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This study identifies dominant and intermediary players in football by applying a play-
by-play social network analysis (SNA) on 70 professional matches from the 1. and 2.
German Bundesliga during the 2017/2018 season. SNA provides a quantification of
the complex interaction patterns between players in team sports. So far, the individual
contributions and roles of players in football have only been studied at match-level
considering the overall passing of a team. In order to consider the real structure
of football, a play-by-play network analysis is needed that reflects actual interplay.
Moreover, a distinction between plays of certain characteristics is important to qualify
different interaction phases. As it is often impossible to calculate well known network
metrics such as betweenness on play-level, new adequate metrics are required.
Therefore, flow betweenness is introduced as a new playmaker indicator on play-
level and computed alongside flow centrality. The data on passing and the position
of players was provided by the Deutsche Fußball Liga (DFL) and gathered through a
semi-automatic multiple-camera tracking system. Central defenders are identified as
dominant and intermediary players, however, mostly in unsuccessful plays. Offensive
midfielders are most involved and defensive midfielders are the main intermediary
players in successful plays. Forward are frequently involved in successful plays but
show negligible playmaker status. Play-by-play network analysis facilitates a better
understanding of the role of players in football interaction.

Keywords: performance analysis, football, temporal networks, flow centrality, intermediary player

INTRODUCTION

Football teams are described as groups that interact in a dynamic and interdependent way to
achieve their common goal (Ribeiro et al., 2017). Understanding the individual role of each player
in that dynamic process is highly relevant to uncover how a team operates (Vilar et al., 2013).
Although collective behavior within teams is frequently linked to performance outcomes in sports,
the impact of individual players on team performance requires further research (Duch et al., 2010).
Therefore, identifying methods that offer a quantification of crucial players in the interaction of
teams contributes to performance analysis in football.

Social network analysis (SNA) has been identified as a suitable method as it addresses the
interdependencies in teams by modeling the interaction based on passes. Passos et al. (2011)
describe the potential of SNA by modeling intra-team coordination as the frequent passing
interaction taking place between players in team sports. Pena and Touchette (2012) and Grund
(2012) build on this idea by connecting network properties to performance outcomes in football.
Since then, there has been a growing body of research applying SNA by exploiting passing networks
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to understand the properties of team performance and the
underlying individual contribution of players (Sarmento et al.,
2018). The latter is of interest as each player has a specific
position to play and role to accomplish in order to contribute
to the common goal of winning (Bourbousson et al., 2010).
The majority of research in football follows a static analysis
on match-level by calculating centrality metrics based on the
aggregated passing data in a match. In these studies, the
contribution of players to the overall team performance is
often described by counting the total number of successfully
played and received passes through different degree measures
(Clemente et al., 2015; Gama et al., 2015; Trequattrini et al.,
2015). Moreover, the intermediary role of players to connect
their team mates as bridging players by distributing the ball
is frequently assessed by applying betweenness and closeness
measures to the overall passing interaction between players across
a match (Clemente et al., 2015, 2016a; Aquino et al., 2018;
Castellano and Echeazarra, 2019).

Based on these existing studies that apply SNA in football,
Ramos et al. (2018) demand a breakdown of the analysis to a play-
by-play level to consider the temporal character of football. This
implies that passing sequences should be evaluated separately
instead of examining the aggregated passing data across a
match. Moreover, they emphasize that an analysis on match-
level to detect intermediary players through the application of
betweenness and closeness measures assumes certain properties
about interplay in football that might not be adequate, e.g.,
the proposition that ball flow follows the shortest paths over
the graph which results from the aggregation of all passes in a
match. That means that the current approaches do not actually
consider the actual sequence of ball passing in order to detect
players that are in fact connecting their team members through
passing. Instead, the overall intensity of passing across a match
is used to approximate bridging players. Third, the authors also
suggest a distinction between plays of certain characteristics to
ensure a qualitative component to the analysis that bridges the
gap between SNA and performance outcomes and fosters the
practical impact of the approach.

