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Ambiguous decision-making involves different processes. However, few studies have 
focused on the evaluation process. In this study, event-related potentials (ERPs) and 
event-related spectrum perturbation (ERSP) techniques were used to explore the neural 
dynamics underlying the evaluation process of ambiguous options through an ambiguous 
choice task. Some important results emerged. We found a preference for lotteries with 
low ambiguity regardless of reward amount, suggesting that subjects were averse to 
ambiguity in our paradigm. Our electroencephalography (EEG) results clarified the neural 
dynamics underlying the evaluation process. In the time domain, lotteries with both a 
larger reward and lower ambiguity elicited a larger P3. In the time-frequency domain, 
larger amplitudes of delta activity at 200–400 ms and 500–600 ms post-stimulus were 
elicited by lotteries with low ambiguity. Moreover, lotteries with a larger reward elicited 
larger amplitudes of delta activity at 400–600 ms post-stimulus. Our ERPs and ERSP 
results suggested that individuals in our paradigm evaluated ambiguity and reward 
separately, and then integrated their evaluation to form subjective values of different lotteries.

Keywords: ambiguous options, evaluation, neural dynamics, P3, delta activity

INTRODUCTION

Decision-making under uncertainty permeates our daily life. According to the precise likelihood 
of outcome, economists divide two types of uncertain events: risk and ambiguity. For risk, 
the outcome probability corresponds to a point estimation. For ambiguity, the outcome probability 
is either unknown (Ellsberg, 1961) or an interval estimation (Becker and Brownson, 1964; 
Curley and Yates, 1985; Rustichini et  al., 2005). The majority of uncertainty in real situations 
is ambiguity. In many experiments related to ambiguity, one of the most prominent phenomena, 
referred to as “ambiguity avoidance,” is the individual’s preference for risk over ambiguity 
(Ellsberg, 1961; Camerer and Weber, 1992). Decision-making is a continuous process, which 
entails the evaluation of ambiguous options, formation of preference, choice, and learning 
from feedback (Wang et  al., 2015). Ambiguity avoidance has been demonstrated to emerge 
during the evaluation process (Rode et  al., 1999). During the evaluation of ambiguous options, 
the mean outcome and its variance are integrated to form preference. Ambiguity is supposedly 
averse because of its high outcome variance. However, this speculation lacks support from 
neural dynamic evidence of the evaluation of ambiguous options.
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The focus of previous neuroimaging studies has been on 
contrasting the neural mechanism related to decision-making 
under risk and ambiguity. Decision-making under ambiguity 
elicits greater activity in the amygdala, orbitofrontal cortex, lateral 
prefrontal cortex, anterior insular cortex, posterior inferior frontal 
gyrus, and posterior parietal cortex, and less activity in the 
striatum (Hsu et  al., 2005; Huettel et  al., 2006; Bach et  al., 
2009). One functional magnetic resonance imaging (fMRI) study 
investigated the neural representation of subjective value under 
risk and ambiguity (Levy et  al., 2010). In that study, subjects 
were asked to make decisions under different levels of risk and 
ambiguity. Their behavioral data were used to calculate the 
subjective value of each option, and neural activity was measured. 
The results revealed that the activities of the striatum, medial 
prefrontal cortex, posterior cingulate cortex, and amygdala were 
correlated with the subjective value of risky and ambiguous options.

