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Mental disorders like major depressive disorder can be modeled as complex dynamical

systems. In this study we investigate the dynamic behavior of individuals to see whether

or not we can expect a transition to another mood state. We introduce a mean field

model to a binomial process, where we reduce a dynamic multidimensional system

(stochastic cellular automaton) to a one-dimensional system to analyse the dynamics.

Using maximum likelihood estimation, we can estimate the parameter of interest which,

in combination with a bifurcation diagram, reflects the expectancy that someone has to

transition to another mood state. After numerically illustrating the proposed method with

simulated data, we apply this method to two empirical examples, where we show its use

in a clinical sample consisting of patients diagnosed with major depressive disorder, and

a general population sample. Results showed that the majority of the clinical sample was

categorized as having an expectancy for a transition, while the majority of the general

population sample did not have this expectancy. We conclude that the mean field model

has great potential in assessing the expectancy for a transition between mood states.

With some extensions it could, in the future, aid clinical therapists in the treatment of

depressed patients.

Keywords: cellular automata, discrete dynamical systems, maximum likelihood estimation, nonlinear dynamics,

psychopathology

1. INTRODUCTION

Major depressive disorder (MDD) is unfortunately not that uncommon: around 350 million people
around the globe suffer from MDD (World Health Organization, 2012). While many studies have
been conducted in the treatment of MDD, it remains unclear why certain people develop MDD
and others do not; we do not know the exact circumstances of the person and its environment that
may lead to MDD. There is some empirical evidence that people experience discrete mood states
(Hosenfeld et al., 2015). This has led to the hypothesis that mood changes or (sudden) transitions
to MDD may be related to dynamical systems theory (van de Leemput et al., 2014; Cramer et al.,
2016; Wichers et al., 2016). In this paper, we build on these ideas to assess the expectancy that a
person has to develop MDD and embed such assessments more thoroughly in dynamical systems
theory and network theory in order to obtain a reasonable explanation of transitions to MDD.
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Recently, the idea has been put forward that mental disorders,
like MDD, can be considered as a system of interacting variables
(Borsboom et al., 2011; Cramer et al., 2016; Guloksuz et al.,
2017; Kossakowski and Cramer, 2018). Aspects of MDD, like loss
of energy or feelings of worthlessness, can be seen as nodes in
a network that interact with, and influence each other at later
times and other symptoms of MDD (Cramer et al., 2012). This
system of interacting emotions may change over time, making
the system dynamic (Gulyás et al., 2013). Connections between
various aspects of MDD can increase or decrease in strength
over time, or aspects themselves may increase or decrease in
strength as an individual develops MDD. We can measure
these changes by means of the Experience Sampling Method
(ESM; Csikszentmihalyi and Larson, 1987), where individual
daily life experiences are measured several times a day for an
extended period of time. At some point in time, when the
system has surpassed some critical point (Scheffer et al., 2014),
a discontinuous transition is made from a stable and healthy
mood state to a stable and depressed mood state. Several studies
have illustrated the bimodality of MDD (see for example van de
Leemput et al., 2014; Cramer et al., 2016; Wichers et al., 2016;
Kossakowski and Cramer, 2018). These sudden jumps, called
transitions (Kuznetsov, 2013), are central to complex dynamical
systems, and are the subject of the assessment that we will
undertake in the present paper. Please note here that we do not
make any inferences about an individual’s mental status before
or after a transition has taken place. In this study we are mainly
interested in the assessment of an individual’s expectancy to
transition between two mood states.

Attempts to anticipate a transition are often approached
by so-called early-warning signals obtained from ESM studies
(Kossakowski and Cramer, 2018). Dynamical systems leave
“breadcrumbs” behind in these time series that hint toward such
a transition. These breadcrumbs occur before the transition, and
after critical slowing down thatmay occur when the system finds it
more difficult to return to the original equilibrium state (Scheffer
et al., 2014). Recently, it has been empirically shown that critical
slowing down actually occurs prior to the transition (van de
Leemput et al., 2014; Wichers et al., 2016). While critical slowing
down is an important line of research, it is difficult to analyse
critical slowing down in a system that has more than a handful
of variables.

Hosenfeld et al. (2015) introduced a statistical measure to
determine whether there are one or two stable mood states,
based just on the distribution of the number of active symptoms
per measurement. This statistical measure, called the bimodality
coefficient (BC), only considers this distribution and determines
whether there is evidence for one or two stable states. However,
this approach offers no explanation of any kind of the phenomena
observed in the distribution.

In this study we take a different approach and try to assess the
expectancy of a transition between mood states. We investigate
this expectancy by combining dynamical systems theory with
network theory. More specifically, we use cellular automata as the
framework for networks (cellular automata) and their stochastic
counterparts to investigate dynamic behavior. There are three
reasons why we believe that the dynamics of the stochastic

cellular automaton may be appropriate for psychopathology.
First, there is some evidence that mood states are discrete, or
at least they are experienced as such (i.e., see Hosenfeld et al.,
2015), and mood can switch between these states. A cellular
automaton such as the one we propose is able to have multiple
stable states that are discrete, and the process can “jump” between
these states. The fact that the process can switch between states is
important because we want to know the conditions under which
such sudden changes can occur. Second, in line with network
theory, we think that mood states and symptoms interact with
each other and hence will influence each other (see Borsboom,
2017). A cellular automaton is a direct implementation of these
ideas: it is a network and by definition each node affects its
neighbors through an update rule, which can be specified based
on the application. Third, because we always have uncertainty
as to the correct specification of the variables in the network,
we allow the updating process to be stochastic, accounting for
unknown exogenous effects.

We will simplify the automaton by reducing the network to
a single dynamic equation (given certain assumptions), and by
characterizing the possible states of this reduced system.We then
have a process that may be an accurate description of what is
going on with the changes in symptoms over time. We can, in
turn, analyse these changes analytically and through simulations.
We assume (intuitively) that the nodes in the network function
roughly in the same manner and that each of the nodes affects
the others in a similar way. The assumptions lead to a so-called
mean field model. Using these assumptions, our focus becomes
the proportion of active nodes in the system, which now forms
a sequence of states ranging from 0 to 1. Since this sequence
of states only depends on the proportion of active nodes at the
previous time point, we obtain what is called a Markov chain and
we can estimate the parameters bymeans of maximum likelihood
estimation in a straight forward manner. Using this dynamical
system allows us to determine whether for a person it is possible
that a transition may occur or not.

As an example, we consider a time series of the proportion
of active emotions for a single subject, shown in Figure 1 (left).
We identify the possible states of this person with respect to
the network of emotions, depending on the parameter of the
process we assume underlies these observations. For this process
we can obtain a so-called bifurcation diagram (Figure 1, right).
This bifurcation diagram shows the possible (likely) states for this
person given a value on the probability p of emotions changing
from inactive to active. We assess from the time series of this
person the parameters of our model and obtain an estimate of
where in the bifurcation diagram this person is (represented by
the vertical red line in Figure 1, right). If the probability p is
in the range of [0.34, 0.50], where there is one point per value
of p on the x-axis, then this person will remain stable. If the
probability is lower than approximately 0.34, where there are
two values for each value for p on the x-axis, then there are two
stable states, one with a high proportion of active emotions and
one with a low proportion of active emotions. The estimate of
the probability p for this person is 0.192 (the vertical red line in
the right panel of Figure 1). Based on this, we would classify this
individual as someone whomay expect a (sudden) increase in the
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FIGURE 1 | The evolution of the percentage of active nodes for each time point (Left), and the accompanying bifurcation diagram (Right). The red line in the

bifurcation diagram in the lower figures indicates the estimation of p. The x-axis denotes the probability p for a node to become active. The y-axis denotes the

proportion of nodes in the system that are active.

