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The computation of scalar implicatures is sometimes costly relative to basic meanings.

Among the costly computations are those that involve strengthening “some” to “not all”

and strengthening inclusive disjunction to exclusive disjunction. The opposite is true for

some other cases of strengthening, where the strengthened meaning is less costly than

its corresponding basic meaning. These include conjunctive strengthenings of disjunctive

sentences (e.g., free-choice inferences) and exactly-readings of numerals. Assuming

that these are indeed all instances of strengthening via implicature/exhaustification, the

puzzle is to explain why strengthening sometimes increases costs while at other times

it decreases costs. I develop a theory of processing costs that makes no reference to

the strengthening mechanism or to other aspects of the derivation of the sentence’s

form/meaning. Instead, costs are determined by domain-general considerations of

the grammar’s output, and in particular by aspects of the meanings of ambiguous

sentences and particular ways they update the context. Specifically, I propose that

when the hearer has to disambiguate between a sentence’s basic and strengthened

meaning, the processing cost of any particular choice is a function of (i) a measure

of the semantic complexity of the chosen meaning and (ii) a measure of how much

relevant uncertainty it leaves behind in the context. I measure semantic complexity

with Boolean Complexity in the propositional case and with semantic automata in the

quantificational case, both of which give a domain-general measure of the minimal

representational complexity needed to express the given meaning. I measure relevant

uncertainty with the information-theoretic notion of entropy; this domain-general measure

formalizes how ‘far’ the meaning is from giving a complete answer to the question under

discussion, and hence gives an indication of how much representational complexity

is yet to come. Processing costs thus follow from domain-general considerations of

current and anticipated representational complexity. The results might also speak to

functional motivations for having strengthening mechanisms in the first place. Specifically,

exhaustification allows language users to use simpler forms than would be available

without it to both resolve relevant uncertainties and convey complex meanings.
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1. INTRODUCTION

1.1. Basic and Strengthened Meanings
It is commonly assumed that the ‘basic meaning’ of the sentence
in (1)—the meaning as compositionally derived using the lexical
items overtly present in the sentence—is the existential meaning
∃ in (1-a) that we learn in introductory logic. The sentence
can of course be used to convey that Jan did not eat all of the
cookies, ¬∀. This is not entailed by the sentence’s basic meaning.
Instead, the inference is commonly assumed to be an inference
called the ‘scalar implicature’ of ∃ (1-b). Scalar implicatures are
computed by a general mechanism that reasons about alternative
propositions the speaker could have expressed but chose not to
(in this case that Jan ate all of the cookies). The conjunction of
(1)’s basic meaning with its scalar implicature is its “strengthened
meaning” (1-c).

(1) Jan ate some of the cookies

a. Basic meaning: that Jan ate some, possibly all, of the
cookies (= ∃)

b. Scalar implicature: that Jan did not eat all of the
cookies (= ¬∀)

c. Strengthened meaning: that Jan ate some but not all
of the cookies (= ∃ ∧ ¬∀).

There is debate about the mechanism responsible for
strengthening. For example, there are questions about whether
the mechanism is part of the linguistic system itself or is
shorthand for pragmatic or central-system reasoning. Putting
this architectural question aside for the moment, all agree that
the mechanism is an alternative-sensitive computation. More
precisely, it is commonly assumed that there is a function,
STR, which computes strengthened meanings by conjoining the
sentence S with the negation of some of the alternatives of S,
ALT(S)1. In general, STR is thought to be sensitive to various
contextual factors, such as what is relevant, what is salient, what
is assumed about the speaker’s epistemic state, and other factors
that have been identified in the literature. Thus, STR is a function
that takes at least three inputs: the sentence S, its alternatives
ALT(S), and the context c, and returns the strengthened meaning
of S in c, S+c : STR(S,ALT(S), c) = S+c . Thus, in a context c in
which ∀ is relevant and the speaker is assumed to be opinionated
about whether ∀ is true, STR(∃,ALT(∃), c) = ∃+c = ∃ ∧ ¬∀.
Suppose, however, that ∃ is uttered in a context c′ in which ∀ isn’t
even relevant. In such a case, we say that the context has “pruned”
∀ fromALT(∃) (for more on pruning and constraints on pruning,
see e.g., Magri, 2009; Fox and Katzir, 2011; Katzir, 2014; Crnič
et al., 2015; Singh et al., 2016b). This pruning means that there
are no alternatives left in ALT to negate, and hence application
of STR would have no effect: STR(∃,ALT(∃), c′) = ∃+c′ = ∃. In
what follows, unless otherwise noted I will assume that we are
in contexts in which all the members of ALT are relevant and

1Some proposals allow you to conjoin the basic meaning with unnegated

alternatives (e.g., Chemla, 2009a; Bar-Lev and Fox, 2017). The differences between

these theories will not concern us here (though see Note 24). What is important for

current purposes is that strengthening occurs by conjoining a sentence with some

other propositions derived from a restricted set of alternatives.

that the speaker is opinionated about them. I will also sometimes
disregard the distinction between a sentence and its denotation
when there is little risk of confusion.

Competence theories of implicature computation need to
specify STR and ALT and their interactions with the context
such that the right strengthened meaning is derived for any
sentence S in any context c. I will not spendmuch time discussing
competing theories of these components. My concern in this
paper is with exploring how competence-theoretic assumptions
about strengthening might be realized in performance (see
Chomsky, 1965 on the competence-performance distinction,
and see Chemla and Singh (2014a,b) for the connection to
experimental work on scalar implicature). As we will see, my
strategy is to focus on the output of strengthening, not on the way
in which strengthenedmeanings are actually derived. Specifically,
I will explore the hypothesis that the processing costs that are
sometimes associated with strengthening are derived entirely
from considerations of the meaning of the sentence and specific
ways in which it updates the context. The computational history
of the sentence and its meaning will be irrelevant.

Nevertheless, to fix ideas it will be useful to assume
a particular competence-theoretic framework. I will assume
without discussion that STR is identified with the covert
exhaustive operator exh proposed in Fox (2007), and that ALT
is identified with the tree edit operations outlined in Fox and
Katzir (2011). This means that the condition that any element
p ∈ ALT(S) needs to satisfy for it to become an actual implicature
is that it needs to be ‘innocently excludable’ [as Fox (2007) defines
the term; see below for illustrative examples]. This also means
that alternatives are derived by substitution operations that
replace focused nodes with subconstituents (for non-terminals)
and with other lexical items (for terminals). My proposal about
processing, however, will be compatible with different theories of
STR and ALT; as noted above, the model I develop is concerned
with the inferences that are generated, rather than themechanisms
that give rise to the inferences. This should make my proposal
usable for scholars with other ideas about STR and ALT and their
relation to the context of use.

Returning to (1), the basic/strengthened ambiguity follows
from a systematic structural ambiguity: the sentence may or may
not be parsed with exh. If exh is left off the parse, the sentence
receives its basic meaning, and if exh is merged to the parse,
the sentence receives its strengthened meaning. Following Fox
(2007), the strengthened meaning of a sentence can often be
paraphrased by adding only to the sentence (and focusing the
relevant scalar item). Thus, Jan ate only some of the cookies and
the strengthened meaning of (1) both convey (1-c). With both
exh and only, ALT(∃) = ∀ [by replacing some with all in (1)].
The question now is whether ∀ is innocently excludable. To test
whether ∀ is innocently excludable, the mechanism negates it and
examines whether the result of conjoining it with ∃ is consistent.
The proposition ∃∧¬∀ is consistent, and hence the strengthened
meaning ∃ ∧ ¬∀ is derived.

Innocent exclusion in this case was straightforward, but the
mechanism is motivated by cases where non-trivial decisions
need to be made about which alternatives to negate. Disjunctive
sentences provide an illustrative example. Note that since exh
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is general, it can apply to any sentence: S → exh(S,ALT(S))2.
The classic inclusive-exclusive ambiguity in disjunction, then,
can be accounted for by the presence or absence of exh: without
exh, the sentence receives the basic inclusive meaning in (2-a),
and with exh the sentence receives its strengthened exclusive
meaning in (2-c) by denying the alternative that Mary ate cake
and ice-cream (2-b).