Some studies already tackle certain aspects of the proposition.
Yamamoto and Yokoyama (2011) break down matches in time
intervals to meet the temporal character of football. Pina
et al. (2017) differentiate between successful and unsuccessful
interaction based on aggregated passing networks during certain
time intervals. Yet, these approaches do not reflect actual
interplay as the analysis is built on aggregated passing data across
a number of plays and hence does not consider actual interplay
as it unfolds. The reason why most studies conduct an analysis
on interval-level instead of play-level is due to the character of
plays in football and the current limitations of SNA in sports. In a
study by Tenga et al. (2010), 50% of all plays consist of two passes
or less and only 20% of all plays take more than four passes. Thus,
only a limited number of players are involved in individual plays
and it is often not possible to calculate well known individual
metrics such as betweenness or closeness on that level of analysis.
Moreover, until recently, the regular availability of action feeds in
professional football that enable a play-by-play network analysis
was limited. In a recent study, Mclean et al. (2018) compute SNA

metrics on play-level by analyzing the team interaction properties
of goal scoring networks and modeling zones on the playing
field as separate nodes to assess how attacks evolve across the
pitch. However, there is no differentiation between successful
and unsuccessful plays and no assessment of the contribution of
individual players.

To summarize, previous research in football has not identified
the individual contribution and especially the intermediary
role of players based on a separate evaluation of passing
sequences. Studies were only executed based on aggregated
passing data across time intervals or the entire match. Thus,
this study applies and proposes adequate metrics that quantify
individual performance on play-level while connecting the
results to performance variables. Moreover, a distinction between
dominant and intermediary players on play-level is provided.
Building on Clemente et al. (2016b), dominant players on match-
level are frequently involved in interplay while intermediary
players link other teammates during a match.

Following Fewell et al. (2012), flow centrality is calculated
to assess the individual dominance on play-level by focusing
on the overall involvement during all plays in a match. The
intermediary role of players is quantified by counting the share
of plays in which the players are actually in-between other
teammates. The metric which we call flow betweenness considers
the actual sequential pattern of passing and overcomes the
issue of short plays, in terms of number of passes, at the
same time. We draw a comparison of network metrics between
different playing positions as the applied metrics specify and
extend the characterization of roles and tasks of players in
football. There is also a differentiation between successful and
unsuccessful plays by using the entering of the finishing zone
as a proxy for goals scored to achieve a rigorous assessment of
individual contribution (Tenga et al., 2010). Additionally, the
study draws a comparison to the traditional playmaker indicator
of weighted betweenness which is computed at match-level.
Using a correlation analysis, we can investigate the degree of
similarity between flow-based and common match-level metrics
and the circumstances in which the results between flow-
based metrics differ.

The novelty about this study is twofold. First, it proposes the
breakdown of a football match in its sequential order of passing
within ball possessions in order to find actual bridging players
that are in-between plays. Therefore, our contribution does not
lie in the observation of changes in the pattern of interplay
across a match but in the consideration of the temporal order
of passes within plays to detect actual intermediate players. The
second novelty is a comparison between the network metrics
of different playing positions in successful and unsuccessful
plays to assess their contribution to the team. We focus on the
different outcomes of a play, instead of only assessing successful
play outcomes such as Mclean et al. (2018) did or relating
individual match-level metrics to match outcomes which accepts
potential noise in the analysis. Flow-based metrics quantify the
proportional prevalence or intermediary role of players in a
match. They appear most fitting in a football context as they
are robust to the short plays in football, allow a consideration
of the temporal order of passing as proposed through flow
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betweenness and offer a suitable connection to performance
outcomes on play-level.

MATERIALS AND METHODS

Samples
A total of 70 matches between 35 professional male football teams
from the 1. and 2. German Bundesliga were analyzed during the
2017/2018 season. Matches were randomly selected from a pool
and, on average, teams were present in four matches with no
repetition of any encounter. The final sample consists of 24,990
passes captured in 5409 plays.