FIGURE 2 | Visualization of a grid structure (Left), a random graph structure (Middle), and a small-world structure (Right). Gray nodes indicate the neighbors of the

middle node in each graph. Solid lines indicate pairwise connections between nodes. Dashed lines are also pairwise connections, but have been curved and dashed

as they are hidden behind other connections in a 2D-view.

proportion of active emotions and thereby experience an episode
of depression. And indeed, for this individual we know (from
external evidence) that a depressive episode had taken place after
the time series that we used to determine the state of the person
(see Wichers et al., 2016; Kossakowski et al., 2017).

In the present paper we obtain the maximum likelihood (ML)
estimate for the model and the standard errors. We show, using
simulations, that for many of the values of the parameter the
estimate is reasonably close to the true value. Furthermore, we
apply the proposed method to two real data sets, one with
patients diagnosed with MDD, and one with subjects from the
general population. This paper is set up as follows. First, we
will briefly explain the theory of the mean field model and the
proposed method. Then we present the simulation to show how
theML estimation performs. Finally, we apply our method to two
datasets to show how the method works in different contexts.

2. STOCHASTIC CELLULAR AUTOMATA

Tomodel interacting symptoms and emotions we use a particular
kind of structure, a stochastic cellular automaton (SCA). Such
automata are particular dynamical systems that show typical

behavior for stable and bistable behavior depending on the
settings (Kozma et al., 2004; Balister et al., 2006), which is what we
assume to the case for MDD. For the interested reader, the books
by Holmgren (1996), Hirsch et al. (2004), Hasselblatt and Katok
(2003), and Golubitsky and Stewart (2003) provide background
information on dynamical systems theory. A cellular automaton
(CA) is a dynamical system where nodes are arranged in a fixed
and finite grid, and where connected nodes determine the state
of a node at each subsequent time point (Wolfram, 1984; Sarkar,
2000). A node j that is directly connected to node i is called a
neighbor. A grid is a graph Ggrid(n,Ŵ) with n nodes in the set
V = {1, 2, . . . , n} where each node i has the same number of
neighbors in its neighborhood Ŵ = { j ∈ V : j is connected to i} ∪
{i} including itself. To ensure that all nodes have exactly the
same number of neighbors, we impose the boundary condition
such that a node at the boundary is connected to a node on
the opposite end, making it a torus. An example of such a grid
is shown in Figure 2 (left), where the center node is directly
connected to its four neighbors, marked in gray. We consider
elementary CAs where each node can be in either of two states:
“active” (coded by 1) or “inactive” (coded by 0). In a CA a
deterministic, local update rule φ determines the state xi,t of each
node i ∈ V at the next time step based on which nodes are
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TABLE 1 | Illustration of the majority rule as used for Figure 2.

Node t0 r0 t1 r1 t2

1 1 3 1 1 0

2 1 2 0 2 0

3 0 2 0 1 0

4 1 2 0 3 1

5 0 3 1 0 0

6 0 1 0 1 0

7 1 3 1 1 0

8 1 2 0 2 0

9 0 2 0 1 0

The columns t0, t1, and t2 denote the sequence of active nodes at a specific time point.

The columns r0, r1, and r2 denote the number of active neighbors for per node at time t.

active in the neighborhood of node xi,t . An example of such an
update rule is the majority rule, where each node becomes 1
(active) whenever more than half of the neighbors of node i at
the previous time point are active, and 0 (inactive) otherwise.
Although many other update rules are possible, we will focus
on this particular rule in the present study. One of the reasons
for choosing the majority rule is that it is stable, i.e., for small
changes in the number of active nodes the decision does not
change (O’Donnell, 2014). Repeated application of the update
rule φ results in a vector of 0s and 1s, called an orbit: At any time
point t the orbit φt(xi) = φ ◦ φ ◦ φ · · · ◦ φ(xi,0) (initial value at
t = 0), such that the same local rule is applied to the result of the
previous time point t times.

To illustrate, say that we have the network presented in
Figure 2 (left), and we have the following orbit of active and
inactive nodes φ0(x1,0) = 1, and for the other 8 nodes 1, 0, 1, 0,
0, 1, 1, 0, as shown in Table 1. We can then determine how many
active neighbors r each node has, by just counting the number of
active nodes each node is connected to. As mentioned in Table 1,
nodes 1, 5, and 7 have three active neighbors, nodes 2, 3, 4, 8, and
9 have two active neighbors, and node 6 has one active neighbor.
For this example we will use the majority rule φ that is described
earlier, which states that a node is activated (“1”) whenmore than
half of that node’s neighborhood is active. The majority rule uses
r > |Ŵ|/2 to indicate whether the number of active neighbors
is greater than half the size of the neighborhood. Ŵ here denotes
the size of a node’s neighborhood. In our example, |Ŵ| = 5: each
node has exactly four neighbors, and the node itself at t − 1 is
the fifth addition to |Ŵ|. With the majority rule φ, the next time
step becomes φ1(xi,1) = (1, 0, 0, 0, 1, 0, 1, 0, 0). We then use this
sequence of active and inactive nodes to determine the number
of active nodes r at t = 1, which is described in Table 1, column
r1. We can continue this process for a length T (not shown in
Table 1), thus creating a T× nmatrix that holds the orbit φt(xi,t)
on the columns.

In the illustration above, the majority rule used to update the
systemwas a deterministic one. In a stochastic cellular automaton
(SCA), a probability is introduced to model uncertainty, based
on the number of active neighbors (r). In our application to
psychopathology, this uncertainty is required because we cannot

predict the behavior of emotions in our network exactly, and
because we know that exogenous events influence these emotions
that we cannot measure. By just counting the number of active
neighbors that a node has, we can determine the probability
for a node to become active. The probability 0 ≤ p ≤ 1
determines whether or not a node becomes active at time point
t+1. The majority rule combined with this probability equals the
probability that we obtain for node xi,t+1 = 1, given that there
are r active neighbors is

P(Xi,t+1 = 1 | r) =

{

p if r ≤ |Ŵ|/2
1− p if r > |Ŵ|/2

(1)

where |Ŵ| is the size of the neighborhood and r the number of
active neighbors. The parameter p is determined a priori or is
estimated from data (see below). Because P(xi,t+1 | r) depends
on the behavior of the majority of a node’s neighborhood, this
update rule is also called themajority rule. In this SCA each node
i ∈ V is then updated according to the majority rule; all nodes are
updated simultaneously (synchronous updating). The result for
each node is a sequence (orbit) of 0 s and 1 s. From all n = |V|
nodes we can determine the total number of active nodes Yt at
time point t, for all time points up to time T. We are interested
in the number of active nodes Yt =

∑n
i=1 Xi,t (where Xi,t is the

value of node xi at time point t) and so we average over all nodes
in the grid at each time point t, obtaining ρt = Yt/n, which is
often referred to in the literature as the density. An example of
the density (proportion) is shown in Figure 1 (left).

3. MEAN FIELD MODEL

It is rather difficulty to infer the characteristics of what the
system will do in the long run from an SCA (Lebowitz et al.,
1990). We need to simplify the SCA in order to make it
possible to derive the characteristics of the SCA. Here we
use an approximation for the structure of the network, where
we assume the average of the number of neighbors for each
node |Ŵ|. We also assume that nodes can be in either of two
states: active (“1”) or inactive (“0”), and that the nodes behave
in a similar manner. The latter assumption means that the
majority rule, as presented in Equation (1), is applied to all
nodes in the network, and that all nodes become active or
inactive in the same way. In the grid (Figure 2, left) it is easily
seen that each node is similar to any other node since each
node has the same number of neighbors, and becomes active
or inactive in the same way by means of the majority rule
that is based on the number of active neighbors. This allows
us to simplify an SCA to a single discrete time dynamical
system, as in Kozma et al. (2005), Balister et al. (2006), and
Waldorp and Kossakowski (2019).