(2) Maria ate cake or ice-cream

a. Basic meaning: p ∨ q (inclusive disjunction)
b. Scalar implicature: ¬(p ∧ q)
c. Strengthened meaning: (p ∨ q) ∧ ¬(p ∧ q) (i.e., the

exclusive disjunction p⊕ q)

The set of alternatives for (2) is richer than the set of alternatives
for (1). Here, as in (1), we have an alternative derived by lexical
substitution: or is replaced by and to yield the conjunction p ∧ q.
However, unlike (1), we have alternatives derived by replacing the
root node by its subconstituents p and q3. Thus, ALT(p ∨ q) =
{p, q, p ∧ q}. The computation of innocent exclusion is more
involved than with (1). The goal is to find the maximal subset of
ALT(p∨q) that could be consistently negated with p∨q. We can’t
negate the entire set, for that would contradict p ∨ q. There are
twomaximal consistent exclusions: (i) {p, p∧q}, and (ii) {q, p∧q}.
It would be arbitrary to select one of these maximal consistent
exclusions over the other. For example, what would justify the
negation of p over the negation of q? The only proposition that
appears to be non-arbitrarily excludable is p ∧ q. A possibly
useful motivation behind this idea is to think of (i) and (ii)
as two different “votes” for which propositions to exclude. The
alternative p ∧ q is the only one that every vote agrees on, and
for this reason it might be thought to be “innocently” excludable.
Thus, p ∧ q gets negated by exh, and the strengthened exclusive
disjunction meaning (p ∨ q) ∧ (¬(p ∧ q)) is derived.

When the alternatives to disjunctive sentences are not closed
under conjunction, innocent exclusion can assign a conjunctive
strengthened meaning to disjunctive sentences4. Fox (2007)
argues that this is the solution to the “paradox” of free-choice
inference (Kamp, 1973). I will return to discussion of free-choice
and its relation to innocent exclusion in later sections of the
paper. I turn my attention now to relating this set of competence-
theoretic ideas to performance models.

2It is known that exh has a restricted distribution (e.g., Singh, 2008a,b; Chierchia

et al., 2012; Gajewski and Sharvit, 2012; Fox and Spector, 2018; Enguehard and

Chemla, 2019). A more accurate characterization, then, is that exh can apply to

any sentence in which it is licensed. All the examples we consider in this paper are

ones in which exh is licensed.
3There are other possibilities here depending on what is assumed about the

underlying parse. For example, if the or in the LF of (2) disjoins NPs instead of

sentences, we would replace the noun phrase cake or ice-cream by each disjunct.

The end result is the same in this case.
4In such cases, ALT(p ∨ q) = {p, q}. Let S0 be p ∨ q and let A1 be {p, q}. The

first application of exh on S0 is vacuous because neither p nor q is innocently

excludable: exh(A1, S0) is equivalent to p ∨ q. Let S1 be the sentence exh(A1, S0),

and consider the exhaustification of S1: exh(ALT(S1), S1). The alternatives here are

{exh(A1, p), exh(A1 , q)} = {p ∧ ¬q, q ∧ ¬p}. Both are innocently excludable, and

hence exh(ALT(S1), S1) is equivalent to p ∧ q.

1.2. Processing Costs
At any given stage of the conversation, participants will have to
decide whether to merge exh (and hence all of its arguments) to
the parse of the uttered sentence5. To reduce clutter, I will simply
write exh(S) and omit mention of other arguments that exh
takes, like ALT(S) and c. The hearer thus faces a disambiguation
task: they can either parse the sentence as S and add meaning
[[S]] to context c, or they can parse the sentence as exh(S)
and add meaning [[exh(S)]] to c. It is plausible to assume
that the choice has performance-theoretic consequences, and
in particular that strengthened meanings ought to be costlier
to process than corresponding basic meanings. To derive the
strengthened meaning of sentence S, the processor needs to do
all the work needed to compute S and its basic meaning [[S]], and
in addition it needs to create ALT(S), determine which elements
of ALT(S) are innocently excludable, conjoin these innocently
excludable propositions with [[S]], and—under the identification
of STRwith exh—amore complex structure needs to be produced
as well (for metrics, see e.g., Miller and Chomsky, 1963; Frazier,
1985, and many others). It would not be unnatural to expect this
extra work to be realized in performance difficulties (see Chemla
and Singh, 2014a for detailed discussion). To a significant extent,
this expectation is borne out, at least with respect to cases like
(1) and (2). For example, compared with their basic meanings,
the strengthened meanings in (1) and (2) tend to be delayed
in reading times in matrix positions (e.g., Bott and Noveck,
2004; Breheny et al., 2006) and in embedded positions (e.g.,
Chemla et al., 2016), they are late to develop (e.g., Noveck, 2001),
they trigger later target looks in eye-tracking (e.g., Huang and
Snedeker, 2009), and they are less frequently computed under
time pressure (e.g., Bott and Noveck, 2004), under cognitive load
(e.g., De Neys and Schaeken, 2007; Marty et al., 2013), and in
embedded positions (e.g., Chemla, 2009b; Crnič et al., 2015).

Suppose that we take the above results to broadly indicate
that the parser has a harder time with the form-meaning pair
< exh(S), [[exh(S)]] > than with the form-meaning pair <

S, [[S]] >. Ideally this would follow from a general parsing
theory. For example, we might consider the idea that a form-
meaning pair λ1 =< f1,m1 > is easier to process than a form-
meaning pair λ2 =< f2,m2 > if f1 is contained in f2 and the
computation of m1 is an intermediate step in the computation
of m2. The challenge would be to motivate the principle from
general performance considerations, perhaps along the lines
of the traditional “derivational theory of complexity” (see e.g.,
Fodor et al., 1974 for classic discussion). The core idea would be
that processing costs are a monotonically increasing function of

5Some people have argued that sentences are always parsed with exh (e.g., Magri,

2009, 2011; Crnič et al., 2015). The observation that sentences aren’t always

strengthened is accounted for by appealing to contextual domain restriction in

the alternatives. Everything we say here could be suitably translated into such

a framework. For example, let A be ALT(∃) = {∀}, and let B be the result of

contextual pruning of ALT(∃): B = ∅. Thus, instead of comparing ∃ and exh(A, ∃)

we would compare exh(A, ∃) and exh(B, ∃). Because our concern is only with the

meanings of candidates, and not with their forms/computational histories, the

proposal here could readily accommodate the assumption that exh is mandatory

(along with competing ideas about strengthening). I will continue to assume here

that exh is part of the inventory of logical operators and that its application

is optional.
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syntactic/semantic computational complexity: if the generation
of λi involves a proper subset of the computations needed to
generate λj, then (ceteris paribus) the cost of processing λi will
be less than the cost of processing λj.

There are reasons to doubt that this monotonicity principle is
on the right track. First, it appears committed to the assumption
that there is a stage at which the parser has considered
< S, [[S]] > as the analysis of the sentence but not <

exh(S), [[exh(S)]] >. Although natural, other views are also
conceivable. For example, under a serial model of processing a
single reading is entertained at any given point in processing;
if it is found to be undesirable (for whatever reason) it may be
replaced by a different reading generated by the grammar. In the
case under consideration here, one would have to assume that
exh appears late in the parser’s structure-building. However, one
could just as well begin by trying to parse with exh and revising
only if necessary. This consideration is perhaps even stronger
under the assumption that the human sentence processing
mechanism uses a parallel processor. Suppose that the parser
builds all (or at least many) of the form-meaning pairs that can
be assigned to the sentence in a given context, and then decides
(or asks the context to decide) which of these to select. Under
such a model, the parser will already have produced both the
strengthened and unstrengthened meanings, and it is not clear
why the strengthened form-meaning pair should have any greater
cost associated with it than the unstrengthened pair6. Under
either view, we would be left with a stipulated “ordering” of
computations in need of justification.

More importantly, there is empirical evidence against the
monotonicity principle. First, return to the comparison with only.
Like with exh, merging only to sentence S adds new syntactic
and semantic computations. However, only(S) is not hard in
the way that exh(S) is. For example, parsing/interpretation of
exh(S) is slower than only(S) (e.g., Bott et al., 2012), memory
demands inhibit exh(S) but not only(S) (e.g., Marty and Chemla,
2013), and under certain conditions preschool children can
compute only(S) even though they cannot compute exh(S) (e.g.,
Barner et al., 2011). The sentences exh(S) and only(S) involve
very similar syntactic and semantic computations. Nevertheless,
exh(S) appears to be systematically harder than only(S).

