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To model data from multi-item scales, many researchers default to a confirmatory

factor analysis (CFA) approach that restricts cross-loadings and residual correlations

to zero. This often leads to problems of measurement-model misfit while also ignoring

theoretically relevant alternatives. Existing research mostly offers solutions by relaxing

assumptions about cross-loadings and allowing residual correlations. However, such

approaches are critiqued as being weak on theory and/or indicative of problematic

measurement scales. We offer a theoretically-grounded alternative to modeling survey

data called an autoregressive confirmatory factor analysis (AR-CFA), which is motivated

by recognizing that responding to survey items is a sequential process that may create

temporal dependencies among scale items. We compare an AR-CFA to other common

approaches using a sample of 8,569 people measured along five common personality

factors, showing how the AR-CFA can improve model fit and offer evidence of increased

construct validity. We then introduce methods for testing AR-CFA hypotheses, including

cross-level moderation effects using latent interactions among stable factors and

time-varying residuals. We recommend considering the AR-CFA as a useful complement

to other existing approaches and treat AR-CFA limitations.

Keywords: confirmatory factor analysis (CFA), personality factors, auto regression (AR), structural equation

modeling (SEM), autoregressive model

INTRODUCTION

When people respond to multi-item scales, item responses may depend on one another due to the
order in which items are presented (as suggested by Schwarz and Clore, 1983; Schwarz, 1999, 2011).
In this paper we propose that ignoring these sequential, autoregressive effects may lead researchers
to draw erroneous conclusions from their data. Although longitudinal and panel data literatures
treat autoregressive effects at length (Arellano, 2003; Baltagi, 2013; Hamaker et al., 2015), most
survey research overlooks the sequential nature of multi-item scales (Knowles, 1988; Knowles et al.,
1992; Knowles and Byers, 1996). To tackle this problem, we offer a new way to model multi-item
scales which present items in the same order to all respondents: an autoregressive confirmatory
factor analysis (AR-CFA).

We first motivate our work by treating issues in measurement model specification and fit,
including ways to improve fit such as exploratory structural equation models (ESEM) and
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Bayesian approaches (e.g., Asparouhov and Muthén, 2009;
Marsh et al., 2009, 2010; Muthén and Asparouhov, 2012). We
then explore measurement as a sequential process, describing
serial dependencies as “context effects” that may emanate
from two sources: (1) memory activation and (2) affective
priming, both of which may cause autoregressive effects among
survey items (Knowles, 1988; Tourangeau and Rasinski, 1988;
Tourangeau et al., 1989; Hamilton and Shuminsky, 1990;
Steinberg, 1994; Krosnick, 1999; Schwarz, 2011; Mikels and
Reuter-Lorenz, 2019). We then propose the AR-CFA as a method
for including AR effects in a measurement model, including
latent interactions among latent factors and residuals to test
“cross-level” longitudinal/panel moderation. Next, we illustrate
an AR-CFA in a sample of 8,569 people responding to a Big Five
personality survey, showing improved fit using an AR-CFA and
hypothesis testing procedures—all data and results are available
as online appendices. We conclude by emphasizing the value of
theory-based measurement models, limits of our approach, and
future research directions.

MEASUREMENT MODELS AND THEIR
STATISTICAL FIT

To make substantive inferences using data from multi-item
scales, their psychometric properties are often studied to provide
evidence of sound measurement. The most common methods
involve SEMs that allow separately evaluating measurement and
structural models (Williams et al., 2009). Measurement models
define the relationships among observed and latent variables,
as well as residual (co)variances, whereas structural models
reflect hypothesized substantive relationships among latent
variables (Bollen, 1989). To meaningfully interpret structural
model parameters, measurement models must first pass a hurdle
of satisfactory fit—typically tested by CFA—before tests for
structural relationships are undertaken (Anderson and Gerbing,
1982; Mulaik and Millsap, 2000).

In practice, good measurement model fit is not always
obtainable even for common scales such as personality
inventories (Church and Burke, 1994; McCrae et al., 2008;
Hopwood and Donnellan, 2010; Marsh et al., 2010). The problem
of misfit often arises due to a desire for a classic factorial
“simple structure” that was first proposed by Thurstone to
evaluate a scale’s characteristics using exploratory factor analysis
(EFA; Thurstone, 1935, 1947). Thurstone proposed that if a
scale measures underlying constructs well, then an EFA should
show large hypothesized factor loadings and small or near-
zero loadings elsewhere. Although this approach uses EFA in
a confirmatory fashion by imposing limits on allowable cross-
loadings, EFA specifies that all variables may freely load on all
factors, and thus the question of model fit was not relevant for
Thurstone in the same way it is today with CFA.

The typical CFA that has evolved since Thurstone is often
called an “independent clusters” CFA (IC-CFA), which is stricter
than EFA because it omits unhypothesized cross-loadings (see
Figure 1; McDonald, 1985; Thompson, 2000, 2004). Today, the
IC-CFA is often used in published CFAs and tends to inform

researchers’ and reviewers’ expectations of what measurement
models should look like (Asparouhov et al., 2015). The strictness
of the IC-CFA model, however, causes a problem for researchers
who find poor measurement model fit and then conclude that
they cannot proceed to investigating structural relationships.
Therefore, it is unsurprising that many scholars who assess
constructs such as personality traits prefer EFA over CFA due
to the commonly observed lack of good model fit in an IC-CFA
(McCrae et al., 1996; Marsh et al., 2010).

The question of how to address this misfit has generated
substantial debate, leading to many alternatives to the IC-
CFA including exploratory structural equation modeling (ESEM)
and Bayesian approaches (e.g., Marsh et al., 2010; Muthén
and Asparouhov, 2012). These involve allowing for non-zero
cross-loadings (i.e., items “belong” to multiple factors as in
ESEM) and/or residual covariances (i.e., item errors are allowed
to correlate as in Bayes methods; Asparouhov et al., 2015).
Yet, owing to the idealization of an IC-CFA model and a
desire to avoid inferential errors caused by model overfitting
(i.e., “capitalizing on chance” in the form of sampling error
variance), cross-loadings and residual covariances are often
viewed skeptically (e.g., Stromeyer et al., 2015).

Certainly, when measurement model misfit is found with an
initial IC-CFA, using model modification indices provided by
a software package will improve model fit. Because these are
usually post-hoc modifications based on the same sample on
which the model was originally tested, it is unclear how much
of the modification is due to “real” improvement that would
generalize to new data vs. how much is due to overfitting and
would thus vanish in new data (MacCallum, 1986; Cudeck and
Henly, 1991; MacCallum et al., 1992; Chin, 1998; Williams et al.,
2009). In addition to this challenge, even if cross-loadings and
residual covariances are specified a priori (without using model
modification indices), this approach is still often interpreted as
a sign of a poorly functioning measurement scale because such
specifications deviate from the traditional IC-CFA wherein items
are “pure” indicators of one factor. Indeed, in a model with
cross-loadings and residual covariances, some researchers may
question the substantive meaning of structural effects and the
nature of the items and scales themselves (e.g., MacCallum et al.,
2012; Rindskopf, 2012).

A recent exchange in the Journal of Management highlights
these issues. Stromeyer and colleagues note that specifying cross-
loadings and residual covariances potentially allows researchers
to justify weak scales and poorly specified models that can limit
generalizability (Stromeyer et al., 2015). The authors suggest
that cross-loadings and residual covariances may be useful
as diagnostic tools, but they should not be used to improve
model fit to justify interpreting structural relationships. In reply,
Asparouhov et al. (2015) note that there can be good theoretical
reasons to appreciate cross-loadings and residual covariances.
For example, allowing errors to correlate may be reasonable
because scales often have items with similar wordings and may
reference similar contexts. To the extent that items do not appear
to function ideally in terms of an IC-CFA structure (i.e., they
do not reflect “pure” constructs with errors independent of
one another), these authors note that the problem may be the
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FIGURE 1 | IC-CFA.

IC-CFA, which is too strict and will often be less useful than a
model that allows cross-loadings and residual covariances with
“small-variance” priors using a Bayes estimator (which serves
to “shrink” estimates of cross-loadings and residual covariances
toward zero).

Because the view expressed by Stromeyer et al. (2015) is
common among reviewers, researchers may tend to avoid using
specifications that deviate from an IC-CFA, even though the logic
of Muthén and Asparouhov (2012) and Asparouhov et al. (2015)
has merit. In our view, the IC-CFA is problematic if it leads
to underspecified measurement models that affect structural
parameters (see Beauducel and Wittmann, 2005; Cole et al.,
2007; Schmitt and Sass, 2011). More generally, the IC-CFA is
problematic because there are many cases wherein deviations
from it are warranted yet go unspecified due to the belief that an
IC-CFA is the only desirable or defensible measurement model
(Cole et al., 2007). Although one way to improve fit under an IC-
CFA is to remove items that have cross-loadings and correlated
errors (or develop items that lack these properties, doing this
may be unreasonable or impossible in practice or otherwise
be problematic.

In sum, the IC-CFA evolved from Thurstone’s thinking
about measurement using EFA (Thompson, 2000, 2004).
Unfortunately, the IC-CFA is now too often used as a heuristic
for evaluating not only the scale being subjected to a CFA, but
also the type of CFA specification itself. Two key effects of this
established view are: (1) Thurstone’s heuristic for judging the
quality of a scale based on a liberal, yet confirmatory, EFA model
evolved into a very conservative IC-CFA that often ensuresmodel
misfit; and (2) by usually defaulting to an IC-CFA specification,
researchers and reviewers rarely engage in theorizing about
processes that may produce justifiable deviations from the
expectations that an IC-CFA imposes on a dataset. In the next
section, we theorize one such deviation from the IC-CFA in a
justifiable and testable way by exploring the sequential process
of responding to items in a scale.

MEASUREMENT AS A SEQUENTIAL
PROCESS: THE AR-CFA

We now offer theoretical and model-based ways to understand
sequential “context effects” among survey items—although we
discuss this in relation to a fixed item order across all survey
respondents, we later describe how the AR-CFA can also be
applied to surveys with randomized item orderings to capture
respondent-specific context effects. As in classic panel data
literature, we call these autoregressive or AR effects, which are
effects of the past on the future. We begin with a theoretical
description of the basis for these effects as follows.

