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A novel Bayesian modeling framework for response accuracy (RA), response times

(RTs) and other process data is proposed. In a Bayesian covariance structure modeling

approach, nested and crossed dependences within test-taker data (e.g., within a testlet,

between RAs and RTs for an item) are explicitly modeled. The local dependences are

modeled directly through covariance parameters in an additive covariance matrix. The

inclusion of random effects (on person or group level) is not necessary, which allows

constructing parsimonious models for responses and multiple types of process data.

Bayesian Covariance Structure Models (BCSMs) are presented for various well-known

dependence structures. Through truncated shifted inverse-gamma priors, closed-form

expressions for the conditional posteriors of the covariance parameters are derived.

The priors avoid boundary effects at zero, and ensure the positive definiteness of the

additive covariance structure at any layer. Dependences of categorical outcome data are

modeled through latent continuous variables. In a simulation study, a BCSM for RAs and

RTs is compared to van der Linden’s hierarchical model (LHM; van der Linden, 2007).

Under the BCSM, the dependence structure is extended to allow variations in test-takers’

working speed and ability and is estimatedwith a satisfying performance. Under the LHM,

the assumption of local independence is violated, which results in a biased estimate of

the variance of the ability distribution. Moreover, the BCSM provides insight in changes

in the speed-accuracy trade-off. With an empirical example, the flexibility and relevance

of the BCSM for complex dependence structures in a real-world setting are discussed.

Keywords: process data, educational measurement, Bayesianmodeling, covariance structure, marginal modeling,

cross-classification, response times, latent variable modeling

1. INTRODUCTION

Computer-based assessments (CBAs) provide the opportunity to gather responses times (RTs) and
other process data in addition to the test-takers’ responses. Empirical research has shown that in
combination with response patterns, RTs can lend valuable insight into interesting test-taker, item
and test characteristics, such as pre-knowledge of items, motivation, time-pressure or differential
speededness (Bridgeman and Cline, 2004; Wise and Kong, 2005; Meijer and Sotaridona, 2006; van
der Linden et al., 2007; van der Linden and Guo, 2008; Marianti et al., 2014; Qian et al., 2016). New
types of process data have been explored lately that carry the potential to lend additional insight into
(latent) response processes and to improve inferences about constructs of interest (e.g., Azevedo,
2015; He et al., 2016; Goldhammer and Zehner, 2017; Maddox, 2017). To make valid inferences
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from process data, innovative joint models are needed that are
capable of utilizing test-taker data beyond RAs and RTs, while
accounting for complex relationships in multiple data types.

An important concept is the speed-accuracy trade-off, which
states that, on average, a test-taker’s ability suffers from an
increased working speed (van der Linden, 2009). Test scores
depend on test-takers’ speed during the test and ignoring this
within-subject relationship threatens the validity of inferences
about their ability level. In experimental cognitive psychology,
the speed-accuracy trade-off can be modeled for individual
persons as the relationship between the proportion of correct
tasks and the average time spent on the tasks (Luce, 1986).
In educational measurement, learning effects can be expected
when presenting the same item to a test-taker multiple times
(Butler, 2010). Hence, in practical applications, often only a single
measurement of RA and RT is obtained for each combination of
test-taker and item. Therefore, it is common to assume a certain
homogeneity in the speed-accuracy trade-off within a group of
test-takers and how they are affected by the condition of interest
(Thissen, 1983; Klein Entink et al., 2008; Glas and van der Linden,
2010; Ranger and Kuhn, 2013; Goldhammer and Kroehne, 2014;
Goldhammer et al., 2014; Loeys et al., 2014; Molenaar et al.,
2015; van der Linden and Fox, 2016). Alternatively, in certain
experimental settings, the researcher can control the test-takers’
working speed (by imposing time limits) and thereby exclude the
person-level working speed variable from the regression equation
(Goldhammer and Kroehne, 2014).

More general and flexible approaches to model and test the
within-subject dependence structure have been achieved through
the generalized linear mixed model (GLMM) (McCulloch,
2003) and mixture models. The within-subject mixture models
allow subject-specific changes in the speed-accuracy trade-off
across different states. However, in practice the number of
states is very limited (Wang and Xu, 2015; Molenaar et al.,
2016) to obtain identifiable and stable estimation results. In
GLMMs, the measurement model for the RAs or the RTs is
extended by including either the person level variable (ability
or working speed) or the dependent variable of the respective
other measurement model as a covariate in the regression
equation. Item-specific person-level and person-specific item-
level variables allow the speed-accuracy trade-off to vary between
items and allow item parameters to vary across persons,
respectively (e.g., Goldhammer et al., 2014, 2015). Furthermore,
a non-linear relation between RAs and RTs can be specified (e.g.,
Molenaar et al., 2015; Bolsinova and Molenaar, 2018).

However, the complexity of a GLMM is drastically increased
when including other process data and extending the GLMMs
with additional person-level variables. It is therefore questionable
whether the GLMM approach can manage the challenges of
utilizing new types of process data in complex CBAs. Currently,
GLMMs are limited in the amount of process data information
that can be utilized to make inferences due to restrictions
on the model complexity and the sample size. Furthermore,
GLMMs are also limited in how the information is utilized.
For instance, correlations between RAs and different types
of process data may vary depending on item characteristics
or test design. In that case, interaction effects are needed to

model item and/or testlet-specific dependences, but this will
significantly increase the complexity of the GLMM. To prevent
over-parameterization and weak numerical stability, techniques
such as principle component analysis, latent class analysis, or
various model selection algorithms (e.g., backward elimination,
forward selection or all subsets regression) (Thomas, 2002; Efron
et al., 2004; Wetzel et al., 2015) have been proposed to reduce
the number of covariates in the regression equation. However,
this complicates a straightforward modeling approach and can
lead to arbitrary assumptions and ad hoc decisions. It is well-
known that ignoring correlations in test-taker data may cause
violations of local independence assumptions and can result in
biased inferences about parameters, the reliability of the test, and
hinder test equating (e.g., Yen, 1984; Ackerman, 1987; Chen and
Thissen, 1997; Bradlow et al., 1999; Baker and Kim, 2004; Jiao
et al., 2005, 2012; Wang and Wilson, 2005; Wainer et al., 2007).
Therefore, when including new types of process data, care must
be taken in modeling the dependence structure to avoid making
biased inferences.

