempered scale: A, Aby, Abs, By, Bs,
Bb,, Bb3, Cs, and G; (range of raw fundamental frequency values:
99.16- to 251.38-Hz).

Musical instrument tokens were selected from the McGill
University Master Samples database (Opolko and Wapnick,
1987). Instruments were chosen to sample the orchestral palette,
and to match the fundamental frequency of the speakers
utterances, which resulted in the use of the following instruments:
acoustic guitar, piano, harp, contrabass (arco and pizzicato),
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cello (arco and pizzicato), bass clarinet, bassoon, french horn,
trombone, and marimba. For each instrument we selected
recordings from the database that matched the notes derived
from the speaker utterances above, as well as E3 (the median of
the range of vowel fundamental frequencies). Thus, we obtained
10 unique recordings of notes per instrument.

Human-environmental sounds comprised 12 everyday object
sounds depicting a variety of media and events which were
obtained from the BBC sound effect library (BBC, 1997,
BBC Worldwide, London, United Kingdom) as well as the
Carnegie Mellon University Sound Events and Real World Events
databases (Carnegie Mellon University, 2008; Vettel, 2010). The
selection of these sounds was inspired by the sound event
taxonomy outlined by Gaver (1993) and examined by others
(Lemaitre and Heller, 2013), with an emphasis on representing
sounds typical of an everyday human environment. This included
air and liquid sounds (2 tokens each) as well as sounds
of complex interactions among solid materials (also 2 each):
deformation, impact, mechanical, and movement sounds. These
stimuli were predominantly noise-based and did not possess
fundamental frequency information that could be accurately
matched to the music and speech stimuli. This was confirmed
by the YIN pitch detection algorithm, which returned highly
variable fundamental frequency estimates for these tokens (IQR
of fundamental frequency estimates for environmental tokens
was 717 Hz on average, compared to 1.5 Hz among instrument
and vocal sounds) and found these sounds to be largely noise-
based (average aperiodicity of 0.25 among human-environmental
sounds compared to 0.009 among music and vocal sounds).
Because fundamental frequency was not a notable feature of
these sounds, they were selected and presented without further
constraints or controls along this acoustic dimension. Visual
depictions of example sounds from each category are displayed
in Figure 1. The full list of sounds can be found in Figures 2, 3.

Once the stimulus files from these categories were selected and
gathered they were all pre-processed as follows. Stereo sounds
were converted to mono by retaining only the left channel.
Sounds were then edited to begin at their onset, defined here as
the point at which the absolute value of the sound’s amplitude
exceeded 10% of its maximum. Because the noise floor varied
across stimuli, the onset point for each stimulus was determined
based on a version of each sound file that was (4" order, zero-
phase Butterworth) high-pass filtered at 20 Hz. Each token was
then trimmed to a duration of 250-ms from onset, and 5-ms
onset and offset cosine ramps were applied. All stimuli were then
normalized for RMS-level.

Apparatus

The sounds were first presented at approximately 50 dBA
over Sennheiser HD 202-ii headphones (Sennheiser Electronics,
GmBH, Wedemark, Germany), and participants were allowed to
adjust the volume to a level they found comfortable during the
introduction and practice sections. The experiment, playback and
data collection were controlled via PsychoPy (version 1.82.01;
Peirce, 2007) running on an Apple iMac (model number:
MC508xx/A; Apple Computer, Cupertino, CA, United States) in
a quiet, private room.
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FIGURE 1 | Waveform and spectrogram depictions of example sounds from
each category.

Procedure

Participants were instructed that on each trial they would hear
a sound and their task was to simply push one of 36 buttons
from a response key to indicate which sound they had heard.
The label for each sound was matched to one of the 36 alpha-
numeric computer buttons in the response key. The labels on the
key that identified each stimulus were the same as in Figures 1, 2,
except that for the speakers common, gender consistent first-
names were used instead of the labels (e.g., “Male 1” changed
to “Darren,” “Female 1”7 changed to “Annie” etc.). Participants
were told they would always have access to the response key
and that they did not need to explicitly memorize the response
mappings. They were encouraged to take their time in selecting
each response out of the 36 options and informed that response
time was not being assessed in the interest of their responding as
accurately as possible.

Participants were instructed that the sound set was made
up of speech sounds (vowels) from various speakers, single
notes from different musical instruments, or sounds of everyday
objects, and that the pitch of the individual instrument sounds
may vary to match the pitch of the vowel sounds. After
reading the instructions, participants listened to a familiarization
block wherein each sound was played while its label was
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FIGURE 2 | Identification accuracy rates in Experiment 1. The color and shape of the points denote sound category. The solid red line denotes 36-way chance
performance (relative to all items: 1/36), and the dotted red line indicates within-category chance performance (relative to items in the same category for
vocalizations, music, or human-environmental sounds: 1/12). Accuracy rates were aggregated for each item for each participant (across the 10 repetitions of each
stimulus). Error bars denote +1 standard error calculated across participants. Points in (A) are raw item-level accuracy rates while points in (B) code a response
within a given subcategory (instrument family, vowel, or human-environmental media) as correct.
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displayed on the computer screen with no response required.
Stimuli were played twice in the order they appeared on the
response key (human-environmental first, followed by vowels
and instruments played at E3), at a rate of one sound every
3 s. The label for each sound was displayed for 2 s, and 1 s
prior to the next trial the on screen text cued the participant
that the next sound was about to begin. Participants were
told they could adjust the playback volume to a comfortable
level during the familiarization and practice blocks, but not
during the main study.

After the familiarization block came a practice block to
introduce participants to the task. In the practice block, the
stimuli were presented in a random order (instruments played
at E3), and after each sound the participant was asked to indicate
which sound they had heard by pressing the corresponding
button from the response key. If they were unsure they were
instructed to make their best guess. After responding, feedback
was displayed on screen to indicate whether they were correct
and, if not, which sound and response was the correct one. After
each response, feedback was displayed for 2.5 s and then the next
sound was presented.