Survey Responses and Context Effects
To understand the problematic nature of defaulting to an IC-
CFA, it is important to understand why one may expect typical
deviations from the strict assumptions of IC-CFAs. To begin,
consider the common situation that occurs when organizational
researchers collect survey data (e.g., job attitudes, personality).
By answering items sequentially, respondents must: (1) interpret
the meaning of an item; (2) retrieve relevant beliefs, feelings,
or memories; (3) apply these to the item; and then (4) select
a suitable response (Tourangeau and Rasinski, 1988; Krosnick,
1999; Schwarz, 2007). Whereas, the IC-CFA treats each response
as being driven by a single construct (and a residual error), each
step of the response process may be affected by exposure to
earlier material in the survey—often called “context effects” (see
Tourangeau and Rasinski, 1988)—which can create systematic
and possibly even predicable deviations in future item responses
that are unaccounted for in the traditional IC-CFA.

A substantial amount of research by social and experimental
psychologists supports the existence of such context effects,
including work on the automatic and interdependent natures
of emotions and cognition (see Cacioppo and Gardner, 1999;
Forgas, 2001; Evans, 2008; Wyer, 2014), as well as the logic of
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experimentation with repeated-measures designs (see Shadish
et al., 2002). Indeed, building on relevant social and experimental
studies, we propose that various kinds of order effects should exist
due to the fact that people must sequentially read and respond to
survey items (Krosnick, 1991, 1999). For instance, studies show
that item factor loadings increase as individuals move from the
beginning to the end of a survey (Knowles, 1988; Hamilton and
Shuminsky, 1990; Knowles et al., 1992; Knowles and Byers, 1996).
This is an example of a context effect that operates in relation to
the stable underlying construct of interest. By answering earlier
questions about a construct, individuals become more consistent
in their responses to later items, in part because there is greater
accessibility of information related to the construct.

To address context effects, we focus on AR effects that
capture temporal dependence among items due to the sequential
nature of item responses. In an IC-CFA, AR effects are ignored
because items are treated as independent except as they are
affected by the measured latent factors of interest. However,
existing literature notes that AR effects may exist due to basic
psychological processes involved in responding to survey items
(Tourangeau and Rasinski, 1988; Tourangeau et al., 1989). Below,
we discuss two possible sources of AR effects: (1) memory
activation (cognitive) and (2) affective priming (affective). We
also treat a potential moderator of AR effects: the latent factor
neuroticism. By proposing these effects, we do not mean to
exclude other potential sources of AR effects or moderators, and
instead simply intend to offer a starting point for understanding
AR effects in survey data.

Memory Activation
Consider the step in which survey respondents must reflectively
search their long-term memory for events or conceptual
structures (e.g., attitudes or self-concepts) to answer a question.
Memory retrieval works through the spreading activation of
nodes (e.g., thoughts, ideas, and feelings) that are linked through
an associative network. Once activated, these nodes are primed
for further activation, thereby making them more likely to be
used for subsequent retrieval. For example, items assessing the
same construct deal with similar beliefs and behaviors, and
thus retrieving information to respond to similar questions
will sequentially rely on access to the same areas in memory
(Knowles, 1988; Hamilton and Shuminsky, 1990; Steinberg,
1994). Therefore, blocking items together such that respondents
answer several items measuring the same construct sequentially
should enable a respondent to respond more accurately, partly
because they expend fewer cognitive resources in the retrieval
process—this helps explain larger factor loadings later in a scale
(Knowles et al., 1992).

However, once a node is activated, the process of spreading
activation continues automatically, potentially activating nodes
that are irrelevant to the task at hand (Posner, 1978). For instance,
a respondent answering the extraversion item “Don’t talk a
lot” may recall situations and self-concept structures consistent
with social isolation or disengagement (rather than merely
extraversion), which may then activate memories and attitudes
that bias responses to the next agreeableness question “Am not

interested in other people’s problems” (these items appear in this
order within the personality scale we later examine).

In such cases, the irrelevant (i.e., non-construct-related)
memories that are activated would likely carry over to subsequent
questions, but degrade as new memories are retrieved with each
subsequent item. As such, previous items would serve as context
that inadvertently affect future items due to spreading memory
activation, but such AR effects may be short-lived because each
new item causes new activations that then subsequently spread.
Such AR effects are theorized as being due to carry-over in node
activation—a cognitive effect. These effects should be positive
when activated nodes are consistent, such as the “Don’t talk a
lot” and “Am not interested in other people’s problems” items.
On the other hand, negative effects should arise when nodes are
countervailing, such as if the latter item read “Am interested in
other people’s problems.” Again, such effects are distinct from the
intended measurement characteristics of a scale, which include
factor loadings that potentially increase over time but also latent
covariances among factors due to any true-score covariance
(e.g., more extraverted people may be more agreeable, as in our
later example).

Affective Priming
Alternatively, mood states are highly susceptible to context
and can be primed and then used directly as information
by respondents (see Schwarz, 2011). Because survey questions
can generate positive or negative affect, it follows that serial
dependencies may exist that link item responses even if the affect
involved is unrelated to the substantive constructs of interest. For
example, the extraversion item “Don’t talk a lot” could generate
affect consistent with the response (i.e., those who don’t talk a lot
might experience negative affect by endorsing such an antisocial
item). In turn, this affect could inform responses to the next
question “Am not interested in other people’s problems,” because
it implies a kind of social disengagement that may be associated
with negative affect, creating a positive association among the
adjacent items even though affect itself is not being measured.

Thus, serial AR effects may exist when a previous item causes
an affective reaction and responding to a future item relies on
the affect generated. In such cases, the affect is likely to carry
over to the following item(s) systematically, such that the affect
generated by a previous item and used for a future response will
cause positive AR effects if the affective implications of the items
are positively linked (e.g., the extraversion and agreeableness
items mentioned here), but negative AR effects may exist when
items are negatively linked (e.g., if the agreeableness item read
“Am interested in other people’s problems”). Furthermore, as with
memory activation effects, the AR effects induced by affective
priming should fade with time as more items are responded to
and previous items recede further into the past. In conclusion,
the effects of affective priming typically fade over time, such
that the time-varying AR effects of past responses should fade as
respondents move from one item to another.

Cross-Level Moderation of AR Effects
If cognitive and affective processes create AR effects among
item responses, it is possible that any psychological factors that
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affect these processes will moderate the AR effects. This is
important because if such moderation occurs in a manner that
is theoretically consistent with the mechanisms described above,
this could serve as partial evidence that AR effects are driven at
least in part by context.

To address this possibility, it is important to recognize that
neuroticism has been positively associated with both high levels
of rumination (e.g., a cognitive AR mechanism) as well as
greater emotional reactivity to stimuli (e.g., the affective AR
mechanism). Indeed, literature on affective inertia shows people
high in neuroticism tend to have larger AR effects that reflect
the persistence of emotions over time (Suls et al., 1998; Koval
et al., 2016). These AR effects are driven by a tendency to
ruminate by keeping past events or scenarios in mind (Koval
et al., 2012), rather than updating these in working memory
on a moment-to-moment basis (Pe et al., 2013). Thus, if AR
effects are driven by memory activation and affective priming, we
would expect individuals higher in neuroticism to have larger AR
effects, whereas those lower in neuroticism would have smaller
AR effects (i.e., AR effects closer to zero).

Summary and Hypotheses
In sum, the memory activation and affective priming that occurs
when individuals read and respond to survey items (i.e., context
effects) allows us to theorize that: (1) AR effects may exist
between items measuring the same construct (what we will term
“within-construct” effects) even if dispersed in a survey; (2) AR
effects may exist between items of different constructs (what
we will term “between-construct” effects) when these items are
adjacent; and (3) neuroticism will moderate AR effects, such
that higher neuroticism will be associated with larger AR effects.
Certainly, we could draw on additional theory to justify potential
sources of context effects, such as anchoring (for insight see Epley
and Gilovich, 2001, 2006). However, the purpose of our paper
is to demonstrate that there may be consistent responding in
survey data for reasons that are unrelated to standings along
the underlying constructs being measured, thus systematically
violating an IC-CFA structure in a theoretically meaningful way.
To show how to incorporate our theorized AR effects into CFAs,
we now describe our proposed AR-CFA model.

Introducing the AR-CFA
To introduce the AR-CFA, we first show how the IC-CFA ignores
sequential AR effects because it is grounded in an assumption
that the process of responding to items causes dependence among
items only due to the common construct(s) referenced in a set of
items. This assumption can be formalized as an IC-CFA as follows
(see Figure 1):

y∗i = ν∗ + 3∗η∗i + ε∗i (1)

with a superscript ∗ distinguishing these terms from those in
subsequent models; y∗i is a p × 1 vector of p observed items for
person i; ν∗ is p × 1 vector of item intercepts; 3∗ is a p × m
matrix of factor loadings that uniquely link each observed item
to a single latent variable m = 1, 2, . . . m (i.e., no cross-loadings,
meaning only one non-zero loading for each of the p rows of3∗);

η∗i is anm× 1 vector of standings onm latent variables for person
i, distributed as η∗i ∼MVN(α∗,9∗), where α∗ is anm× 1 vector
of latent variable means (typically restricted to zero because this
helps identify the model, and latent means are usually arbitrary);
9∗ is a m × m symmetric matrix of unrestricted latent variable
variances and covariances; and, ε∗i is a p × 1 vector of latent
disturbances for each person i, distributed as ε∗i ∼MVN(0, 2∗),
wherein 2∗ is an m × m diagonal matrix of residual variances
(i.e., no residual covariances).

As with any measurement model, observed scores are
specified as being determined by latent factors and disturbances
(see Bollen, 2002), which is imposed by restricting cross-loadings
and residual covariances to zero. If the IC-CFA fits a set of
survey data well, then the covariance among p observed variables
can be thought of as entirely caused by (or arising from) the
m latent variables (including their latent covariances), wherein
m is typically much smaller than p (i.e., the factor model is
parsimonious, with fewer factors than items).

Clearly, the IC-CFA specification makes a number of very
strong assumptions. As noted previously on a more conceptual
level, there is no allowance for items to reference multiple
latent variables (which could justify cross-loadings in 3∗) or for
similar wordings or contexts to be referenced across items (which
could justify covariances in 2∗; Cole et al., 2007; Marsh et al.,
2010; Muthén and Asparouhov, 2012; Asparouhov et al., 2015).
Although both situations may be plausible, we have already
mentioned that the criticism of arbitrariness has been raised (e.g.,
Stromeyer et al., 2015). To address this issue, we propose that AR
context effects can be expected to exist in survey data, implying
that measurement model misfit may be at least partially due to
theoretically-reasonable AR context effects.