In the mean field model we make use of the uniformity of
the nodes in a grid. The change of a node from 0 to 1 or vice
versa is based on the number of active neighbors in that node’s
neighborhood (r) and the probability parameter p, following the
majority rule defined in (1). In a grid each node has exactly
the same number of neighbors and so the probability of a node
changing value depends on the properties of the grid and not on
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FIGURE 3 | Example of a stochastic cellular automata process that includes a transition (Left). Example of the corresponding expectation of mean field function

(Right). The red line indicates the expectation of Equation (3) divided by the number of nodes.

the local activity. Therefore, as shown in Kozma et al. (2005) and
Balister et al. (2006), we obtain at time point t + 1 the number of
active nodes in the grid Yt+1, which is a random variable with a
binomial distribution that has a success probability ρt = Yt/n,
the proportion of active nodes (density) at the previous time
point t. The number of draws in the binomial probability is
determined by the size of the neighborhood |Ŵ| particular to the
graph. The majority rule in (1) determines for which number of
active nodes we obtain p up until active nodes r ≤ ⌊|Ŵ|/2⌋, where
⌊a⌋ is the integer part of a, or 1 − p otherwise. To define the
probability of the number of neighbors that are 1, we need to
consider all possible configurations of |Ŵ| active-inactive nodes

in the graph. There are
(

|Ŵ|
r

)

ways to choose r active nodes out of
|Ŵ| each with a success probability ρt = Yt/n. We then obtain for
the probability of r active nodes out of |Ŵ|

P(r | ρt) =

(

|Ŵ|

r

)

ρr
t (1− ρt)

|Ŵ|−r (2)

Simultaneously, we require the probability p or 1 − p from the
majority rule in (1), which is assumed to be independent. We
need to define the probability for any number of active nodes and
therefore marginalize over the number of possible active nodes
in the neighborhood r. Putting (1) and (2) together, we obtain
the joint probability P(Xi,t+1 = 1 | r, ρt) = P(Xi,t+1 = 1 |

r)P(Xi,t+1 | ρt). Hence we obtain the probability for any node in
the graph to be 1 as

ρ
grid
t+1 =

|Ŵ|
∑

r=0

P(Xi,t+1 = 1 | r)

(

|Ŵ|

r

)

ρr
t (1− ρt)

|Ŵ|−r (3)

Because the evolution is binomial based on the proportion of
active nodes at the previous time point (see Equation 3), it follows
from the transition probability that the number of active nodes
Xt+1 = xt+1, given that at t is Xt = xt in the graph Ggrid, is

P(Xt+1 = xt+1 | Xt = xt) =

(

n

xt+1

)

ρ
grid
t (xt/n)

xt+1

(1− ρ
grid
t (xt/n))

n−xt+1 (4)

So, we know how in a grid with n nodes the proportion of active
nodes ρt changes from time point t to time point t + 1, for

any t. The mean field model uses the mean of this binomial
process and divides by n to obtain the proportion. We often

denote the expected value of Yt+1/n by µgrid : = ρ
grid
t to

emphasize that we use the mean of the process in a grid. We
know that the fluctuations around themean are small (depending
on the standard deviation and size of the grid, see Waldorp and
Kossakowski, 2019), so the mean is a good approximation of the
process itself.

As an illustration of the binomial process, in the left panel of
Figure 3 we see a typical SCA process where it is clear that the
fluctuations are around a particular mean (0.2) for time points
before t = 21,000 approximately. After this point (tipping point)
the fluctuations revolve around another mean (0.8) with a higher
proportion of emotions. In the right panel of Figure 3 we see a
plot of the expectation of the process, which is the mean field that
predicts the values at which the mean of the process converges to
eventually. It is this mean function that we will use to represent
the process and the network that evolves over time.

We now regard the mean field, the expectation of the binomial
process E(Yt/n) = µgrid, as the dynamical system that is a
representation of the network. This dynamical system evolves by
repeated application of µgrid to its previous result. We analyse
the dynamical properties of µgrid by considering a so-called
bifurcation diagram. Plugging in different values for the a priori
parameter p from (3) in the majority rule, in the interval (0, 0.5],
we obtain a bifurcation diagram, as shown in Figure 1 (right).
In a bifurcation diagram the repeated application of µgrid is

applied to updated values of ρ
grid
t such that the last section of

the orbit is displayed where the process is in equilibrium (stable
if stable fixed points exist; Hirsch et al., 2004). For each value of
p, displayed on the x-axis in Figure 1, one sequence is generated,
of which the last 50 are displayed in Figure 1. In some cases, the
sequence will find two equilibria, and thus we draw two points
at those two equilibria. In other cases, the sequence will converge
to one equilibrium, and thus only one point will be drawn in the
bifurcation diagram. Such diagrams show what kind of behavior
can be expected to be generated by the process. Here we see that
there are two kinds of situations: (a) a stable situation when p
is in the interval (0.34, 0.50], where irrespective of the starting
point, the process ends up at that stable fixed point, and (b) a
bistable situation when p is in [0, 0.34] where the process could

Frontiers in Psychology | www.frontiersin.org 5 August 2019 | Volume 10 | Article 1762

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Kossakowski et al. Applying a Dynamical Systems Model

(suddenly) switch between states (transition) to a low or high
density. The parameter value p at which the process changes
from a stable to a bistable situation is called the critical point.
In Figure 1 the critical point lies at p ≈ 0.34; the parameter area
0 < p ≤ 0.34 is bimodal where transitions can occur, whereas
the parameter area 0.34 < p < 0.50 represents a unimodal
area where the mean field is stable. Thus, the parameter p can
be used to determine whether a process has two stable states, and
therefore can transition between them, or one stable state, where
no transition can occur.

The probability for the mean field in (3) is designed for
a grid with a fixed neighborhood size |Ŵ|. In the context of
psychology and psychopathology, it is hard to come up with a
graph representing the interactions between variables, that would
take the form of a grid. We therefore also looked at the mean
field model for a random graph and a small-world graph. A
random graph Grg(n, p(e)) is a graph structure with n nodes and
a (constant) probability p(e) for an edge to be present in the
graph (Bollobás, 2001; Durett, 2007). In the mean field model of
a random graph, the neighborhood size |Ŵ| is a random variable
that is maximally n − 1. Each node has a binomial number of
neighbors with expected number of neighbors p(e)(n − 1). We
extend the idea used for the grid, where we marginalize over
all possible configurations of number of active nodes for each
neighborhood of size n − 1 for the random graph. One can
approximate this probability accurately with a small modification
of the probability used for a grid (Waldorp and Kossakowski,
2019). The difference with the probability on the grid is in the size
of the neighborhood (see Figure 2, left and middle panel), where
in the grid the neighborhood size is fixed to |Ŵ|. In the mean field
model for the random graph, we fix this to the expected number
of neighbors p(e)(n − 1). Let ν = ⌊p(e)(n − 1)⌋ be the integer
part of the expected number of neighbors. For the random graph
Grg the neighborhood size is no longer |Ŵ| (like it is for the grid),
but ν. The probability in a random graph for a node to become
active given the graph’s density at time point t (ρt) and the edge
probability then becomes (Waldorp and Kossakowski, 2019):

ρ
rg
t+1 =

ν
∑

r=0

P(Xi,t+1 = 1 | r)

(

ν

r

)

ρr
t (1− ρt)

ν−r (5)

A small-world graph is in between a grid and a random graph
where, compared to a random graph, the average clustering is
high and the average path length is low (Watts and Strogatz,
1998). A modified version of the small world is the Newman-
Watts (NW) small-world (Newman and Watts, 1999). In the
NW small-world Gsw(n,Ŵ, p(w)) the n nodes each have a
neighborhoodŴ as in the grid and edges are added to the network
following a (constant) wiring probability p(w) (Newman and
Watts, 1999). We can then split up the probability in a part
associated with the grid and a part associated with the random
graph. The part for the grid is adjusted such that it corresponds to

no other edges being present, i.e., we obtain ρ
grid
t (1− p(w))n−|Ŵ|,

where the product (1− p(w))n−|Ŵ| represents the probability that
no other edges are present for n−|Ŵ| nodes. For the random part
we obtain the probability as in (5) but the first |Ŵ| edges left out,

because they have already been accounted for by the grid part.We

denote this probability by ρ
rg,Ŵ
t , which denotes the probability as

in (5) but with ρ
rg,Ŵ
t starting at |Ŵ| + 1 instead of 0. Then the

probability for a node to become active given the graph’s density
at time point t (ρt) and the wiring probability in the small-world
graph Gsw is

ρsw
t+1 =

|Ŵ|

n
ρ
grid
t (1− p(w))n−|Ŵ| +

n− |Ŵ|

n
ρ
rg,Ŵ
t (6)

The small-world probability is therefore a combination
of the probability on the grid and on a random graph,
proportionately weighted.