Event-related potentials (ERPs) and event-related spectral 
perturbations (ERSPs) have millisecond-level temporal resolution, 
which is useful in exploring the evaluation process of ambiguous 
options. Existing ERP studies have been mainly focused on 
neural correlates underlying the choice and feedback stage  
of decision-making under uncertainty (for reviews, see 
Chandrakumar et  al., 2018). To our knowledge, only one ERP 
study has explored the neural mechanism underlying the 
evaluation stage (Wang et  al., 2015). In their experiment, 
participants were asked to decide whether to bet or not, under 
ambiguity and risk. They made decisions after a random 
monetary reward was presented. They would either earn or 
lose the monetary reward if they decided to bet. Otherwise, 
they would earn nothing. The results revealed that a larger 
P3 was elicited by risky options compared with ambiguous 
options. Previous ERP studies have shed light on the neural 
dynamics of decision-making under ambiguity (Gu et al., 2010; 
Xu et  al., 2011; West et  al., 2014; Kóbor et  al., 2015; Mussel 
et  al., 2015; Wang et  al., 2015; Endrass et  al., 2016; Azcárraga-
Guirola et  al., 2017). However, there have been limitations. 
Decision-making under ambiguity includes several stages, from 
the evaluation of ambiguous options to feedback processing. 
Few ERP studies have been focused on the evaluation process. 
Although Wang et  al. (2015) explored the neural dynamics 
underlying the evaluation of ambiguous options, they mainly 
aimed at comparing the neural mechanism of ambiguity and 
risk. Their paradigm did not allow one to distinguish between 
evaluation and choice processes. Moreover, their study did not 
clarify the temporal dynamics of ambiguous option evaluation, 
which entails processing of the level of ambiguity, reward 
amount, and the corresponding integration process.

In this study, we  used ERPs and the ERSP technique to 
investigate neural temporal dynamics underlying the process 
of ambiguous option evaluation. Therefore, we  developed an 
ambiguous choice task. Our task paradigm was derived from 
previous literature on risky choice (Wang et  al., 2019), given 
that the evaluation of ambiguous options is somewhat similar 
to that of risky options (Levy et  al., 2010). In our task, two 
ambiguous lotteries were serially presented. Subjects were then 
asked to choose one lottery to decide their payoff. This allowed 
us to separate evaluation and choice processes. No feedback 

was shown to the subjects to control for the learning effect. 
By varying the probability interval of reward, we  manipulated 
the level of ambiguity, based on the methods of Levy et  al. 
(2010). We  set up four types of lotteries: high ambiguity with 
a reward of 20 Chinese yuan (CNY) (H20); high ambiguity 
with a reward of 10 CNY (H10); low ambiguity with a reward 
of 20 CNY (L20); and low ambiguity with a reward of 10 
CNY (L10). For each reward, lotteries with different levels of 
ambiguity led to the same mean reward. Using this paradigm, 
we  were able to clarify the integration process of ambiguity 
and mean reward during the evaluation of an ambiguous option.

Several electroencephalography (EEG) components in the 
time domain and time-frequency domain can be used to explore 
the process of ambiguous option evaluation. In the time domain, 
the relevant component during the evaluation stage is P3 
(Goldstein et  al., 2006; Broyd et  al., 2012; Zhang et  al., 2017; 
Zheng et  al., 2017). The P3 peak at 300–600  ms post-stimulus 
at posterior scalp sites is associated with reward evaluation 
and anticipation (Pfabigan et al., 2015). Furthermore, P3 possibly 
encodes the subjective value of each ambiguous option. Thus, 
we  hypothesized that both low ambiguity and reward of 20 
CNY would elicit larger P3 amplitudes. In the time-frequency 
domain, delta power (1–4 Hz) is an index of reward processing 
(for review, see Knyazev, 2007, 2012). Therefore, the dynamics 
of delta activity when faced with four types of lotteries would 
reflect the sequential order of processing the ambiguity, mean 
reward, and integration between the two. We  predicted that 
low ambiguity would elicit a larger delta band activity when 
processing the ambiguity, while the reward of 20 CNY would 
elicit a larger delta band activity when processing the mean 
reward. Moreover, we  predicted that both low ambiguity and 
the reward of 20 CNY elicited larger delta band activity when 
processing the integration between ambiguity and mean reward.

MATERIALS AND METHODS

Participants
A total of 25 healthy volunteers (age range  =  21–25  years; 
females = 12) from Nankai University participated in this study. 
Sample size was determined by power analysis. All participants 
were right-handed, native Chinese speakers. The participants 
had normal or corrected-to-normal vision and no history of 
psychiatric or neurological disorders. Each participant signed 
written informed consent forms and received a base payment 
of 30 Chinese yuan (CNY, roughly equal to US $4.50) for 
participation, plus a bonus of 0–60 CNY based on his/her 
decision. The study protocol was approved by the Ethics 
Committee of Nankai University. The procedures were performed 
in accordance with approved guidelines and the Declaration 
of Helsinki. Materials and data related to this study will be made 
available upon request.