Taken together, these considerations suggest that costs
arise precisely when a listener chooses exh(S) over S during
disambiguation. When processing only some, you cannot choose
to understand the sentence as if only were not present. When
processing (1), you have the option to understand the sentence
with and without exh. The choice matters, and it appears that the
disambiguation mechanism pays some kind of penalty for having
chosen < exh(S), [[exh(S)]] > over < S, [[S]] >. This might be
taken as evidence for a restricted version of the monotonicity
principle that becomes relevant only when the parser has to

6Emmanuel Chemla (p.c.) notes that even under a parallel model it is conceivable

that the parser could sometimes decide to stop at the smaller < S, [[S]] >, and

this could account for the average cost difference. Like with the serial model, much

depends on the “order” in which exh is applied. For example, one could design a

parallel parser that creates parses top-down such that exh(S) and S are always in

the set of possibilities together, among other choice points.

choose among competing analyses of the sentence. This would
then leave us with the challenge of motivating the monotonicity
assumption from general processing considerations. However,
we will soon see that even this restricted version faces empirical
challenges. In particular, the generalization we started with is
incorrect: it is not in general true that < exh(S), [[exh(S)]] >

is harder than < S, [[S]] >. For some constructions, the
opposite is true: < exh(S), [[exh(S)]] > is sometimes less costly
than < S, [[S]] >.

1.3. A Puzzle: Scalar Diversity in
Processing
Assume that the basic meaning of numerals is an “at least”
reading (3-a), and that the “exactly” reading follows from
strengthening [(3-b) and (3-c); see Spector (2013) and references
therein for relevant discussion of the basic and strengthened
meanings of numerals].

(3) Numerals: Sandy ate three of the cookies

a. Basic meaning: that Sandy ate at least three of the
cookies

b. Scalar implicature: that Sandy did not eat at least
four of the cookies

c. Strengthened meaning: that Sandy ate at least three
of the cookies and did not eat at least four of the
cookies, i.e., that Sandy ate exactly three of the
cookies.

The pattern is thus like with (1) and (2): there is a basic meaning
that gets strengthened by exh. However, the similarity does not
carry over into processing: the strengthened meaning (3-c) is
not costly relative to the basic meaning (3-a) (e.g., Huang and
Snedeker, 2009; Marty et al., 2013). In fact, Marty et al. (2013)
found that there were more exactly-readings of numerals under
high memory load than under low memory load. This is the
exact opposite of “some-but-not-all” type implicatures, which are
reduced under high memory load. Thus, burdens on memory
resources have the opposite effect for numerals and scalar items
like some: strengthened meanings are increased with numerals
and decreased with scalars.

Free-choice inferences are another puzzling case. A sentence
like (4) has a so-called free-choice inference that Sandy is allowed
to eat cake and is allowed to eat ice-cream—Sandy is free to
choose (Kamp, 1973). The free-choice inference 3p ∧ 3q does
not follow from the logical form 3(p ∨ q) if “∨” is an inclusive
disjunction and “3” is an existential quantifier over possible
worlds. It has been argued—for example, on the basis of its
sensitivity to monotonicity—that the free-choice inference is a
scalar implicature (e.g., Kratzer and Shimoyama, 2002; Alonso-
Ovalle, 2005). Various mechanisms have been proposed for
deriving (4-c) as the strengthened meaning of (4) (e.g., Fox, 2007;
Chemla, 2009a; Franke, 2011; Bar-Lev and Fox, 2017). I will not
discuss these here7; what is important is that the free-choice

7Note that ALT((4)) = {3p,3q,3(p∧q)} is not closed under conjunction. Hence,

we expect recursive exhaustification to yield the conjunctive free-choice scalar

implicature3p ∧3q (the reader can use note 4 to work this out).

Frontiers in Psychology | www.frontiersin.org 4 October 2019 | Volume 10 | Article 2214

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Singh The Occasional Costs of Implicature Computation

inference follows the pattern in (4), and hence is broadly similar
to the patterns in (1), (2), and (3).

(4) Free-choice: Sandy is allowed to eat cake or ice-cream

a. Basic meaning: 3(p ∨ q)
b. Scalar implicature: (3p → 3q) ∧ (3q → 3p)
c. Strengthened meaning: 3p ∧3q.

It turns out that free-choice inferences do not display the
processing costs associated with (1) and (2). For example,
they are processed faster than and are preferred to their
basic meaning counterparts (e.g., Chemla and Bott, 2014),
they are more robust under embedding than (Chemla, 2009b),
and they are readily computed by children (Tieu et al.,
2016). Furthermore, conjunctive strengthenings of disjunctive
sentences more generally display these properties: preschool
children (e.g., Singh et al., 2016b; Tieu et al., 2017) and adult
speakers of Warlpiri (Bowler, 2014) appear to robustly compute
conjunctive strengthenings of disjunction8.

Let us use “free-choice” to refer to any conjunctive
strengthening of disjunction. The challenge we face now is to
explain why exhaustification in free-choice and in numerals
has the opposite processing consequences than exhaustification
in some and or. This is yet further evidence for a kind of
scalar diversity (van Tiel et al., 2016), which takes seriously the
observation that scalar implicatures for different constructions
sometimes have different properties. Of interest to us here
is that we now have evidence for a peculiar competence-
performance mismatch:

(5) Competence-uniformity and performance–induced-
diversity (CUPID):

a. Competence-uniformity: The competence system
treats the ambiguities in (1)–(4) in a uniform way,
characterized as the optional application of a covert
operator exh that computes innocent exclusion.

b. Performance-induced-diversity: In some cases exh
speeds up processing ((3), (4)), and in other cases it
slows down processing (1), (2).

The challenge is to formulate auxiliary assumptions that relate
the output of the competence systemwithmeasures of processing
difficulty such that CUPID is predicted and things no longer
seem peculiar. Clearly, any assumptions committed to scalar
uniformity in processing will not work. This rules out the
monotonicity assumption we were examining earlier under
which < exh(S), [[exh(S)]] > is generally harder to process than
< S, [[S]] >. It also rules out principles such as the “strongest
meaning hypothesis” [e.g., Chierchia et al., 2012, with roots in
Dalrymple et al. (1998)] or “charity” (e.g., Meyer and Sauerland,
2009—see also Chemla and Spector, 2011). The goal of this paper
is to meet this challenge.

8Podlesny (2015) argues that similar facts in American Sign Language follow

the same pattern (though cf. Davidson, 2013). The pattern in question here is

that disjunctive sentences can receive a free-choice (conjunctive) strengthened

meaning when their alternatives are not closed under conjunction (see Fox, 2007;

Chemla, 2009a; Franke, 2011; Singh et al., 2016b) and note 4.

1.4. Accounting for CUPID
Previous attempts at accounting for scalar diversity in
processing have invariably made reference to language-
internal computations and thus in some sense deny CUPID
as a challenge to be solved. For example, some accounts have
argued that strengthening has a cost when it requires a lexical
substitution (as in “some but not all”) but not when it requires
only constituent substitutions (as in free-choice; e.g., Chemla and
Bott, 2014; van Tiel and Schaeken, 2017). The guiding intuition,
as I understand it, is that constituents are more readily accessible
(they are already in the workspace), whereas lexical substitutions
are more costly because the lexicon is presumably less accessible
than material you have already created (you need to go out of
the workspace to find a new lexical item). These considerations
do not extend in any straightforward way to numerals, since
their alternatives are derived neither by sub-constituents nor by
lexical replacements (the set of numbers is infinite, and hence the
alternatives must be referencing the successor function).

Numerals also seem to pose a challenge for the computation-
specific proposal in Bar-Lev and Fox (2017). Specifically, they
argue that free-choice and scalar implicatures like “some but not
all” are derived by two different strengthening computations:
roughly, the one for free-choice asserts the truth of alternatives
and is context-independent and the mechanism for scalar
implicatures negates alternatives and is context dependent. They
argue that this distinction can be used to motivate a difference in
processing costs. However, so far as I can tell, numerals are like
scalar implicatures in the relevant competence-theoretic respects
but they nevertheless pattern with free-choice in processing
patterns (see also Note 24).