To test such AR hypotheses and demonstrate AR dependency,
we begin by illustrating a model wherein these context effects
are evidenced by scores along a current item yi,p depending to
some degree on a previous item yi,p−1. We show such sequential
dependence as follows (for a more general treatment, see (Hoyle,
2012; Baltagi, 2013):

yi,p = ν
·

p + κ
·

p,p−hyi,p−h + ε
·

i,p (2)

wherein we use the superscript
•

to distinguish these terms from
those in subsequent models, and all terms are as before except the
ith individual’s score on the pth item yi,p depends on the previous
item yi,p−h with a lag h = 1, so that the AR term K∗

p,p−h
captures

the dependence of an item p on a previous item p− h (i.e., K∗

p,p−h

is an AR effect). Consistent with Equation (1), a more general
AR representation can be shown in matrix form as follows (see
Figure 2):

yi = ν· + κ ·yi + ε·i (3)

wherein all terms are as before except K• is a p× pmatrix of AR
regression coefficients, including all AR terms K• that link item
responses in a scale over time.

As we note later, the AR terms in K• may not capture all forms
of potential temporal dependence such as respondent fatigue,
but these AR terms can capture memory activation and affective
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priming as previous item responses affect future responses. If
such effects exist, it follows that the typical IC-CFA in Equation
(1) can be extended by the logic of an AR model in Equation (3),
justified by the idea that item responses can reflect the effects
3∗ of latent variables η∗i as well as AR effects K• that link
past and future items in yi In turn, by estimating an IC-CFA
without accounting for AR effects, estimates of latent variable
(co)variances and measurement model fit may be biased on a
regular basis.

Indeed, the existence of stable latent variables alongside
AR effects has received substantial treatment in the
longitudinal/panel data modeling literature, and many
techniques have been developed to account for both (see
Arellano, 2003; Baltagi, 2013; Moral-Benito, 2013). Despite this
work, an IC-CFA is often specified in survey research without
attempting to model the fact that item responding is a sequential
process that might induce AR effects. To account for these
effects, the logic of Equations (1) and (3) can be synthesized in
an SEM framework (similar to Moral-Benito, 2013; Hamaker
et al., 2015). Before treating this, it is important to note that
the logic of a typical AR model as in Equation (3) presents
some interpretational difficulties when also attempting to model
stable, time-invariant latent variables as factors in an IC-CFA
(Hamaker, 2005; Hamaker et al., 2015).

In brief, distinguishing the effects of latent factors vs. AR
terms requires an AR model in residuals only, rather than
among observed variables as in Equation (3). Theoretically,

FIGURE 2 | Simple AR model.

this separation is akin to proposing that the context effects
due to AR terms cause variance in observed data that is
conceptualized as error which is unrelated to the substantive
latent variables of interest in a CFA. Theoretically speaking, this
is akin to the memory activation and affective priming effects not
being related to the latent factors typically of interest in CFAs,
which themselves are theorized as causing stable (co)variance
in observed variables (Bollen, 2002). This is consistent with
the longitudinal/panel data literature wherein latent factors
are meant to reflect stable, individual-specific variables over
time (Hamaker et al., 2015), whereas AR effects indicate more
transient perturbations that fade with time.

We formalize this logic with an AR-CFAmodel that combines
the logic of Equations (1) and (3) (see Figure 3), allowing for
a typical IC-CFA specification as in Equation (1), but also
specifying an AR structure to capture AR context effects in
residuals as follows:

yi = ν + 3ηηi + 3εεi (4)

and

εi = κεi + ui (5)

with all terms as before except we have a typical factor loading
structure for latent factors in 3η (as in an IC-CFA), which is
conceptually separate from a p × p matrix 3ε with on-diagonal
elements fixed to unity and off-diagonal elements fixed to zero
to capture latent residuals in εi, and we then show a matrix
of AR effects among residuals as K, with ultimate residuals
now captured by a p-length vector ui, where ui ∼ MVN(0,2).
Also, we remove all superscripts from Equations (4) and (5) to
signify that any bias induced by AR effects (omitted in Equation
1) and latent variables (omitted in Equation 3) is no longer
present, with the AR-CFA allowing a traditional IC-CFA (or a
different) structure for factor loadings 3η and latent covariances
9 , combined with the AR effects in κ . Also, latent interactions
among factors in ηi and residuals in εi can be included in

FIGURE 3 | AR-CFA with adjacent AR structure.
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the model by stacking them in the latent vector ε, with any
resulting regression coefficients (on the interaction terms) being
stacked in 3ε . For brevity, we omit a technical description of
this point and instead show how to construct and use the latent
interactions in Mplus in our Online Appendix A and .zip file
(Supplementary Material), but absolutely interested readers can
examine more technical discussions of latent interactions at their
discretion (e.g., Preacher et al., 2016).

The result is a model in which the covariance structure can be
shown as:

6 = 3η93′
η + 3ε(I− κ)−12(I− κ)′

−1
3′

ε (6)

with all terms as before, but 6 is a p× p covariance matrix and I

is an identity matrix. With this approach, unknown parameters
in Equations (6) can be estimated with typical methods such
as maximum likelihood (ML) or a Bayesian Markov Chain
Monte Carlo (MCMC) approach—although latent interactions
are only possible under ML with numerical integration. Also, by
rearranging (Equation 6) as a difference equation (in Equations
7, 8), it becomes clearer how the IC-CFA factor structure is
separated from the residual AR terms, which can be shown
either as:

6 − 3η93′
η = 3ε(I− κ)−12(I− κ)′

−1
3′

ε (7)

or

6 − 3ε(I− κ)−12(I− κ)′
−1

3′
ε = 3η93′

η (8)

such that, in both cases, the covariances in 6 are essentially
adjusted by either the latent factors in η or the residuals in ε to
estimate the parameters associated with the other.

As Figure 3 and Equations (4)–(8) show, the AR terms in
K have two desirable properties that are consistent with our
theorizing about context effects. First, they exist in residuals and
therefore are unrelated to the systematic responding associated
with the substantive latent factors of interest in a typical CFA. For
example, personality scale items may be ordered as Extraversion
(e), Agreeableness (a), Conscientiousness (c), Neuroticism (n),
and Openness (o), so that sequential AR effects would be
e1→a1→c1→n1→o1→e2→a2→c2→n2→o2. In this case, it
may seem that factor loadings and latent covariances would
account for the AR effects due to their repeating nature,
but this is not the case because of the serial nature of the
effects. For example, the similar e1→a1 and e2→a2 effects may
appear to induce true-score covariance among extraversion and
agreeableness. However, because e1 is very distant from a2, a
typical CFA factor structure and latent covariances could not
account for the AR effects, which would appropriately occur in
the residual structure implied in Figure 3 and Equations (4)–(8).

Second, because of their serial nature, AR effects allow past
context effects to fade with time, being multiplied along AR paths
as indirect effects. This longitudinal relationship results from
Weiner or Markov processes that induce a “simplex” pattern in
correlation matrices (see classic work by Jöreskog, 1970, 1978),
where correlations are stronger among closer observations (i.e.,

strongest near the diagonal, and fading away from the diagonal).
In turn, this sets up a logical model comparison that pits the
AR-CFA against a model that has equivalent df : a CFA that
reparameterizes AR terms as residual correlations. If the context
effects associated with an AR-CFA fade with time (as indirect
effects along AR paths, e.g., AR effects from e1 will fade much
more in item n1 compared to item a1), then the AR-CFA should
provide a superior fit to the data because correlated residuals
cannot capture fading correlations over time as freely-estimated
indirect AR effects can. Free correlated residuals will cause
model under-identification issues, and the constraints required to
identify them in a way that is consistent with a freely-estimated
AR structure cannot be known a priori.

Before showing this with a worked example, we point out that
many authors note that AR specifications such as in Equations
(4)–(8) can be shown as infinite-order “moving average” models
(Hamaker, 2005). However, discussing this and other points
related to longitudinal data models is not our goal (for this,
the reader can consult general work on these models, such as
Hamaker et al., 2005, 2015; Jebb and Tay, 2017).

Instead, we emphasize that, with some expected number of
latent factorsm > 1 being measured by a scale, there are multiple
ways to specify the AR structure in K. Consistent with a classic
interest in determining an AR “lag order” (i.e., the number of
prior occasions on which a current observation depends; Akaike,
1969; Hannan andQuinn, 1979), an AR-CFA allows various types
of AR dependence across items over time in K, which can be
tested in various ways we discuss later. Because our purpose
here is to introduce AR-CFA thinking, we initially restrict our
focus to simpler lag structures such as in Figure 3, wherein item
residuals depend on past item residuals, with the previous item
having the strongest influence and prior items showing weaker,
indirect effects along AR paths (which can be traced in Figure 3).
However, with the possibility of multiple latent variables m >

1 and multiple ways of ordering items in a scale, there are
certainly additional, theoretically reasonable AR structures that
researchers might consider for specifying terms in K.

To illustrate, we offer two AR structures based on two
common ways of ordering scale items. Consider Figure 3, which
shows items administered in a construct-oriented way, with items
referencing a common construct sequentially administered in
batches, producing many “within-construct” AR terms among
items that measure the same construct, but “between-construct”
AR terms only at the end/beginning of item sets. For this
specification, a simple first-order AR model (as in Equation 2)
may be appropriate to capture memory activation and affective
priming that link adjacent items. To see why, consider Figure 4,
which shows the common case of items distributed in a scale,
such as a personality inventory, with items systematically ordered
to reference different constructs that are cycled over time
(e.g., Donnellan et al., 2006). In this second case, first-order
dependence may exist among adjacent items, but what may
also occur are higher-order dependencies among items that
share a common construct, again due to memory activation and
affective priming.

For example, assume a person responds to an item referencing
the personality variable of extraversion, and then responds to

Frontiers in Psychology | www.frontiersin.org 7 September 2019 | Volume 10 | Article 2108

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Ozkok et al. Autoregressive Confirmatory Factor Analysis

FIGURE 4 | AR-CFA with adjacent and construct-specific AR structure.

other items referencing different personality constructs before
returning to a second extraversion item. Here, the original
neuroticism item may have a first-order effect on responses to
the next item, but it may also affect the interpretation of (and
responses to) the next extraversion item due context effects
rather than the extraversion factor itself. The AR specification in
Figure 4 models this with immediate AR effects among adjacent
items andAR effects that link items referencing similar constructs
over time (i.e., first-order between-construct AR effects andmore
dispersed within-construct AR effects).

There are three points to make about this second AR structure
in Figure 4. First, the two types of AR effects are automatically
present in Figure 3 because here first-order AR terms capture
immediate dependence and they link adjacent items when they
reference the same construct. Second, by linking items that
reference the same construct, the AR structure in Figure 4 may
appear to inappropriately capture covariance due to common
constructs, but this is not the case because AR effects are among
residuals only.