4. ESTIMATION OF PROBABILITY P AND
GRAPH PARAMETERS

Our objective is to derive an estimate of the probability parameter
p from a time series to determine whether an individual
can expect a transition between two mood states. One way
of obtaining such an assessment is to determine where in a
bifurcation diagram a person is located with respect to the
parameter p in the majority rule; is this in the stable area, where
no transition can occur, or is it in the bistable area where a
transition can occur. In order to do this, we need to estimate
the parameter p that is essential in the majority rule in (1).
Here we use maximum likelihood (ML) to obtain an estimate
of p (Rajarshi, 2012).

If we take a closer look at Equation (3), it can be noticed that all
parameters are known prior to the analysis, with the exception of
the probability parameter p. To obtain p, we can estimate it from
the data using ML estimation. We then obtain the maximum of
the log-likelihood for the probability parameter p that exists in
(1). We write the transition probability in going from state xt to
state xt+1 (number of active nodes in the graph) in (4) from t to
t+1 as P(Xt+1 = xt+1 | Xt = xt). The log of the joint probability
function (loglikelihood) for the number of active nodes is then

logP(Xt , t ≥ 0) =

T−1
∑

t=0

logP(Xt+1 = xt+1 | Xt = xt) (7)

where T denotes the total duration of the sequence in time points.
The transition probability P is as in (4). The data that are plugged
into this equation is a vector of length T that holds the number
of active nodes for each time point t. At each time point the
number of active nodes is given as input to the probability in
the binomial process ρt = (Yt/n), where xt is the number of
observed active nodes at time t. The data are plugged in the
transition probabilities, where we recognize in the SCA that we
can relatively easily find the transition probability to go from xt
to xt+1 active nodes. We can find these transition probabilities
because of the fact that we have, for each of the graphs Ggrid,
Grg, and Gsw, a binomial process with a probability of success
particular to each type of graph. The parameter ρt for the random
graph Grg and the small-world graph Gsw are similar except that

we change the probability of success to ρ
rg
t or ρsw

t , respectively.
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The process is ergodic whenever the probability ρ
grid
t is not in

the basin of attraction of 0 and 1 (see Waldorp and Kossakowski,
2019). In other words, a process is ergodic when the process
is stationary and when all nodes in the graph follow the same
dynamics (Molenaar, 2007). In those cases we could simplify
expression (7) using only the transition probabilities that do not
depend on time. In general, however, we do not know where
the probabilities are, and therefore we do not assume ergodicity
and cannot simplify the log-likelihood to terms consisting only
of the states and not on time (Fleming and Harrington, 1978).
We maximize the log-likelihood function in (7) with respect to
p to obtain its estimate from an empirical time series, making
it possible to place that person on the bifurcation diagram and
assess the expectancy of possible switching.

In both the random and small-world graph we have additional
graph parameters: in the random graph we have the probability
of an edge p(e), and in the small-world graph we have the
probability of re-wiring p(w). Both parameters are obtained by
maximizing the log-likelihood with respect to p(e) and p(w)
respectively. Equations (3), (5), and (6) each show how we
calculate the density (ρ) in a grid, a random graph, or a small-
world graph, respectively. One only needs to plug in a value for p
(and the graph parameters p(e) or p(w) in the case of a random
graph or a small-world graph, respectively) into the equation and
let it run for some time T (often 1000 is enough), to find out at
what density it will end up, or between which two values it may
transition in the case of two stable states. By varying the value
for p, one can create a bifurcation diagram, of which examples
are shown in Figure 4. Each dot represents a separate run of the
mean field equation. Equation (3) is reflected in the top panel of
Figure 4, (5) in the middel panel, and (6) in the bottom panel
of Figure 4.

Taking the top panel of Figure 4 as an example, if we run
Equation (3) with p = 0.1, it can be seen that the binomial
process ends up in either 0.1 or 0.9 approximately, and could
switch between these states. Our mean field model says that if
we estimate the probability parameter p for an individual to be
p̂ ≈ 0.1, then this person could experience a transition between
the two states, which could be related to a depressive episode.
When we increase the value of the probability parameter p̂ ≈ 0.3,
the binomial process no longer has the possibility of a transition
between states, but will remain around 0.5 approximately. The
critical point, the point where the system changes from having
two stable states to one stable state, differs depending on the size
of the graph and the type of graph; for the random graph and the
small-world graph the location of the critical point also depends
on the graph parameters p(e) or p(w), respectively, as seen in
Figure 4. To summarize, in order to categorize individuals, we
need to determine the most appropriate the size of the graph,
the most appropriate graph structure and its associated graph
parameter to find the critical point in this personalizedmean field
model. Using this model, we can then determine an individual’s
position in terms of the probability parameter p.

Uncertainty can be quantified by the standard error of the
estimate p̂. For the grid we have only the estimate of p and for the
random graph and the small-world we have the edge probability
p(e) and p(w), respectively. Standard errors are obtained from

FIGURE 4 | Examples of bifurcation diagrams for a grid (Top), a random

graph (Middle; p(e) = 0.1) and a small-world graph (Lower; p(w) = 0.1). The

x-axis denotes the probability p for a node to become active. The y-axis

denotes the proportion of nodes in the system that are active.

the second order derivatives (Hessian) of the log-likelihood
(Rajarshi, 2012). The inverse (matrix) of the Hessian and scaled
by 1/T results in the variance of the parameter estimate. The
square root of the diagonal elements are the standard errors, i.e.,

SE(p̂) =
√

1
T h

11 is the standard error for p̂, SE(p̂(e)) =
√

1
T h

22 is

the standard error for the edge probability in the random graph,

and SE(p̂(w)) =

√

1
T h

22 is the standard error for the rewiring

probability, where hij is the ijth element of the inverse Hessian.

5. NUMERICAL ILLUSTRATION OF
PROBABILITY P AND GRAPH
PARAMETERS

Before we apply the mean field model to empirical data, we
want to know how well the mean field model can estimate the
probability parameter p in simulated data. We simulated 100
networks for each topology of a grid, a random graph, and a
small-world graph. We varied the size of the network V ∈ { 16,
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25, 49, 100 }, the number of time points T ∈ { 50, 100, 200,
500, 5, 000 }, and the probability p ∈ { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9 } (Equation 3). We also varied the probability for
an edge in the random graph p(e) ∈ { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9 } (Equation 5) and the probability for an edge to be
rewired in the small-world graph p(w) ∈ { 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9 } (Equation 6). For t = 0, a random number
of nodes was set to active by using the R package IsingSampler
version 0.2 (Epskamp, 2015).