The model in Singh et al. (2016b) also made reference
to language-internal computations but it readily accounts for
numerals. Specifically, the model considers sets of form-meaning
pairs the grammar assigns to the input sentence, and posits two
constraints that interact to resolve the ambiguity: one pertaining
to the candidate meanings and their relation to context, and
the other pertaining to the candidate forms and their relative
complexity. The syntactic assumptions assume the existence of
a covert exhaustive operator that furthermore has a special
pressure against it. I will discuss this model in greater detail
in section 3.1, where I will modify it in various ways in the
development of my proposal.

What the above accounts have in common is that they
all relate processing costs in one way or another with the
strengthening mechanism itself. Here I will pursue a different
strategy. I will assume that CUPID teaches us that the costs
of exhaustification are unrelated to the derivational history of
the form/meaning of the sentence. Suppose that the language
faculty delivers propositions (sets of worlds) to context-sensitive
external systems of thought and action. By focusing our attention
on the content produced by the language faculty—rather than
on the mechanisms it uses to compute the given content—
we might be in better position to develop closer connections
between processing costs and arguably non-linguistic tasks like
concept learning, theory selection, and communication viewed
as a system of information exchange governed by social norms
(see Grice, 1967; Fodor, 1983; Chomsky, 1995 among others for
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relevant discussion). At the same time, the focus on semantic
output and context change could make our parsing assumptions
relevant to a broader class of theories of the underlying
competence system.

The focus on sentence meanings and their relation to contexts
allows us to restate the disambiguation problem facing the
listener as follows:

(6) Disambiguation as optimal context update: Suppose
sentence S is uttered in context c, and suppose that the
grammar G assigns k form-meaning pairs to S: G(S) = {<

f1,m1 >, . . . ,< fk,mk >}. These give rise to a candidate
set of output contexts C = {c1, . . . , ck}, where ci = c+mi

(context c updated by mi). The listener’s task is to select
the optimal element of C as the output context.

This context-update perspective has been found useful in studies
of non-determinism in various domains, including parsing (e.g.,
Fodor, 1983; Crain and Steedman, 1985) and presupposition
accommodation (see especially Beaver, 2001; von Fintel, 2008).
I hope that it may shed insights into exhaustification decisions as
well. Here, I will not say much about the (presumably decision-
theoretic) optimality criterion used by the parser in solving (6).
Instead, I will focus on the costs the parser faces when it chooses
to update c with a particular mi. There are two costs that I
will consider: (i) the a priori complexity of mi as a standalone
object, here measured by semantic complexity (see section 2),
and (ii) how well mi resolves relevant uncertainties in c, and
hence how much relevant uncertainty it leaves in ci, where I
identify relevant uncertainty with a function of the number of
cells mi eliminates from the question-under-discussion in c (see
section 3). The sum of these costs, I argue, solves the challenge
raised by CUPID.

2. SEMANTIC COMPLEXITY

I will begin by pursuing an idea, to my knowledge first
suggested in the context of implicature computation by Bott
et al. (2012), that the semantic complexity of different pieces of
information might be relevant to how hard they are to process.
To make this precise, we need an analytic framework that would
make clear predictions about how to order different pieces of
information for complexity. It turns out that there are branches
of mathematical inquiry examining the semantic complexity
of propositional and quantificational meanings. Furthermore,
these analytical ideas have found useful application in concept
learning, which in turn is arguably similar to theory selection
and more generally to the choice of one element over some
others. Of particular interest is the argument that the semantic
complexity of a concept is a good predictor of how easy or
hard it is for participants to acquire it (see especially Feldman,
2000 and subsequent work, such as summarized in Piantadosi
et al., 2016). These results might thus provide antecedent
motivation for the idea that certain pieces of information are
intrinsically harder for humans to process than others, and
this might be relevant to ordering the costs associated with
exhaustification decisions.

2.1. Boolean Complexity and Processing
Costs
Boolean functions like disjunction and conjunction map sets
of truth-values (elements in {0, 1}D for any number D) to
a truth-value (an element in {0, 1}). For example, if D
= 2, there are four possible combinations of truth-values:
{11, 10, 01, 00}. If D = 3, there are eight possible combinations:
{111, 110, 101, 100, 011, 010, 001, 000}. More generally, there are
2D possible combinations of D truth-values. Call this Boolean D-
space. A Boolean function maps Boolean D-space into {0, 1}. For
example, inclusive disjunction maps any element to 1 so long as
the element contains at least one 19.

A Boolean Concept is the characteristic set of the
corresponding Boolean function. A concept is simply a
way of carving a domain of interest into those instances that
it is true of and those that it is not. For example, dog divides
the universe into positive instances (things that are dogs) and
negative instances (everything else). Similarly, Boolean concepts
in D-space divide the 2D possible truth-value assignments into
those that are mapped to true and those that are mapped to
false. For example, in Boolean 2-space the positive instances
of inclusive disjunction are {11, 10, 01}. Similarly, exclusive
disjunction picks out {10, 01}, and conjunction picks out {11}.
These concepts, of course, can be thought of as propositions (sets
of worlds). For example, the disjunctive concept p ∨ q is that set
of worlds in which either just p is true, just q is true, or both p
and q are true. We will go back-and-forth between concept talk
and proposition talk.

We are interested in examining the extent to which these
semantic notions have some intrinsic complexity. When we
think of, say, the truth-table method for depicting Boolean
functions, it is not immediately obvious why one table should
be more or less complex than another. However, there is a
perspective—which has been fruitfully applied to empirical facts
concerning concept acquisition (Feldman, 2000)—that associates
each Boolean concept with an intrinsic complexity measure. The
method relates the complexity of a Boolean concept with the
smallest Boolean formula that can express the concept using
negation, inclusive disjunction, and conjunction as primitive
(Feldman, 2000)10.

9More generally, one is interested in functions that map {0, 1}D to {0, 1}D
′
. We will

not pursue this more general framework (see e.g., Savage, 1976).
10Of course, different primitives will give rise to different complexity measures.

For example, exclusive disjunction requires at least four literals in a language with

just ∧,∨,¬ [see e.g., (9-d) and (9-e)]. Note that negation is not ‘counted’ in the

measure—the motivation for this is that p and ¬p divide logical space in the exact

same way (Feldman, 2000). If exclusive disjunction were a primitive, ⊕ say, then

you could get away with just two literals. Different complexity measures could

also be considered. For example, the current measure does not count operators;

some other measures would, such as ones that associate Boolean functions with

complexity measures relating to the size or depth of circuits that compute them

(see e.g., Sipser, 1997). For current purposes, I will assume that the concept

learning literature (in particular Feldman, 2000) provides sufficient motivation

for assuming that the set of primitives assumed here is telling, as is the assumed

complexity measure. Note also that morphologically simplex operators in natural

language appear to be restricted to just these primitives (Katzir and Singh, 2013).

For relevant discussion, see also Piantadosi et al. (2016), Buccola et al. (2018), and

note 16.
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(7) Propositional formula: Consider a set of atomic
propositional formulae as given. Then the set of
propositional formulae is defined recursively as follows:

a. Any atom p is a formula.
b. If p is a formula, so is ¬p.
c. If p and q are formulae, so is (p ∧ q).
d. If p and q are formulae, so is (p ∨ q).

We will sometimes omit parentheses when there is no risk
of ambiguity.

(8) The Boolean Complexity of a concept C is the length
n of the smallest formula f that expresses C: n =

min{|f ′| :[[f ′]] = C}.

a. |f ′| is the number of literals in formula f ′.
b. A literal is any atomic formula p or its negation ¬p.

(9) Examples:

a. |(p ∨ q)| = 2
b. |(p ∨ ¬q)| = 2
c. |(p ∨ q) ∨ (p ∧ q)| = 4
d. |(p ∨ q) ∧ ¬(p ∧ q)| = 4
e. |(p ∧ ¬q) ∨ (¬p ∧ q)| = 4
f. |p ∧ q| = 2.