The proposed Bayesian Covariance Structure Model (BCSM)
can handle different types of nested and cross-classified
dependence structures for multiple types of test-taker data. The
BCSM extends the marginal model for hierarchically structured
item RT data of Klotzke and Fox (2018). In the model of
Klotzke and Fox (2018), dependences that follow from nested
classifications (e.g., item clusters in a testlet design) are directly
modeled as covariances without including random effects. The
methodology is extended to classifications across multiple data
types. Thus, in addition tomodeling nested classifications (within
a data type), relationships in data across different types (e.g.,
RTs and dichotomous responses) are modeled through cross-
classifications in the dependence structure. In the same manner
as the nested classifications, crossed classifications are modeled
explicitly as covariance parameters. Without the inclusion of
random effects, the parsimony of the BCSM is preserved,
where dependences between each cluster of observations can
be modeled with a single covariance parameter. The BCSM
assumes a multivariate normal distribution for the data, either
directly or through a threshold specification (i.e., for categorical
or count data), and allows distinct modeling of the mean and
covariance structure. The BCSM parameters can be estimated
with an efficient Gibbs-sampling algorithm, even for a reasonably
small sample size. Modeling local dependences via covariance
parameters instead of modeling dependences through random
effects (i.e., the random effect variance defines the covariance
between clustered observations) has two advantages: first,
covariances can be negative or positive, which allows more
flexibility in specifying complex dependence structures than
random effect variances. The latter can only model positive
dependences. Second, tests for local independence under the
BCSM framework do not require testing at the boundary of
the parameter space (i.e., the null hypothesis states that the
covariance parameter is equal to zero). This stands in contrast
to a random effect variance, which is a-priori restricted to be
positive. In the BCSM, this means that the prior distributions
for the covariance parameters are less informative, i.e., they
don’t assume beforehand that the covariance parameters are
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greater than zero. Therefore, more objective inferences about the
dependence structure can be made. Finally, contrary to common
marginal modeling approaches such as generalized estimating
equations (GEE) (Liang and Zeger, 1986; Diggle et al., 2013), the
dependence structure is fully modeled in an additive covariance
structure. This allows testing for interaction effects (e.g., local
dependence within testlets) (Lee and Neider, 2004), and to
estimate random person/group effects post-hoc from the residuals
of the model. The latter is of utility if the random effects structure
cannot be estimated in the traditional way (fitting a random
effects model) due to for instance sample size limitations. For
example, test-taker ability estimates can be obtained under a
complex within-subject dependence structure, while accounting
for various types of process data information.

The paper is organized as follows: first, the BCSM is
introduced. Next, an additive covariance structure is defined that
can be utilized to explicitly model dependences in data from
different types (RAs, RTs, and other process data). Five well-
known dependence structures are presented under the BCSM.
An approach to model the interdependence of categorical data
through truncated conditional univariate normal distributions
of latent variables is specified. Closed-form expressions for the
conditional posterior distributions of the covariance parameters
are derived through truncated shifted inverse-gamma priors,
where the truncation point ensures the positive definiteness of the
additive covariance matrix. Samples from the full joint posterior
are obtained using a Gibbs sampler. In a simulation study, a
BCSM for RAs and RTs is compared to the hierarchical model
of van der Linden (2007) (LHM) given a situation in which the
test-taker’s working speed and ability are allowed to vary over
the course of the test, thus violating the assumption of local
independence in models that presume a fixed working speed and
ability. In an empirical example, data from the Programme for
the International Assessment of Adult Competencies (PIAAC)
study (OECD, 2013) is analyzed with a BCSM for RAs and
two types of process data. Finally, the results, limitations and
future prospects of the proposed framework for educational
measurement applications are discussed.

2. MODELING COVARIANCE STRUCTURES

Data can be dependent on different levels. For example, in a
testlet structure data of items within a testlet may be correlated
stronger than data across items. Hence, data may be locally
dependent on a testlet level. Furthermore, more than one data
point may be available for an item (e.g., dichotomous responses,
RTs and additional process data). The relationship between two
data points (of the same test-taker) for an item can be positive
or negative. The corresponding local dependence can either
increase (when positive) or decrease (when negative) the total
correlation of data for an item. This multilevel dependence
structure is specified through a cross-classification matrix. In
BCSM, an additive covariance structure forms the link between
the covariance parameters and the cross-classification matrix.

Observations within a group can be more alike than
observations across groups. In the BCSM framework, this local

dependence is modeled in an additive covariance structure.
Each source of local dependence, i.e., the effect of each
grouping on the association of components, is represented by
a covariance parameter and a layer in the additive structure.
Group membership is specified by a Nt ×Nc classification matrix
u, where Nt is the number of layers in the additive covariance
structure and Nc is the number of components. Each row in u

thus corresponds to a layer in the covariance structure and the
columns define the local dependence of components in that layer.
Components that are grouped together within a layer are marked
by a 1, ungrouped components are marked by a 0.

The components are assumed to be multivariate normally
distributed with a Nc-dimensional mean vector µ and a Nc ×

Nc-dimensional covariance matrix 6. The inclusion of person
level random effects is not necessary as the covariance structure
implied by the usual person level variables (such as ability and
working speed) is directly modeled. As a consequence, the mean
structure consists of intercepts on the group and item level.
Intercepts on the group level are for example the average working
speed or ability in a group of test-takers. Intercepts on the
item level are commonly denoted as item time intensity and
item difficulty parameters. Furthermore, test-taker background
variables can be included as covariates.

The covariance matrix consists of a base layer 60 and Nt

additive layers. In the base layer, the measurement error variance

is modeled, whereby 60 = diag
(

σ 2
1 , . . . , σ

2
Nc

)

. Each additive

layer t is constructed out of a covariance parameter θt and the
t-th row of the classification vector, i.e., ut :

6 = 60 +

Nt
∑

t=1

θtutu
T
t . (1)

On a mathematical level, no qualitative difference is made
between the covariance parameters θ = {δ, τ ,ω,φ, ν,1}.
However, for the sake of clarity, in this text δ, τ , and ω represent
the covariance between, respectively, the RTs, the RAs and
additional process data of a test-taker. The local dependence that
follows from grouping observations from different data types
on a person level is represented by the covariance parameter φ.
The vector ν contains the cross-covariances between components
of different types (e.g., RAs and RTs). Furthermore, 1 are the
covariances that follow from blocks within components of one
type (e.g., testlets within RT data).

Five examples of models for responses and process data are
described that can be constructed within the BCSM framework.
Each example is illustrated for a test size of p = 6 items. The
utilized data types are RTs (RT), RAs that are manifested as
discrete variables through a threshold specification (RA) and
additional process data (W). The observed categorical data are
denoted as D. Finally, the scalability of BCSMs given a growing
number of items and extensions to the classification structure
is discussed.