For each of the 100 simulation runs, we used the T × n set of
active and inactive nodes to estimate the probability parameter
p and the graph parameters p(e) and p(w). All simulated
data, figures, and the used R-code are publicly available (OSF;
Kossakowski, 2018). For clarity of presentation, figures are only
presented for T = 50, as results for the other number of time
points were nearly identical. We also only present the results
for p, p(e) and p(w) ∈ {0.1, 0.2, 0.3, 0.4, 0.5} as the simulation
results for these parameters > 0.5 hardly occur in empirical
data, and are therefore for this paper less interesting. These
and other results can be found online (Kossakowski, 2018).
For each simulation run, we calculated the absolute difference
between the probability parameter p, under which the data were
simulated, and p̂, which we estimated from the data using ML
estimation. We denoted this absolute difference by 1(p), after
which we take its mean (1(p)). This mean is determined for
each replication, and can be interpreted as an error rate. The
lower this value, the closer the estimate p̂ is to the original
value p. The same procedure was performed to determine the
accuracy for graph parameters p(e) (1(p(e))) and p(w) (1(p(w))).
A complete overview of all results across all conditions can be
found in Table S1.

Figure 5 shows a visual representation of the mean absolute
difference (1(p)) between the true probability parameter p, and
the estimated probability parameter p̂. It can be seen that the
error rate 1(p) for p is low for all different network structures.
Supplementary Table S1 shows the mean estimate of p and its
associated standard deviation for all conditions. The standard
deviation for p̂ is pretty low across conditions and never exceeds
0.04. The mean error rate 1(p) did not exceed 0.08 for the grid
(for T = 5, 000, n = 100, p = 0.4), 0.06 for the random graph
(for T = 50, n = 25, p = 0.2, p(e) = 0.1), and 0.04 for the small
world graph (for T = 50, n = 16, p = 0.5, p(w) = 0.4). The
error rate ranged between 0.006− 0.12 for the grid, 0.0009− 0.15
for the random graph, and 0.008 − 0.16 for the small world
graph. A small increase in the error rate can be noticed for the
grid around the values p = 0.3 and p = 0.4. We think that a
possible explanation is that the mean field model has some issues
with estimating p around the critical value, the point where the
system either has one stable state, or two stable states. Because
of fluctuations in the process, the exact critical point is difficult
to estimate.

The same conclusion cannot be drawn for graph parameters
p(e) and p(w), as seen in Figure 6. For a random graph, 1(p(e))
is high when p(e) is low, and decreases as p(e) is increased. This
shows that the graph parameter p̂(e) is most accurate when p(e)
is high. A possible explanation for this finding could be found
in the connectedness of random graphs. When p(e) is small, the

probability that not all nodes are connected increases, resulting in
isolated nodes. When we look at the minimum probability p(e),
such that the graph is connected for different network sizes, we
see that p(e) must be at least 0.46 when the network size is 16,
0.31 when the network size is 25, 0.17 when the network size is
49 and 0.09 when the network size is 100. Thus, as p(e) increases,
the probability for the network to be connected increases, and as
a result of this, the error1(p(e)) decreases. The reverse is true for
a small-world graph, where 1(p(w)) is high when p(w) is high
and p is low, and that it decreases when p(w) also decreases. This
shows that the graph parameter p̂(w) is most accurate when p(w)
is low and when p is high.

To investigate the standard errors, we calculated the mean
standard error (SE) and its associated standard deviation for
all conditions using the Hessian matrix provided by the ML
estimation procedure. Table S1 depict the mean SE and its
standard deviation for all conditions. It can be seen that the
mean SE is extremely low across all conditions, indicating good
accuracy of the estimates. We calculated the absolute difference
between the standard deviation of p̂ and the SE of p̂. The
difference ranged from 0.0003 to 0.18, and in 98.9% of all
conditions, the difference between the standard deviation and the
SE is smaller than 0.05.

Next to the SE, we calculated the error rate 1(p) when the
network structure is misspecified, and thus used the incorrect
model to estimate p̂ from the data. We used two datasets that
represent the best and worst case scenario in terms of data
structure. The worst case is the data with n = 100 nodes and
T = 50 time points. The best case is the data with n = 16 nodes
and T = 5, 000 time points. By taking the least and most ideal
combination of n nodes and T time points, we obtain results
where all other combinations will most likely lie in. With these
properties in mind, we selected the data simulated for all three
network structures, and applied all three models to estimate p̂.
Figure 7 depicts the error rate 1(p) for n = 100 nodes and
T = 50 time points. We chose not to present the results for
the data with n = 16 nodes and T = 5, 000 nodes for clarity
of presentation. We estimated p̂ for all three network structures
for all datasets. It can be seen in Figure 7 that 1(p) is generally
low, regardless of the network structure that was used to simulate
the data.

For each estimation we calculated the Bayesian Information
Criterion (BIC) and compared it to the BIC of the other two
network structures. The BIC is used for model selection, where
the model with the lowest BIC is most preferred (Wit et al.,
2012). We chose the BIC here over other information criteria
because of its dependency on the sample size (Vrieze, 2012). As
the sample size increases, the penalty of the BIC increases as
well. We calculated the Akaike Information Criterion as well and
obtained similar results. We therefore decided to only present the
results for the BIC. Results showed that the grid structure was
never the preferred network structure. The random graph is often
selected (63.8% of the cases across conditions) as the preferred
network structure when the data are simulated under a random
graph. The small-world graph is preferred over the random graph
at p(e) = 0.1 or p(e) = 0.2. A possible explanation for this
is that, at this value for p(e), the network is very sparse and it
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FIGURE 5 | Visualization of the mean error rate between p and p̂. Mean absolute difference (|1|) is shown for a grid (Left column), a random graph (Middle

column), and a small world graph (Right column) at T = 50. For the left column, the x-axis denotes the parameter p for which we simulated data, and the y-axis the

mean absolute difference |1| between p and p̂. For the middle and right column, the x-axis denotes the parameter p for which we simulated data, the z-axis the graph

parameter that was used to simulate data (p(e) or p(w)), and the y-axis the mean absolute difference |1| between p and p̂. The mean absolute difference ranges

between 0 and 1, where a lower value indicates a smaller difference between p and p̂.

may be difficult to distinguish between the network structures.
For data simulated under the small-world graph, the small-world
graph itself is most often selected based (69.3% of the cases
across conditions) on the BIC. There are no conditions in which
the random graph is preferred over the small-world graph. It is
worthy to note that, as p increases, the difference in mean BIC
between the network structures decreases, and more often the

“incorrect” model is selected. This is also shown in Figure 4,
where there is little difference between the bifurcation diagrams,
especially when p is high.

As a last measure to study the robustness of our ML
estimation, we performed a subset analysis, taking either 50% or
75% of the simulated time points to estimate p̂. Similar to the
misspecification analysis that we described previously, we looked
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FIGURE 6 | Visualization of the mean absolute differences between p(e) and p̂(e) and p(w) and p̂(w) at T = 50. Mean absolute difference is shown for a random graph

(Left column) and a small world graph (Right column). The x-axis denotes the parameter p for which we simulated data, the z-axis the graph parameter that was

used to simulate data (p(e) or p(w)), and the y-axis the mean absolute difference |1| between p(e)/p(w) and p̂(e)/p̂(w). The mean absolute difference ranges between 0

and 1, where a lower value indicates a smaller difference between p(e)/p(w) and p̂(e)/p̂(w).
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FIGURE 7 | Visualization of the mean absolute differences between p and p̂ that resulted from the misspecification analysis with n = 100 nodes and T = 50 time

points. The rows denote the structure for which the data were simulated. The columns denote the structure for which p̂ was estimated, and the y-axis the mean

absolute difference between p and p̂. For the middle and right column, the x-axis denotes the parameter p for which we simulated data, the z-axis the graph

parameter that was used to simulate data, and the y-axis the mean absolute difference between p and p̂ that ranges between 0 and 1. The mean absolute difference

ranges between 0 and 1, where a lower value indicates a smaller difference between p and p̂.

at data with n = 100 nodes andT = 50 time points, and data with
n = 16 nodes and T = 5, 000 time points. For each simulation
condition, we randomly selected one simulation and selected a
subset of the data, which we repeated 100 times. Figure 8 shows
the mean error rate 1(p) between p and p̂ for n = 100 nodes
and T = 50 time points. It can be seen that the mean error rate
is generally low for all conditions and network structures. This
means that, even when we take a subset of the data, the mean field
model is able to correctly estimate p from the data that we used.