Third, the simpler AR structure in Figure 3 allows AR effects
to travel in a simple indirect way across adjacent items over
time, but the model in Figure 4 allows for more complex indirect
relationships, with effects from the past potentially persisting
along adjacent AR paths as well as those that link items reflecting
similar constructs. For example, an extraversion item may cause
a context effects on responses to the next item, but also a context
effect on responses to the next extraversion item, and in both
cases this context effect may persist beyond these two subsequent
items. Because AR paths will often be rather small—as we show
later—the indirect effects of p – 2, p – 3, . . . , p – h past items will
quickly fall, but the AR terms still allow for data-driven lagged
effects beyond the p – 1 items, particularly in Figure 4, without
needing to specify many higher-order lags.

Given the fact that many surveys separate items referencing
a common construct as in Figure 4, and that the AR structure
in this model is the more complex of the two we describe, we

now offer anAR-CFAmodel implied by Figure 4. For illustration,
we compare this to: (1) a traditional IC-CFA; (2) a logical
comparison model with all AR terms from an AR-CFA expressed
as residual correlations; (3) an EFA that mimics an ESEM with
all latent variable covariances freely estimated (see Marsh et al.,
2010); and (4) two Bayesian methods that improve measurement
model fit using small-variance or “shrinkage” priors—one that
allows all possible cross-loadings in 3 and one with all possible
residual covariances in 2 (see Muthén and Asparouhov, 2012;
Asparouhov et al., 2015). Elaborating on these approaches, we
also estimate an AR-CFA with a Bayes estimator that sets small-
variance priors for AR effects to model a case wherein AR effects
are assumed to be zero. To allow comparing all models estimated,
we present Bayes fit indices for all models and more common
maximum-likelihood (ML) indices when this estimator can be
used. Following the model comparison results, we also describe
how more complex AR effects (e.g., fatigue) can be captured by
imposing testable constraints on AR terms in the AR-CFA.

METHOD

We illustrate and compare the above models on a short Big Five
personality scale called the mini-IPIP (International Personality
Item Pool), which was originally presented in Donnellan et al.
(2006). This scale was developed due to practical concerns
regarding the length of traditional personality inventories.
Although our AR-CFA can be used on larger scales, the shorter
mini-IPIP facilitates more concise tables and Mplus code while
exemplifying typical dilemmas regarding measurement model
fit using an IC-CFA, which is common for Big Five scales (see
McCrae et al., 1996, 2008; Marsh et al., 2010).

Sample
We illustrate and compare the AR-CFA using a dataset from the
Multi-Site University Study of Identity and Culture (MUSIC)
survey (see Castillo and Schwartz, 2013; Weisskirch et al.,
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2013; Corker et al., 2017), which collected data from 30
colleges and universities in the United States, with a sample
size of N = 8,569 (for additional details, including relevant
demographic characteristics, see Corker et al., 2017). Because
this sample involves non-independence due to clustering by
college/university, we group-mean centered these data around
the college/university average to remove these fixed effects.

Procedure
Students were recruited from different courses (e.g., psychology,
business) by online study announcements, offering course credit
for participation or entering a prize draw. Data collection was
between September 2008 and October 2009, and the mini-
IPIP survey took 1–2 h to complete. Corker et al. (2017) study
materials are available at https://osf.io/if7ug/.

Measures
The mini-IPIP assesses the following five personality traits in
this order: Extraversion (e); Agreeableness (a); Conscientiousness
(c); Neuroticism (n); and Openness (o). These traits are typical
personality constructs used in psychology and elsewhere (see
Costa and McCrae, 1992; John and Srivastava, 1999). Each
construct is measured by four self-report items (i.e., e1-e4, a1-
a4, c1-c4, n1-n4, and o1-o4) on 5-point Likert-type scales, with
responses anchored at 1 (strongly disagree) and 5 (strongly
agree). The resulting repeating sequence for the items is: e1; a1;
c1; n1; o1; e2; a2; c2; n2; o2; e3; a3; c3; n3; o3; e4; a4; c4; n4;
o4 (for details see Donnellan et al., 2006 and http://ipip.ori.org/
MiniIPIPKey.htm).

RESULTS

All models were estimated using Mplus version 8 (Muthén and
Muthén, 1998–2017), with Mplus input, output, and data for all
models available as a.zip file in online material [with annotated
code in Online Appendix A (Supplementary Material)]. To
examine model fit, we use typical ML fit statistics, including
confirmatory fit index (CFI), Tucker-Lewis index (TLI),
root mean squared error of approximation (RMSEA), and
standardized root mean square residual (SRMR; see Hu and
Bentler, 1998, 1999). We report Akaike’s and the Bayesian
information criterion (AIC and BIC; lower values are better),
as typical for AR model selection (Akaike, 1969; Schwarz, 1978;
Hannan and Quinn, 1979; Vrieze, 2012). For Bayesian analyses,
we provide typical fit criteria including posterior-predictive
probabilities (PPP; values around 0.5 are optimal and below 0.05
is problematic) and their associated χ

2 95% CIs (better when
including zero, similar to traditional CFA model fit), as well as
a deviance information criterion (DIC; lower values are better;
Muthén and Asparouhov, 2012; Asparouhov et al., 2015). To
facilitate contrasts with models that could only be estimated
using a Bayesian approach, we also derived PPP and DIC values
for models estimated using ML by separately subjecting these to
model runs using a Bayesian estimator.

All models converged with some special considerations for
two Bayesian models. For the Bayes AR-CFAs, we used a small-
variance constraint on residuals to aid convergence—this does

not impact results because residuals are freely estimated as latent
variables. For the Bayes CFA with all possible cross-loadings (CL-
CFA), we used small-variance priors of 0.01, and for the Bayes
CFA with all residual covariances (RC-CFA), we took analysis
steps recommended in Asparouhov et al. (2015; for details, see
Online Appendix B in Supplementary Material).

Table 1 reports descriptive statistics1, Table 2 has fit statistics,
Tables 3, 4 show factor correlations, factor loadings, and residual
variances, and Table 5 shows AR terms from the AR-CFA. The
presence of AR effects implies a simplex pattern of decreasing
correlations away from the diagonal that could theoretically
be observed in a correlation matrix. Given that all items
have substantive meaning and that AR terms may vary in
magnitude and differ in sign, however, this may not always
be straightforward to observe. Nevertheless, in Table 1, where
items are ordered by their factors (rather than in the order they
were administered) an AR pattern would be indicated by higher
correlations between e1 and a1, c1, n1, and o1, respectively,
compared to e1 with a2, a3, and a4, c2, c3, and, c4 and so on,
and by generally decreasing correlations in the item columns,
some evidence of which can be observed in the e1 column and
throughout the table.

In what follows, we first compare model fit statistics and
measurement characteristics for all models. Given the AR-
CFA’s favorable results, we then interpret AR effects and test
hypotheses related to them, including their moderation by
neuroticism and by using parameter constraints that help address
concerns about overfitting. For chi-square difference tests of
nested models, we used Satorra-Bentler chi-square correction
factors (Satorra, 2000). For the interested reader we report chi-
square differences for non-nested models, but note that in these
cases p-values should not be understood as reflecting typical null
hypothesis tests.

Model Fit and Measurement
Characteristics
We first estimated a typical IC-CFA as a baseline for model
comparison. As expected, this model demonstrated problems
with model fit: χ2

= 6052.87, df = 160, p < 0.001; CFI = 0.80;
TLI= 0.76; RMSEA= 0.07; SRMR= 0.05; AIC= 488895.76; BIC
= 489389.69; DIC = 488895.96; PPP < 0.00. We then estimated
an AR-CFA for comparison with the IC-CFA as well as other
models. The df difference is 34, because with 20 items, there
are 19 sequential “between-construct” AR terms, and with four
items per factor, there are three AR terms per factor, for a total
of 15 “within-construct” AR terms (recall that AR parameters
are freely estimated—model output and annotated Mplus code
can be found in Online Appendices). With the addition of the
AR terms, model fit improved: χ

2
= 3279.08, df = 126, p

< 0.001; CFI = 0.89; TLI = 0.84; RMSEA = 0.05; SRMR =

0.04; AIC = 485524.31; BIC = 486258.15; DIC = 485515.23;
PPP < 0.001. The differences between the nested IC-CFA and

1Regarding missing values, minimum covariance coverage value is 0.1. ML and

Bayes estimation procedures are full-information methods that assume missing at

random processes. Therefore, we did not encounter any isses regarding missing

values as model estimates are based only on the observed data.
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TABLE 1 | Descriptive statistics and correlations.

Items SD Extraversion Agreeableness Conscientiousness Neuroticism Openness

e1 e2 e3 e4 a1 a2 a3 a4 c1 c2 c3 c4 n1 n2 n3 n4 o1 o2 o3 o4

e1 1.13 1.00

e2 1.18 0.41 1.00

e3 1.22 0.50 0.40 1.00

e4 1.14 0.47 0.50 0.45 1.00

a1 0.90 0.12 0.10 0.14 0.02 1.00

a2 1.07 0.03 0.16 0.07 0.10 0.29 1.00

a3 1.08 0.09 0.07 0.16 0.02 0.43 0.24 1.00

a4 0.92 0.14 0.26 0.20 0.26 0.34 0.38 0.22 1.00

c1 1.17 0.03 −0.01 0.07 −0.01 0.16 0.02 0.10 0.05 1.00

c2 1.28 −0.03 0.02 −0.01 0.04 0.04 0.08 −0.01 0.08 0.32 1.00

c3 1.03 −0.03 −0.02 0.02 −0.06 0.16 0.03 0.09 0.06 0.36 0.26 1.00

c4 1.09 −0.02 0.05 0.02 0.09 0.08 0.08 −0.03 0.18 0.32 0.40 0.29 1.00

n1 1.19 −0.01 −0.08 −0.09 −0.10 0.02 −0.05 0.09 −0.11 −0.04 −0.12 0.00 −0.23 1.00

n2 1.10 −0.10 0.05 −0.15 −0.02 −0.10 0.00 0.00 −0.05 −0.03 −0.01 0.02 −0.10 0.31 1.00

n3 1.19 −0.04 −0.04 −0.10 −0.11 0.05 −0.01 0.12 −0.08 0.00 −0.08 0.11 −0.19 0.48 0.35 1.00

n4 1.12 −0.10 −0.04 −0.12 −0.05 −0.02 0.02 0.03 −0.01 −0.05 −0.02 −0.05 −0.06 0.25 0.24 0.21 1.00

o1 1.08 0.15 0.08 0.15 0.07 0.22 0.03 0.15 0.10 0.01 −0.06 0.03 −0.07 0.09 −0.11 0.00 −0.02 1.00

o2 1.04 0.01 0.07 0.06 0.12 0.12 0.17 0.08 0.21 −0.05 0.04 −0.04 0.03 −0.04 −0.04 −0.10 0.04 0.25 1.00

o3 1.01 0.07 0.09 0.10 0.16 0.11 0.11 0.05 0.20 −0.02 0.06 −0.03 0.11 −0.14 −0.11 −0.20 −0.01 0.25 0.46 1.00

o4 1.06 0.10 0.14 0.11 0.17 0.14 0.10 0.06 0.22 −0.02 0.03 −0.01 0.09 −0.06 −0.07 −0.09 0.03 0.53 0.29 0.32 1.00

TABLE 2 | Model fit statistics for alternative model specifications.