Procedure
The focus of this study lies on an analysis at play-level. This means
that interplay in each ball possession is examined separately
instead of evaluating an aggregated passing matrix at match-
level. The data was provided by the Deutsche Fußball Liga (DFL).
It contains positional data for each player and the ball, which
was collected by the multiple-camera tracking system TRACAB R©

operating at 25 Hz. The validity and reliability of the system
was secured in an independent study (Linke et al., 2019). Action
feeds including information on passing were also provided and
their reliability secured by the DFL. Definitions and validation
procedures can be found in the DFL definitions catalog for official
match data (2014). Twenty-eight percent of the original data
is dropped in the cleaning process providing 8897 plays that
clearly identified each ball possession and player involved. In
order to conduct our analysis, we capture each play in a two-
dimensional passing array consisting of the players in possession
of the ball and an index reflecting the sequential order of the
ball passing during the play. We also build a corresponding
adjacency matrix for each play which are then aggregated across a
match to calculate the traditional playmaker indicator on match-
level. Figure 1 provides an example of a passing sequence with
its corresponding passing array and adjacency matrix. For the
purpose of our study, the final sample (61% of all plays) focuses
on plays of at least two completed passes (the minimum play size
for having an intermediate player).

We categorize a possession as successful when a team enters
the finishing zone, which is a common proxy for goals scored
(Tenga et al., 2010). This category includes all plays of at least
two passes that lead to entering the finishing zone and sequences
are captured until the moment of success (Pina et al., 2017).
A play is declared as unsuccessful if ball possession is lost by
any means before entering the zone. Neutral plays already start
in the finishing zone or consist of set-plays directly entering it.
The possession outcome was classified combining the positional
data provided for each player and the ball with the information
on the standardized pitch sizes in the German Bundesliga and
dimensions of the finishing zone as defined by Tenga et al.
(2010). The information jointly enabled an automatic evaluation
on whether the player in ball possession entered the finishing
zone or whether a successful pass was played to a teammate in
that designated area. That way, we could also detect whether a
possession starts in the finishing zone in order to declare it as

neutral. This leads to 21.5% successful plays, 74.5% are declared
unsuccessful and a remainder consisting of 4% in neutral plays.

Playing positions are tracked to facilitate an evaluation of the
individual contribution of players in our study. Multiple players
may be assigned to the same tactical position. Average metric
values are reported to evaluate the performance of the playing
positions in this case. The final classification is in line with
previous studies focusing on players in football (Clemente and
Martins, 2017; Korte and Lames, 2018). We codify the following
seven playing positions according to the definitions catalog for
official match data provided by the DFL (2014): (i) goalkeeper
(GK); (ii) central defender (CD); (iii) external defender (ED);
(iv) central defensive midfielder (CDM); (v) external midfielder
(EM); (vi) central offensive midfielder (COM); and (vii) forward
(F). Substitutions are handled through a reassignment of playing
positions according to the DFL data provided. By codifying
playing positions, in comparison to specific player tracking, there
is no need to standardize the obtained values according to time
on the field (Praça et al., 2019).

Network Metrics
The analysis was carried out using the Python package
NetworkX R© and the software libraries pandas and NumPy. A set
of individual metrics was computed to achieve a quantification
of the contribution of playing positions in a team’s interplay. By
calculating flow centrality, a concept first introduced in basketball
by Fewell et al. (2012), we capture the involvement of each playing
position in all plays across a match. Building on this metric and
random-walk betweenness by Newman (2005), we also compute
a new metric called flow betweenness. For comparison purposes,
we also calculate weighted betweenness scores for each playing
position based on the aggregated passing data across a match.
Whereas the two play-level metrics model pass interactions as
walks, the weighted betweenness computation is based on the
concept of shortest paths to evaluate the intermediary role of
players (Ramos et al., 2018).

Flow Centrality
For each player, flow centrality measures the fraction of plays
(or attack units) that it is involved in at least once relative to all
plays by its team. Thus, an indication on the overall involvement
of all playing positions across a match is provided. Following
Fewell et al. (2012), flow centrality index, CFC (ni), for player i
is calculated as,

CFC (ni) =

∑m
k=1 pk (ni)

M
(1)

where M denotes the total number of plays by a team in a
match and pk (ni) denotes the k-th play in which ni is part of at
least once. By construction, flow centrality values are bounded
between 0 and 1. The extreme value of 0 signals that a player
was not part of any play in terms of passing or receiving the ball.
A value of 1 means that a player was at least involved once in
every play of its team during the match. Any flow centrality value
in between can be interpreted as the proportion of plays that a
player was involved in relative to all plays by its team.
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FIGURE 1 | Example of a passing sequence with its corresponding passing array and adjacency matrix.