Clearly, there are many formulae that can express a particular
concept. For example, (9-a) and (9-c) both express an inclusive
disjunction. However, (9-c) can be simplified to (9-a) without
loss of meaning, and (9-a) is the shortest formula that can
express inclusive disjunction in Boolean 2-space. There has
been significant interest in finding mechanical methods for
simplifying propositional formulae (e.g., Quine, 1952, 1955;
McCluskey, 1956 and much other work). We will not discuss
these here. For our purposes, what is important is that unlike the
inclusive disjunction expressed in (9-c), the exclusive disjunction
meanings expressed in (9-d) and (9-e) cannot be further
compressed (Feldman, 2000). That is, there is no shorter Boolean
formula capable of expressing an exclusive disjunction. In this
sense, then, exclusive disjunctions are essentially more complex
than inclusive disjunctions. They are also more complex than
conjunctions [cf. (9-f)].

These complexity results align with empirical observations
about the complexity of concept acquisition (again, see Feldman,
2000 and extensive references therein). Specifically, concepts
whose membership is determined by an exclusive disjunction
(e.g., “pink or square but not both”) are harder to learn
than concepts whose membership is determined by inclusive
disjunction (“pink or square, possibly both”) and they are also
harder to learn than concepts whose membership is determined
by conjunction (“pink and square”). This finding suggests that the
human mind struggles with exclusive disjunctions in a way that
it doesn’t with inclusive disjunctions or conjunctions.

Consider now the exhaustification of an inclusive disjunction
in the adult state. This leads to an exclusive disjunction
interpretation, which we now have reason to think is inherently
more complex than its inclusive disjunction counterpart. One
way to make sense of the greater difficulty in processing exh(p ∨
q), then, is that it results in a more complex meaning than p ∨ q.

Specifically, it is plausible to assume that the parser incurs a
penalty when it chooses to select a complex meaning even though
a simpler one was available:

(10) Boolean Complexity and processing costs during
disambiguation: Suppose that the grammar G assigns k
analyses to sentence S: G(S) = {λ1, . . . , λk}, where each
λi is a form-meaning pair < fi,mi >. Let B(m) be the
Boolean Complexity of meaning m. Then the cost of
selecting λi ∈ G(S), C(λi), is proportional to the Boolean
Complexity of meaningmi: C(λi) ∝ B(mi).

Note that the formulation in (10) only predicts processing costs
that arise from disambiguation decisions. It would apply, then, to
saying why exh(p∨q) is more costly to process than p∨qwhen the
speaker utters a disjunctive sentence p or q, but it would not say
anything about the relative cost of processing only(p or q) because
no disambiguation is involved. Given a candidate set G(s), (10)
partially orders this set by considering the Boolean Complexity
of the meanings of its elements; this ordering, in turn, predicts
relative processing costs when the hearer selects one or other
element from G(s). However, (10) says nothing about how the
cost of processing an element in G(s) would relate to the cost of
processing a form-meaning pair outside of this set. Note also that
themeasure is context-invariant and that it does not reference the
computational history of the elements of G(s). All that matters is
what the different meanings in G(S) are.

The relative complexity of an exhaustified binary disjunction
extends to Boolean k-space for any k. To simplify our discussion
of the general case, first note that in the binary case [[exh(p ∨

q,ALT(p ∨ q))]] = (p ∨ q) ∧ ¬(p ∧ q) ⇐⇒ (p ∧ ¬q) ∨
(¬p ∧ q) = [[exh(p,C) ∨ exh(q,C)]], where C = {p, q}. More
generally, where Pk is a k-ary disjunction p1 ∨ p2 ∨ . . . ∨ pk and
C = {p1, . . . , pk}, it is easily shown that [[exh(Pk,ALT(Pk))]] =
[[exh(p1,C) ∨ . . . exh(pk,C)]] (i.e., “only p1” or “only p2” or . . .

“only pk”)
11. This meaning can be expressed as the disjunction

of k propositions, each of which is a conjunction of k literals in
which one literal is positive and the rest are negative: (p1 ∧¬p2 ∧
. . .∧¬pk)∨(¬p1∧p2∧¬p3∧. . .¬pk)∨. . . (¬p1∧. . .∧¬pk−1∧pk).
Thus, exhaustification of Pk not only strengthens the meaning of

11It is sometimes argued that a large number of alternatives needs to be

accessed during exhaustification, and that this could lead to computational costs

(e.g., Mascarenhas, 2014; Spector, 2016). Note that the possibility of embedded

exhaustification provides a significant reduction in the number of alternatives

that need to be considered. Here we have one k-membered set, which gets

used k times in exactly the same way each time. A global exhaustification using

innocent exclusion could derive the same results by closing C under conjunction

and ignoring closure under disjunction (see results in Spector, 2016). In fact,

combinatorial explosion is at its worst when all we can do is blindly search through

the entire space. This is not necessarily so with ALT, because there is sufficient

structure within ALT that a sophisticated reasoner could exploit. For example,

when finding maximal consistent exclusions (Fox, 2007), as soon as you decide

that p ∧ q is excludable, say, you can automatically conclude that any alternative

r in which p ∧ q is a subformula is also excludable (because r entails p ∧ q).

Thus, algorithms for solving innocent exclusion might be able to avoid “perebor”

(brute-force exhaustive search, no pun intended; cf. Trakhtenbrot, 1984). I will

thus continue to assume that only the output of the language faculty is relevant to

cost considerations. If it turns out that the number of alternatives is relevant, our

cost formulation will have to change.
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FIGURE 1 | Growth of Boolean complexity.

Pk, but it also creates a more complex meaning by converting
a proposition with complexity k to one with complexity k2.
Figure 1 illustrates how the Boolean Complexities of Pk and
exh(Pk) grow with k.

The Boolean Complexity perspective might thus provide a
motivation for having exh in the first place. For note that
exh allows speakers and hearers to convey relatively complex
meanings by uttering relatively simple formulae. For example,
exh allows speakers and hearers to use, say, a disjunction of
10 literals (hence complexity 10) to convey a message with 10
times that complexity: B([[exh(P10)]]) = 100. Of course, the
application of exh also increases syntactic complexity (if we
identify STR with exh), and the code for exh needs to be stored
and executed. All of this will induce some cost. The tradeoff
is presumably such that it is nevertheless an improvement on
having to actually utter the more complex formula that would be
required without exh.

Even if exh may have been “designed” in part to produce
higher-complexity meanings from simpler ones, it does not
always do so. For example, recall that under certain conditions
exh can produce a conjunctive strengthening of a disjunctive
sentence. Recall also that in such cases there appears to be no
corresponding cost associated with exh. The Boolean Complexity
analysis provides at least a partial answer to this: since
conjunction and disjunction have the same Boolean Complexity,
there is no expected cost under (10) when exh turns a disjunctive
basic meaning into a conjunctive strengthened meaning12.

Significant challenges remain. First, (10) does not speak to
why conjunctive inferences should be less costly than their literal
counterparts. Chemla and Bott (2014) found that—unlike scalar

12An interesting question is whether exh is always monotonic in semantic

complexity. There is no logical necessity to this: a reviewer points out that exh(p⊕

q, {q}) means p ∧ ¬q, which is simpler than p ⊕ q. The question of interest here

is an empirical one: are there any cases of natural language sentences S such that

exh(S,ALT(S)) has lower Boolean Complexity than S?

implicatures like “some but not all”—free-choice inferences are
faster than their literal counterparts. They also found that—again
unlike scalar implicatures like ‘some but not all”—the rate at
which free-choice inferences are selected does not drop under
time constraints. As they put it (Chemla and Bott, 2014, p.392):
“not deriving a free choice inference is a costly phenomenon.”
Furthermore, not only are conjunctive inferences less costly
than their literal competitors, there appears to be a substantial
preference to select the conjunctive reading when it is available
(e.g., Chemla, 2009b; Bowler, 2014; Chemla and Bott, 2014;
Meyer, 2015; Singh et al., 2016b; Bar-Lev and Fox, 2017; Tieu
et al., 2017). In fact, even in concept learning, it is an old
observation that conjunctive concepts are easier to acquire than
disjunctive concepts. Thus, in both concept learning and in
exhaustification, the order of difficulty appears to be the same:

(11) Cognitive difficulty of connectives: Conjunctions are
easier than inclusive disjunctions which in turn are
easier than exclusive disjunctions.