The task in the main study was essentially the same as the
practice block, but no feedback was provided. On each trial the
response key schematic was displayed along with the prompt
to press the keyboard button to indicate which sound they
had heard (or to make their best guess if they were unsure).
The sound for that trial was played 25-ms after the key and
prompt appeared on screen. The prompt remained on screen
until the subject made a response. After each response came a
1-s prompt indicating that the next trial was about to begin.
The 36 sounds were presented over 10 blocks with no break
or demarcation between blocks. The only change across blocks
was the note of the instrument tokens, which played the same
randomly selected note within each block. Thus each vowel and
human-environmental token was presented 10 times, and each
instrument timbre was presented 10 times at each of the 10
different notes. Sound order was randomized within each block
and the order of blocks (instrument notes) was also randomized
for each participant.

Participants also  completed general demographics,
language, musical experience, and handedness (Oldfield, 1971)
questionnaires, as well as the Goldsmiths Musical Sophistication
Index (Gold-MSI; Miillensiefen et al., 2014).

Results

Accuracy rates for the identification of each stimulus are
displayed in Figure 2, and a confusion matrix aggregating
responses across participants is displayed in Figure 3A.
The diagonal of the confusion matrix corresponds to
item-level accuracy. We conducted one-tailed Wilcoxon
signed-rank tests on the mean subject-level accuracies for
each stimulus (proportion correct across the 10 trials of
each item) to assess whether these items could be identified
better than chance. These tests indicated that every item
was identified reliably better than chance both across
all stimuli (chance = 1/36; all FDR-corrected p < 0.05,
Benjamini and Hochberg, 1995) and also among stimuli

from within the same sound category (chance = 1/12; all
FDR-corrected p < 0.05).

Although identification performance was above chance,
accuracy rates differed widely by category. As shown in
Figure 2A, human-environmental sound accuracy was near
ceiling, followed by vocal sounds and then instrument accuracy.
This observation was confirmed via a generalized binomial
mixed-effect regression of trial-level accuracy using the “Ime4”
package (version 1.1-14, Bates et al, 2015) in R (version
3.3.3, R Core Team, 2017). This model contained a predictor
for sound category (a factor with levels: vocal sounds,
music or human-environmental; dummy coded with the
human-environmental as the intercept), the musical training
subscale of the Gold-MSI (z-normalized), and the interaction
between these two variables. These models also contained
random-effect intercepts for participants and each of the 36
items. This model indicated that instrument (b = —3.37,
z = —10.16, p < 0.001) and vocal sound (b = —3.04,
z = —9.20, p < 0.001) identification was less accurate than
for human-environmental sounds, but that musical training
bestowed a small performance advantage for these categories
(interaction between musical training subscale and instrument:
b = 0.15 z = 1.72, p = 0.09; and vocal sounds: b = 0.26,
z=3.01, p =0.003).

Closer inspection of Figure 3A suggests a principled
pattern of confusion among stimuli within each sound
category. That is, participants typically confused similar
sounds within subcategories of these three sound classes:
instrument families (plucked strings: acoustic guitar, harp,
piano, cello pizz.,, contrabass pizz.; bowed strings: cello
arco, contrabass arco; woodwinds: bass clarinet, bassoon;
brass: trombone, French horn;, or percussion: marimba),
vowels (/a/ or /i/ regardless of speaker), and human-
environmental sound excitation media (air, deformation,
impact, mechanical, liquid, and movement based sounds).
To quantify this observation, we recoded accuracy to reflect
within-subcategory accuracy rather than item-level accuracy.
Specifically, any response that fell within a given subcategory
(instrument family, vowel, or excitation media) was marked
as correct, rather than the specific item itself. These within-
subcategory accuracy rates, depicted in Figure 2B, were much
higher, particularly for vowels (which were now near ceiling)
and instruments.

The same binomial mixed-effect regression model described
above was fit to this within-subcategory accuracy measure.
Vocal sound accuracy in this model was no longer significantly
different from human-environmental accuracy (b = —0.55,
z = —159, p = 0.11). However, instrument accuracy
was still significantly lower than human-environmental
accuracy (b = —2.15, z = —6.40, p < 0.001), albeit less so
than for the original, raw item-level accuracy. This was
because woodwinds and bowed string instruments were
frequently confused and correspond to different methods
of excitation (see Figure 3A). This model also contained
large positive interactions between musical training and
both instrument (b = 0.40, z = 3.81, p < 0.001) and vocal
sound (b = 0.78, z = 6.54, p < 0.001) accuracy suggesting
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that more musically trained participants did better on these
stimulus types.

Discussion

The results of this control study indicate that participants
could reliably identify the stimuli they heard, and confused
similar items within subcategories of vocal sounds (vowels)
and instrument sounds (instrument families). In other words,
while accuracy rates were not at ceiling for instrument and
vowel stimuli, the confusions participants made were among
conceptually similar stimuli, suggesting a set of common
cues that participants relied on. Thus, these results indicate
that the stimuli we selected are valid representations of
these sounds despite the duration and fundamental frequency
controls we employed.

The ostensibly low accuracy rates that we observed for
instrument tokens are in fact quite similar to previously
reported identification accuracy rates (Saldanha and Corso, 1964;
Wedin and Goude, 1972). Our results are even consistent with
this prior work in terms of some frequently confused and
poorly identified stimuli such as the bassoon and cello (Wedin
and Goude, 1972). Moreover, we note that the instrument
stimulus set employed here is more diverse and nuanced
than other work that obtained higher accuracy rates. Higher
identification accuracy is usually observed in simpler stimulus
sets that contain one representative of each instrument family
(Robinson and Patterson, 1995a). For example, distinguishing
among bowed strings, such as a cello and contrabass, or brass,
such as a trombone and French horn, is non-trivial and is
more difficult than distinguishing between those instrument
families. More musically experienced listeners were able to better
navigate these nuances and (unsurprisingly) performed better
on instrument sounds. Perhaps less intuitively, however, more
musically experienced participants also performed better when
identifying vocalizations, which has also been noted in previous
work (Chartrand and Belin, 2006).