2.1. The BCSM for Speed and Ability
The BCSM for speed and ability follows the classification as
implied by the LHM with binary factor loadings. In this model,
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a test-taker’s RTs are grouped by the latent factor working speed,
and the RAs are grouped by the latent factor ability. Furthermore,
observations are grouped across the two data types on a person
level, which represents a correlation between a test-taker’s ability
and working speed. Table 1 shows the classification matrix and
covariance parameters of the BCSM for speed and ability.

2.2. Variable Speed-Accuracy Trade-Off
For the variable speed-accuracy trade-off model, the BCSM
for speed and ability is extended with an item-specific cross-
covariance between a test-taker’s RTs and RAs. This allows to
investigate how the speed-accuracy trade-off within a group of
test-takers varies between items. Thereby, a certain homogeneity
in the relevant response processes is assumed, which leads to test-
takers within a group sharing a common speed-accuracy trade-
off. The classification diagram for the variable speed-accuracy
trade-off model is shown in Figure 1. Table 2 extends Table 1

with the additional classification rules and covariance parameters
implied by a variable speed-accuracy trade-off.

2.3. Blocked Structures of
Cross-Covariances
Just as the variable speed-accuracy trade-off model, the blocked
structures of cross-covariances model extends the BCSM for

TABLE 1 | The additive covariance structure of the BCSM for speed and ability is

implied by the random effects structure of the LHM with binary factor loadings.

Classification matrix u

Covariance Response times Response accuracies

δ 1 1 1 1 1 1 0 0 0 0 0 0

τ 0 0 0 0 0 0 1 1 1 1 1 1

φ 1 1 1 1 1 1 1 1 1 1 1 1

speed and ability with a varying cross-covariance between a test-
taker’s RTs and RAs. However, the cross-covariance is defined to
change per blocks of (here: two) items. A possible application for
this model is test-taking under varying time-pressure conditions.
In such a scenario, it is reasonable to assume local dependence
for components (i.e., RTs and RAs) within a block of items
that belong to the same time-pressure condition. In the variable
speed-accuracy trade-off model on the other hand, the local
dependence is defined per individual item. Table 3 extends
Table 1 with the additional classification rules and covariance
parameters of the blocked structures of cross-covariances model.

2.4. Differential Blocked Structures of
Cross-Covariances Across Factors
The within-subject dependence structure can also be specified for
components within a single data type. In the differential blocked
structures of cross-covariances across factors model, the variable
speed-accuracy trade-offmodel is extended with a separate testlet
structure for each the RTs and the RAs. The testlet structures are
defined independently of each other. Table 4 extends Tables 1, 2

TABLE 2 | The additive covariance structure of the variable speed-accuracy

trade-off model is an extension of the BCSM for speed and ability with

item-specific cross-covariances between RTs and RAs.

Classification matrix u

Covariance Response times Response accuracies

ν1 1 0 0 0 0 0 1 0 0 0 0 0

ν2 0 1 0 0 0 0 0 1 0 0 0 0

ν3 0 0 1 0 0 0 0 0 1 0 0 0

ν4 0 0 0 1 0 0 0 0 0 1 0 0

ν5 0 0 0 0 1 0 0 0 0 0 1 0

ν6 0 0 0 0 0 1 0 0 0 0 0 1

FIGURE 1 | Classification diagram for the variable speed-accuracy trade-off model. The classification implied by the LHM is extended by grouping components

item-wise. This allows the group level speed-accuracy trade-off to vary between items.
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TABLE 3 | The additive covariance structure of the blocked structures of

cross-covariances model is an extension of the BCSM for speed and ability with

block-wise cross-covariances between RTs and RAs.

Classification matrix u

Covariance Response times Response accuracies

ν1 1 1 0 0 0 0 1 1 0 0 0 0

ν2 0 0 1 1 0 0 0 0 1 1 0 0

ν3 0 0 0 0 1 1 0 0 0 0 1 1

TABLE 4 | The additive covariance structure of the differential blocked structures

of cross-covariances across factors model is an extension of the variable

speed-accuracy trade-off model with independent testlet structures for separate

data types.

Classification matrix u

Covariance Response times Response accuracies

11 1 1 0 0 0 0 0 0 0 0 0 0

12 0 0 1 1 0 0 0 0 0 0 0 0

13 0 0 0 0 1 1 0 0 0 0 0 0

14 0 0 0 0 0 0 1 1 1 0 0 0

15 0 0 0 0 0 0 0 0 0 1 1 1

with the additional classification rules and covariance parameters
of the differential blocked structures of cross-covariances across
factors model.

2.5. More Than Two Data Types
A BCSM is not limited to RTs and responses. Additional
process data can carry information relevant to the research.
In this example, additional process data is available for each
combination of test-taker and item. Therefore, p = 6
components are added to the model. In the illustrated model, an
item-specific cross-covariance between components of all types
is assumed. That means for example that RTs and RAs to an
item may correlate in a different way than RAs and process data,
to the same item. Furthermore, φ1, φ2, and φ3 represent the 3-
by-3 covariance of the three latent factors (e.g., ability, working
speed, and speed first action) that are related to the three types
of data. Table 5 shows the classification matrix and covariance
parameters of the more than two data types model.

2.6. Model Scalability
The models constructed in the BCSM framework are scalable
with respect to the length of the test, the number of data types
and the specified dependence structure. The number of columns
of u corresponds to the number of data components (Nc). If
a single observation is available for each combination of test-
taker, item and data type, the number of data components is
the product of the number of items (p) and the number of data
types (Nd), i.e., Nc = p ∗ Nd. Consequently, extending the test
length with one item increases the number of columns of u by
Nd. Similarly, introducing an additional data type increases the
number of columns by p.

TABLE 5 | The additive covariance structure for a BCSM that incorporates

additional process data, next to RTs and RAs.

Classification matrix u

Covariance Response

times

Response

accuracies

Process

data

δ 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

τ 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

ω 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

φ1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

φ2 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1

φ3 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

ν1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

ν2 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

ν3 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

ν4 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

ν5 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

ν6 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

ν7 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

ν8 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

ν9 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

ν10 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

ν11 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0

ν12 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

ν13 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

ν14 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

ν15 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

ν16 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

ν17 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

ν18 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

The number, if any, of additional rows of u depends on
the specified classification structure. For example, under the
structure specified in Table 1, a change in the number of
data components does not affect the number of rows of u.
Instead, the existing groupings are extended to include the new
data components.

In other situations, the number of groupings depends on the
number of data components. For example, given the item-specific
cross-classifications as defined in Table 2, each additional item
leads to one additional classification rule (the RA and RT of a test-
taker to one item are grouped together) and therefore inserts one
row into u. Thus, if the variable speed-accuracy trade-off joint-
model is applied to a test with p2 = 100 instead of p1 = 10
items, the number of columns increases by (p2 − p1) ∗ Nd =

(100 − 10) ∗ 2 = 180 and the number of rows increases by
p2 − p1 = 90.