In sum, the mean field model estimates p well from the data;
the graph parameters p(e) and p(w) could not be estimated as
accurately. For the random graph parameter p(e), this could
potentially be solved by taking the ratio of edges present in the
graph, and the total number edges possible in the graph. Alas,
there is no similar solution for the small-world graph parameter
p(w). In the application of the mean field model, we assume all
graphs to be random graphs. As estimating p(e) from the data and
extracting it from the graph resulted in nearly identical results, we
decided to use the former option.

6. APPLICATION TO EMPIRICAL
TIME-SERIES DATA

Here, we will demonstrate how the probability p of an emotion
to be active is estimated from empirical data. In the following
sections, we will show two empirical examples and demonstrate
how the proposed method works in each of these examples. By
showing the application of our proposedmethod on two different
kinds of data, we aim to show how our proposed method works
for different participants, and different types of data. The first
example is a dataset of patients who were admitted as patients
to a closed, psychiatric ward of an academic hospital (Gordijn
et al., 1994, 1998). The second example is a dataset of healthy
participants who were originally recruited in a nation-wide study
(van der Krieke et al., 2015).

The data in these examples are time-series data. When
collecting these types of data, participants are asked to complete
a questionnaire several times a day. These questionnaires often
contain items regarding a participant’s current mood state, but
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FIGURE 8 | Visualization of the mean absolute differences between p and p̂

that resulted from the subset analysis with n = 100 nodes and T = 50 time

points. The rows denote the structure under which the data were simulated

and analyzed. The left column shows the result for the subset analysis with

50% of the data retained, while the right column shows the results with 75%

of the data retained. The x-axis denotes the parameter p for which we

simulated data, the z-axis the graph parameter that was used to simulate data

(in case of the 3D figures), and the y-axis the mean absolute difference

between p and p̂. The mean absolute difference ranges between 0 and 1,

where a lower value indicates a smaller difference between p and p̂.

can also hold items regarding a participant’s physical condition,
for example. In both examples, participants received a “beep”
on fixed times during the day and were asked to complete the
questionnaire. These beeps, in turn, correspond to the time
points in time-series data. For example, when a participant
completed twenty questionnaires, the data contains T = 20
time points. All analyses were performed using the R statistical
software 3.4.4 (R Core Team, 2016).

Next to the estimation of the probability parameter p, we
calculate the Bimodality Coefficient (BC; Hosenfeld et al., 2015)
for each participant in both datasets, and compare the outcome
of the two measures. The BC only takes information from
the distribution of the proportion of active nodes (density) to
determine whether there is evidence for one or two stable states.
The BC is calculated as follows:

BC =
s2 + 1

k+ C
(8)

where s is the skewness of the distribution, k the kurtosis of
the distribution, and C a correction factor that depends on the

number of variables: C = 3(n−1)2

(n−2)(n−3)
. The BC obtains values

between 0 and 1 and considers values > 0.55 to mean there
is evidence for two states (Hosenfeld et al., 2015). We only use
the BC for comparison, the BC uses no specific information
or assumptions about the process, only distributional properties
are involved. We assume that the process is essential for the
assessment of a possible bimodal system, and as the BC and our
proposed method are not mathematically interchangeable, we
believe that these two method should not necessarily correspond.
The mean field model that we propose here takes the process
that generated the data into account, which is an advantage in
comparison to the BC.

6.1. Example 1: Clinical Sample
This example involves a secondary analysis of data that were
originally gathered for a study in patients diagnosed with MDD,
who were admitted to a closed, psychiatric ward of an academic
hospital (Gordijn et al., 1994, 1998). The data have been described
in detail in previous papers (Gordijn et al., 1994, 1998). The
study was approved by the medical ethical committee of the
university hospital of Groningen, the Netherlands. Patients gave
their written informed consent. Patients in this study completed
the Dutch version of the Adjective Mood Scale (AMS; von
Zerssen, 1986) twice a day at fixed time points for a period
of 6 weeks, resulting in a maximum of 84 measurements per
patient. Patients had to indicate on this 28-item questionnaire
which of two given emotions (or neither) corresponded most
closely to the patient’s emotion at that moment in time. A
detailed description of the items of the AMS can be found
in Table 2.

We dichotomized the data by collapsing the “neither”
condition with the positive mood state per individual item. We
coded the positive mood state as “0” and the negative mood
state as “1.” We also collapsed the “neither” condition with the
negative mood state and ran the analyses with these data, but as
these results were very similar to the ones we present, we left
it out of this study. After dichotomizing the data, we replaced
any missing measurements with the previous measurement. We
also considered removing themissingmeasurements entirely, but
as we found nearly identical results, we chose not to present
these results.

A total of 82 patients were initially included in the study.
Thirty three patients were excluded from the analyses due to
either a too low number of measurements (< 5; N = 4), or
a lack of variance in the response categories (smallest response
category must contain at least 5% of the responses; N = 29).
This resulted in 49 patients that were included in the analyses.
(Excluded patients (mean age = 48.79 years, SD = 14.09 years,
72.73% women) missed on average 28.10% of the measurements,
and completed on average 60.39 measurements (SD = 30.33).
These patients were admitted between 1988 and 1994, and were
admitted on average for 209.45 days (SD = 119.59 days, min
= 53 days, max = 536 days)). Excluded patients completed
significantly less measurements than included patients (W =

587.5, p = 0.036). Included patients had a mean age of 47.92
(SD = 13.13 years) at the time of admission to the closed
ward, with 71.43% women. These patients missed on average
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TABLE 2 | Items of the Adjective Mood Scale (AMS) and their assigned labels.

Item More Dutch/English More Dutch/English Neither/nor

*1 0 Openhartig/openly 2 Geremd/inhibited 1

*2 0 Welgemoed/good mood 2 Droefgeestig/bad mood 1

3 2 Inactief/passive 0 Bedrijvig/active 1

4 2 Ziekelijk/sickly 0 Kiplekker/healthy 1

*5 0 Doelbewust/purposefully 2 Doelloos/aimlessly 1

6 2 Ernstig/serious 0 Geestig/humorous 1

7 2 Fantasieloos/unimaginative 0 Fantasierijk/imaginative 1

*8 0 Gevoelig/sensitive 2 Gevoelloos/numb 1

9 2 Pessimistisch/pessimistic 0 Optimistisch/optimistic 1

*10 0 Zorgeloos/carefree 2 Tobberig/worried 1

11 2 Gebroken/broken 0 Monter/cheerful 1

*12 0 Liefderijk/lovingly 2 Liefdeloos/loveless 1

13 2 Schuldig/guilty 0 Onschuldig/innocent 1

14 2 Uitgeput/tired 0 Uitgerust/rested 1

15 2 Levensmoe/life-tired 0 Levenslustig/lively 1

*16 0 Goed/good 2 Slecht/bad 1

*17 0 Vrolijk/cheerful 2 Treurig/tearful 1

*18 0 Bemind/loved 2 Onbemind/unloved 1

19 2 Lui/lacking in energy 0 Actief/energetic 1

20 2 Gesloten/withdrawn 0 Open/sociable 1

*21 0 Levendig/lively 2 Levenloos/sluggish 1

*22 0 Temperamentvol/temperamentfull 2 Futloos/lifeless 1

*23 0 Oplettend/watchful 2 Verstrooid/absent 1

24 2 Wanhopig/desperate 0 Hoopvol/hopeful 1

*25 0 Tevreden/satisfied 2 Ontevreden/dissatisfied 1

26 2 Angstig/anxious 0 Strijdlustig/combative 1

*27 0 Krachtig/powerful 2 Krachteloos/powerless 1

*28 0 Evenwichtig/balanced 2 Gejaagd/agitated 1

Items marked with a * have a reversed response scale. The English translation may differ from the original AMS scale, as well as the order of te items.