For vocal sounds, listeners appeared to frequently confuse
stimuli across speakers, while vowel identification was near
ceiling. Again, these results are similar to prior work, which
has found near ceiling vowel identification accuracy alongside
high confusion rates among speakers (Tartter, 1991). This
might have to do with the limited amount of training we
chose to employ for comparability with human-environmental
or instrument paradigms (which typically use very little
training or familiarization; Ballas, 1993;
Patterson, 1995a). This contrasts with studies of speaker
identification, which typically employ more extensive training
phases with many sentences for individual speakers presented
for familiarization (e.g., Perrachione and Wong, 2007). Note
also that identifying the vocalizations in this study required
recognizing both the speaker and the vowel that was being
vocalized. On the one hand, this two-part identification
requirement is a natural aspect of everyday speech perception
(Creel and Bregman, 2011), but on the other hand this
two-component process potentially poses more difficulty for
the listener than the instrument and human-environmental
sound identification trials. However, instead of this two-part

Robinson and

task posing more difficulty overall, especially accurate vowel
identification buoyed overall performance on vocalizations
(compared to the instrument sounds, for example). Thus,
participants relied on the easier aspect of the task and achieved
reasonably good performance (despite frequently confusing
across speakers).

Taken together the results of this preliminary study indicate
that the stimulus controls we employed (particularly for duration
and fundamental frequency) did not impair listeners’ ability
to identify these sounds and the accuracy rates we observed
for each class were similar to previous studies (Saldanha and
Corso, 1964; Wedin and Goude, 1972; Tartter, 1991). We
note that because these stimuli were not confused across the
superordinate categories of music, vocal sounds and human-
environmental sounds (or even very frequently outside of
related subcategories within each class), this confusion matrix
is very sparse, which makes acoustic analyses for these sounds
somewhat difficult. To better assess the acoustic correlates
of sound perception, we conducted a second experiment to
obtain pairwise dissimilarity ratings among all possible pairs of
these stimuli, yielding a richer matrix of perceived differences
upon which to base a thorough acoustic analysis. That is,
the results of Experiment 1 indicate that these sound tokens
appear to be valid representations of the sounds we aimed to
characterize and will thus be useful to examine further in a
dissimilarity-rating task (Experiment 2) to probe the acoustic
features participants use to differentiate these sounds. We will
then return to these confusion rates in comparison to the
pairwise rating data.

EXPERIMENT 2: PAIRWISE
DISSIMILARITY RATINGS

Materials and Methods

Participants

A new group of 54 participants (34 female) who did not
participate in Experiment 1 were recruited from the psychology
department participant pool at the University of Maryland
to participate in Experiment 2. These participants were also
compensated with course credit. Data from one participant
were removed because they indicated they did not have normal
hearing. Data from three additional participants were removed
who reported possibly possessing perfect pitch. As in Experiment
1, the removal or inclusion of these participants did not alter the
pattern of results or conclusions. Participant ages ranged from 18
to 29 (M =20.06, SD = 2.06). Participants were not selected based
on their musical ability, but as in Experiment 1, the majority
(74%) had some degree of musical training (M = 4.88 years,
SD = 3.65). The University of Maryland Institutional Review
Board approved this study and all participants provided informed
consent prior to participation.

Stimuli and Apparatus
The stimuli and apparatus for Experiment 2 were identical
to Experiment 1.
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Procedure

Participants first read the instructions for the study, which
informed them that they would be rating how dissimilar pairs of
sounds were on a scale from 1 (very similar) to 9 (very dissimilar)
with the same general verbal description of the sounds as in
Experiment 1. They were asked to use the full range of the rating
scale and to keep their response criteria as consistent as possible
throughout the study. As in Experiment 1, participants were told
they could adjust the playback volume during the familiarization
and practice blocks, but not during the main study.

In the familiarization block of Experiment 2 the 36 unique
sounds (instruments played at E3) were played back in a
randomized order with an inter-onset-interval of 1.6 s. Each trial
began with a blank screen, and 25-ms of silence. After that initial
25-ms silent period a sound was played and, 25-ms after sound
offset, a fixation cross was displayed for 1.3-s until the next trial
began (no specific labels were provided).

Participants then practiced the rating task on a random subset
of 15 stimulus pairs from the main study. Each trial began with
the text “Sound 1” which remained on screen for 500-ms. 25-
ms after this text appeared, the first sound in the pair for that
trial was played. 500-ms after the “Sound 1” text disappeared, the
same sequence occurred for “Sound 2” (thus a 1-s inter-onset-
interval between the stimuli in each pair). After “Sound 2” had
been displayed for 500-ms, the participant was prompted to press
a button (1 through 9) to indicate how dissimilar the two sounds
were. Listeners were only allowed to listen to each pair once. After
the participant made their response, a 1-s text cue appeared on
screen that indicated the next trial was about to begin.

The structure and timing of trials in the main study was
identical to the practice block. The full pairwise crossing of
our 36 stimuli (each speaker’s utterance, each instrument, and
each human-environmental sound) yielded 1260 stimulus pairs
(excluding the diagonal where each sound is paired with itself).
This corresponds to the matrix in Figure 3B. In the complete
set of 1260 possible pairs, each unique pair of stimuli would
be presented twice in different orders (i.e., on either side of the
diagonal in Figure 3: stimulus A then stimulus B, or stimulus B

then stimulus A). In the interest of time and to minimize fatigue,
each participant only rated one order of each unique pair and the
order of pairs was counterbalanced across participants via two
complementary lists of 630 pairs/trials, typical of many previous
dissimilarity-rating studies (McAdams et al, 1995; Giordano
etal., 2011; Siedenburg et al., 2016b). Each participant completed
their 630 ratings over 3 blocks of 210 trials. Between each block,
participants were given the option to take a short break, and they
were reminded to keep their rating strategies as consistent as
possible and to use the full rating scale in making their judgments.

On any trial where a vowel stimulus and an instrument
stimulus were paired, the instrument token corresponding to
the nearest equal-tempered note of the vowel’s fundamental
frequency was played. Otherwise, instruments played the
note E3 (the median of the range of vowel fundamental
frequencies) when paired with other instruments or human-
environmental sounds (which generally possessed little to no
reliable fundamental frequency).