3. CATEGORICAL OUTCOME DATA

When recording the test-takers’ responses during a test, discrete
realizations of latent response variables are observed. The
multivariate normally distributed RA data (latent responses)
are linked through a threshold specification to their discrete
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realizations. However, truncating a multivariate normal
distribution in high dimensions is non-trivial (Botev, 2017)
and simply truncating independently for each dimension
does not lead to the intended multivariate joint-distribution
(Horrace, 2005).

The proposed solution is to derive the univariate normal
distribution of each latent response component, conditional on
all other components. The univariate normal distribution is
derived by partitioning the additive covariance structure 6, as
defined in Equation 1, into four parts. The upper left part, B11,
gives the variance of the k-th component and the diagonal parts,
B12 and B21, contain the covariance of the k-th component with
the remaining components. Finally, B22 describes the covariance
structure of all components but the k-th:

6 =

Yik Ỹ i
[ ]

B11 B12 Yik

B21 B22 Ỹ i

, (2)

where Y is a N × Nc-dimensional matrix, containing data from
all Nc components and N test-takers. A tilde, i.e., a ∼, above a
vector or matrix indicates that the k-th component is excluded
from the data structure. Based on the partitioned covariance
matrix, the means and variance of the conditionally univariate
normal distribution of the k-th component are derived for
each test-taker:

µYk|Ỹ
= µYk

+ B12B
−1
22 (Ỹ − µỸ ), (3)

σ 2
Yk|Ỹ

= B11 − B12B
−1
22 B21. (4)

A closed-form expression for B
−1
22 is derived through the

Sherman-Morrison formula (e.g., Lange, 2010, p. 261):

A
−1
t+1 = (At + λvv

T)−1 = A
−1
t −

A
−1
t vv

T
A
−1
t

1/λ+ vTA
−1
t v

, (5)

where A
−1
t = 6̃

−1
t is the inverse of the additive covariance

structure for all but the k-th component at the t-th layer, λ = θt+1

is the covariance parameter for the added layer and v = ũt+1

contains the classification structure for the new layer. Given that

the inverse of A−1
0 = 6̃

−1
0 , i.e., the inverse of the diagonal matrix

consisting of the measurement error variance parameters for all
but the k-th component, is known, the inverse for any additional
layer can be derived recursively.

4. BAYESIAN INFERENCE

In line with the approach suggested by Fox et al. (2017)
and Klotzke and Fox (2018), closed-form expressions for the
conditional posterior distributions of the variance and covariance
parameters are derived through truncated shifted inverse-gamma
priors. For each of the Nt layers of the additive covariance
matrix, a truncation point trt is derived by applying the Sherman-
Morrison formula (Lange, 2010, p. 260–261). Enforcing the
truncation through the indicator function 1tr ensures that the

covariance matrix is positive definite at any layer t. This leads to a
lower bound for each covariance parameter (θt > trt) conditional
on the classification structure and the inverse of the covariance
matrix at the underlying layer (t − 1):

trt = −1/uTt 6−1
t−1ut . (6)

For the measurement error variance parameters (the diagonal
terms of 60) a truncation sets the probability of negative values
a-priori to zero.

The reasoning behind the shift parameters is based upon
two premises: (1) a draw of θt is obtained through sampling
θt + ψt and subtracting the shift parameter ψt iteratively within
the Markov chain Monte Carlo (MCMC) (Gilks et al., 1995)
algorithm, (2) the probability distribution of θt + ψt must
incorporate all information that is available in the data about θt . It
is shown in Equations (7) and (8) that the probability distribution
of the person level means across that are grouped together in ut

contains all available information about the covariance parameter
θt . Note that the person level means are constructed as the
mean of (correlated) random normal variables and are therefore
univariate normally distributed.

Conditional on the classification structure and the additive
covariance matrix at its highest layer (6Nt ), the variance of the
person level means is derived through the property that the
variance of the sum of correlated random variables is the sum
of their covariances:

Var
(

Ȳi(k∈ut )|6Nt , u
)

= Var





∑

k∈ut

Yik/

(

1TNc
ut

)





=

[(

Nc
∑

k=1

σ 2
k utk + θt

(

1TNc
ut

)2

+
∑

j6=t

θj

(

1TNc
(uj ⊙ ut)

)2



 /

(

1TNc
ut

)2





= θt +









Nc
∑

k=1

σ 2
k utk +

∑

j6=t

θj

(

1TNc
(uj ⊙ ut)

)2



 /

(

1TNc
ut

)2





= θt + ψt , (7)

where ⊙ denotes the Hadamard product and 1Nc is a
Nc-dimensional vector of ones. A sufficient statistic for
Var

(

Ȳi(k∈ut)|6Nt , u
)

= θt + ψt is therefore the sum of squares
of the deviations of the conditional person level means from the
conditional grand mean,

SSBt =

N
∑

i=1

(

Ȳi(k∈ut) − Ȳ.(k∈ut)

)2
. (8)

Similarly, the within-component sum of squares is a sufficient

statistic for Var(Yik) = σ 2
k
+

Nt
∑

t=1
θtutk, namely

SSWk =

N
∑

i=1

(

Yik − Ȳ.k

)2
. (9)
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From Equations (8) and (9) follow Nt + Nc sufficient statistics
for the Nt covariance and Nc variance parameters, out of which
the additive covariance structure, as specified in Equation (1), is
composed. The model is therefore identified under the condition
that the rows of the classification matrix u are mutually distinct.

The truncated shifted inverse-gamma prior extends the
default inverse-gamma prior for variance components with
a shift and a truncation parameter; the former allowing a
covariance parameter to take on negative values, the latter
ensuring the positive definiteness of the additive covariance
matrix at any layer:

IG(x,α0,β0,ψt , trt) =

[

β
α0
0

Ŵ(α0)
(x+ ψt)

−α0−1exp

(

−
β0

x+ ψt

)]

·

1tr(x > trt), (10)

where the truncation point (trt) and shift parameter (ψt) are
computed according to Equations (6) and (7).

Note that conjugacy between the extended inverse-gamma
prior and the likelihood function of a normal distribution
is preserved, thus leading to truncated shifted inverse-
gamma posteriors for the covariance and measurement
error variance parameters:

θt ∼ IG(x,α0 + N/2,β0 + SSBt/2,ψt , trt), (11)

σ 2
k ∼ IG(x,α0 + N/2,β0 + SSWk/2,

Nt
∑

t=1

θtutk, 0). (12)

The a-priori restriction of σ 2
k
> 0 is thus enforced by fixing the

truncation point for the measurement error variance parameters
to zero.