FIGURE 9 | Proportion of active symptoms (Left) and bifurcation diagram (Right) of one participant from the Groningen data. BC = bimodality coefficient. Red line

indicates the estimate p̂.

9.86% of the measurements, and registered on average 75.71
measurements (SD = 11.29). Patients were admitted between
1988 and 1994, and were admitted on average for 179.35 days
(SD = 129.75 days, min = 49 days, max = 572 days). Mann-
Whitney tests revealed that the excluded and included patients

did not significantly differ in age (W = 831, p = 0.835), and
admission period (W = 755.5, p = 0.131). Under the EU
General Data Protection Regulation, we are not allowed to publish
raw results. Result figures for all patients can be found online
(Kossakowski, 2018).
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TABLE 3 | Items that were included in the analysis, the meaning of each item, and the response range in word and number.

Item Meaning Range

1 I feel relaxed Not at all (0) – very much (100)

2 I feel gloomy Not at all (0) – very much (100)

3 I feel energetic Not at all (0) – very much (100)

4 I feel anxious Not at all (0) – very much (100)

5 I feel enthusiastic Not at all (0) – very much (100)

6 I feel nervous Not at all (0) – very much (100)

7 I feel content Not at all (0) – very much (100)

8 I feel irritable Not at all (0) – very much (100)

9 I feel calm Not at all (0) – very much (100)

10 I feel dull Not at all (0) – very much (100)

11 I feel cheerful Not at all (0) – very much (100)

12 I feel tired Not at all (0) – very much (100)

13 I feel valued Not at all (0) – very much (100)

14 I feel lonely Not at all (0) – very much (100)

15 I feel I fall short Not at all (0) – very much (100)

16 I feel confident Not at all (0) – very much (100)

17 I worry a lot Not at all (0) – very much (100)

18 I am easily distracted Not at all (0) – very much (100)

19 I feel my life is worth living Not at all (0) – very much (100)

20 I am unbalanced Not at all (0) – very much (100)

21 I am in the here and now Not at all (0) – very much (100)

22 My appetite is.. Much small than usual (0) – much larger than usual (100)

23 Since the last measurement I had a laugh Not at all (0) – very much (100)

Figure 9 shows the evolution of the density (left), a
distribution of the density ρt (frequency of the number of active
nodes; middle figure), and the estimate of p̂ in the bifurcation
diagram (right) of a single patient. Figures of all patients are
available online. According to the mean field model 87.8% of
the patients had an expectancy for a transition. This is not
surprising given that the sample is from a population of patients
in a psychiatric ward. To compare, we calculated the bimodality
coefficient (BC), which uses a function of the skewness and
kurtosis from the distribution of the time series of the proportion
of symptoms (see Hosenfeld et al., 2015 for details). The BC
classified 59.2% of the cases as being bimodal. When we compare
the results from theMFA to the BC, we see that themethods agree
in 55.1% of the cases, with κ = 0.26 (maximal κ = 1). In the case
of the patient, whose results are depicted in Figure 9, the BC is
very high (0.86), which is reflected in the shape of the distribution
of the density and corresponds to the result of the MFA.

We investigated the robustness of the mean field model in
an empirical setting by running a subset analysis. This analysis
is similar to the one we conducted with simulated data that is
described earlier. We randomly selected either 50% or 75% of the
time points per patient and used ML estimation to estimate p̂.
Results showed that in 96.3% of the participants, taking a subset
of the data resulted in the same conclusion according to the mean
field model. For the BC, we found that, taking a subset of the data
resulted in the same conclusion in 86.6% of the patients. This
shows that the mean field model is fairly robust when one does
not use all the data available.

6.2. Example 2: General Sample
Participants were originally recruited in a nation-wide study
called HoeGekIsNL (in English: HowNutsAreTheDutch) and
have been described in detail in a previous paper (van der Krieke
et al., 2015). The original study was approved by the medical
ethical committee of the university medical center Groningen,
the Netherlands. Informed consent was digitally obtained during
the primary data collection. Participants in this study filled out
a 43-item questionnaire that consisted of new items created for
this study, and items from existing and validated questionnaires.
Participants completed this questionnaire three times a day with
a 6-h interval between the time points, for a period of 31 days,
resulting in a maximum of 93 measurements per participant
(van der Krieke et al., 2015).

From the original questionnaire, we selected items that
pertained to mood states (21 items), appetite (one item) and
laughter (one item), ending up with 23 items. Table 3 shows
a detailed description of the included items. We recoded 10
positive items so that high scores indicate a more negative affect
on all items. All included items were measured on a 0–100 scale.
We dichotomized the data using a median split. This means that
we calculated the median for each item for each participant, and
split the data accordingly. We coded all the responses below
the median as “0,” and everything above the median as “1.” We
also considered using a k-means clustering to dichotomize the
data, but as these results were very similar to the results that we
present, we chose not to include these results here. We replaced
any missing measurements with the previous measurement. We
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FIGURE 10 | Proportion of active symptoms (Left) and bifurcation diagram (Right) of one participant from the HowNutsAreTheDutch data. Red line indicates the

estimate p̂.

also considered removing themissingmeasurements entirely, but
as we found nearly identical results, we chose not to present
these results.

A total of 974 participants participated in this study. We
excluded 182 participants from the analyses due to a too low
number of measurements (< 5), resulting in 792 participants
that were included in the remainder of this section. (Excluded
participants (mean age = 41.17 years, SD = 13.56 years, 84.06%
women) missed on average 88.57% of the measurements, and
completed an average of 1.38 measurements (SD = 1.35)).
Excluded participants completed significantly less measurements
than included participants (W = 0, p < 0.001). Included
participants had a mean age of 40.21 (SD = 13.48 years) at
the start of the data collection, with 82.49% women. These
participants missed on average 35.81% of the measurements and
registered on average 58.67 measurements (SD = 36.37). Mann-
Whitney tests revealed that excluded and included participants
did not significantly differ in age (W = 75,248, p = 0.353).
We also looked at the mean scores of the Depression and
Anxiety Stress Scale (DASS; Lovibond and Lovibond, 1995a,b),
the Quick Inventory of Depressive Symptomatology (QIDS; Rush
et al., 2003, 2006), and the Positive Affect Negative Affect Scale
(PANAS; Peeters et al., 1996; Raes et al., 2009). Mann-Whitney
tests revealed that excluded and included participants did not
significantly differ on the DASS (W = 10,093, p = 0.194),
the QIDS (W = 74,275, p = 0.127), the positive items of
the PANAS (W = 67,314, p = 0.557) or the negative items
of the PANAS (W = 72,253, p = 0.366). Under the EU
General Data Protection Regulation, we are not allowed to publish
raw results. Result figures for all participants can be found
online (Kossakowski, 2018).

Figure 10 shows the evolution of the density (left figure), a
distribution of the density (frequency of the number of active
nodes; middle figure), and the estimate of p̂ in the bifurcation
diagram (right figure) of a single participant. Figures of all
participants are available online. According to the mean field
model 20.8% of the participants have an expectancy for a
transition. This is not surprising given that the sample is from
the general population. To compare, we calculated the bimodality
coefficient (BC), which uses a function of the skewness and
kurtosis from the distribution of the time series of the proportion

of symptoms (see Hosenfeld et al., 2015 for more details). The
BC classified 31.9% of the participants as being bimodal. When
we compare the results from the MFA to the BC, we see that the
methods agree in 61.1% of the cases, with κ = 0.39 (maximal
κ = 1). In the case of the participant whose results are depicted
in Figure 10, the BC is not that high (0.409); this is reflected
in the shape of the distribution of the density, which has a
unimodal shape. This corresponds to the MFA result which
indicates stability.