Stimuli and Task
The participants performed an ambiguous choice task. In each 
trial, participants were presented with two lotteries sequentially 
with varying ambiguity levels and varying reward amounts. 
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Participants had to indicate which lottery they preferred. Each 
lottery appeared on the screen in the form of a “pie” painted 
partly red and partly green (Figure  1). All pies contained 10 
sectors. Participants were told that each image on the screen 
represented a physical bag containing 10 balls. The relative 
numbers of red and green balls were indicated by the proportions 
of red and green sectors. Part of the pie was hidden by a 
gray occluder. The probability of drawing green or red balls 
was therefore ambiguous. Two different occluder sizes (covering 
either two or six sectors) represented two ambiguity levels. 
For the low ambiguity level, the probability of drawing a red 
ball could have been anywhere between 40 and 60%. Similarly, 
the probability of drawing a green ball could have been 
anywhere between those two values. For the high ambiguity 
level, the probability of drawing a red ball could have been 
anywhere between 20 and 80%. The probability of drawing a 
green ball could also have been anywhere between 20 and 
80%. The number under the pie represented the amount of 
money to be  won that was associated with the target color. 
For half of the participants, drawing a red ball yielded a given 
amount of money and drawing a green ball yielded nothing. 
For the other half of the participants, drawing a green ball 
yielded a given amount of money, and a red ball yielded 
nothing. Two reward amounts (10 and 20 CNY) were used 
at each ambiguity level, to give four types of lotteries, i.e., 
H20, H10, L20, and L10.

At the beginning of the experiment, participants were told 
that each lottery corresponded with a unique bag. Therefore, 
we  provided four sealed bags associated with four types of 
lotteries. Before the task, participants were asked to sign their 
names on the sealed bags. This method was used to ensure 
the relative numbers of red and green balls could not have 
been adjusted by experimenters during the task. At the end of 
the experiment, three trials were randomly selected by computers. 
Based on the lotteries they chose in these trials, participants 
then drew a ball from each corresponding bag (if two or three 
lotteries were the same, they would draw a ball twice or three 
times from the corresponding bag with replacements). In addition 
to their participation fee, they were paid according to the lotteries 
and number of balls of the target color.

Procedure
The EEG recording was performed in a small, sound-attenuated, 
electrically shielded chamber. After the EEG electrodes were 

attached, the participants sat in a comfortable chair that was 
approximately 100 cm in front of a 23-inch (58.42 cm) computer 
monitor. Before the tasks began, all participants read the 
instructions carefully and were asked to take eight practice trials. 
Figure  1 shows the timeline of a single trial. Each trial began 
with the presentation of a single centrally located white fixation 
cross for 600–800  ms. A black screen was then presented for 
500–700 ms, followed by the first lottery for 1,000 ms. Subsequently, 
the second lottery was presented for 1,000  ms, after which, a 
black screen was presented for 500–700  ms. The order of these 
lotteries was counterbalanced. Thereafter, participants were asked 
to choose one of the lotteries to decide their payoff in that trial.

The entire experiment comprised 80 test and eight practice 
trials. Only the test trials were used for EEG analysis. The 
trials occurred within four blocks of 20 trials. Each block was 
separated by a break, the duration of which was determined 
by the participants. All 80 trials were performed within 15–25 min, 
during which the trials were randomly presented. The E-Prime 
software was used to control the display of stimuli and acquisition 
of behavioral data (Version 2.0, Psychology Software Tools, Inc.).

Electroencephalography Acquisition
The EEG data were recorded continuously with a 40-channel 
NuAmps DC amplifier (Compumedics Neuroscan, Inc., Charlotte, 
NC, USA). According to the International 10-20 System, 32 
active Ag/AgCl electrodes were used. The EEG was sampled 
at 1,000  Hz using a 22-bit A/D converter. The reference and 
ground electrodes were positioned at AFz, and the impedances 
of all electrodes were kept below 10 kΩ.