Data Analysis

Acoustic features for each stimulus were derived using packages
in MATLAB (2014b, MathWorks, Natick, MA, United States).
We analyzed features that have been previously shown to
influence the perception of natural sound sources and events
within or between the categories of speech, musical instrument,
and human-environmental sounds. The literature pertaining
to these features is described in the Section “The Acoustic
Basis of Auditory Object and Event Perception Within Different
Categories of Sound.” Table 1 provides a description of
how each acoustic feature was calculated and used in the
analysis along with notes regarding interpretation of the
features and the software packages used. We obtained a
single value to describe either a global stimulus feature
(such as for attack-time), or measures of central tendency
(median) and variability [inter-quartile range (IQR)] for
temporally varying features that were calculated in windows
throughout the stimuli (such as for spectral features). For
features that were already inherent measures of variability over

TABLE 1 | Description of acoustic features.

Feature Description

Interpretation

Log-attack-time-9
Temporal centroid ™9 Center of gravity of the energy envelope
Spectral centroid?:m-!
Spectral flatness™
envelope

Spectral variability2™

successive timepoints
Aperiodicity®m Amount of aperiodic energy in the signal

ERB cochleagram®™--e
30 Hz - 16 kHz

Modulation power spectrum®:9-€

Log of the time difference between attack onset and ending

Center of gravity of the spectral (ERB) envelope
Ratio of geometric and arithmetic means of the spectral (ERB)

1 minus the correlation of ERB channel spectra between

Raw ERB cochleagram representation of each of 77 channels:

2D-FFT of Gaussian spectrogram (50 dB dynamic range)

Lower values = faster onset time
Lower values = earlier temporal centroid
High value = higher frequency centroid

Measures noise/harmonic content. Higher values (1) are
flatter/noisier

Higher values = more variable

Higher values = more aperiodic
Energy in each of channel over time

Maximum of 31.24 cyc/kHz and 47.92 Hz

Derived via:  Energy envelope or 2ERB cochleagram representation in the Timbre Toolbox (Peeters et al., 2011; Kazazis et al., 2017), SYIN (De Cheveigné and Kawahara,
2002), and *modulation power spectrum (Elliott and Theunissen, 2009). Feature calculated to reflect a 9global quality of the stimulus or the ™median or 'IQR of temporally
varying features. Some features were used only in the pairwise correlation analyses (i.e., not in the MDS analysis) based on the ®Euclidean distance of multi-value

representations.
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Acoustic Dissimilarity Matrices

Dissimilarity Responses

Median Spectral Centroid

|
ln IQR Spectral Centroid

the representations of each item pair.

FIGURE 4 | Schematic of the RSA analysis and depictions of the item-pair differences for each acoustic feature in the matrix. Group-averaged dissimilarity ratings for
each stimulus pair (from Figure 3B) were correlated with how the pairs differ in terms of different acoustic feature dimensions. Differences between the items for
each acoustic feature were calculated by taking the absolute value of the difference for that feature between each pair of stimuli. ltem-pair differences for multi-value
representations (such as modulation power spectra and ERB cochleagram representations) were calculated by taking the Euclidean distance between the values in

time (such as spectral variability and aperiodicity), only the
median was retained.

The reliability of dissimilarity ratings across participants
was assessed via split-half correlations that were adjusted
by the Spearman-Brown prophecy formula using the
“multicon” (version 1.6, Sherman, 2015) package in R. We
then performed two complimentary acoustic analyses in the style
of both MDS and RSA.

First, we conducted an ordinal MDS analysis of the
group-level dissimilarity matrix (shown in Figure 3B)
using the “smacof” package (version 1.6-6, de Leeuw and

Mair, 2009) in R. For this, the diagonal of the dissimilarity
matrix (corresponding to identical stimulus pairs, which
we did not present) was defined as the minimum possible
response value (1, or the lowest dissimilarity). The positions
of the stimuli along each dimension were then correlated
with their acoustic features values using Kendall's tau
correlations (using features associated with the Ej; musical
instrument stimuli, although similar results were obtained
using features averaged across notes), and the set of
correlations with each dimension were false-discovery
rate corrected.
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The RSA analysis examined correlations between group-
averaged item-pair-level dissimilarity ratings and the acoustic
feature differences of each pair. This amounts to a correlation
between the group-averaged dissimilarity rating matrix in
Figure 3B and the corresponding differences between each pair
of sounds in terms of each acoustic feature (absolute value
of the difference for each feature between the two sounds on
each trial, or Euclidean distances for multi-value representations;
see Table 1). This analysis and the dissimilarity matrices of
each acoustic feature are depicted in Figure 4. The relationships
(correlations) among the acoustic dissimilarity matrices are
depicted in Figure 5.

We calculated both standard rank-ordered Kendall’s tau
correlations for each feature (ie., between item-pair-wise
dissimilarity ratings and the item-pair-wise differences for
each acoustic feature) as well as semi-partial Kendall’s tau
correlations for each feature while holding the other features
constant. Statistical significance for each correlation was
assessed using non-parametric bootstrapped methods, where
the correspondence between the dissimilarity ratings and the
acoustic features of each item pair were randomly shuffled
before calculating the correlation statistic over many iterations
(n = 10,000 iterations) to create a null distribution. The number
of times the shuffled correlation statistics met or exceeded the
observed statistics for the non-shuffled data was recorded (r) and
used to generate a p-value for each correlation [as in North et al.,
2002: (r+ 1)/(n + 1)].

These correlation analyses were then repeated for specific
subsets of the item-pairs to assess the influence of these acoustic
features on specific within or between category dissimilarity
ratings. Fundamental frequency-based features were included to
quantify the influence of this acoustic quality among comparisons
where this feature could be informative (i.e., allowed to vary;
specifically, FO median and IQR were included in the vocal
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FIGURE 5 | The (Kendall's tau, rank-ordered) correlation between each
acoustic feature matrix depicted in Figure 4.

vs. vocal analysis and FO IQR was included in the vocal vs.
instrument analysis).