See Appendix A in Supplementary Material for an outline of
the MCMC algorithm and the corresponding sampling steps.

5. SIMULATION STUDY

In a simulation study, the within-subject dependence structure
under a model for RTs and dichotomous responses is estimated.
A comparison is made between a BCSM and the LHM. In the
BCSM framework, the dependence structure is directly modeled
in an additive covariance matrix. In the LHM framework, the
dependence structure is implied by the random effect structure
and in particular the random effect variances. Therefore, the
focus of this simulation study is the precision and bias of the
(co)variance parameter estimates.

In the simulated experiment, across two conditions, N =

200 and N = 1, 000 randomly selected persons are taking a
test that consists of p = 12 items. Furthermore, the time-
pressure on the test-takers systematically changes after every two
items. This is assumed to affect the response processes within
the group of test-takers over the course of the test. For example,
under a perceived high time-pressure, guessing may become
more likely. The change in response processes is reflected by
the within-subject dependence structure, i.e., the speed-accuracy
trade-off may vary between blocks of two items and is common
across test-takers.

The length of the test is fixed across the 100 replications for
both conditions of the simulation.Within each condition, all test-
takers are part of the same group. Within each replication, test-
taker data are generated and the BCSM as well as the LHM are
fitted with 5000 MCMC iterations and a burn-in phase of 10%.
The LHM is fitted using the R-package LNIRT (Fox et al., 2018).

5.1. LHM for Fixed Speed and Ability
On the first level of the hierarchical framework, separate
measurement models for the RTs and RAs are specified. The
item discrimination parameters are fixed to 1, which gives the
following first level models for the RTs (RT) and RAs (RA) of
test-taker i and item k:

RTik = βk − ζi + eRTik , (13)

RAik = θi − bk + eRAik
, (14)

where ζi ∼ N (µζ , δ) and θi ∼ N (µθ , τ ) are random variables
on a person level, representing the variation in working speed
and ability between test-takers. The time intensity and item
difficulty parameters βk and bk are item level intercepts and
are not given further attention in this simulation study. Finally,
eRTik ∼ N (0, σ 2

k
) and eRAik

∼ N (0, 1) are the measurement
errors. On the second level, a model for the joint-distribution of
the person parameters (working speed and ability) is defined:

6p =

(

δ + φ φ

φ τ + φ

)

. (15)

Note that the LHM assumes a constant working speed and ability
across the test for a test-taker. From this follows a test-wide
cross-covariance between a test-taker’s RTs and RAs φ.

5.2. BCSM for Variable Speed and Ability
In the BCSM, the within-subject dependence structure is
modeled directly in an additive covariance structure with 9 layers.
The covariance structure is defined in Equation (1), where θ =

{δ, τ ,φ, ν1, . . . , ν6} are the (cross-)covariance parameters and the
classification matrix is specified in Table 6. A truncated shifted
inverse-gamma prior with shape = 10−3 and scale = 103 is
defined for the variance and covariance parameters.

5.3. Data Generation
Data are generated under a generalization of the models specified
in Equations (13)–(15) that allows the test-takers’ working speed
and ability to vary over the course of the test:

RTik = βk − ζit(k) + eRTik , (16)

RAik = θit(k) − bk + eRAik
. (17)

6pk =

(

δ + φ + νt(k) φ + νt(k)
φ + νt(k) τ + φ + νt(k)

)

, (18)

where t(k) denotes item k in classification group t. The
population values of the (co)variance parameters are δ = 0.5,
τ = 0.5, φ = 0.5 and ν = {0,−0.05,−0.1, 0.4, 0.2, 0.3}. The item
level intercepts (β and b) are set to zero. Finally, the population
values of the measurement error variances are generated from a
uniform distribution with lower bound 0.5 and upper bound 1.5.
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TABLE 6 | The additive covariance structure of the BCSM allows a varying speed-accuracy trade-off between blocks of two items.

Classification matrix u

Covariance Response times Response accuracies

δ 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

τ 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

φ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ν1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

ν2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

ν3 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

ν4 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

ν5 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0

ν6 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1

TABLE 7 | Means and standard deviations of posterior mean estimates across

100 simulated replications of data for 200 and 1,000 test-takers and 12 items.

Mean (SD) of posterior mean estimates

N = 200 N = 1,000

Cov BCSM LHM BCSM LHM

δ = 0.5 0.49 (0.03) 0.51 (0.03) 0.50 (0.01) 0.52 (0.01)

τ = 0.5 0.51 (0.07) 0.45 (0.06) 0.48 (0.03) 0.42 (0.03)

φ = 0.5 0.51 (0.03) 0.50 (0.03) 0.50 (0.02) 0.49 (0.01)

ν1 = 0 0.00 (0.04) −0.01 (0.02)

ν2 = −0.05 −0.05 (0.04) −0.06 (0.03)

ν3 = −0.1 −0.07 (0.03) −0.11 (0.03)

ν4 = 0.4 0.39 (0.06) 0.39 (0.03)

ν5 = 0.2 0.18 (0.05) 0.19 (0.02)

ν6 = 0.3 0.28 (0.06) 0.30 (0.02)

A comparison is made between a BCSM and the LHM. In the BCSM framework, the full

within-subject dependence structure is modeled.

5.4. Results
Under the LHM, the test-wide cross-covariance and the
variance of the test-taker working speed distribution are
successfully estimated. The variance of the ability distribution
(τ ) is underestimated for both sample size conditions under
the LHM, which can be attributed to ignoring the block-
wise deviations from the test-wide cross-covariance. Under
the BCSM, the full within-subject dependence structure is
successfully estimated. Cross-covariances near zero (ν1, ν2,
and ν3) are estimated without bias regardless of sample size,
which can be attributed to the non-informative truncated
shifted inverse-gamma priors. The standard deviations
of the posterior mean estimates are comparable for both
models. Increasing the sample size leads to smaller standard
deviations of the posterior mean estimates for both models.
Under the BCSM, an average correlation of 0.99 (SD: 0.01)
is observed under both conditions between the simulated
measurement error variance parameters and their posterior
mean estimates. The results of the simulation study are
summarized in Table 7.