Electroencephalography Analysis
Preprocessing of EEG data was performed with the EEGLAB 
14.1.1 tool (Delorme and Makeig, 2004), implemented in 
MATLAB 2017a. In addition, a 0.1/30  Hz high-/low-pass filter 
was applied after the reference of EEG signals was reset to 
the average of the left and right mastoids. Individual epochs 
were extracted from −1,000 to 2,000 ms around the presentation 
of the stimulus defined as the lotteries that sequentially presented 
in our task. A manual artifact correction procedure was applied 
to eliminate trials with artifacts, based on visual inspection. 
Independent component analysis (ICA) was performed to 
remove eye movement, and the related ICA components were 
manually selected. Artifact-free epochs of each subject were 
grouped into four conditions, i.e., H20, H10, L20, and L10.

FIGURE 1 | Overview of the task and trial structure.
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A B

FIGURE 2 | Behavioral results. (A) Subjective value among lotteries (H20, H10, L20, and L10). (B) Reaction time among lotteries (H20, H10, L20, and L10). Error 
bars represent SEM. H20, high ambiguity with a reward of 20 CNY; H10, high ambiguity with a reward of 10 CNY; L20, low ambiguity with a reward of 20 CNY; L10, 
low ambiguity with a reward of 10 CNY. SD, two lotteries with same ambiguity level but different reward amounts; DS, two lotteries with different ambiguity levels but 
same reward amount; DD, two lotteries with different ambiguity levels and different reward amounts.

Clean EEG data were analyzed in the time domain. The 
1,000-ms epochs were extracted, starting at 200  ms before the 
presentation of the stimulus. A 200-ms pre-stimulus period 
was used as baseline, and the accepted epochs were baseline-
corrected. The P3 was scored as the mean voltage from 500 
to 600  ms post-stimulus at Pz, corresponding to the 100-ms 
time window surrounding the peak.

Time-frequency analysis was performed using the Fieldtrip 
toolbox (Oostenveld et al., 2011) built-in ft_freqanalysis function, 
based on complex Morlet wavelet convolution (1–10  cycles, 
1–30 Hz, 120 spaced frequencies, 1,000 time points per epoch). 
The time interval of −200 to 0  ms before presentation of the 
stimulus was used for baseline normalization. The mean converted 
amplitudes within 1–4 Hz from 200 to 300 ms, 300 to 400 ms, 
400 to 500  ms, and 500 to 600  ms at Pz were used to analyze 
the delta band power change in different time windows.

For all analyses, the values of p were corrected using 
the Greenhouse-Geisser correction when the sphericity 
assumption was violated. A value of p < 0.05 was considered 
significant. Significant interaction was analyzed using the 
simple effect model. Statistics were analyzed using the SPSS 
19.0 software.

RESULTS

Behavior Data
The subjective value of a lottery was defined as the frequency 
with which it was selected by the participants. The subjective 
value was analyzed using two-way repeated measures ANOVA 
(rmANOVA) with ambiguity levels (high vs. low) and reward 
amounts (10 vs. 20 CNY) as within-subject factors (Figure 2A). 
A significant main effect was found for reward amount 
[F(1,  24)  =  452.859, p  <  0.001, partial η2  =  0.950], as a higher 