The Supplementary Material describes a similar approach
using an all-subsets-regression (model comparison) analysis
with linear-mixed effects models to identify the most
parsimonious set of acoustic features that could predict
trial-level dissimilarity ratings as a function of differences
along each acoustic feature dimension above. This analysis
revealed similar results to the correlation analyses. The
influence of musical training on these models was also assessed
in a subsequent all-subsets-regression that included the
interaction between the best fitting features and participants’
musical sophistication.

Results

Average dissimilarity ratings for each stimulus pair (averaged
across participants) are displayed in Figure 3B. Participants
were very reliable (0.98 split-half correlations adjusted by
the Spearman-Brown prophecy formula) in their dissimilarity
responses across item pairs, which is similar to the high reliability
observed in previous work (Wedin and Goude, 1972). Thus,
we proceeded with analyses to better understand what acoustic
features participants used to make their dissimilarity judgments.

Multidimensional Scaling

Figure 6 depicts the MDS analysis we conducted on the
group-averaged dissimilarity matrix (shown in Figure 3B).
Three dimensions provided good fit and stress values compared
to other dimensional solutions. We also ran a four-dimensional
solution but this proved sub-optimal because the 4" dimension
was difficult to interpret conceptually or acoustically (no
significant correlation with acoustic features), and did not yield a
substantial improvement in fit over a three-dimensional solution.
To understand how the coordinates of the stimuli in this
three-dimensional space related to their acoustic properties, we
correlated the acoustic feature values of the stimuli (see Table 1)
with their positions along each dimension. This revealed that
Dimension 1 related to spectral variability and aperiodicity (top
four correlations: aperiodicity: r; = —0.42; spectral centroid IQR:
1 —0.40; spectral flatness IQR: —0.36; spectral variability:
rr = —0.31; all FDR-corrected p < 0.05), Dimension 2 related
to the spectral envelope (spectral centroid median: ry = —0.36;
spectral flatness median: . = —0.32, all FDR-corrected p < 0.05),
and Dimension 3 related to the temporal envelope (temporal
centroid: r;y = —0.45; log-attack-time: ry = —0.40, all FDR-
corrected p < 0.05). We note that both spectral variability and
aperiodicity were associated with Dimension 1. This is likely
because of how conceptually similar these features are (and
therefore are likely to be related to one another): any aperiodic
signal is going to also be uncorrelated with itself from moment to
moment, which results in a higher spectral variability value.

Representational Similarity Analysis

Multidimensional scaling analyses are essentially dimensionality
reduction techniques, which fit dissimilarity data to a low
dimensional space that can be intuitively visualized and
interpreted. By the same token, such low-dimensional solutions
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FIGURE 6 | Multidimensional scaling analysis of the dissimilarity ratings from Experiment 2. The red vertical bar in the top graphs indicates the selected number of
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are constrained by visual interpretability and thus are typically
limited to two or three dimensions. This low number of
dimensions might overlook interesting variance that exists in the
data. The large number of stimuli we used as well as the diversity
among them resulted in a rich pattern of dissimilarity responses
(see Figure 3B). Thus, we wondered if large, overriding acoustic
differences might dominate a low-dimensional solution, and
obscure additional, interesting results which could be uncovered
by a technique that was able to leverage more variability in
the data. To do this, we correlated group-averaged dissimilarity
rates among the pairs of stimuli with how each pair differed
along a set of acoustic dimensions (see Figure 4 and Table 1).
In addition to standard (rank-ordered) correlation statistics, we
also calculated semi-partial correlations to isolate the variance
accounted for by each individual feature (i.e., while holding the
other features constant).

The results of these analyses are summarized in
Figures 7, 8 and Tables 2, 3. Standard and semi-partial
correlations both indicated a significant association between
dissimilarity responses and aperiodicity, spectral variability
(overall, and based on the IQR of the spectral centroid and ERB
cochleagram channels) as well as the spectral envelope (spectral
centroid and the median of ERB cochleagram channels). The
sounds’ temporal envelopes (temporal centroid) were also
associated with dissimilarity responses, albeit to a lesser degree
than the other features above. The standard correlations were
generally higher (cf. Figures 7A,B), and suggested a larger
influence of different spectral variability features. However, when

the collinearity among these features was accounted for in the
semi-partial correlations, these associations (particularly among
many variability-based features) were more modest.

Similar features were implicated among the top-ranked
models in an all-subsets-regression analysis using linear
mixed effects models of trial-level data (see Supplementary
Material). Including musical training and its interaction
with the top-ranked acoustic features improved model fit: a
higher degree of musical training (which did not significantly
influence responses on its own) was found to temper the
influence of aperiodicity, and spectral centroid via negative
interactions. This suggests that more musically experienced
participants relied less on these acoustic cues when making
dissimilarity judgments.

Representational Similarity Analysis for Specific
Between and Within Category Dissimilarity
Judgments

One strength of the design of our dissimilarity rating study and
the controls we implemented among our stimuli is that we were
able to obtain dissimilarity ratings among sounds both within and
between specific sound categories. Not only does this effectively
amount to three comparable dissimilarity rating studies for each
individual sound category (i.e., based on responses from the same
participants, with the same set of stimuli) but this approach
also facilitates between-category comparisons. This allows us to
determine the relative importance of these acoustic cues within
and across different sound categories, and to examine how those
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FIGURE 7 | Results of the standard (A) and semi-partial (B) correlation analyses over all item-pairs. Features are ranked from the lowest (left) to highest (right)
correlation along the x-axis. Asterisks indicate features that are significant (p < 0.05) based on non-parametric bootstrap analyses that shuffled the association
between dissimilarity responses and each item pair (see section “Data Analysis”) in the group-level dissimilarity matrix (Figure 3B). Positive correlations indicate that
larger differences among stimulus pairs along that dimension are associated with larger dissimilarity responses.

features are used to make category-level distinctions between
different sound types (e.g., vocal vs. instrument sounds). Such
a comparable level of analysis within and between categories
has not been carried out in this way in prior work. Thus, we
repeated the correlational RSA analysis above based on specific
subsets of item pairs within the group-level dissimilarity matrix
shown in Figure 3B.