6. EMPIRICAL EXAMPLE: PIAAC 2012

The Programme for the International Assessment of Adult
Competencies (PIAAC) study deploys a computer-based large
scale assessment to gain insight into adult competencies across
the domains of numeracy, literacy and problem solving (OECD,
2013). The computer-based nature of the assessment allows
recording behavioral process data, in addition to the scored
responses. It is assumed that the process data correlate with
the scored responses and therefore contain information about
the latent competencies of interest. Describing these correlations
requires paying attention to local dependences within the data.
Local dependences follow from shared item characteristics (e.g.,
response mode), the test design (e.g., testlets), the manner the
process data is obtained (e.g., a single measurement per type,
test-taker and item, multiple measurements or aggregated data)
and the latent factor structure (e.g., data components load on
test-takers’ ability and working speed). Furthermore, test-taker
characteristics such as computer experience or gender may affect
the associations of data components (e.g., the correlation of RTs
and RAs of an item may differ between test-takers with and
without computer experience). It will be shown that a BCSM can
be constructed that (a) takes the complex dependence structure
within test-taker data into account, (b) allows correcting for
between-subject differences in the dependence structure by
including test-taker background variables, and (c) can be
estimated given a reasonable sample size.

6.1. Data Set
The data set consists of responses and process data for N = 745
Canadian test-takers and p = 15 items. For each combination
of item and test-taker, three data points are available: the scored
dichotomous response, the total (log) RT it took the test-taker
to complete the item and the (log) time it took the test-taker
until they took their first action on that item. Nine of the
items measure numeracy competencies, the remaining six items
measure literacy competencies. Furthermore, the items differ
in their response mode. See Table 8 for an overview of the
included items and their characteristics. Moreover, the test-
takers’ gender (0: male, 1: female), computer experience (0: no,
1: yes), whether or not they are a native speaker (0: no, 1: yes)
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TABLE 8 | Id, name, domain, and response mode of the 15 PIAAC items included

in the data analysis of the empirical example.

Item id. Name Domain Response mode

1 Wine 1 Numeracy Number match

2 Wine 2 Numeracy Stimulus clicking

3 Gas gauge Numeracy Number match

4 Photo 1 Numeracy Number match

5 Photo 2 Numeracy Stimulus clicking

6 Photo 3 Numeracy Exact match

7 Urban population Numeracy Number match

8 Tiles Numeracy Exact match

9 Package Numeracy Stimulus clicking

10 Baltic stock market 1 Literacy Stimulus clicking

11 Baltic stock market 2 Literacy Stimulus highlighting

12 Baltic stock market 3 Literacy Stimulus clicking

13 Baltic stock market 4 Literacy Stimulus clicking

14 TMN antitheft 1 Literacy Stimulus highlighting

15 TMN antitheft 2 Literacy Stimulus highlighting

and their educational level (1: low, 2: medium, 3: high) were
recorded. Further information on test-taker demographics and
item characteristics can be found in Statistics Canada (2013).

6.2. Dependence Structure
Data that are naturally grouped may be stronger correlated than
(conditionally) unrelated data. In the data set at hand, items are
grouped through their domain (numeracy or literacy) and their
response mode (number match, exact match, stimulus clicking
or stimulus highlighting). For each grouping, three layers are
defined: one for each pair of data types. This allows to explore
how the dependences between, respectively, RAs and RTs, RAs
and times to first action (TAs), and RTs and TAs vary across item
domains and response modes, while controlling for the rest of
the dependence structure. Furthermore, data components that
load on a common latent factor may be correlated. Latent factors
are the test-taker’s ability, working speed and speed first action.
The correlation between the latent factors is modeled in separate
layers. Figure 2 illustrates the classifications that follow from the
groupings. Data within each classification group may be locally
dependent. The corresponding classification matrix for the Nc =

45 data components and Nt = 24 classification groups is shown
in Appendix B (Supplementary Material).

6.3. Statistical Model
Under the BCSM framework, a model for response and process
data is constructed. In themean structure of the joint-model, test-
taker background data are modeled as predictor variables. The
dependence structure is modeled through an additive covariance
matrix that defines the relationship of the multivariate normally
distributed error terms:

Y i = XiB+ εi, εi ∼ N(0Nc ,6), (19)

where Y = {RA,RT,TA} is a N × Nc-dimensional matrix
containing the RAs that underlie the scored dichotomous

responses (RA), the total RTs per item for each test-taker
(RT), and the time passed until the test-taker’s first action
per item (TA). The N × 5-dimensional matrix X contains the
grand-mean centered test-taker background variables (gender,
computer experience, native speaker and education level) and
a vector of ones as first column. B is a 5 × Nc matrix
containing the regression weights for each of the four covariates
on the Nc data components, and the intercepts. The first
column of B contains the item-specific intercepts, which can be
interpreted as item difficulty, time intensity and average time
to first action parameters. The weights and intercepts are thus
modeled for each data component and are equal across test-
takers, therefore representing fixed effects. Note that no random
variance components are associated with fixed effects, whereby
they don’t enter the modeled dependence structure. TheNc×Nc-
dimensional additive covariance matrix 6 consists of Nt = 24
layers that correspond to the specified dependence structure:

6 = diag(σ )+

Nt
∑

t=1

θtutu
T
t . (20)

For the RA components, the measurement error variance
parameters are fixed to one. Furthermore the scale of the
IRT model is set by fixing the mean of the item-specific
intercepts (i.e., the mean of the item difficulty parameters)
to zero. The classification matrix u is shown in Appendix B
(Supplementary Material). A truncated shifted inverse-gamma
prior with shape = 10−3 and scale = 103 is defined for the
variance and covariance parameters. No a-priori information
about the regression weights is used: the prior guesses for the
scale matrix and the mean matrix of B equal the identity matrix
and a matrix of zeros, respectively.

6.4. Results
The model parameters are estimated with a single MCMC chain
of 55,000 iterations from which the first 15,000 iterations are
discarded as burn-in period. Visual inspection of traceplots and
applying the Heidelberger and Welch’ criterion (Heidelberger
and Welch, 1983) using the R-package coda (Plummer et al.,
2016) indicate a satisfying exploration of the parameter space
and do not provide evidence against convergence of the MCMC
algorithm. The posterior means and standard deviations of the
twenty-four covariance parameters in the additive covariance
structure are summarized in Table 9. Figure 3 shows the
corresponding 95%-Highest Posterior Density (HPD) intervals.

Given the observed data, it can be concluded that the
probability of local dependence in the ability and speed
first action latent factor classification groups is at least 95%.
Furthermore, a positive interdependence in the higher order
relationship between RTs and TAs is found. This implies that
on average, test-takers who work overall faster also lose less
time before making the first move in the item solving process.
The results indicate that it is necessary to model the implied
covariance structure of the correlated person effects on each
type of test-taker data (RAs, RTs, and TAs). The variation in
the data explained on a person level that is captured by the
latent factors (ability, working speed, and speed first action) and

Frontiers in Psychology | www.frontiersin.org 9 August 2019 | Volume 10 | Article 1675

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Klotzke and Fox Bayesian Covariance Structure Modeling

FIGURE 2 | Classification diagram for the PIAAC 2012 BCSM. The classification structure specifies dependences between scored responses and behavioral process

data for varying item characteristics (domain and response mode) and a correlated latent factors structure. RA, RAs that underlie the scored dichotomous responses;

RT, total RTs per item; TA, times to first action per item.

their correlation is estimated through the corresponding layers
in the additive covariance structure: modeling the person effects
themselves is not required.