subjective value was noted for 20 CNY (mean ± SEM = 
30.860 ± 1.392) versus 10 CNY (mean ± SEM = 9.140 ± 1.119). 
A significant main effect was also found for ambiguity 
[F(1,  24)  =  228.553, p  <  0.001, partial η2  =  0.905], as a higher 
subjective value was noted for low ambiguity (mean  ±  SEM  = 
27.840  ±  1.808) versus high ambiguity (mean  ±  SEM  = 
12.160  ±  1.492). A significant interaction effect was revealed 
[F(1, 24)  =  15.600, p  =  0.001, partial η2  =  0.394]. For high 
ambiguity, a significant main effect was observed with reward 
amount [F(1, 24)  =  210.251, p  <  0.001, partial η2  =  0.898], 
as a higher subjective value was noted for 20 CNY (mean  ± 
SEM  = 21.760  ±  1.007) than 10 CNY (mean  ±  SEM  = 
2.560  ±  0.663). For low ambiguity, a significant main effect 
was also observed with reward amount [F(1, 24)  =  513.497, 
p  <  0.001, partial η2  =  0.955], as a higher subjective value 
was observed for 20 CNY (mean  ±  SEM  =  39.960  ±  0.040) 
than 10 CNY (mean  ±  SEM  =  15.720  ±  1.053). For 20 CNY, 
a significant main effect was observed with ambiguity level 
[F(1, 24)  =  334.586, p  <  0.001, partial η2  =  0.933], as a higher 
subjective value was noted for low ambiguity (mean ± SEM  = 
39.960  ±  0.040) than high ambiguity (mean  ±  SEM  = 
21.760  ±  1.007). For 10 CNY, a significant main effect was 
also observed with ambiguity level [F(1, 24) = 87.662, p < 0.001, 
partial η2  =  0.785], as a higher subjective value was noted for 
low ambiguity (mean  ±  SEM  =  15.720  ±  1.053) than high 
ambiguity (mean  ±  SEM  =  2.560  ±  0.663).

Reaction time was analyzed using one-way rmANOVA with 
conditions (two lotteries with the same ambiguity level but 
different reward amounts vs. two lotteries with different ambiguity 
levels but same reward amount vs. two lotteries with different 
ambiguity levels and different reward amounts, henceforth 
referred to as SD vs. DS vs. DD). We  found no significant 
main effects [F(2, 48)  =  1.818, p  =  0.184, partial η2  =  0.070] 
for the various conditions (Figure  2B).
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Electrophysiological Data
P3
A two-way rmANOVA was performed with ambiguity (high vs. 
low) and reward (10 vs. 20 CNY) as factors (Figure  3). A 
significant main effect was found [F(1, 24)  =  33.891, p  <  0.001, 
partial η2  =  0.585] for reward amount, with a larger amplitude 
of P3 for 20 CNY (mean  ±  SEM  =  2.730  ±  0.376  μV) than 
10 CNY (mean  ±  SEM  =  0.403  ±  0.417  μV). Moreover, a 
significant main effect was also found [F(1, 24) = 12.367, p = 0.002, 
partial η2  =  0.340] for ambiguity level, with a larger amplitude 
of P3 for low ambiguity (mean  ±  SEM  = 2.283  ±  0.430  μV) 
than high ambiguity (mean ± SEM = 0.824 ± 0.373 μV). However, 
no significant interaction effects were found.

Delta Activity
A two-way rmANOVA was performed on the delta power from 
200 to 300  ms with ambiguity (high vs. low) and reward (10 
vs. 20 CNY) as factors (Figure  4). Only one significant main 
effect was found [F(1, 24) = 11.822, p = 0.002, partial η2 = 0.330] 
for ambiguity level, with a larger amplitude for low ambiguity 

(mean  ±  SEM  =  2.379  ±  0.259  dB) than high ambiguity 
(mean  ±  SEM  =  1.733  ±  0.218  dB). However, we  found no 
significant main effects for reward or significant interaction effects.

A two-way rmANOVA was performed on the delta power 
from 300 to 400  ms with ambiguity (high vs. low) and reward 
(10 vs. 20 CNY) as factors (Figure  5). Only one significant 
main effect was found [F(1, 24)  =  7.646, p  =  0.011, partial 
η2  =  0.242] for ambiguity, with a larger amplitude for low 
ambiguity (mean  ±  SEM  =  2.444  ±  0.255  dB) than high 
ambiguity (mean  ±  SEM  =  1.864  ±  0.219  dB).

A two-way rmANOVA was performed on the delta power 
from 400 to 500  ms with ambiguity (high vs. low) and reward 
(10 vs. 20 CNY) as factors (Figure  6). Only one significant 
main effect was found [F(1, 24)  =  9.846, p  =  0.004, partial 
η2  =  0.291] for reward amount, with a larger amplitude for 
20 CNY (mean  ±  SEM  =  2.252  ±  0.200  dB) than 10 CNY 
(mean  ±  SEM  =  1.502  ±  0.194  dB).