IC-CFA CL-CFA RC-CFA EFA AR-CFA AR-CFA w/priors

AIC 488895.76 – – 486317.49 485524.31 –

BIC 489389.69 487434.04 484247.73 487234.80 486258.15 486267.77

CFI 0.80 – – 0.82 0.89 –

TLI 0.76 – – 0.66 0.84 –

RMSEA 0.07 – – 0.08 0.05 –

SRMR 0.053 – – 0.03 0.04 –

Chi-square (df) 6052.87 (160) – – 5199.41 (100) 3279.08 (126) –

PPP <0.00 <0.00 0.27 <0.00 <0.00 <0.00

95% CI 6631.37–6741.87 4031.15–4145.55 −46.00 to 78.93 4018.33–4130.06 3248.95–3355.12 3259.44–3373.61

DIC 488895.96 486327.98 482324.70 486317.96 485515.23 485528.65

pD 70.04 125.59 215.62 130.08 101.26 101.79

CL-CFA, CFA with cross-loadings; RC-CFA, CFA with residual covariances; AR-CFR, Auto-regressive CFA; CFI, comparative fit index; TLI, Tucker Lewis index; RMSEA, root mean square

error of approximation; SRMR, standardized root mean square residual; PPP, posterior predictive probability; 95% CI, 95% confidence interval; DIC, deviance information criterion; pD,

posterior mean deviance. The CFI, TLI, RMSEA, SRMS, and Chi-Square statistics are based on maximum likelihood estimation; whereas the PPP, 95% CI, DIC, and pD are based

on Bayes estimation. The AR-CFA (maximum likelihood) is estimated with residual variances of observed variables set to 0; whereas the Bayes AR-CFA and the AR-CFA w/priors are

estimated with residual variances of observed variables set to 0.01 in order to assist convergence—this specification does not impact results.

the AR-CFA show improved fit in all indices (with positive 1

values indicating better AR-CFA fit, e.g., higher CFI or lower
AIC): 1χ

2
= 2363.90, 1df = 34, p < 0.001; 1CFI = 0.09;

1TLI = 0.08; 1RMSEA = 0.02; 1SRMR = 0.01; 1AIC =

3371.45; 1BIC = 3131.54; 1DIC = 3380.73; 1PPP = 0. These
results point to the benefits of a AR parameters for model fit,
but other model comparisons are also useful for interpreting
the AR-CFA.

For example, the AR-CFA can be compared to a non-nested
alternative model with equivalent df, where all AR terms are

reparameterized as autocorrelated residuals, which resulted in
worse fit compared to the AR-CFA (with positive values in
differences indicating better fit for the AR-CFA model): 1χ

2
=

137.96, 1df = 0, p < 0.001; 1CFI = 0; 1TLI = 0.01; 1RMSEA
= 0.01; 1SRMR = 0; 1AIC = 382.53; 1BIC = 382.52; 1DIC
= 358.86; 1PPP = 0. These results suggest that residuals may
have indirect effects via AR terms that cannot be accounted for
by residual correlations, partially supporting an AR-CFAwherein
responses along past items affects future responses both directly
and indirectly via AR paths.
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TABLE 3 | Standardized Factor loadings, residual variances, and factor correlations for alternative model specifications.

Items CFA CL-CFA RC-CFA EFA AR-CFA AR-CFA w/priors

FL RV FL RV FL RV FL RV FL RV FL RV

e1 0.68 0.54 0.68 0.54 0.66 0.56 0.68 0.53 0.63 1.00 0.68 1.00

e2 0.64 0.59 0.66 0.58 0.63 0.60 0.65 0.58 0.62 0.99 0.70 0.97

e3 0.67 0.55 0.63 0.56 0.66 0.56 0.64 0.55 0.83 0.93 0.73 0.95

e4 0.71 0.50 0.75 0.44 0.66 0.56 0.74 0.43 0.70 0.85 0.67 0.97

a1 0.64 0.60 0.76 0.43 0.59 0.65 0.74 0.43 0.60 0.99 0.81 1.00

a2 0.51 0.74 0.37 0.83 0.46 0.79 0.32 0.84 0.51 0.99 0.50 0.94

a3 0.51 0.74 0.60 0.65 0.46 0.79 0.57 0.65 0.66 0.97 0.48 0.99

a4 0.60 0.64 0.35 0.71 0.62 0.61 0.31 0.71 0.66 0.85 0.61 0.86

c1 0.56 0.69 0.53 0.70 0.57 0.68 0.50 0.70 0.46 0.99 0.48 0.99

c2 0.58 0.67 0.60 0.65 0.55 0.70 0.59 0.65 0.46 0.98 0.50 0.98

c3 0.49 0.76 0.50 0.72 0.48 0.77 0.48 0.72 0.73 0.98 0.68 0.98

c4 0.63 0.60 0.65 0.53 0.60 0.65 0.65 0.52 0.75 0.64 0.72 0.81

n1 0.69 0.53 0.68 0.53 0.60 0.64 0.66 0.54 0.72 1.00 0.71 1.00

n2 0.49 0.76 0.52 0.75 0.46 0.79 0.53 0.72 0.61 0.95 0.59 0.97

n3 0.69 0.52 0.71 0.48 0.57 0.68 0.70 0.48 0.61 0.94 0.62 0.94

n4 0.35 0.87 0.35 0.88 0.37 0.86 0.36 0.86 0.38 1.00 0.38 1.00

o1 0.63 0.60 0.61 0.60 0.63 0.61 0.49 0.68 0.75 0.91 0.76 0.92

o2 0.50 0.75 0.51 0.74 0.48 0.77 0.59 0.65 0.41 0.99 0.40 0.99

o3 0.52 0.73 0.51 0.69 0.50 0.75 0.59 0.62 0.40 0.86 0.39 0.86

o4 0.71 0.50 0.74 0.48 0.68 0.53 0.62 0.60 0.70 0.99 0.69 0.99

Factor Correlations

E ↔ A 0.31 0.24 0.39 0.21 0.27 0.24

E ↔ C 0.03 0.05 0.04 0.04 0.01 0.01

E ↔ N −0.17 −0.18 −0.14 −0.15 −0.16 −0.15

E ↔ O 0.22 0.27 0.27 0.23 0.23 0.24

A ↔ C 0.23 0.13 0.25 0.10 0.15 0.19

A ↔ N −0.02 0.08 −0.07 0.07 −0.01 −0.04

A ↔ O 0.38 0.25 0.42 0.19 0.32 0.33

C ↔ N −0.20 −0.21 −0.16 −0.21 −0.15 −0.18

C ↔ O 0.02 0.05 0.02 0.05 0.01 0.00

N ↔ O −0.15 −0.20 −0.11 0.14 −0.13 −0.12

FL, factor loadings; RV, residual variances. EFA factor loadings and residuals are given after Geomin (oblique) rotation. Residual variances in the AR-CFA model are set to 0. Residual

variances in AR-CFA w/priors are set to 0.01. RVs for both AR-CFA models refer to residuals of the respective auto-regressive factors specified in the model. Cross-loadings on other

factors are not displayed due to space restrictions.

Beyond this, the IC-CFA shows worse fit across most models
and their indices (with positive 1 values indicating better fit for
models other than the IC-CFA), including EFA2 (1χ

2
= 853.46,

1df = 60, p <0.001; 1CFI = 0.02; 1TLI = −0.1; 1RMSEA
= −0.01; 1SRMR = 0.02; 1AIC = 2578.27; 1BIC = 2154.89;
1DIC = 2578; 1PPP = 0), Bayes CL-CFA (1BIC = 1955.65;
1DIC = 2567.98; 1PPP = 0), Bayes RC-CFA (1BIC = 5141.96;
1DIC = 6571.26; 1PPP = 0.27), as well as Bayes AR-CFA
with small-variance priors of 0.01 and M = 0 on AR terms
(1DIC = 3367.1; 1PPP = 0). These results could be used to
infer that indicators with common wordings or context impact
model fit (e.g., CL-CFA), or the AR-CFA specification can capture
serial dependence even when researchers do not a priori expect
AR effects.

2EFA and ESEM have the same model structure because there is a fully saturated

covariance structural model in both cases (as we specify for all models).

Yet, because some researchers are wary of models that include
cross-loadings and residual specifications (e.g., Stromeyer et al.,
2015), it is relevant to observe how the AR-CFA compares
to these other models. Specifically, the AR-CFA shows mixed
changes in fit across these specifications, with improved fit along
most indices (RMSEA, CFI, TLI, and DIC) when compared to
an EFA (with positive 1 values indicating better fit for the AR-
CFA; 1χ

2
= 1920.33, 1df = 26, p < 0.001; 1CFI = 0.07; 1TLI

= 0.18; 1RMSEA = 0.03; 1SRMR = −0.01; 1AIC = 793.18;
1BIC = 976.65; 1DIC = 802.73; 1PPP = 0), Bayes CL-CFA
(1BIC = 1175.89; 1DIC = 812.75; 1PPP = 0), Bayes AR-CFA
with small-variance priors and M = 0 on AR terms (1BIC =

9.62; 1DIC = 13.42; 1PPP = 0), but worse fit compared to
Bayes RC-CFA (1BIC = −2010.42; 1DIC = −3190.53; 1PPP
= −0.27). Indeed, the Bayes RC-CFA is superior to the AR-
CFA in terms of BIC, DIC and the χ

2 CI, showing good fit by
including zero (95% CI for RC-CFA: −46 to 78.93). Further,
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TABLE 4 | Average factor correlations for alternative model specifications.

Factor correlations (in absolute value) CFA CL-CFA RC-CFA EFA AR-CFA AR-CFA prior

E ↔ A 0.32 0.24 0.41 0.21 0.27 0.24

E ↔ C 0.03 0.05 0.04 0.04 0.01 0.01

E ↔ N 0.17 0.18 0.14 0.15 0.16 0.15

E ↔ O 0.22 0.28 0.28 0.23 0.23 0.24

A ↔ C 0.23 0.13 0.26 0.10 0.15 0.19

A ↔ N 0.02 0.08 0.07 0.07 0.01 0.04

A ↔ O 0.40 0.26 0.45 0.19 0.32 0.34

C ↔ N 0.20 0.21 0.16 0.21 0.15 0.18

C ↔ O 0.02 0.05 0.02 0.05 0.01 0.00

N ↔ O 0.15 0.20 0.11 0.14 0.13 0.12

Average factor correlations 0.18 0.17 0.19 0.14 0.15 0.15

Average factor correlations (in r metric) 0.18 0.17 0.19 0.14 0.15 0.15

Average factor correlations in r metric represent Fisher transformation of the absolute value of the correlations from Table 3.