Flow Betweenness
For each player, flow betweenness measures the fraction of plays
in which it functions as an intermediary player relative to all
plays by its team. We define a player as intermediate in a play
if it actually functions as a bridging player in terms of passing
between any other two players. Flow betweenness index, CFB (ni),
for player i is calculated as,

CFB (ni) =

∑m
k=1 bk (ni)

M
(2)

where M denotes the total number of plays by a team in a match
and bk (ni) denotes the k-th play in which ni is functioning as
an intermediary player. In contrast to CFC, which only tracks
involvement, CFB considers the actual passing sequence of a play
to track whether a player is positioned in between a sequence
to function as a bridging unit. Flow betweenness values are also
bounded between 0 and 1. Values of 0 signal that a player did not
once receive the ball by a teammate and successfully passed it on
to another teammate in any play during a match. A value of 1
means that a player received and passed on the ball at least once
in every play of its team. Values in between the extreme values
are again the proportion of plays that a player functioned in as a
bridging unit relative to all plays by its team.

While being in-between always implies being involved in a
play, the reversal is not true. Initiating or being at the end of
a play implies that a player is involved but not in-between a
ball possession. Therefore, the flow centrality value of a player
in a match is always at least as high as its corresponding flow
betweenness value.

Weighted Betweenness
Weighted betweenness assesses how often a player is in-between
any other two players of its team measured by their strongest
passing connections across a match. Thus, its betweenness
character is built on aggregated match data and does not

necessarily imply that the player functioned as a bridging unit
within plays. It is often used as a playmaker indicator (Pena and
Touchette, 2012; Clemente and Martins, 2017). The weighted
betweenness index, CWB (ni), for player i is calculated as,

CWB (ni) =
∑

j 6=k6=i

gi
jk

gjk
(3)

where gi
jk is the number of strongest passing connections via

player i from players j to k and gjk the total number of strongest
passing connections between players j and k. The values of
weighted betweenness are bounded between 0 and 1 reflecting
the proportion of strongest passing connections between any two
players in the network that lead via a particular player.

Statistical Procedures
Data were analyzed for normality using Shapiro–Wilk tests.
Since only 40% of data was normally distributed, non-parametric
statistical analyses were used.

For both play-level metrics, multiple Kruskal–Wallis H test
are executed to test for statistical differences between playing
positions for the entire sample.

In order to differentiate between successful and unsuccessful
plays, we apply Kruskal–Wallis H tests on two separate samples,
filtering for successful and unsuccessful plays accordingly, to
detect differences in play-level metrics between playing positions.
Moreover, multiple Mann–Whitney U tests are conducted for
each playing position to investigate statistical differences in
metrics between the different play outcomes.

As the share of successful plays is severely higher in plays
starting from the opponent’s half than from the own half of a
team (28.3–16.8%), we suspect the starting half to be a moderator
variable that could partly influence differences in involvement
in successful against unsuccessful plays across playing positions.
Hence, the same procedure to differentiate between successful
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and unsuccessful plays is repeated focusing on plays starting from
a team’s own half. For each approach, Dunn-Bonferroni post-hoc
tests offer pairwise comparisons between groups, respectively.