These results are summarized in Figures 9, 10 and
Tables 2, 3. Spectral envelopes generally played the most
prominent role across comparisons, although temporal envelopes
(temporal centroid) were associated with dissimilarity judgments
between the vocalizations (which were mostly steady-state
vowels in this case) and human-environmental sounds (more
variable temporal envelopes), and for distinguishing instruments
from one another. Spectral variability measures were also
associated with distinguishing most categories from one
another. Fundamental frequency variability was associated with
how participants distinguished instruments from vocalizations.
Finally, aperiodicity was noticeably absent from these analyses
among subcategories. Thus, this feature appears to play a
higher-level role distinguishing the predominantly noisy human-
environmental sounds from instrument and speech sounds,
which have stronger fundamental frequencies and regular
harmonic structures.

Comparing ldentification (Confusion) Responses and
Dissimilarity Ratings

Identification (or confusion) data and direct dissimilarity ratings
both yield pairwise matrices of differences among stimuli

(Figure 3). Intuitively, the more dissimilar two items are, the less
likely they are to be confused. We conducted the identification
study in Experiment 1 primarily to make sure our sound tokens
and acoustic controls yielded good representations of the sounds
we were trying to characterize. However, there is some question
as to how related identification and dissimilarity rating tasks are
from a psychological and computational perspective (Giordano
and McAdams, 2010; Siedenburg et al., 2016b), so comparing
Experiments 1 and 2 might shed additional light on this issue.
Indeed, while the matrices from these experiments appear to
tell a similar story, there are important differences that need to
be kept in mind.

First, the confusion data are very sparse relative to the
dissimilarity rating data. For example, there was very little
confusion among stimuli across categories in Experiment 1.
At the same time, accuracy for the human-environmental
sounds was very high, which gives an analysis of confusion
responses for these stimuli very little variability in the outcome
measure to predict. Second, the diagonal of an identification
confusion matrix is informative, because it pertains to item-
level accuracy. However, the diagonal is not typically analyzed
or obtained for dissimilarity rating data. This leads to the final
difference between these data, which is that the entries in a
confusion matrix are zero-sum: a confusion of one stimulus
for another means that there is no confusion for a different
stimulus on that trial (or increased accuracy if the response is
correct). Meanwhile, the entries in a pairwise dissimilarity-rating
matrix are more independent and comprehensive (simple 1 to 9
ratings for each pair).
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Despite these core differences and corresponding notes
of caution, it is nonetheless informative to explore any
correspondence between the identification (confusion) results
and the dissimilarity ratings given that few studies have directly
compared such datasets. Thus, we correlated the confusion
(Figure 3A) and dissimilarity rating matrices (Figure 3B). For
this, we averaged the entries for the item pairs in each matrix
across their respective diagonals. This is because it is not clear
how stimulus and response in the identification task maps
onto the item order in a pairwise rating task. Additionally,
the diagonal in the dissimilarity rating data was assigned the
minimum possible response value (1). The correlation between
these matrices yielded a significant, although moderately sized,
Kendall’s tau correlation (ry = —0.49, p < 0.001). A similar
correlation (r; = —0.42, p < 0.001) was obtained based only
on item pairs present in both matrices (ie., excluding the
diagonal and cells where there were no confusions). Thus, while

the correlation between these two datasets is significant, their
association is rather modest.

Discussion

We obtained dissimilarity ratings from a large number of subjects
for a diverse set of auditory objects and events that encompassed
many sounds that are important in everyday human life. Studying
these diverse natural sounds together helps to synthesize bodies
of literature on individual sound categories that have until now
mostly been studied in isolation. This in turn has precluded a
broader view of the general acoustic dimensions that guide a
listener’s perception of auditory objects and events. We found
that a sound’s aperiodicity, spectral variability, spectral envelope,
and temporal envelope play a strong role in how participants
distinguish different natural auditory stimuli. Moreover, the
usefulness of these features varied for certain within or between
category comparisons. These represent core acoustic dimensions
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TABLE 2 | RSA correlation analysis results: standard Kendall’s tau.

Within-category

Between-category

Overall H-environment v.s. Instrument v.s. Vocalization v.s. H-environment v.s.  H-environment v.s. Vocalization v.s.
H-environment Instrument Vocalization Instrument Vocalization Instrument

Aperiodicity 0.49 (0.001)*** 0.17 (0.021)* 0.2 (0.01)* 0.09 (0.135) —0.02 (0.601) 0.07 (0.097) 0.12 (0.015)*
Euclidean distance IQR ERB cochleagram 0.5 (0.007)*** 0.1 (0.118) 0.25 (0.002)** 0.4 (0.0071)*** 0.06 (0.155) 0.1 (0.036)* 0.24 (0.0071)***
Euclidean distance median ERB cochleagram 0.24 (0.001)*** 0.34 (0.001)*** 0.35 (0.001)*** 0.52 (0.001)*** 0.21 (0.001)*** —0.06 (0.868) 0.2 (0.001)***
Euclidean distance: modulation power spectra 0.35 (0.001)*** 0.14 (0.05)* 0.24 (0.002)** 0.13 (0.062) 0.16 (0.002)** —0.01 (0.571) 0.09 (0.057)
Log-attack-time 0.23 (0.0071)*** —0.02 (0.58) 0.31 (0.0071)*** 0.01 (0.467) 0.04 (0.23) 0.07 (0.113) —0.07 (0.873)
Spectral centroid IQR 0.41 (0.0071)*** —0.1 (0.887) 0.22 (0.004)** 0.06 (0.239) 0.05 (0.176) 0.11 (0.029)* 0.05 (0.202)
Spectral centroid median 0.38 (0.001)*** 0.15 (0.035)* 0.04 (0.328) 0.48 (0.001)*** 0.22 (0.001)*** —0.05 (0.807) 0.13 (0.011)*
Spectral flatness IQR 0.28 (0.0071)*** 0.25 (0.001)** 0.1 (0.14) 0 (0.522) 0 (0.473) 0.09 (0.061) 0.07 (0.131)
Spectral flatness median 0.07 (0.005)** 0 (0.492) 0.09 (0.149) 0.11 (0.095) 0.12 (0.017)* 0.01 (0.452) 0.06 (0.143)
Spectral variability 0.43 (0.001)*** 0.26 (0.001)*** 0.15 (0.041)* 0.08 (0.176) 0 (0.502) 0.04 (0.248) 0.2 (0.001)**
Temporal centroid 0.2 (0.007)*** 0.05 (0.273) 0.32 (0.0071)*** 0.08 (0.158) 0.08 (0.084) 0.13 (0.01)* 0.08 (0.089)
FO IQR NA NA NA —0.1 (0.885) NA NA 0.11 (0.024)*
FO median NA NA NA 0.13 (0.063) NA NA NA

*p < 0.05; *p < 0.07; **p < 0.001.