AR-CFA Bayes model’s 95% CI values are narrower and/or does
not contain zero when compared to other Bayes CFAs (i.e.,
CL-CFA, RC-CFA, and AR-CFA with small-variance priors and
M = 0).

Thus, although an AR-CFA does not represent an overall best
fit across all models and fit indices (particularly compared to
a RC-CFA), the AR-CFA does show improved fit across most
indices when compared to models such as the IC-CFA and EFA,
both of which are very common. Specifically, in relation to model
fit, we infer that underlying AR effects among items may be
a reasonable conclusion in the observed data, thereby lending
some support for the proposition that items in a scale have an
AR effect on subsequent items (similar to Krosnick, 1999). This
result is important because, as we note above, the AR-CFA is a
theoretically justified approach to modeling covariance among
items in a scale, an issue that may deter some researchers from
using an RC-CFA or other models.

To further interrogate and explore results with the AR-
CFA, we now treat differences in standardized factor loading
patterns and structural parameters in the form of latent factor
correlations. When compared to an IC-CFA, the AR-CFA
loadings demonstrate that several loadings increase above 0.70
due to the change in residual parameterization. As we describe in
the next paragraph, one interpretation of this change is that the
AR-CFA shows improved validity in a measurement-model sense
(Bollen, 1989). For example, the loadings of e3, a3, a4, c3, c4, n1,
n2, n4, and o1 in the IC-CFA changed from 0.67, 0.51, 0.60, 0.49,
0.63, 0.69, 0.49, 0.35, and 0.63 to consistently higher values in the
AR-CFA of 0.83, 0.66, 0.66, 0.73, 0.75, 0.72, 0.61, 0.38, and 0.75,
respectively (Table 3). Indeed, in the IC-CFA, all loadings are
below 0.70 except for e4 and o4 items. Note that these increases
are not a necessary outcome of moving from an IC-CFA to
an AR-CFA; rather, the increases occur because modeling the
AR effect reveals stronger relationships among items and their
respective constructs.

Furthermore, compared to the IC-CFA, the AR-CFA latent
factor correlations are smaller (Tables 3, 4), indicating better
discriminant validity. It is possible that this is due to the

unmodeled AR relationships in the IC-CFA inflating estimates
of structural correlations among the latent variables. Also, the
authors of the scale (Donnellan et al., 2006) deliberately selected
items so that personality traits showed as high discriminant
validity as possible while also balancing the reliability and content
representativeness of the traits. Finally, when we look at factor
variances in the AR-CFA except for factor C, we observe an
increase in explained observed variance by each factor. This is
important to note, because larger latent factor variances with
an AR-CFA model suggest that a typical IC-CFA (that does not
account for AR effects) might be demonstrating deflated factor
variances in the structural model, making measurement scales
appear less valid.

Regarding factor correlations, we also calculated average
factor correlations in absolute value (Table 4). The results
indicate that AR-CFA model has the lowest average
(in an r metric) as 0.15 when compared to other CFA
models: CFA = 0.18, CL-CFA = 0.17, and RC-CFA =

0.19. The lower average factor correlations with AR-CFA
indicate better discriminant validity and can strengthen the
effectiveness of diagnostic feedback (Marsh et al., 2010). The
larger factor correlations can also signal bias that impacts
structural relations.

In addition, when comparing the AR-CFA results to EFA,
Bayes CL-CFA, Bayes RC-CFA, and Bayes AR-CFA with small
variance priors and M = 0, the AR-CFA standardized loadings
are larger for several items (Table 3; i.e., e3, a3, a4, c3, c4,
n1, n2, n4, o1), similar size for some items (Table 3; e.g., e2,
e4, a2, o4) and smaller for remaining items, indicating no
obvious pattern of differences across the models. However, the
AR-CFA does demonstrate improved discriminant validity with
some smaller latent factor correlations when compared to CFA
models. For example, compared to the IC-CFA, half of the latent
factor correlations improved (i.e., decreased for E-A, E-C, A-
C, A-O, and C-O), although three factor correlations remain
approximately the same (i.e., E-N, E-O, and A-N). Thus, the
average of factor correlations for AR-CFA models (AR-CFA and
AR-CFA with prior values) are 0.15 (Table 4), which are smaller
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TABLE 5 | AR parameter estimates and interaction (Int) effects.

AR Term Effect SE t p Effect/Int Int SE Int t Int p Item

Between-Construct Effects

e1: Am the life of the party

e1→a1◦ 0.06 0.012 5.063 <0.001 a1: Sympathize with others’ feelings

a1→c1◦ 0.137 0.02 6.97 <0.001 c1: Get chores done right away

c1→n1◦ 0.035 0.012 3.036 0.002 n1: Have frequent mood swings

n1→o1◦ 0.256 0.026 9.716 <0.001 o1: Have a vivid imagination

o1→e2 −0.126 0.026 −4.789 <0.001 <0.13/0.017 0.033 0.518 0.605 e2: Don’t talk a lot. R

e2→a2 0.102 0.016 6.422 <0.001 0.103/0.008 0.018 0.421 0.674 a2: Am not interested in other people’s problems. R

a2→c2 0.09 0.016 5.567 <0.001 0.091/−0.009 0.022 −0.401 0.688 c2: Often forget to put things back in their proper place. R

c2→n2 0.031 0.011 2.835 0.005 n2: Am relaxed most of the time. R

n2→o2 −0.011 0.017 −0.637 0.524 o2: Am not interested in abstract ideas. R

o2→e3 −0.021 0.023 −0.891 0.373 −0.015/−0.022 0.016 −1.417 0.157 e3: Talk to a lot of different people at parties

e3→a3 0.11 0.052 2.112 0.035 0.113/0.034 0.067 0.51 0.61 a3: Feel others’ emotions

a3→c3 0.062 0.015 4.211 <0.001 0.063/0.028 0.02 1.406 0.16 c3: Like order

c3→n3 0.302 0.024 12.466 <0.001 n3: Get upset easily

n3→o3 −0.126 0.014 −9.175 <0.001 o3: Have difficulty understanding abstract ideas. R

o3→e4 0.11 0.019 5.691 <0.001 0.103/0.003 0.017 0.16 0.873 e4: Keep in the background. R

e4→a4 0.147 0.022 6.561 <0.001 0.149/0.019 0.022 0.852 0.394 a4: Am not really interested in others. R

a4→c4 0.189 0.027 7.054 <0.001 0.181/−0.42 0.027 −1.535 0.125 c4: Make a mess of things. R

c4→n4 0.058 0.023 2.554 0.011 n4: Seldom feel blue. R

n4→o4 0.054 0.01 5.421 <0.001 o4: Do not have a good imagination. R

Within-Construct Effects

e1: Am the life of the party

e1→e2 0.041 0.167 0.246 0.806 −0.017/−0.038 0.032 −1.209 0.227 e2: Don’t talk a lot. R

e2→e3 −0.198 0.068 −2.911 0.004 −0.213/−0.056 0.024 −2.325 0.02 e3: Talk to a lot of different people at parties

e3→e4 −0.42 0.534 −0.787 0.431 −0.703/−0.082 0.042 −1.941 0.052 e4: Keep in the background. R

a1: Sympathize with others’ feelings

a1→a2 −0.034 0.058 −0.582 0.561 −0.035/−0.009 0.028 −0.315 0.752 a2: Am not interested in other people’s problems. R

a2→a3 −0.122 0.02 −6.037 <0.001 −0.121/−0.047 0.018 −2.568 0.01 a3: Feel others’ emotions

a3→a4 −0.303 0.081 −3.757 < 0.001 −0.296/0.001 0.022 0.051 0.959 a4: Am not really interested in others. R

c1: Get chores done right away

c1→c2 0.147 0.026 5.605 <0.001 0.143/0.045 0.019 2.366 0.018 c2: Often forget to put things back in their proper place. R

c2→c3 −0.083 0.015 −5.623 <0.001 −0.086/−0.028 0.014 −2.017 0.044 c3: Like order

c3→c4 −0.584 0.142 −4.103 <0.001 −0.682/−0.111 0.026 −4.27 <0.001 c4: Make a mess of things. R

n1: Have frequent mood swings

n1→n2 −0.242 0.091 −2.661 0.008 n2: Am relaxed most of the time. R

n2→n3 −0.065 0.035 −1.874 0.061 n3: Get upset easily

n3→n4 −0.032 0.035 −0.904 0.366 n4: Seldom feel blue. R

o1: Have a vivid imagination

o1→o2 −0.128 0.039 −3.246 0.001 o2: Am not interested in abstract ideas. R

o2→o3 0.336 0.014 23.457 <0.001 o3: Have difficulty understanding abstract ideas. R

o3→o4 0.057 0.02 2.894 0.004 o4: Do not have a good imagination. R

Effects are raw regression weights, wherein e, extraversion; a, agreeableness; c, conscientiousness; n, neuroticism; o, openness; Int, a latent interaction effect among neuroticism and

the residual AR predictor, ◦, an AR effect that should be ignored because it does not have an associated within-construct effect due to being an early item in the scale (e.g., in the e1a1

relationship there is no control for a past agreeableness effect, unlike the e2a2 effect for which there is an a1a2 effect). The Effect/Int column presents AR effects and their associated

interactions from separate model runs for each residual treated as an outcome (models involving an AR effect for neuroticism’s residual did not converge due to the fact that neuroticism

is collinear with the outcome residual). The actual survey items associated with an AR effect are presented in the last column to aid the reader in understanding the associated AR effect.

than CFA models (CFA= 0.18, CFA-CL= 0.17, RC-CFA= 0.19;
see Table 4).

In sum, our results suggest that an AR-CFA shows improved
fit when compared to other common models, including

the IC-CFA and EFA. Also, standardized factor loadings
increase and latent factor correlations decrease, indicating
improved discriminant validity. Finally, when compared to
alternative models using a Bayes estimator, mixed results
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are found using DIC and the χ
2 CIs, with some models

showing improved fit, perhaps at the expense of theoretical
justification (including the Bayesian CL-CFA and RC-CFA).
In sum, our results indicate that when researchers use CFA
to evaluate measurement model fit (Bollen, 1989), an AR-
CFA may not provide optimal fit when compared to all
available models, but given its theoretical justification and the
improved fit it shows beyond typical IC-CFA and EFA models,
we suggest that the AR-CFA is a potentially useful option
for researchers.