Our statistical analysis is conducted at a 5% significance level.
Following Ferguson (2009) and Cohen (2008), non-parametric
estimates of η2 are reported to interpret the effect size according
to the following criteria: no effect (η2 < 0.04); small effect
(0.04 ≤ η2 < 0.25); moderate effect (0.25 ≤ η2 < 0.64); strong
effect (η2

≥ 0.64). Ninety percentage confidence intervals for η2

are calculated following Hopkins (2017).
To assess the relationship between the network metrics, a

correlation analysis is carried out across the sample. First, the
Pearson correlation coefficients between CFC (CFB) and CWB
are calculated, respectively to evaluate the association between
metrics conducted on play-level and match-level. Second, the
Pearson correlation coefficient between CFC and CFB is computed
to assess differences between the two metrics. By construction
of CFB, we expect the metric to be dependent on the number
of passes per play. Therefore, coefficients for three subsets are
calculated, following Tenga et al. (2010): (i) matches with on
average less than three passes per play; (ii) matches with three to
five passes per play; and (iii) matches with more than five passes
per play. The strength of the correlation is assessed according
to the following guide by Evans (1996): moderate (0.40 ≤ r <
0.60); strong (0.60 ≤ r < 0.80); very strong (0.80 ≤ r < 1.0).
Ninety-five percentage confidence intervals for r are calculated
following Hopkins (2017).

RESULTS

General Analysis
We find significant differences between playing positions
for

(
p < 0.001;η2

= 0.23, CI[0.12, 0.34], small effect
)

and
CFB(p < 0.001;η2

= 0.34, CI [0.17, 0.51], moderate effect).
Figure 2 shows that CDs are significantly more involved (47% of
all plays) and also function more often as intermediators (28%)
in a match than any other tactical position. Fs are least involved
in plays (28%) and take on an intermediary role in 13% of all
attack units. By definition of the metrics, the CFB value is lower
for each playing position than its corresponding CFC value. The
largest difference between both metrics is reported for the GK.

Success Analysis
Table 1 presents the results of the Kruskal–Wallis H tests for CFC
and CFB differentiating between successful and unsuccessful plays
of the overall sample and focusing on plays starting from a team’s
own half. All eight tests reveal statistically significant differences
between playing positions for the respective subsample with
varying effect sizes.

Table 2 presents the results of the Mann–Whitney U tests for
each flow-based metric, playing position and differentiating also
between the overall sample and focusing on plays starting from
a team’s own half. Apart from the ED position, the tests reveal
significant differences between successful and unsuccessful plays
in terms of CFC and CFB for all other playing positions. However,
some effect sizes are small to negligible.

In general, offensive positions (EMs, COMs, Fs) are
significantly more involved in successful than in unsuccessful
plays, whereas defensive positions (GK, CDs) are significantly
less involved in successful plays. The CFC and CFB values per
playing position for each play outcome and the results of the
post-hoc tests can be taken from Table 3. COMs have the highest
involvement in successful plays (50%) while GK take only part in
17% of all successful plays. CDs are not only most prevalent in
unsuccessful plays (51%), followed by GK and EDs, but are also
in-between most unsuccessful plays (37%). In contrast, CDMs
are the leading intermediary players (32% of all successful plays),
while GK and Fs have the lowest values in this category.

Figure 2 shows that the difference between both metric
scores is increasing as more offensive the playing position is
on the pitch for successful plays. Moreover, while defenders
and defensive midfielders are functioning as bridging players in
70–75% of all plays they are involved in, the shares for GK and Fs
are only 40–50%.

Focusing on plays starting in the own half of a team, the
difference of involvement and the intermediary role between
successful and unsuccessful plays is reported smaller for defensive
positions in comparison to the results of all plays. This indicates
that the significantly large gap is moderated by the starting half
of a play. In comparison to the analysis on all plays, EMs are
most involved in successful plays starting from its team’s own half
and come level with the intermediary player values of the other
midfield positions.

Correlation Analysis
The Pearson correlation coefficients between each flow-
based metric and the weighted betweenness scores on
match-level indicate a strong positive relationship for
CFC (r = 0.68;CI[0.64, 0.72]; p < 0.001) and for CFB
(r = 0.67;CI[0.63, 0.71]; p < 0.001). The correlation
coefficient between the involvement and intermediary metric
on play-level indicates a very strong positive relationship at
first sight (r = 0.89;CI[0.87, 0.90]; p < 0.001). However,
the correlation strength depends on the average number of
passes in plays during a match. Whereas we find a very strong
positive relationship in matches with more than five passes
on average per play (r = 0.95;CI[0.93, 0.96]; p < 0.001)
and also in matches with three to five passes per play
(r = 0.86;CI[0.84, 0.88]; p < 0.001), there is only a moderate
positive relationship in matches with less than three passes per
play (r = 0.56;CI[0.38, 0.70]; p < 0.001).