We investigated the robustness of the mean field model in
an empirical setting by running a subset analysis. This analysis
is similar to the one we conducted with simulated data that is
described earlier. We randomly selected either 50% or 75% of the
time points per participant and usedML estimation to estimate p̂.
Results showed that in 85.5% of the participants, taking a subset
of the data resulted in the same conclusion according to the mean
field model. For the BC, we found that, taking a subset of the data
resulted in the same conclusion in 81.6% of the participants. This
shows that the mean field model is fairly robust when one does
not use all the data available.

7. DISCUSSION

The present study combined dynamical systems theory and
network theory to assess the expectancy for a transition, a sudden
jump between two stable mood states, using a mean field model.
We provided a numerical illustration shows that a mean field
model can accurately identify (simulated) individuals who may
expect to experience a transition. We then applied the mean field
model to two different empirical examples: data from patients
admitted to a closed ward, and data from a general sample from a
nation-wide study. Results from these applications show how our
proposed method works in practice.

A big question remains to be answered after this study:
did the participants who were expected to transition actually
had a transition between mood states? The analyses that we
ran are of a probabilistic nature; expecting that a participant
makes a transition between mood states does not mean that
a participant actually makes this transition. Unfortunately, we
do not have any follow-up measures to investigate whether or
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not these transitions actually occurred. From the patients in
the clinical sample we know that they were eventually released
from the closed ward. It can thus be hypothesized that this
is an indication of a transition occurring in these patients.
Future research could shed some light on this hypothesis by
collecting data after patients are released from a (closed) ward. It
would also be interesting to follow-up on the participants from
the HowNutsAreTheDutch study to investigate if participants
transitioned between mood states.

The data used in this study were collected in different decades.
Data from the clinical sample were collected between 1988
and 1994, whereas data from the general sample were collected
between 2014 and 2016. Between the time of data collection
and the current time, the general view toward mental disorders
like MDD has changed, and questionnaires and methods for
collecting data have adapted with it. Even though the data from
the clinical sample was collected 30 years ago, their approach to
collecting the data (intensive data or time-series data collection)
is an approach that is still used today, and is becoming more and
more a common practice (e.g., Janssens et al., 2018). Also, the
questionnaire used to collect these data has a different design
than the questionnaire used in the general sample, as shown
in Tables 2 and 3. Nevertheless, we believe that we can draw
similar conclusions from the results that were obtained with these
datasets, as both questionnaires enquired about various aspects of
a participant’s mood in a similar way.

When collecting time-series data, participants are requested
multiple times a day to fill out a questionnaire for a certain
period. This type of data collection demands time and effort of
the participants. It thus makes sense that participants sometimes
forget to complete a questionnaire, or are simply not up for
it at that specific moment, for whatever reason. In the data
that we analyzed, we came across different ratios of missing
data and completed measurements, ranging from no missing
measurements to almost as much as 90%. Since we assumed a
Markov model and so, the item responses should not change
much and thus, we replaced missing measurements with the
previous measurement. Adopting this approach for handling
missing data decreases the variance that individual items may
have, thereby increasing the probability that a participant may
be expected to experience a transition. Although we did not find
evidence that our analysis differed much if we removed these
measurements altogether, at this point in time, there is no clear
picture of the effects of missing data in the current analysis.
Future research should focus onmapping the effects that different
types of missing data have on the current analysis, and what the
effect of various imputation methods have on the analyses.

The current study only allows for binary and no missing data.
We applied different techniques for dichotomizing the data and
handling missing data. Even though these different approaches
did not lead to different conclusions, the current approach may
not be ideal. Data are often imperfect: low variance within item
scores, as well as missing data occurs recurrently in time-series
data. More importantly, it can be argued that MDD symptoms
may not be binary, but categorical or even continuous. One
can imagine that there exists a scale on which individual MDD
symptoms lie. For example, two participants may experience
insomnia (one of the MDD symptoms as listed in the Diagnostic

and StatisticalManual ofMental Disorders, American Psychiatric
Association, 2013), but the severity of this symptom may differ
greatly between individuals. In the future we aim to expand the
mean fieldmodel so that it allows continuous data as well as items
with low variance.

In the clinical sample, we had to exclude quite a few patients as
a result of data having too little variance. Too little variance here
means that the response category with the smallest number of
responses (either 0 or 1) included less than 5% of the total number
of responses. We had to exclude these patients because the mean
field model that we proposed in this study needs a minimal
amount of variance to assess an individual’s expectancy for a
transition. The question can be raised here what it empirically
means when an individual shows little variation in their item
responses. Does it indicate that an individual can expect to
transition between mood states, or that an individual varies so
little in their emotions that a transition cannot be expected.
Unfortunately the mean field model in its current state cannot
solve this issue. More research is needed to theoretically decide
what no variance in item responses mean in a clinical setting, and
to expand the mean field model so that it may account for little to
no variance in the data.

The mean field model that we used in this paper has three
assumptions: (1) we assume that each node in a graph has
the same neighborhood size, (2) nodes can only be in one of
two states (active/inactive) and (3), we assume that all nodes
in a graph show equal behavior. Waldorp and Kossakowski
(2019) showed one can deviate from the first assumption, whilst
maintaining a high accuracy in estimating the probability p.
We discussed the second assumption in more depth previously,
which leaves us with the final assumption of themean fieldmodel.
In the current study, we operationalized the third assumption
by fixating the probability p to be equal for all nodes in the
graph. However, it is unlikely that all symptoms of psychological
disorders like MDD behave in a similar manner. For example,
some individuals can handle sleep deprivation better than others.
In this case, the “sleep problems” node would less easily be
activated in individuals that can handle sleep deprivation in
comparison to individuals that cannot handle sleep deprivation
that well. A possible extension of the mean field model as is used
in this paper is to vary the probability value p, which appears in
the majority rule, for every node in the graph. In the example
of sleep deprivation, we could operationalize the sensitivity
difference by using different values for p between nodes.

In the current study, we estimated the probability p per
individual for the entire time-series. This means that p cannot
change between time points. One may wonder if this value is
supposed to be static, or that it could change between time points.
The advantage of a static probability value is that it is easy to
estimate. However, a static probability value may not reflect an
individual’s expectancy for a transition accurately. By allowing
the probability p to vary over time, one could gain more insight
into how an individual moves throughout time with respect to
p. One possible method to accomplish this is to work with a
moving window, in which one uses a window to select a snippet
within the time series to estimate p, and let that window move
throughout the time series. In this situation, we can estimate p
several times on different segments of the time series; the size of
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the windowwill determine howmany values are estimated. In the
future we hope to expand the mean field model and allow for the
probability p to vary.

In the numerical illustration section of our current study
we only looked at values for p, p(e) and p(w) between 0.1 and
0.5. Since these parameters are probabilities, their theoretical
range lies between 0 and 1. Although we did run the numerical
illustration for values up to 0.9, we chose not to present them
as values rarely occur in empirical data. Also, at higher values
for p(e) and p(w), the clustering within the network structures
increases and can create some strange behaviors that are beyond
the scope of this paper. A possible solution when dealing with
high clustering values within a network is to switch to a so-called
scale-free degree distribution.

Based on the simulated and empirical examples provided in
this study, we believe that the mean field model is a promising
method. We do emphasize that the predictions of our proposed
model have not been verified using empirical evidence.We surely
must investigate further to what extent the proposed method
could be useful in clinical practice, but depending on the possible
adjustments of the probability or majority rule in the model, the
validity of the method could be high and therefore useful.
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