Interpreting AR Effects and Hypothesis
Tests
We now offer a substantive interpretation of the AR parameters
in Table 5 and then proceed to test additional hypotheses about
them using averages of AR parameters and model constraints. To
interpret AR parameters, it is important to point out that when
there are multiple AR effects impacting an outcome variable,
such as the between- and within-construct effects in our model,
interpreting effects is usually only done when an outcome
variable is impacted by all AR effects of interest. For example, the
first a1 item has a between-construct effect of the previous e1 item
(i.e., e1→a1). However, each subsequent a2, a3, and a4 item has a
between-construct effect of the previous e2, e3, and e4 item (i.e.,
e2→a2, e3→a3, and e4→a4), and a within-construct effect of the
previous a1, a2, and a3 item (i.e., a1→a2, a2→a3, and a3→a4).
Thus, only the e2→a2, e3→a3, and e4→a4 effects are equivalent,
and therefore we focus on such effects for hypothesis testing and
model constraints (see the ◦ symbol in Table 5).

As Table 5 shows, although small in magnitude, most AR
effects are statistically significant—this is unsurprising given the
large sample size. More important is the fact that the small
magnitudes indicate that the AR effects will fade relatively quickly
across items (e.g., e2→a2 = 0.102 and a2→c2 = 0.09, so the
e2→a2→c2 effect = 0.0092). This mitigates concerns about AR
effects accounting for too much residual covariation because, as
we noted previously, themultiplicative nature of the AR structure
reflects rather temporary effects that decay as new items are
answered over time (i.e., indirect AR effects fade rather quickly).

Examining the between-construct AR effects, most of them
appear reasonable from a substantive perspective. Consider our
previous example of the e2→a2 relationship among the “Don’t
talk a lot” and “Am not interested in other people’s problems”
items. This relationship is positive (AR effect = 0.102, SE =

0.016, t = 6.422, p < 0.001), which implies that responses
to the extraversion item that deviate from one’s true score
along extraversion (i.e., higher scores along the e2 residual)
persist, leading to slightly higher scores on the agreeableness
item that cannot be accounted for by the true score along
agreeableness (i.e., higher scores along the a2 residual). To
understand this, it is reasonable to presume that respondents
may reflect on a time that they did not talk a lot in an
interpersonal encounter, which they may then infer implies
that they are not interested in others’ problems and/or may
more easily lead to a memory of being disinterested in others’
problems. The affect generated by thinking about the experience

combined with any similarly activated memory could create
the small e2→a2 effect observed here, such that endorsing
the previous item could lead to endorsing the latter in a
manner that is not accounted for by latent standings along the
factors themselves.

Turning to the within-construct effects, again most (although
not all) of the effects were statistically significant. More
interesting was the fact that many of these effects were negative.
For example, the e2→e3 effect of the “Don’t talk a lot” item
and the subsequent extraversion items “Talk to a lot of different
people at parties” was negative and statistically significant (AR
effect = −0.198, SE = 0.068, t = −2.911, p = 0.004). This runs
counter to the way we hypothesized within-construct effects—
we presumed that cognitive and affective priming would create
positive AR effects—but the pattern of effects inTable 5 does shed
light on a potentially interesting phenomenon.

In most cases, the mini-IPIP scale presents items for all five
factors such that the first set of items is normally coded and
then the subsequent set is reverse-coded, and so forth. With
this pattern, Table 5 shows that when items are reversed the
AR effect of normal-reverse (or reverse-normal) coded item
pairs is often negative (e.g., the e2→e3 effect). Instead of such
residual covariance indicating a “method” factor associated with
negatively worded items (as is sometimes hypothesized), it is
possible that the reversal creates what Tourangeau and Rasinski
(1988) refer to as a “backfire” effect, wherein responses to a
past item somehow disrupt future item responses. For example,
a negative AR effect may arise as people grapple with the fact
that the previous item coupled their thoughts and feelings to the
opposite end of the scale, which may pull their future responses
closer to that end of the scale. In turn, when reverse-coded items
are unreversed for data analysis, this would induce a negative AR
effect among the items—we show how to test this momentarily.

Next, consider our hypothesis about moderation by
neuroticism, which we proposed would make AR effects
larger. This hypothesis would be supported by a main AR effect
and an interaction effect that are the same sign (i.e., a positive
AR effect would be more positive if neuroticism were higher, and
a negative AR effect would be more negative if neuroticism were
higher). Although only five of the AR effects in Table 5 were
moderated by neuroticism with p < 0.05, all of these showed a
main AR effect and an interaction effect that were the same sign.
Also, across all interactions, 14 of the 18 had a main effect and
an interaction effect that were the same sign, which tentatively
supports our moderation hypothesis.

Average AR Effects and Model Constraints
Next, it is possible to examine the AR effects in an AR-CFA in
two additional ways. First, overall averages of AR effects can be
computed to test omnibus hypotheses about similar AR effects
in a model (e.g., the e1→e2, e2→e3, and e3→e4 effects; see
Online Appendix A in Supplementary Material). These effects
are computed as follows for the between-construct effects: e→a
= 0.12, SE = 0.012, t = 10.422, p < 0.001; a→c = 0.114, SE
= 0.009, t = 13.236, p < 0.001; c→n = 0.13, SE = 0.011, t =
12.008, p < 0.001; n→o = −0.027, SE = 0.008, t = −3.535, p <

0.001; o→e =−0.012, SE = 0.13, t = −0.937, p= 0.349. For the
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within-construct effects we find: e→e=−0.192, SE= 0.101, t =
−1.901, p = 0.057; aa = −0.153, SE = 0.014, t = −10.988, p <

0.001; cc = −0.173, SE = 0.04, t = −4.341, p < 0.001; n→n =

−0.113, SE = 0.027, t = −4.215, p < 0.001; o→o = 0.088, SE =

0.013, t = 6.583, p < 0.001. Taken together, these appear to show,
on average, AR effects that are predictably small but systematic.
However, computing an average of AR effects does not imply that
similar AR effects are actually the same.

To test for equivalence in similar AR effects, we conducted a
series of nested model comparisons by constraining common AR
effects to equality. The first set of constraints took the average
AR effects as a starting point, so that instead of computing
averages each set of effects were constrained to equality, resulting
in a single effect for each e→a, a→c, c→n, n→o, o→e, e→e,
a→a, c→c, n→n, and o→o effect (see Online Appendix A in
Supplementary Material). This impacted model fit compared to
the unrestricted AR-CFA, indicating that the AR parameters for
each item pairing were different (positive values indicate better
fit for the unconstrained vs. constrained model): 1χ

2
= 914.97,

1df = 20, p < 0.01; 1CFI = 0.03; 1TLI = 0.02; 1RMSEA
= 0.01; 1SRMR = 0.02; 1AIC = 1275.16; 1BIC = 1134.03;
1DIC = 1362.76; 1PPP = 0. This indicates that similar AR
parameters statistically differ from one another, implying that
the content of unique item-item pairs drives AR effects more
than the latent constructs with which items are associated. This
is sensible to the extent that the latent personality factors will
account for construct-specific (co)variance, with item-specific
(co)variance remaining.

Although we did not hypothesize equality in similar AR
effects, and therefore this did not come as a surprise, the rather
sizable reduction in model fit led us to consider how the reverse-
scoring of scale items might impact AR terms. As Table 5

shows, there are multiple ways that items can be connected via
AR paths: normal→normal scoring; reverse→reverse scoring;
normal→reverse scoring; and reverse→normal scoring. With
such relationships, there are other ways to constrain AR terms
that are sensitive to item scoring.

To show this, we constrained AR effects to equality only when
the pattern of item scorings was similar (i.e., normal→normal
and reverse→reverse scored item AR effects were constrained to
equality; and normal→reverse and reverse→normal scored item
AR effects were constrained to equality; see Online Appendix A in
Supplementary Material). Compared to the previous differences
in model fit above, this model compared more favorably to
the original AR-CFA (positive values indicate better fit for the
unconstrained vs. constrained model): 1χ

2
= 588.82, 1df = 17,

p < 0.01; 1CFI= 0.02; 1TLI= 0.01; 1RMSEA= 0.01; 1SRMR
= 0.01; 1AIC= 896.66; 1BIC= 776.71; 1DIC= 902.58; 1PPP
= 0. As this shows, model fit improves somewhat by being more
sensitive to reverse scoring, which points to potential “backfire”
effects wherein AR terms change as a function of item scoring
(see Tourangeau and Rasinski, 1988).

Specifically, the effects for similarly scored items are (i.e.,
normalnormal scored itemAR effects): e→a= 0.132, SE= 0.009,
t = 15.484, p < 0.001; a→c = 0.099, SE = 0.009, t = 11.49, p <

0.001; c→n = 0.103, SE = 0.009, t = 12.136, p < 0.001; n→o
= 0.034, SE = 0.008, t = 4.056, p < 0.001; o→e = 0.117, SE =

0.012, t= 9.498, p< 0.001; o→o= 0.217, SE= 0.012, t= 17.661,
p < 0.001. All of these effects are positive, which is interesting in
light of the following negative effects for items that are differently
scored (i.e., normal→reverse and reverse→normal scored item
AR effects): no = −0.156, SE = 0.014, t = −11.155, p < 0.001;
o→e=−0.044, SE= 0.011, t =−3.81, p < 0.001; e→e=−0.13,
SE = 0.011, t = −11.63, p < 0.001; aa = −0.118, SE = 0.015, t
= −8.064, p < 0.001; c→c = −0.075, SE = 0.013, t = −5.607,
p < 0.001; n→n = −0.102, SE = 0.015, t = −6.893, p < 0.001;
o→o=−0.335, SE= 0.049, t=−6.801, p< 0.001. Although this
pattern may be due to the fact that many of the similarly scored
items are between-construct AR effects whereas the differently-
scored items are within-construct AR effects, it does appear that
the scoring of items may systematically impact item AR effects.