DISCUSSION

The study reveals statistical significance between playing
positions in successful and unsuccessful plays in football with
regard to flow centrality and the newly introduced flow
betweenness. Moreover, for the majority of playing positions
there are significant differences between play outcomes with
regard to both flow-based metrics. Effect sizes found were small
to moderate with regard to playing positions and mostly small in
terms of play outcomes.
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FIGURE 2 | Mean results of flow-based metrics by playing position.

TABLE 1 | Kruskal–Wallis H test results for playing position comparison per play outcome.

Successful plays Unsuccessful plays

H p η2 CI of η2 H p η2 CI of η2

CFC

All plays 172.77 <0.001 0.12 [0.06, 0.18] 509.25 <0.001 0.37 [0.19, 0.55]

Own half 35.3 <0.001 0.03 [0.02, 0.04] 455.77 <0.001 0.39 [0.20, 0.39]

CFB

All plays 164.83 <0.001 0.12 [0.06, 0.18] 571.58 <0.001 0.42 [0.21, 0.63]

Own half 63.34 <0.001 0.05 [0.03, 0.07] 422.16 <0.001 0.36 [0.18, 0.54]

Overall involvement and the frequency of being an
intermediary player is lower in successful than unsuccessful
plays for defensive playing positions and the other way around
for offensive positions. This turns out to be partly moderated by
the origin of play on the pitch, which is incident to differences
in success probability. Besides, the results offer first insights into
the differences between dominant and intermediary players in
football measured by the two play-level metrics.

While our analysis presents CDs as the most involved and
intermediary playing position, most studies traditionally ascribe
midfielders the most dominant and intermediary role in football
(Cotta et al., 2013; Clemente et al., 2015, 2016b). There is also
literature that positions forward (Clemente et al., 2016a) and EDs
(Gama et al., 2014) as intermediary players. There are multiple
reasons why our results differ from past studies aside from the
fact that a different sample was considered.

First, involvement (or dominance) in interplay in football
is often measured by the number of successfully played and
received passes in a match in form of weighted in-degree and
weighted out-degree (Clemente et al., 2016a). However, there
is no information on whether the passes occurred in a limited

amount of longer plays, in terms of number of passes, or
frequently across a match. This implies that players with high flow
centrality do not necessarily play and receive most passes during
a match but are most frequently part of plays across an entire
match. Therefore, the match-level metrics measure the share in
a team’s total passing while the play-level metric evaluates the
prevalence in plays across a match.

Second, intermediary players in football, often referred to
as playmakers, have formerly been determined by how often
they are on average the strongest connector between the other
players based on the aggregated passing data of a match
(Trequattrini et al., 2015; Arriaza-Ardiles et al., 2018). However,
that does not imply that the player frequently distributed
the ball between other players. In an extreme scenario, a
midfielder who frequently loses a ball received by defenders
and frequently wins balls from the opponent and passes it to
forward positions is identified as a bridging player without ever
actually connecting defense and offense during a play. Flow
betweenness detects how often a player is actually in-between
two other players during a play and is in fact acting as an
intermediary player.
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TABLE 2 | Mann–Whitney U test results for play outcome comparison per playing position.

Play outcome

GK CD ED CDM EM COM F

CFC

All plays

H 2516.5 30081 11691 31305 4070 2879 11747

p <0.001 <0.001 0.090 <0.001 <0.001 <0.001 <0.001

η2 0.41 0.12 0.01 0.02 0.18 0.2 0.24

CI of η2 [0.21, 0.61] [0.06, 0.18] [0.00, 0.02] [0.01, 0.03] [0.09, 0.27] [0.10, 0.30] [0.12, 0.36]