TABLE 3 | RSA correlation analysis results: semi-partial Kendall’s tau.

Within-category

Between-category

Overall H-environment v.s. Instrument v.s. Vocalization v.s. H-environment v.s.  H-environment v.s. Vocalization v.s.
H-environment Instrument Vocalization Instrument Vocalization Instrument

Aperiodicity 0.16 (0.001)*** 0.07 (0.171) 0.09 (0.07) 0(0.5) 0.02 (0.344) 0.05 (0.125) 0.06 (0.126)
Euclidean distance IQR ERB cochleagram 0.14 (0.0071)*** 0.14 (0.04)* 0.07 (0.188) 0.17 (0.001)** 0.02 (0.324) 0.06 (0.122) 0.14 (0.003)**
Euclidean distance median ERB cochleagram 0.12 (0.0071)*** 0.28 (0.0071)*** 0.29 (0.0071)*** 0.24 (0.0071)*** 0.13 (0.004)** —0.01 (0.537) 0.18 (0.0071)***
Euclidean distance: modulation power spectra 0.05 (0.015)* 0 (0.482) 0.08 (0.148) 0.03 (0.343) 0.09 (0.023)* 0.01 (0.44) 0.01 (0.421)
Log-attack-time 0.02 (0.194) —0.02 (0.621) 0.13 (0.021)* —0.03 (0.685) 0.07 (0.084) —0.01 (0.578) —0.09 (0.971)
Spectral centroid IQR 0.09 (0.0071)*** —0.08 (0.827) 0.2 (0.004)** —0.04 (0.7) 0.02 (0.366) 0.08 (0.071) —0.08 (0.692)
Spectral centroid median 0.15 (0.001)*** 0.03 (0.341) 0 (0.487) 0.25 (0.001)*** 0.12 (0.002)** 0 (0.495) 0.06 (0.085)
Spectral flatness IQR 0.06 (0.005)** 0.15 (0.02)* 0.04 (0.301) 0.02 (0.402) 0.04 (0.187) 0.06 (0.082) 0.02 (0.391)
Spectral flatness median —0.02 (0.828) 0 (0.485) 0.12 (0.07) 0.02 (0.382) 0.05 (0.175) 0 (0.499) 0.01 (0.438)
Spectral variability 0.11 (0.001)*** 0.14 (0.024)* —0.01 (0.579) 0.02 (0.378) 0.06 (0.112) 0 (0.535) 0.15 (0.001)***
Temporal centroid 0.06 (0.005)** 0.04 (0.281) 0.16 (0.006)** 0.05 (0.216) 0.07 (0.079) 0.12 (0.011)* 0.09 (0.032)*
FO IQR NA NA NA —0.05 (0.745) NA NA 0.1 (0.032)*
FO median NA NA NA 0.05 (0.195) NA NA NA

0 < 0.05; *p < 0.07; **p < 0.001.
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that have been extensively studied in psychophysical (Moore,
2012), computational (Peeters et al., 2011), and neuroscientific
(Giordano et al., 2011) areas. However, our results go further
to demonstrate that these features also relate to how listeners
distinguish natural auditory objects and events across a wide
range of human-relevant sounds.

We show that acoustic features identified in previous,
within-category studies generalize to other kinds of auditory
objects and events. Timbre, for example, is a particularly
well-studied class of sound perception and has been shown
to relate to spectral centroid (spectral envelope) and log-
attack-time (temporal envelope; Iverson and Krumhansl,
1993; McAdams et al., 1995). Similar features (albeit swapping
log-attack-time for temporal centroid) have been associated
with environmental object and event perception (Hjortkjeer
and McAdams, 2016). Spectral variability has been only
intermittently identified among the set of features that influence
timbre perception (Caclin et al, 2005) but has been more
reliably identified in studies of environmental sounds (Gygi
et al., 2004, 2007). Our results largely confirm these results, both
at a higher level (when comparing instrument, vocalization,
and human-environmental sounds all together) and in
specific within and between category comparisons. In line
with the environmental sound literature, our data suggest
that spectrotemporal variability along with aperiodicity plays
a prominent role in auditory object and event perception
that perhaps is not fully engaged by the comparative
regularity of instrument spectra compared to speech or
other human-environmental sounds (Huang and Elhilali, 2017;
Oggetal,, 2017).

Additionally, by studying multiple sound categories together,
we have identified features that are useful for distinguishing
between them. For example, both spectral envelope and spectral
variability cues were useful when comparing all three sound
categories as well as in most specific within and between
category analyses. In addition to spectral variability, our data
highlight the importance of aperiodicity in distinguishing
among different classes of sounds, similar to previous work
comparing different sound categories (Huang and Elhilali,
2017; Ogg et al., 2017). Fundamental frequency variability has
also been previously noted to be useful for listeners when
distinguishing speech and instrument sounds (Ogg et al,
2017), which is a finding we replicate here. Taken together,
these results suggest that we can expand the groundwork and
dimensional space outlined by research on musical timbre so
as to include dimensions relating to aperiodicity and spectral
variability. This would then allow us to explain how the
diverse array of stimuli and sound categories examined here
relate to one another.