Boolean Complexity tells us why exclusive disjunctions are
harder than inclusive disjunctions, but it does not tell us why
inclusive disjunctions are harder than conjunctions. We will
address this challenge in section 3. Before we do that, note that
(10) is limited to propositional sentences. We need a general
metric that could apply to quantified sentences as well. This
would allow us to replace “Boolean Complexity” with a more
general notion of “semantic complexity”. We discuss this in the
next section.

2.2. Semantic Automata
Consider sentences QAB, where Q is a quantifier, A its restrictor,
and B its scope. Well-known constraints on natural language
quantifier denotations allow us to view quantifiers as machines
that determine acceptance/rejection based on two inputs only:
those A that are B and those A that are not B (van Benthem,
1986). Call the first kind of input “1” and the latter “0.” Given this
perspective, quantifiers can be viewed as computational devices
that accept certain strings over the alphabet {0, 1}. Call the set of
strings accepted by the machine corresponding to quantifier Q
the language accepted by Q, L(Q).

In the cases of interest to us, such as some and all, the
quantifiers correspond to the simplest kinds of computing
devices, namely finite-state-machines13. For example, a
quantifier like some will accept any string as long there is at least
one 1 in it (i.e., as long as there’s at least one A that’s a B). Here is
a diagram of a machine that does this:

(12) Automaton accepting some:

13Some quantifiers likemost require push-down automata. There are close parallels

between first-order definability and the Chomsky hierarchy. See van Benthem

(1986).
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In words, the machine starts in the start state q1, and it processes
the string one symbol at a time in left-to-right order. The arrows
determine what the machine does upon processing a symbol. If
it sees a 0 in state q1, it remains in q1 and moves on to the next
symbol. If it sees a 1 in state q1, it moves to state q2 and moves
on to the next symbol. Once in q2, it remains there—neither a 0
nor a 1 can get it out of q2. When all symbols in the string have
been processed, themachine accepts the string if it is in an ‘accept’
state when the string ends; otherwise, it rejects the string14. In our
diagram, q2 is the ‘accept’ state, marked by double-circles.

Inspection of themachine in (12) at once reveals that it accepts
strings like 1, 01, 000010101, 111, and that it rejects strings like 0,
000, and 00000. More generally, the language accepted by ∃ is
L(∃) = {w :w contains at least one 1}.

A quantifier like all, on the other hand, will reject a string as
soon as it processes a single 0 (a single A that is not a B). That
is, it accepts strings that contain only 1s: L(∀) = {w :w = 1n for
n > 0}15. Here is a machine that accepts L(∀) (note that in this
machine, q1 is both the start state and accept state):

(13) Automaton accepting all:

Given this formal apparatus, we can associate a quantifier Q’s
semantic complexity with the size of the smallest machine that
accepts L(Q):

(14) Quantifier complexity:

a. The semantic complexity of a quantifier Q is
the minimum size finite-state-machine that
accepts L(Q).

b. The size of a machine is the number of states in
the machine.

The machines in (12) and (13) are equally complex: they each
have two states, and no smaller machines can be constructed that

14More generally, a finite state machine is characterized by: (i) a finite set of states

Q; (ii) an alphabet6; (iii) a transition function δ :Q×6 → Q describing how the

machine moves; (iv) a start state q1 ∈ Q; and (v) a set of accept states F ⊆ Q. The

machine in (12) has the following description: (i)Q = {q1, q2}; (ii)6 = {0, 1}, (iii)

δ maps (q1, 0) to q1, (q1, 1) to q2, (q2, 0) to q2, and (q2, 1) to q2; (iv) q1 is the start

state, and (v) F = {q2} is the (singleton) set of accept states. See any introductory

text on formal language theory or the theory of computation for more detailed

discussion of the properties of such machines (e.g., Sipser, 1997).
15A reviewer points out that (13) also accepts the empty string (the empty string is

always accepted by machines for which the start state is an accept state). I omit

mention of the empty string in the main text to avoid clutter and to simplify

exposition. The reviewer notes that the machine here does not take existential

import into account; without existential import, all would not entail some. The

reviewer notes that a three-state machine would capture existential import. I

believe we can sidestep the question of existential import because entailment is

not needed for our purposes. As formulated in Fox (2007), exh negates not only

stronger alternatives, but also those that are merely non-weaker. Either way, this

will not affect our main point about the costs of strengthening some (though see

note 16). I hope this makes it okay to ignore the empty string and its complications

in the main text.

accept their respective languages. Note also that this definition
of complexity is independent of the details of the syntactic
expressions used to convey these meanings.

Now, recall that among the elements that L(∃) accepts are
strings like 11, 111, 1111, etc. These of course are the strings
accepted by L(∀). The semantic notion of entailment is realized
here as a subset relation over bit strings: L(∀) ⊆ L(∃).
Application of exh breaks the entailment: exh(∃) = ∃+ = ∃∧¬∀,
and L(∃+) = {w :w contains at least one 0 and at least one 1}.
Here is a machine that accepts this language:

(15) Automaton accepting some but not all:

This machine is more complex than the ones in (12) and
(13) (four states vs. two). Intuitively speaking, the additional
complexity arises because determining membership in L(∃+)
is a more demanding task. At any given point, a machine
has to be ready to answer ‘yes’ or ‘no.’ Its memory is finite,
but it does not know how long the input string is. Thus,
the machine needs strategies for keeping track of relevant
information without having to store the entire history of the
string. The machine corresponding to ∃ in (12) needs to keep
track of whether it has seen a 1 yet (if so, accept; otherwise,
reject). The machine corresponding to ∀ in (13) needs to keep
track of whether it has seen a 0 yet (if so, reject; otherwise,
accept). The machine corresponding to ∃+ in (15) needs to
keep track of both of these pieces of information: it needs to
keep track of whether it has seen a 1 yet and it needs to keep
track of whether it has seen a 0 yet. The machine accepts the
string only if the answer to both questions is “yes,” but there
are different paths to this state: one begins by having seen a
0 first, in which case the machine’s strategy is to wait for a 1
and answer “yes” if and only if it encounters one, and the other
begins by having seen a 1 first, in which case the machine’s
strategy is to wait for a 0 and answer “yes” if and only if it
encounters one.

There is prior evidence that a quantifier’s complexity has
detectable psychological correlates. For example, recent evidence
from implicit learning tasks suggests that concepts whose
membership is determined by ∀ are preferred to those whose
membership is determined by ∃+ (Buccola et al., 2018). Like
the relative ease of learning conjunctive concepts over exclusive
disjunction concepts, considerations of semantic complexity
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would appear to provide a natural account for this finding16.
From a different direction, Szymanik and Thorne (2017) present
evidence that the frequency of a quantifier’s occurrence is to some
extent predictable from its semantic complexity.

It is plausible, then, to think that quantifier complexity might
also be a relevant factor in parsing costs. In particular, it might
provide a rationale for why application of exh to ∃ tends to
be costly: the meaning ∃+ is inherently more complex than
∃ and is thus cognitively more demanding. Like with Boolean
Complexity, the parser pays a penalty for choosing a complex
meaning even though a simpler one was available.

(16) Quantifier complexity and processing costs during
disambiguation: Let SQ be a sentence containing
quantifier Q, and suppose that the grammar G assigns
k analyses to SQ: G(SQ) = {λ1, . . . , λk}, where each
λi is a form-meaning pair < fi,mi >. Let Q(m) be
the Quantifier Complexity of meaning m. Then the cost
of selecting λi ∈ G(S), C(λi), is proportional to the
Quantifier Complexity of meaning mi: C(λi) ∝ Q(mi).

Given this definition, we will now simply use the term “semantic
complexity” to refer to whichever of (16) or (10) applies, letting
context choose.