Own half

H 3522 29847.5 8710 21863.5 2844.5 3366.5 8455.5

p <0.001 <0.001 0.200 0.002 <0.001 0.002 <0.001

η2 0.17 0.02 0.01 0.02 0.21 0.04 0.23

CI of η2 [0.09, 0.25] [0.01, 0.03] [0.00, 0.02] [0.01, 0.03] [0.11, 0.31] [0.02, 0.06] [0.12, 0.34]

CFB

All plays

H 4129 35378.5 12186 32642.5 5275 3888.5 20974.5

p <0.001 <0.001 0.230 0.005 <0.001 <0.001 <0.001

η2 0.24 0.07 0.01 0.01 0.08 0.09 0.04

CI of η2 [0.12, 0.36] [0.04, 0.10] [0.00, 0.02] [0.00, 0.02] [0.04, 0.12] [0.05, 0.13] [0.02, 0.06]

Own half

H 3723.5 30416 8928 21868 4082.5 3685.5 16594.5

p <0.001 <0.001 0.310 0.002 <0.001 0.025 0.017

η2 0.15 0.02 0.01 0.02 0.08 0.02 0.01

CI of η2 [0.08, 0.22] [0.01, 0.03] [0.00, 0.03] [0.01, 0.03] [0.04, 0.12] [0.01, 0.03] [0.00, 0.02]

Following Fewell et al. (2012) and Ramos et al. (2018),
an evaluation based on the involvement in plays, however,
becomes considerably more useful when making a distinction
between plays with certain characteristics. While CDs appear
to be the dominant and intermediary players, the majority of
plays they are part of do not enter the finishing zone. In
contrast, COMs are most often part of successful plays and
CDM is the most intermediary position in these situations. In
general, defensive playing positions show a higher involvement
in unsuccessful than successful plays. Focusing solely on plays
that originate in the own half of a team offsets that difference
to a certain extent. Similar to previous studies (Tenga et al.,
2010; Mclean et al., 2018), the share of successful plays was
higher for plays starting in the opposite half and, thus, involved
more offensive playing positions. The analysis on plays starting
in the own half of a team partly neutralized this imbalance.
This is reflected in the small to negligible effect sizes obtained
when evaluating the differences in flow-based metrics between
playing positions focusing on successful plays starting from the
own half. Moreover, the effect sizes for differences between
successful and unsuccessful plays decreases for defensive playing
positions. Apart from that, the analysis provides an insight
into how attacks from a team’s own half are most frequently
structured. The increased metric values of the EM position
in contrast to the analysis on the total sample suggest that
plays were frequently build via wing positions. Therefore,
the approach of subdividing the sample into different types
of plays with different outcomes provides a certain quality

to the analysis that goes beyond pure prevalence in plays
by offering a richer insight into the structure of plays in
different contexts.

The distinction between being involved and acting as an
intermediary player is recognizable when focusing the analysis
on successful plays. From a pure descriptive perspective, the
more offensive the playing position is located on the pitch
the higher its difference between the two play-level metrics.
Offensive players such as forward are often involved in successful
plays, however, not in order to distribute the ball but rather
to take on the role of finishing attacks. While the absolute
difference between the flow-based metrics for GKs might be
small, the share of plays in which they function in-between
others measured against all plays they are involved in is quite
low. Their task is often that of an initiator of plays rather than
being a bridging player. Therefore, their intermediary status is
relatively low. In contrast, CDMs are similarly often involved
in successful plays as forward but have a substantially higher
share of incidences in which they function as a bridging player
at the same time.

The correlation analysis underlines the insights of our study,
especially that (i) different results on playmakers in football might
be obtained when substituting match-level with play-level metrics
and (ii) a distinction between play-level metrics is necessary as
they emphasize different tasks among playing positions. Ramos
et al. (2018) first suggested that flow centrality might be a suitable
playmaker indicator that highlights intermediary players on play-
level to replace the average-based analysis provided by weighted
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betweenness on match-level. However, the relationship between
both metrics does not suggest that the same matter is measured.