A two-way rmANOVA was performed on the delta power 
from 500 to 600  ms with ambiguity (high vs. low) and reward 
(10 vs. 20 CNY) as factors (Figure  7). A significant main 

A

B

FIGURE 3 | P3 results. (A) Grand average ERP waves computed at Pz. (B) Topographic voltage maps of mean amplitude of the P3 wave.
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A

B

FIGURE 4 | Delta results from 200 to 300 ms. (A) Delta (1–4 Hz) activity at Pz. (B) Topographic maps of the mean amplitude of delta band power within 1–4 Hz 
from 200 to 300 ms.

A

B

FIGURE 5 | Delta results from 300 to 400 ms. (A) Delta (1–4 Hz) activity at Pz. (B) Topographic maps of the mean amplitude of delta band power within 1–4 Hz 
from 300 to 400 ms.
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A

B

FIGURE 6 | Delta results from 400 to 500 ms. (A) Delta (1–4 Hz) activity at Pz. (B) Topographic maps of the mean amplitude of delta band power within 1–4 Hz 
from 400 to 500 ms.

A

B

FIGURE 7 | Delta results from 500 to 600 ms. (A) Delta (1–4 Hz) activity at Pz. (B) Topographic maps of the mean amplitude of delta band power within 1–4 Hz 
from 500 to 600 ms.
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effect was found [F(1, 24) = 6.772, p = 0.016, partial η2 = 0.220] 
for ambiguity level, with a larger amplitude for low ambiguity 
(mean  ±  SEM  =  2.485  ±  0.212  dB) than high ambiguity 
(mean  ±  SEM  =  1.854  ±  0.160  dB). Moreover, a significant 
main effect was found [F(1, 24)  =  13.481, p  =  0.001, partial 
η2  =  0.360] for reward, with a larger amplitude for 20 CNY 
(mean  ±  SEM  =  2.658  ±  0.191  dB) than 10 CNY 
(mean  ±  SEM  =  1.681  ±  0.199  dB). However, no significant 
interaction effects were found.

DISCUSSION

Ambiguous decision-making involves different processes, from 
evaluation to feedback. Previous behavioral studies have suggested 
that ambiguity aversion occurs because of a lower subjective 
value with high variance of the mean outcome during the 
evaluation process. However, this speculation lacks supportive 
evidence from neural dynamics analyses. In this study, ERP 
and ERSP techniques were used to explore the neural dynamics 
underlying the evaluation process of ambiguous options through 
an ambiguous choice task. Some important results have emerged. 
We found a preference for lotteries with low ambiguity regardless 
of reward amount, suggesting that subjects were averse to 
ambiguity in our paradigm. Our EEG results clarified the neural 
dynamics underlying the evaluation process. In the time domain, 
both lotteries with larger rewards and those with low ambiguity 
elicited a larger P3. In the time-frequency domain, larger 
amplitudes of delta activity at 200–400 and 500–600  ms post-
stimulus were elicited by lotteries with low ambiguity. Moreover, 
lotteries with larger rewards elicited a larger amplitude of delta 
activity at 400–600  ms post-stimulus.

Our behavioral data showed that most participants disliked 
lotteries with high ambiguity and small rewards. This finding 
is consistent with previous studies regarding decision-making 
under ambiguity (Rode et  al., 1999; Levy et  al., 2010). In our 
task, the subjective value of lottery H10 was 2.56. When the 
ambiguity was low, the subjective value increased to 15.72. As 
the reward increased to 20 CNY, the subjective value increased 
significantly and reached 21.76  in cases of high ambiguity. 
Moreover, for lottery L20, the subjective value was 39.96 and 
significantly higher than all other lotteries. Lower ambiguity led 
to an increased frequency with which the lottery was chosen, 
and therefore, a larger subjective value. We noted that the reaction 
time was identical among different choice conditions (i.e., SD 
vs. DS vs. DD). This result suggested that the difficulty of choosing 
between different types of lotteries was similar in our task.