Like with (10), the statement in (16) explains only some of the
relevant facts. For example, consider numerals. A sentence like
Sandy ate two apples on its basic meaning conveys that Sandy
ate at least two apples. Its strengthened meaning is that Sandy
ate exactly two apples. The strengthened meaning is not only
stronger, but also more complex17:

(17) Machine accepting at least 2

16Buccola et al. (2018) conclude from their results that ∀, unlike ∃+, is a plausible

candidate for being a primitive in the language of thought. I will not enter

into full discussion here, but it might be interesting to explore the connection

between semantic complexity and logical primitives. If simplex lexical items are

restricted to logical/conceptual primitives, then semantic complexity does not

uniquely identify the primitives, given the existence of semantically simple but

unlexicalized elements like nand (= ¬∧), nall (= ¬∀), and others (e.g., Horn,

1972; Katzir and Singh, 2013). Furthermore, learnability arguments suggest that

a logical primitives approach (as in Keenan and Stavi, 1986) can be dissociated

from semantic complexity (see Katzir and Peled, 2018).
17More generally, machines accepting “at least n” require n + 1 states and those

accepting “exactly n” require n + 2 states. Roni Katzir (p.c.) points out that the

machine for “exactly n” could be simplified if we remove arrows leading to “sink

states,” i.e., non-accepting states like q4 in (18) from which there is no escape. If we

were to do this, the machines in (17) and (18) would have the same complexity.

The empirical problem at hand would remain even if we adopted this way of

counting: we need to account for the observation that the exactly-reading of

numerals appears to not only be free (relative to its basic meaning counterpart),

but in fact less costly than it (Marty et al., 2013). I will thus continue to assume that

sink states are included in the complexity measure, and hope that we could restate

things if it turns out that removing them would be preferred.

(18) Machine accepting exactly 2

Despite this additional complexity, as we discussed earlier
(section 1.3), the strengthened meanings of numerals are
nevertheless easy to process and are often preferred to
their unstrengthened counterparts. Furthermore, in concept
learning the propositional results appear to carry over to their
quantificational analogs. Specifically, it appears that when the
data are consistent with ∀ and with ∃, learners tend to conclude
that the underlying rule is universal rather than existential
(Buccola et al., 2018). Clearly, semantic complexity cannot
explain this18.

In propositional and quantificational sentences, then,
semantic complexity appears to provide at best a partial account
of the relevant facts. In particular, it appears to explain cases
where a disjunctive operator like ∨ or ∃ is strengthened by
negating conjunctive alternatives like ∧ or ∀, respectively. In
such cases the result is a more complex meaning. In these cases,
there is no CUPID: when the competence system applies exh, it
creates a more complex syntactic object with a more complex
meaning, and this complexity is realized in performance with a
cost. It would make sense for there to be pressures to avoid this
additional complexity if possible, and for there to be costs for
selecting the more complex form-meaning pair against simpler
alternatives. As noted, this pressure appears to be present in
concept learning exercises as well: it is easier for participants to
acquire a ∀/∧-concept than a ∃+/∨+ concept.

However, semantic complexity does not speak to why ∀/∧-
concepts are easier to learn/process than their ∃/∨ variants.
And semantic complexity does not explain CUPID: free-choice
inferences and exactly-readings of numerals are less costly
than their basic meaning counterparts even though they are
not semantically simpler than them. Clearly, it can’t be that
semantically stronger meanings are less costly than their weaker
basic meaning counterparts, given that ∃+/∨+ are stronger than
∃/∨ but are nevertheless harder to learn/process. The CUPID
problem is still with us.

3. QUESTIONS, ANSWERS, CONTEXTS,
AND PROCESSING COSTS

The above complexity measures provide an a priori, context-
invariant ordering of meanings that the agent may apply
before they have learned anything. As the agent accumulates
information, and as the common grounds of their conversations
become richer, these language-external domains will begin to
exert a greater influence on parsing and interpretation strategies,
and may in some cases counter the a priori orderings the
organism starts with. I will argue that the solution to CUPID

18Nor does the alleged primitiveness of ∀, assuming that ∃ is also primitive (cf.

Note 16).
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involves considerations of how candidate meanings interact with
the context of use. On the classic Stalnakerian picture, sentences
are uttered and understood in context, and sentences update
the input context in rule-governed ways to create a new output
context relative to which the next utterance will be interpreted.
Thus, contexts and sentences have a dynamic interplay that we
will momentarily exploit to help us overcome the limitations of
semantic complexity alone.

Specifically, I will argue (building on Singh et al., 2016b)
that the extent to which a given meaning resolves the question
under discussion (QUD) is a predictor of the costs of accepting
it into the common ground. The better the answer, the lower
the cost. Here, “goodness” is a function of how close to a
complete answer the meaning provides, i.e., how close it comes
to locating the one true cell in the partition induced by the QUD.
I motivate this idea briefly in section 3.1, and show in section
3.2 that the parsing mechanism proposed in Singh et al. (2016b)
provides the pieces needed to overcome the problem posed by
numerals and free-choice inferences. That system included two
interacting constraints that were evaluated by an Optimality-
Theoretic system: (i) a constraint that penalizes incomplete
answers (considered as semantic objects), (ii) a constraint that
penalizes syntactic complexity (occurrences of exh). In section
2, I proposed a way to replace (ii) with a measure of semantic
complexity, and in section 3.2, I show how to incorporate this
amendment into the system in Singh et al. (2016b).

In sections 3.3 and 3.4, I further modify Singh et al.’s (2016b)
proposal by changing the way processing costs relate to answers.
Specifically, Singh et al. (2016b) suggested that complete answers
have no cost but partial answers do, and that partial answers
are equally costly. In section 3.3, I will motivate the idea that
partial answers can be ordered for quality by how far they are
from complete. I also review and reject some simple options for
formalizing this distance, and in section 3.4 I provide a domain-
general way to measure distance using the information-theoretic
concept of entropy (Shannon, 1948). Entropy has a well-known
compression interpretation (number of bits needed to eliminate
the uncertainty), thus making it plausible that both semantic
complexity and entropy have a compression-related cost. I will
suggest that this lends flexibility in formulating functions that
combine these costs. For example, it allows us to abandon the
OT evaluation system and instead use simple arithmetic. Here is
my proposal:

(19) Processing costs during disambiguation: Let S be a
sentence uttered in context c. Suppose that grammar G
assigns k analyses to S: G(S) = {λ1, . . . , λk}, where each
λi is a form-meaning pair < fi,mi >. Let S(mi) be the
semantic complexity ofmi, let ci be the result of updating
context c withmi, c+mi, and letH(ci) be the entropy in
context ci. Then the cost of selecting λi ∈ G(S) in context
c, C(λi, c), is: C(λi, c) = S(mi)+H(ci).

We will now build our way to the cost function in (19),
highlighting various choice points as we go. We begin with the
importance of questions and answers and more generally with
the way normative demands on speech might play a role in
processing costs.

3.1. Norms of Good Conversational
Behavior and Processing Costs
It is commonly assumed that there are normative demands
on a speaker, such as the demand that they be truthful,
informative, relevant, assert things they have evidence to support,
use sentences whose presuppositions are satisfied (or easily
accommodated), among other constraints on their behavior (e.g.,
Grice, 1967; Stalnaker, 1978; Williamson, 1996, and much other
work). Listeners pay attention to whether these demands are
satisfied. There are consequences when it is detected that a
speaker misbehaved according to these norms. There is surprise,
embarrassment, hostility, and trust and credibility are broken.
These considerations suggest that the maxims should be viewed
as rules of decent cooperative behavior, which in particular apply
even when it is in the speaker’s interest to violate them. A speaker
may decide, for instance, to speak a falsehood or omit relevant
damning information, but even if this maximizes their utility in
some sense this would not justify their action. They are held to
the maxims independent of the utility of their doing so. All else
being equal, then, we assume that a speaker is more likely to be
obeying the norms than violating them.

(20) Assumption about language use: Unless we have reason
to think otherwise, assume that a speaker is obeying
conversational maxims.