Differences between values of flow centrality and flow
betweenness for playing positions are also confirmed in
the correlation analysis. The overestimated intermediary role
of players when simply looking at involvement instead of
their in-between positioning in plays is connected with the
average number of passes in plays. Shorter plays offer less
situations for players to be in-between plays and, thus, a sole
involvement measure might exaggerate the intermediary task of
a player. Hence, flow betweenness might be a more adequate
playmaker indicator.

In general, the play-by-play network analysis approach allows
a more contextualized performance analysis as the role of players
in passing sequences of different characteristics can be evaluated
separately. Barreira et al. (2015) find that team dynamics are
influenced by situational variables such as match status and
halves of the match. Controlling for such variables can offer a
better understanding of the involvement and intermediary role
of players in specific play situations.

Our study also faces some limitations that should be
addressed. First, the sample only originates from two professional
football leagues and, therefore, the generalizability of our results
might be limited. The concern is partly offset by the findings of
Mclean et al. (2017) who do not detect significant differences
in passing networks between the 2016 European football
championships and COPA America football championships.

Second, the determination of playing positions might contrast
the less static interpretation of roles in modern football. As we
break down the analysis to individual plays, the fixed assignment
of positions across a match is even more challenging. We
acknowledge the occupation of different areas on the pitch and
fulfilling a variety of tasks as part of the role repertoire of playing
positions (Korte and Lames, 2018). Hence, the spread in metric
values of some playing positions might be ascribed to the mixed
role interpretation of players. However, we should stress that
playing positions might be interpreted differently not only across
matches but also during different phases of a match depending on
the specific constraints that players face. This was not considered
in the present study.

Third, this study only focuses on plays with at least two
completed passes to offer a calculation of flow betweenness
across all plays. A study including plays with only one pass
would increase the difference between flow centrality and flow
betweenness simply because it offers no in-between situations for
players. In fact, the correlation coefficient between both metrics
greatly decreases (r = 0.69) when adding plays with only one
pass to the analysis. However, the weakened relationship based
on plays of any length also validates the introduction of a new
playmaker indicator to reflect the real structure of football on a
play-by-play level.

Moreover, it should be stressed that the comparison between
successful and unsuccessful plays per playing position could
be partly confounded by the cutoff of the passing sequences
once the finishing zone is entered. Successful plays continued
on average for 0.5 passes after the outcome determination.
However, a separate analysis based on the entire passing
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sequences shows that a wider gap in play involvement between
successful and unsuccessful plays for COMs and Fs is the only
substantial change.

In addition, the opponent’s strength and especially defensive
actions were not considered in this study, which could potentially
have an impact on the involvement of certain playing positions.
Focusing on the attacking side, it should be mentioned that we
did not concentrate on identifying different game styles but rather
aimed at emphasizing the different roles and contributions of
playing positions.

CONCLUSION

This is the first study that performs a play-by-play network
analysis in football differentiating between plays of certain
characteristics. Moreover, a novel metric is introduced to assess
playmakers on play-level as an alternative or extension to flow
centrality. Only a limited connection with traditional playmaker
indicators on match-level can be detected. Hence, it offers new
insights and a better understanding of the roles of playing
positions during plays in football.

Central defenders are identified as dominant and intermediary
players, however, mostly in unsuccessful plays. COMs are most
involved and CDMs function mostly as intermediary players in
successful attacks. Fs are frequently involved in successful plays
but take on a minor intermediary role.

The practical impact of this study is twofold. First, a
playmaker indicator that focuses on actual passing sequences
rather than averages across a game was applied to adequately
reflect interplay in football. Second, the study provides a more
sophisticated understanding of the involvement and role of
players in different play situations. Apart from considering
play outcome, the play-by-play network analysis approach
allows the inclusion of additional situational variables that
are relevant to performance in football. The insights and
approach of this study could be used and applied in practical
performance analysis. By tracking specific players rather than
playing positions, clubs can gain a better understanding of the
involvement and intermediary role of their individual players in
the interplay of the team.

Future studies should continuously focus on developing new
SNA-metrics that reflect actual interplay and study the impact
of the opponent team on the interaction of the team in ball
possession. Moreover, position-specific performance indicators
could complement the current play-level approach that solely
focuses on whether the finishing zone was reached.
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