In the time domain, we observed an obvious P3 component 
peaking at approximately 500–600 ms following the presentation 
of the lotteries on the screen. This component reflects the 
stimulus categorization process (for reviews, see Polich, 2007) 
and motivational salience to the stimulus (for review, see Polich 
and Kok, 1995). The P3 wave has also been associated with 
activation of the ventral striatum (Pfabigan et al., 2015) during 
the evaluation process. Since the ventral striatum is a region 
related to reward processing (Delgado et  al., 2000; Schultz, 

2000; Breiter et  al., 2001; Knutson et  al., 2003; Tobler et  al., 
2007; Haber and Knutson, 2010; Kahnt et  al., 2011; Sescousse 
et  al., 2013, 2014; Wilson et  al., 2018), the P3 can be  an 
index of reward evaluation. In our study, both lotteries with 
low ambiguity and those with larger rewards elicited a larger 
amplitude of P3, indicating that P3 integrated the evaluation 
of ambiguity and reward. Among four types of lotteries, the 
amplitude of P3 for H10 was the smallest at only −0.215  μV. 
When the ambiguity was low, the amplitude of P3 increased 
to 1.022 μV. As the reward increased to 20 CNY, the amplitude 
of P3 increased and reached 1.863 μV in cases of high ambiguity. 
For the L20 lotteries, the amplitude of P3 was 3.543  μV, the 
highest among all lotteries. Considering our behavioral and 
ERP data together, we  found that a larger amplitude of P3 
led to an increased frequency with which a lottery was selected. 
Thus, we suggested that the amplitude of P3 during the evaluation 
process encoded the subjective value of each ambiguous lottery, 
and could be  used to predict the subsequent choice.

In the time-frequency domain, delta activity is sensitive to 
reward evaluation during reward anticipation processing (for 
review, see Knyazev, 2007, 2012; Glazer et  al., 2018). It could 
also be  an index representing the integration of reward (Gheza 
et al., 2018; Zhu et al., 2019). In the present study, the dynamics 
of delta power for lotteries during the evaluation process reflected 
the subjects’ processing of the elements of the lotteries (i.e., 
ambiguity level and mean reward) and their integration. At 
200–400  ms after the stimulus, lotteries with low ambiguity 
elicited larger amplitudes of delta activity, indicating that individuals 
started to evaluate ambiguity at about 200 ms after the presentation 
of lotteries on the screen. This result also suggested that individuals 
preferred lotteries with low ambiguity to those with high ambiguity. 
During the next 100  ms, lotteries with a larger reward elicited 
larger amplitudes of delta activity, indicating that individuals 
evaluated reward at 400–500  ms post-stimulus. Moreover, this 
result suggested that individuals preferred larger rewards. At 
500–600  ms post-stimulus, both lotteries with low ambiguity 
and those with larger rewards elicited larger amplitudes of delta 
activity. These results indicated that subjects integrated their 
evaluation of ambiguity and reward to form a subjective value 
of lotteries at 500–600  ms after presentation of the lotteries. 
This supports our findings in the time domain and supports 
the idea that delta activity plays a key role in P3 generation 
during reward evaluation (Demiralp et  al., 2001; Bernat et  al., 
2007, 2015; Ergen et  al., 2008; Ishii et  al., 2009).

In summary, to our knowledge, this study is the first to 
investigate the neural dynamics underlying the evaluation process 
of lotteries under ambiguity. Our ERPs and ERSP results suggest 
that individuals in our paradigm evaluated ambiguity and reward 
separately. The ambiguity level was evaluated at 200–400  ms 
and the reward was evaluated at 400–500  ms after the lotteries 
were presented on the screen. At 500–600 ms after the stimulus, 
individuals integrated the evaluation of ambiguity and reward 
to form a subjective value of the different lotteries. These 
findings shed light on our understanding of the temporal course 
of processing ambiguous options. Furthermore, our findings 
provide neural dynamic evidence of the emergence of ambiguity 
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avoidance during the evaluation process. One limitation of this 
study should be mentioned. Although the evaluation of ambiguity 
was earlier than that of reward in our task, whether individuals 
in other tasks evaluate ambiguity first is unclear. Future studies 
should explore the impacting factor of evaluation sequence 
during the process of ambiguous decision-making.
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