Neither variations in the item domains, nor in the response
modes caused local dependence in the data. For each domain
and response mode, three sources of local dependence are
independently evaluated: the relationships between, respectively,
(1) RAs and RTs, (2) RAs and TAs, and (3) RTs and TAs.
Modeling the 3-by-3 covariances for each specified subset of
items shows that the interdependences across data types and the
investigated item characteristics are sufficiently captured by the
covariance layers through which the dependences of the latent
factors structure are specified. It can therefore be concluded that
the items’ domain and response mode do not explain a noticeable
amount of variance in the test-taker data when controlling for the
rest of the dependence structure.

The occurrence of a vast number of covariance parameter
estimates close to, or approximately equal to, zero highlights
the importance of the truncated shifted inverse-gamma prior
specification that avoids boundary effects by moving the edge
of the parameter space away from zero. For instance, a default
inverse-gamma prior would presume that θ20 > 0 and would
therefore be informative with regard to the probability of local
dependence caused by the cross-relationship of RAs and TAs
that belong to items with the stimulus clicking response mode: it
decreases the estimated probability of local independence, i.e., the
(estimated) probability that the true value of θ20 is zero, and can
thereby provoke false conclusions about the underlying response
processes. Finally, measurement error variance parameters are
estimated for the fifteen RT components (mean: 0.62, SD: 0.47)
and the fifteen TA components (mean: 0.31, SD: 0.19).

7. DISCUSSION

A novel Bayesian framework to model local dependences in test-

taker data is proposed. The BCSM allows specifying dependences

across different types of data (RAs, RTs and other process data)
and multiple levels (e.g., within a testlet, clustered data per item
and test-taker). The local dependences are specified through
a cross-classification structure and are explicitly modeled as
covariance parameters. In an additive covariance structure,
nested and/or cross-classified data structures are modeled
through covariance parameters.

Recording test-taker data during CBAs is not limited
to scored responses and RTs. For researchers and assessors
these additional process data are of utility: they can increase
the precision of test-taker ability estimates and lend new
insights into underlying response processes. However, using
process data to draw inferences is problematic in the GLMM
framework: each additional type of data requires the inclusion
of new person-level variables. If interaction effects occur,
the model’s complexity further increases drastically. A highly
complex model is prone to over-parameterization and weak
numerical stability, which may strongly limit its utility in
practical applications.

The BCSM framework allows the construction of

parsimonious models without requiring random effects (on
a person or group level) to model data dependences. Contrary

to common marginal modeling approaches such as GEE, the
dependence structure is however fully modeled in an additive
covariance structure. This allow testing for interaction effects
and to estimate the random effects post-hoc from the residuals
of the model. By estimating random effects post-hoc, inferences
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TABLE 9 | Posterior means and standard deviations of the Nt = 24 covariance

parameters in the additive covariance structure.

Layer Classification Level
Posterior distribution

Mean SD

1 Ability Latent factor 0.47 0.16

2 Working speed Latent factor 0.01 0.03

3 Speed first action Latent factor 0.05 0.02

4 Ability-Working speed Latent factor 0.01 0.01

5 Ability-Speed first action Latent factor −0.03 0.02

6 Working speed-Speed first

action

Latent factor 0.12 0.02

7 Numeracy: RA-RT Item domain 0.01 0.03

8 Numeracy: RA-TA Item domain 0.05 0.03

9 Numeracy: RT-TA Item domain 0.04 0.02

10 Literacy: RA-RT Item domain 0.00 0.03

11 Literacy: RA-TA Item domain 0.01 0.03

12 Literacy: RT-TA Item domain 0.03 0.02

13 Exact match: RA-RT Response mode −0.01 0.17

14 Exact match: RA-TA Response mode 0.11 0.11

15 Exact match: RT-TA Response mode 0.07 0.10

16 Number match: RA-RT Response mode −0.02 0.05

17 Number match: RA-TA Response mode 0.07 0.07

18 Number match: RT-TA Response mode 0.04 0.04

19 Stimulus clicking: RA-RT Response mode 0.01 0.04

20 Stimulus clicking: RA-TA Response mode 0.00 0.03

21 Stimulus clicking: RT-TA Response mode 0.00 0.02

22 Stimulus highlighting: RA-RT Response mode −0.02 0.04

23 Stimulus highlighting: RA-TA Response mode 0.01 0.03

24 Stimulus highlighting: RT-TA Response mode 0.02 0.02

Each layer of the covariance structure corresponds to one classification. Classifications

are made across three data types (RA, response accuracies that underlie the scored

dichotomous responses; RTs, response times; TAs, times to first action taken) based on

(correlated) latent factors, item domains, and item response modes.

about test-taker characteristics can be made conditional on a
complex within-subject dependence structure that follows from
combining various auxiliary process data types into a coherent
model. There is no theoretical limitation to the number of data
types to combine, or in the number of components within each
type (e.g., test length).

Modeling local dependences through covariance parameters
instead of random effect variance parameters results in an
extended parameter space. This allows more flexibility in
specifying complex dependence structures (covariances can be
negative, zero or positive). Compared to default inverse-gamma
priors for variance parameters, truncated shifted inverse-gamma
priors for the covariance parameters are less informative and
allow more objective inferences about the dependence structure.
The truncation is furthermore used to ensure the positive
definiteness of the additive covariance structure, and can be
utilized for inequality hypothesis testing (e.g., θ1 < θ2 < θ3).
Through conjugacy of the proposed priors, BCSMs can be fit with
an efficient Gibbs-sampling algorithm.

In a simulation study, a complex within-subject dependence
structure was successfully estimated under a BCSM for responses
and RTs. The model used for data generation allowed the test-
takers’ working speed and ability to vary over the course of a test.

The LHM was not capable to capture this variation and showed
bias in the variance estimate of the ability distribution. Under
the BCSM, variation in test-takers’ working speed and ability did
not violate the condition of local independence: the dependence
structure was extended to account for the variation. Furthermore,
by estimating the extended dependence structure, insight into
the development of the speed-accuracy trade-off on group level
across the test was obtained.