Monte Carlo Simulations
A simulation study with AR-CFA and IC-CFA models was
conducted with varying sample sizes of 250, 500, and 1,000 as
well as AR effects of 0, 0.1, 0.2, and 0.3 (when an AR effect
= 0 in the population model this implies an IC-CFA, i.e., no
AR effects are present). The factor loadings, residual variances
and other population parameters were set by relying on typical
standards of standardized loadings of 0.8 and factor correlations
of 0.2 (Muthén and Muthén, 2002; Hallquist and Wiley, 2018;
Ondé and Alvarado, 2018). In brief, our simulations show
that the AR-CFA does not show parameter bias or meaningful
differences in fit even if data are generated from an IC-CFA, so
even if strict IC-CFA assumptions are met the AR-CFA may be
useful. However, the IC-CFA over-estimates factor loadings and
factor covariances as AR parameters increase in the population,
which is consistent with our real-data example wherein the AR-
CFA shows better discriminant validity. Next, the AR-CFA has
convergence problems with samples of 250, particularly with
small AR parameters, suggesting samples of at least 400–500
to estimate the AR-CFA (or perhaps using a Bayes estimator).
Finally, the IC-CFA shows poorer model fit as AR parameter
values get larger, with levels of IC-CFA misfit often found in
practice, suggesting that unmodeled AR effects may be the cause
of some observed misfit in the literature when using the IC-
CFA. As expected, because a population model is not knowable
in practice, this must remain conjecture. The reader can evaluate
our simulation results more completely in Online Appendix D

and our online Excel file that tabulates all simulation results.

DISCUSSION

Drawing on existing theory, we demonstrate the importance of
sequential order effects in survey research. Specifically, our work
is motivated by the possibility that typical CFA models (e.g., IC-
CFA) should include both latent variable and AR effects, the latter
of which allow past survey items to affect later item responses
in ways that are unrelated to the latent factors of interest in a
CFA. This sequential response process and its effects have been
investigated by researchers (Schwarz, 1999, 2011) and hybrid
longitudinal approaches to CFA-type models have been implied
in literature on panel data analyses (see Bollen and Curran, 2004),
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but the AR-CFA approach we describe here is a novel way to
model such effects.

By grounding AR effects in literature on item context effects,
we theorize two key mechanisms that produce AR processes
in a survey setting: memory activation and affective priming.
Our conceptualization of these mechanisms and the potential
moderating effects of stable traits such as neuroticism offer a
sound theoretical rationale for expecting AR effects in survey
data. By modeling AR effects among item residuals, our method
permits operationalizing various kind of AR effects, as well as
evaluating such effects by computing their averages or through
model constraints—as we demonstrate here. In sum, the AR-
CFA model offers improved fit and a more theoretically rigorous
approach to model specification when compared to the IC-CFA,
while also offering ways to balance the difference between highly
a constrained IC-CFA vs. other less-constrained approaches such
as an EFA.

Our substantive findings help to justify the AR-CFA by
showing improved discriminant validity in the form of larger
factor loadings and latent factor variances as well as smaller
latent factor covariances and lower average factor correlations
among personality traits. This is done while accounting for
what could otherwise be problematic item-level covariances
in form of lagged AR effects. Although many alternative
measurement models are possible and our goal here is not to
criticize these approaches, our comparisons against competing
models (e.g., Bayes CL-CFA, Bayes RC-CFA), in conjunction
with the theoretical justification for an AR-CFA give us some
confidence in recommending it as a viable alternative to
other approaches.

Practical Implications
When considering the use of the AR-CFA by researchers or
practitioners, two issues arise. The first relates to how scales
should be scored if, at the item level, it is reasonable to expect
relationships that deviate from an IC-CFA in ways that could
bias, for example, scale means. On this point, it is important
to point out that, like the RC-CFA, the AR-CFA specifies
item-level relationships in a way that can be conceptually and
mathematically separated from the latent factors that are typically
of interest in a CFA. In turn, it becomes possible to use scoring
methods that rely only on the latent factors themselves. These
would include specifying an AR-CFA and then computing factor
scores for latent factors of interest (Grice, 2001), but still better
would be computing plausible values that account for uncertainty
in latent standings along the factors (see Online Appendix A
in Supplementary Material). This approach has recently been
popularized in educational testing contexts (see von Davier
et al., 2009) and can be implemented using a Bayesian estimator
in Mplus.

The next issue to consider is the increasingly popular method
of randomizing items when surveys are administered online
(see Schell and Oswald, 2013). Using a similar logic to within-
subjects experimental designs (see Shadish et al., 2002), the
purpose of randomizing item order is to eliminate the kinds
of AR effects we treat here. Although item randomization is a
promising approach for dealing with context effects, given our

treatment of AR effects here, randomization does seem to come
with some unacknowledged assumptions. To explain, consider
the following three cases: Case (1) there are no AR effects (i.e.,
no context effects); Case (2) AR effects exist they will cancel
out to exactly zero due to item randomization; and Case (3)
AR effects exist but they will not cancel out to zero due to
item randomization.

Obviously, in Case 1 item randomization is not needed (Schell
and Oswald, 2013), but it would also cause no harm in the
long run, just as our AR-CFA would cause no harm because
AR terms would converge to zero with well-functioning scales.
More importantly, Case 2 would seem to be the basis for item
randomization, because item randomization will only provide
benefits when AR effects can be expected to exist yet average
to zero in the long run across all possible combinations of
item orderings. By averaging to zero in the long run, item
randomization should produce unbiased and consistent CFA
estimates—although it may reduce statistical efficiency because
of the error (co)variance caused by person-specific AR effects.
However, in this Case 2, our AR-CFA would also be justified
without item randomization because the AR effects would be
appropriately modeled, and efficiency in CFA estimates would
be appropriately reduced because of the estimation of AR
terms. Therefore, Case 2, for item randomization is designed,
should provide a kind of indifference among randomization
and an AR-CFA, because both can account for AR effects
and appropriately adjust estimates of uncertainty in CFA
parameter estimates.

However, consider Case 3, which to our knowledge has not
been adequately treated. For this, consider a classic context effect
(as suggested by Schwarz and Clore, 1983): Item 1 induces affect
and Item 2 relies on affect for item responding, but not the
reverse. Here, if the order of the items is randomized across
participants the AR effect will not be eliminated, because a
positive Item 1→Item 2 AR effect and a zero Item 2→Item 1
AR effect will average to an overall positive residual correlation
due to the Item 1→Item 2 effect (this effect is halved when
half the participants receive each of the two orderings in
equal numbers).

In more typical cases, depending on the items in a
scale, it seems reasonable to propose that Case 3 might
actually be more common than Case 2. Indeed, what if
Case 3 is the rule rather than the exception? If Case 3 is
common, randomization will cause bias, inconsistency, and
inefficiency in CFA estimate due to non-zero average AR effects
that might appear as true-score correlations. In this case,
conveniently, our AR-CFA method used on items delivered
without randomization can capture any AR terms of interest, and
therefore it should eliminate any bias and inconsistency caused
by randomization.

In sum, across all three of these Cases, the AR-CFA should
perform as well or better than item randomization and, in Case
3, the AR-CFA is the only way to ensure unbiased and consistent
CFA estimates because randomization fails to solve the problem
of non-zero average AR terms. Certainly, as with all modeling
efforts it is not possible to know which Case exists a priori, it is
possible to theorize and test AR effects in an AR-CFA.
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Limitations and Future Research Directions
Our research challenges current procedures for specifying
measurement models in SEM, serving to advance typical CFA
methods based on theory about AR effects in survey responses.
Our comparison models included IC-CFA and EFA as common
measurement models, as well as Bayesian CFA models with
residual covariances and small-variance priors. Given that
Bayesian RC-CFA and potentially other similar models may
show a better fit to the data, we cannot unconditionally
recommend the AR-CFA for those seeking to optimize observed
fit to a dataset. Furthermore, although we have emphasized the
theoretical justification for the AR component in our model,
it is notable that CL-CFA and RC-CFA are also theoretically
justified (see Muthén and Asparouhov, 2012; Asparouhov et al.,
2015)—although not all researchers appreciate this justification
(e.g., Stromeyer et al., 2015).

Our study also attempts to join two streams of findings
from existing literature: AR effects specified with panel data
and IC-CFAs used to model connections between observed
survey responses and underlying latent constructs. On this point,
because of the necessarily fixed sequential nature of AR effects
across items and survey respondents (i.e., all survey respondents
have their data subjected to the same model structure), the AR-
CFA we propose can only account for temporal AR effects when
items are ordered in a fixed and shared way across items and
respondents. This, the AR-CFA is useful for the many surveys
that use a fixed ordering of questions, mailed survey databases,
national surveys such as the Household Income and Labor
dynamics in Australia (HILDA) dataset, or research that relies on
historical datasets that were collected with fixed item orderings
via questionnaires.

Future work can explore how adding item- and person-
varying AR parameters may allow relaxing this constraint to
treat the case of items being randomized across participants.
This would be possible by specifying person-specific AR
matrices using special parameter constraint methods (e.g.,
Mplus’s “constraint” option). Certainly, in the case of such
randomization, it is interesting to consider how this is an
attempt to overcome the kind of order effects that our AR terms
capture, but such randomization only does this by introducing
unmodeled order effects that vary across participants in the
form of unsystematic (and unmodeled) residual covariance.
Instead of this, the AR-CFA may be a viable alternative to
addressing the concerns that random item ordering across
respondents is meant to achieve—a topic for future research
by modeling specifying person-specific AR terms. Furthermore,
it is worth noting that even though randomized-item surveys
may “average out” AR effects at the level of a population, with
a finite sample size this is not possible, and therefore even
fully randomized item orderings should produce some bias,
and in all cases will reduce efficiency and therefore lead to
inflated standard errors. In addition to addressing this problem,
future research may consider how item response times and other
time-varying covariates can be incorporated into measurement

models to examine the residual covariance induced by item
orderings (extending related work by Klein Entink et al.,
2009). One approach for testing such order effects is shown
in Online Appendix C (Supplementary Material), which may
serve as a potentially interesting way to examine how AR effects
systematically change across items.

Furthermore, our AR-CFA in its current form offers only
a single AR term for each type of item pairing, effectively
implying a kind of single-order AR process linking indicator-item
residuals. However, more complex, higher-order AR or moving-
average (MA) processes allowing for more complex residual
covariance structures could be implemented (for general insight,
see Hamaker, 2005; Hamaker et al., 2005). Given the introductory
nature of our paper, the topic of higher-order AR structures and
MA structures can be the subject of future work, where more
complex ARMA processes can be tested against simpler ones
to see whether the incremental gain in model fit justifies their
added complexity.

In conclusion, since the origination of EFA for modeling
survey responses, there have been a vast array of methodological
developments, culminating in confirmatory techniques that,
today, take a wide variety of forms—most notably a highly
restricted IC-CFA. Our AR-CFA is meant to extend and
complement these existing approaches for those who seek to
add a temporal element into their measurement models while
improving model fit. We hope that the AR-CFA is useful for
this purpose, and we look forward to future work on how it can
be further developed and applied across a wide cross-section of
settings, samples, and purposes.
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