Our results also touch on questions regarding the relationship
between semantic and perceptual or acoustic knowledge
(Siedenburg et al., 2016b). Our identification and confusion
data were significantly correlated with our dissimilarity rating
data but the correlation was modest. Such an incomplete
alignment between identification (which relies more explicitly
on semantic knowledge) and dissimilarity rating tasks (which
are more perceptual or feature based) has been noted previously

(Giordano et al.,, 2010; Siedenburg et al., 2016b). Additionally,
higher levels of musical training in the dissimilarity task
served only to decrease the influence of acoustic features.
This result comes despite the increased identification accuracy
we observed for music and vowel sounds among more
musically trained individuals. Taken together, these results
suggest that identification and dissimilarity rating tasks
may tap non-overlapping psychological processes that can
potentially be modified by training. Our results suggest
that training might lead to a decreased reliance on physical
stimulus properties and an increased reliance on potentially
non-acoustic (and likely semantic) cues. Of course, this is
speculative and emphasizes the need for further work to better
describe the influence of acoustic and semantic knowledge in
performance on these tasks.

We note a few limitations in our work that could be
further investigated by follow up studies. First, our identification
(confusion) matrix was very sparse and we observed especially
high accuracy rates for the human-environmental stimuli. This
ceiling effect (both for the human-environment stimuli overall
and the minimal between-category confusions) complicated an
acoustic analysis of these data. Indeed, in preliminary analyses,
MDS solutions for the identification data were very difficult
to interpret, likely because of the structure and sparsity of
this matrix. A more thorough probe of acoustic influences on
identification performance might be better realized through
follow up work that directly manipulates specific acoustic
qualities, such as those indicated by Experiment 2 and by other
work (Gygi et al,, 2004; Thoret et al., 2016; Venezia et al.,
2016). The sparsity of the identification data also limits the
comparison between identification and dissimilarity matrices,
as does the fact that different participants performed these
two tasks. It is worth pointing out that the identification task
used here was mainly a control task, designed to check the
validity of our stimuli and controls, and that the aim of the
current work was squarely at deepening our understanding of
acoustic processes as assessed by the dissimilarity rating task.
Thus, further questions regarding semantic knowledge and its
relationship with identification and dissimilarity rating tasks
might be best served by follow-up work, ideally comparing
data from the same participants in both tasks. Finally, we
obtained a participant sample that contained a wide range of
musical training, but these participants were predominantly
not college trained music students or professionals. Thus,
while our results suggest an influence of musical training,
a deeper analysis of this issue would be well-served by
assessing participants across a wider spectrum of musical
training and experience.

Our results help connect different areas of research on
natural sound perception by facilitating a comparable analysis
of how listeners distinguish sounds within and between these
categories. The data we provide here are useful for generating
new hypotheses and for identifying more general perceptual
processes that are at play during auditory object recognition.
We relied on classic techniques in the field to examine
ideas that have been outlined previously (see McAdams, 1993;
Handel, 1995 for similar discussions). However, an important
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associated with larger dissimilarity responses. See also Table 2.
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FIGURE 9 | Results of the standard correlation analyses for each within- and between-category subsection of the group-level dissimilarity rating matrix. Each panel
is labeled according to the sound pairs that were analyzed and panels are organized to align with where these categories intersect in the group-level dissimilarity
rating matrix shown in Figure 3B. Features are ranked from the lowest (left) to highest (right) correlation along the x-axis. Asterisks indicate features that are
significant (p < 0.05) based on non-parametric bootstrap analyses that shuffled the association between dissimilarity responses and each item pair (see section
“Data Analysis”) in the group-level dissimilarity matrix (Figure 3B). Positive correlations indicate that larger differences among stimulus pairs along that dimension are

limitation of these techniques is that they do not reveal what
variance is accounted for by acoustic properties and what is
accounted for by a listener’s semantic differentiation among
sounds. We would therefore like to amplify calls made by

others (e.g., Giordano etal, 2010; Siedenburg et al, 2016a,b;
Siedenburg and McAdams, 2017) for new techniques and
approaches to disentangling these issues in object recognition.
The present study aimed to broaden the scope of this
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FIGURE 10 | Results of the semi-partial correlation analyses for each within- and between-category subsection of the group-level dissimilarity rating matrix. Each
panel is labeled according to the sound pairs that were analyzed, and panels are organized to align with where these categories intersect in the group-level
dissimilarity rating matrix shown in Figure 3B. Features are ranked from the lowest (left) to highest (right) correlation along the x-axis. Asterisks indicate features that
are significant (p < 0.05) based on non-parametric bootstrap analyses that shuffled the association between dissimilarity responses and each item pair (see section
“Data Analysis”) in the group-level dissimilarity matrix (Figure 3B). Positive correlations indicate that larger differences among stimulus pairs along that dimension are

associated with larger dissimilarity responses. See also Table 3.

issue by connecting important auditory perception literatures, or between categories, (2) creating more difficult attention
but follow-up work could benefit the field by developing demands toward different acoustic features or categories within
novel tasks and approaches. Some potential avenues include tasks, or (3) constraining analyses of behavioral responses based
(1) manipulating or morphing stimuli across feature dimensions  on neural responses.
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CONCLUSION

Auditory object and event perception is a core facet of
the auditory system that cuts across many domains of
research including the perception of vocal sounds, music, and
environmental sounds, as well as auditory scene analysis. To gain
a broader view of what acoustic features support this ability
across domains, we curated a diverse set of natural sounds
within and across different sound categories that are relevant
to human listeners. We then obtained an exhaustive set of
dissimilarity ratings for each pair of these sounds. Multiple
analyses converged to reveal that acoustic qualities relating
to aperiodicity, spectral variability (either overall, or in terms
of change over time for other measures), spectral envelope
(including spectral centroid), and temporal envelope (temporal
centroid), could most reliably account for how participants made
their responses. We also note that sound identification data
were only moderately correlated with the dissimilarity ratings,
suggesting interesting differences between these tasks and data
that future work might reconcile. Finally, our results suggest an
influence of musical training, which was related to identification
accuracy and perhaps led participants to rely less on acoustic
features when making dissimilarity ratings. Together these
findings can help inform the development of machine intelligence
applications to identify sounds in the environment, and assistive
technologies to help an aging population where hearing loss
is a major impediment to daily life. Our musical training
results suggest that training may modulate how participants
identify and distinguish sounds, and (following further study)
could open the door to new training-based therapies or early
interventions to counteract the effects of hearing loss on natural
sound perception.
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