The empirical example based on the PIAAC study showed
a complex real-world dependence structure in response and
process data. Covariance, measurement error variance and
item parameters were estimated conditional on a dependence
structure that took into account the classifications across three
data types (scored dichotomous responses, RTs, TAs), item
characteristics (domain, response mode), and the latent factor
structure (data components load on the correlated factors ability,
working speed and speed first action). Furthermore, test-taker
background variables were included as covariates to correct
for between-subject differences in the dependence structure.
Through additive layers in a single covariance matrix, 3-by-3
covariance structures were modeled for each specified subset of
items. This allowed to evaluate the cross-dependence between all
pairs of data types individually for each of the item domains and
response modes. The results indicated, that the interdependences
across data types and the investigated item characteristics were
sufficiently captured by the covariance layers through which
the dependences of the latent factors structure were specified.
The empirical example illustrates how, in the BCSM framework,
the modeled dependence structure can be flexibly adapted to
the design and the underlying theoretical constructs of an
assessment. Furthermore, the vague nature of the truncated
shifted inverse-gamma prior specification promotes unbiased
inferences about the dependence structure. In the empirical
example, this was in particular important due to the vast number
of covariance parameter estimates close to, or approximately
equal to zero. In this situation, a prior specification that does
not take boundary effects into account artificially increases
the estimated probability of local independence and hence
provokes false conclusions about the dependence structure and
the underlying response processes.

In addition to integrating multiple types of test-taker data,
dependences can follow from the test design, item properties,
the (sub-)population of test-takers, test-takingmodes, test-taking
conditions, and from an interaction of these characteristics.
Examples are testlet structures, in which data within a testlet
is often more alike then data across testlets (e.g., Wainer and
Kiely, 1987; Yen, 1993; Wainer et al., 2007), or the interaction of
culturally loaded concepts in items and diverse (sub-)populations
of test-takers (e.g., with and without migration background)
(e.g., Steele and Aronson, 1995; Paniagua, 2000; Good et al.,
2003; Robinson, 2010). The resulting dependences in test-taker
data form a threat for the flawless psychometric equivalence of
an assessment, if not accounted for Helms (1992).

In educational measurement, factor loadings, or slope
parameters, are utilized to assess differential item functioning
(DIF) across groups, test-taking modes and over time (Millsap,
2010), allow multidimensional item response theory (MIRT)
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FIGURE 3 | 95%-Highest Posterior Density (HPD) intervals for the Nt = 24 covariance parameters in the additive covariance structure. Black dots correspond to

posterior mean estimates.

(Reckase, 2009), and are used to represent the quality of an
item to discriminate between distributions of test-takers with a
different level of ability or speed (van der Linden, 2007; Klein
Entink et al., 2008). As discussed by Klotzke and Fox (2018),
factor loadings integrate seamlessly into the proposed modeling
framework. In fact, the inclusion of factor loadings solely
removes the restriction of values being either zero or one in the
classification matrix, hence keeping the modeling structure and
the therein derived equations intact. However, while this allows
to include pre-calibrated factor loadings into the model, no
estimation procedure has been described so far. In a conditional-
BCSM hybrid model, the factor loadings can also be modeled in
the mean structure instead of in the covariance structure. For
example, a 2PL-IRT model with item-discrimination parameters
can be specified in the mean structure and the dependences
implied by a testlet structure can be explicitly modeled in the
multivariate distribution of the error terms. This approach is
straightforward and suited for practical applications. A downside
is, that a trade-off is been made between the parsimony of the
model and the number of person level variables included in the
mean structure. In the empirical PIAACdata example showcased,
the factor loadings were predefined given the test design and

item characteristics. Freeing the factor loadings will further
increase the flexibility in the modeled dependence structure
and thereby the utility of BCSM for practical applications in
educational measurement.

It has been shown that modeling a non-linear relationship
between RAs and RTs can be beneficial (e.g., Molenaar et al.,
2015; Bolsinova and Molenaar, 2018). Through the additive
covariance structure in BCSM, the conditional dependence
between RTs and RAs is not limited to vary solely based
on item membership (i.e., data points that belong to the
same item are conditionally more alike), but is allowed to
change based on item characteristics (e.g., domain and response
mode), test form (e.g., computer based vs. paper-and-pencil)
and test design (e.g., a testlet structure). Individual test-taker
characteristics that may cause between-subject differences in
the dependences of RTs and RAs are controlled for through
modeling test-taker background variables as covariates in the
mean structure (e.g., the relationship between RTs and RAs
may vary based on the test-takers’ age or a pre-test speed
categorization). This differs from methods that model a non-
linear relationship between RTs and RAs through a predefined
function that involves person-specific random components
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and/or item parameters (Molenaar et al., 2015; Bolsinova et
al., 2017; Bolsinova and Molenaar, 2018): in BCSM, test-taker
characteristics that may affect the relationship between data
types are controlled for in the mean structure, and the person-
specific random effects are not modeled. Item characteristics are
modeled in the mean structure (e.g., item difficulty parameters)
and through additive layers in the covariance structure (e.g.,
item response mode). It is an interesting future prospect to
see in how far the BCSM framework can be extended for
covariance structures that follow from curvilinear functions for
the relationship between data types. Furthermore, the BCSM
approach must be distinguished from methods that model a
person-specific covariance matrix (e.g., Meng et al., 2015): by
their nature, models that explicitly specify a covariance matrix
for each test-taker heavily increase in complexity with growing
sample size and thus must impose strong restrictions on the
modeled dependence structure to achieve model identification.
In contrast, BCSM aims at designing parsimonious models
that are easily identified when complex dependence structures
are modeled.

The BCSM framework is not limited to RTs and dichotomous
responses. Dependences between dichotomous responses
and RTs were modeled through latent continuous variables.
Expressions for the mean and variance of the conditional normal
distribution of a latent variable were obtained by partitioning the
additive covariance matrix and analytically deriving its inverse.
Information from the observed responses (whether or not a test-
taker responded correctly to an item) was utilized by truncating
the respective distribution. Modeling dependences through

latent continuous variables can be extended to data with more
than two ordered or unordered response categories (e.g., Castro
et al., 2012). This extends the range of process data that can be
integrated into a BCSM. For example, sequential action patterns
can be operationalized as count variables through N-grams (He
et al., 2016). It is interesting to see under which conditions a
BCSM allows to draw inferences about the interdependence
between responses, RTs and action patterns and which new
insights into latent response processes can be obtained. Further
future prospects of BCSMs are the application to additional
real-world empirical settings, extensions to unbalanced data and
nested classifications on a person level (e.g., a test-taker is part of
a school and classroom), and evaluating the utility of estimating
test-taker effects post-hoc. Finally, it is of interest to compare
the plausibility of different dependence structures in a Bayesian
model selection framework (e.g., Kass and Raftery, 1995).
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