If (20) is a true assumption about conversation, we would expect
it to be relevant to disambiguation. In particular, suppose that λ1
and λ2 are competing form-meaning pairs, and that λ1 violates a
norm of language use and λ2 does not. We would expect (20)
to generate a pressure in favor of λ2. It is of course hard to
tell whether someone is speaking truthfully, or has evidence to
support what they assert. But it is easy to tell whether a speaker
is being relevant19. Specifically, suppose that the ideal speaker is
assumed to be optimally relevant, by which we mean that they
immediately (when it’s their turn to speak) settle the Question
Under Discussion (QUD). Assume further that QUDs can be
modeled as partitions of the common ground (e.g., Groenendijk
and Stokhof, 1984; Lewis, 1988, among others). For example,
PART(c) = {pq, pq′, p′q, p′q′} is a partition that divides c into four
sets of worlds (cells of the partition): those where p and q are both
true (pq), those where p is true and q is false (pq′), those where p
is false and q is true (p′q), and those where both p and q are false
(p′q′). An answer is a union of cells, and a complete answer is a
particular cell.

What we want in a context is a complete answer. If I ask you
who was at the scene of the crime, and you know the answer (‘the
whole truth’), you are required to tell me. Given any proposition
r asserted by the speaker, we can readily examine whether r—
together with the information in the common ground—identifies
a cell. That is, we can readily answer the question: ∃u ∈

PART(c) : u = r ∩ c? If the answer is positive, the listener will
be satisfied that the question has been resolved. Otherwise, the

19It is also easy to tell whether the uttered sentence’s presupposition is satisfied or

is otherwise innocuous (just compare the presupposition with the information in

the common ground). When it is not, there are detectable and immediate costs for

accommodation (e.g., Singh et al., 2016a).
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speech act will have left undesired relevant uncertainty. This
goes against our expectation that the speaker would fulfill their
obligations, at least if they don’t flag that they are unable to do so.

Thus, consider the following principle proposed in
Singh et al. (2016b)20.

(21) Complete Answer Preference: If there is an analysis
λi =< fi,mi > of sentence S such that mi completely
answers the QUD in c, then—all else being equal and
assuming no other candidate completely answers the
QUD—λi will be preferred.

Suppose, then, that the parsing mechanism encodes an
expectation that the speaker is obeying all relevant maxims.
The parser will therefore expect to find among the form-
meaning pairs provided by the grammar one that will completely
answer the QUD (among other demands on good conversational
behavior). If it finds one, then it will select it and no cost is
induced. They have simply applied their grammatical principles
to analyze the sentence and their normative expectations have
been satisfied. However, something goes wrong if the QUD is not
completely answered. The listener will be surprised, and other
considerations might enter into disambiguation decisions and
therefore also into the consequences of these decisions.

3.2. The Parsing Proposal in Singh et al.
(2016b) With Semantic Complexity in Place
of Syntactic Complexity
Singh et al. (2016b) suggested an Optimality-Theoretic
processing mechanism that incorporated a preference for a
complete answer and a pressure against syntactic complexity.
Specifically, the system posited (i) a high-ranked constraint ∗INC
that penalizes form-meaning pairs that fail to provide a complete
answer to the QUD, and (ii) a low-ranked constraint ∗exh that
penalizes a form-meaning pair for each occurrence of exh in
the parse. In that system, when no form-meaning pair provides
a complete answer to the QUD, considerations of syntactic
complexity (approximated by number of occurrences of exh)
adjudicate between the remaining candidates. By ranking ∗INC
above ∗exh, the system assumes that a sentence’s ability to resolve
relevant contextual uncertainty is worth any syntactic cost that
might be incurred by adding exh. Furthermore, by positing ∗exh,
the system identified the number of occurrences of exh as a proxy
for the sentence’s complexity, and hence used the form of the
sentence as its complexity measure.

In this paper I am pursuing the idea that the parser is
only sensitive to the meanings of candidates. Thus, when no
form-meaning pair provides a complete answer, the amendment
needed in Singh et al. (2016b) would be to posit that
semantic complexity determines the parser’s choice. This could
be implemented by replacing ∗exh with ∗SC (for “semantic
complexity”), and by assigning a candidate form-meaning pair
a number of violations equal to its semantic complexity. Here

20See also Katzir and Singh, 2015 for a related but somewhat different notion of the

“goodness” of answers, together with suggestions about the goodness of questions

as well.

we show that this amendment captures all the facts that Singh
et al.’s (2016b) proposal was designed to account for, and that the
constraint ∗INC accounts for CUPID under the assumption that
it is higher-ranked than ∗SC.

Consider again the question faced by a listener about whether
or not to exhaustify the input sentence. Suppose that a disjunctive
sentence like p ∨ q is uttered in response to a (possibly implicit)
QUD like which of p and q is true? That is, suppose it is
uttered in a context in which the partition is PART(c) =

{pq, pq′, p′q, p′q′}21. Of course, a disjunctive answer p ∨ q only
gives a partial answer, eliminating just the cell p′q′. A better
answer is made available by exh: in the adult state exh(p ∨ q)
would also eliminate the cell pq. This is better—it generates fewer
ignorance inferences than the parse without exh (Fox, 2007)22.
However, it is still an undesirable and unexpected state of affairs
because it continues to leave us with relevant uncertainties. In
fact, as noted in Singh et al. (2016b), we appear to have prosodic
contrasts between complete and partial answers, but not between
better and worse partial answers. This observation indicates
that what matters for answerhood—at least so far as prosody is
telling—is whether the sentence provides a path to a complete
answer. In the adult state with plain disjunctive sentences, the
parser has no analysis available to it that provides it with a
complete answer. In such a case, ∗SC will get a chance to decide
the optimal analysis. Here, the a priori ordering between the
simpler inclusive disjunction and the more complex exclusive
disjunction (cf. section 2.1) would pressure against the exclusive
disjunction. Assuming that less optimal candidates are costlier
than optimal candidates, we predict the observed cost for the
exclusive disjunction reading of A or B.

(22) Strengthening inclusive disjunction to exclusive
disjunction:

A or B ∗INC ∗SC

a. ☞ <A or B, A ∨ B > ∗ ∗∗

b. <exh(A or B), A⊕ B > ∗ ∗ ∗ ∗∗

Things are different when disjunctive sentences have alternatives
that are not closed under conjunction. In such cases, exh can
turn the disjunction into a conjunction (Fox, 2007; Singh et al.,
2016b; see also Chemla, 2009a; Franke, 2011; Bar-Lev and Fox,
2017 and note 4). Assume the treatment in Fox (2007) and Singh
et al. (2016b) under which recursive application of exh turns
p ∨ q into p ∧ q: [[exh2(p ∨ q)]] = p ∧ q. On the face of it one
might have expected this computation to be hard, since there are
multiple applications of exh and multiple sets of alternatives that
get generated. However, recall that we are assuming that these

21There might be more propositional variables under consideration, but this

doesn’t affect anything we have to say here.
22Fox (2007) notes that the pure Maxim of Quantity leads only to ignorance

inferences about all relevant propositions whose truth-values are not settled by the

speaker’s utterance. This in turn follows from considerations of relevance (the so-

called ‘symmetry problem’; cf. von Fintel and Heim, 1999). In Fox’s (2007) system,

exhaustivity is a mechanism that helps conversational participants take sentences

that are at best partial answers and convert them into better partial answers or into

complete answers where possible (see especially Fox, 2018 for extensive discussion

with consequences for the semantics and pragmatics of questions more generally).
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computations do not contribute to costs. Instead, it is the output
of these computations (∗SC), and its affect on the context (∗INC),
that are relevant to processing costs. In this case, the parser finds
the conjunctive meaning and considers it desirable because it
provides a complete answer and no cost is therefore expected.

(23) Strengthening inclusive disjunction to conjunction:

A or B ∗INC ∗SC

a. <A or B,
A ∨ B >

∗ ∗∗

b. ☞ <exh(exh(A
or B)),
A ∧ B >

∗∗

More generally, if it is reasonable to assume that a disjunction
Pk = p1∨p2∨. . . pk will typically be used in a context in which the
participants are interested in knowing, for each of the disjuncts pi,
whether pi is true, then we have an explanation for the contrast
between conjunctive strengthenings and exclusive strengthenings
and their relative ordering with inclusive disjunction [cf. the
generalization in (11) in section 2.1]: conjunctive readings satisfy
the high-ranked ∗INC whereas neither inclusive nor exclusive
disjunctions do, and inclusive disjunctions have fewer ∗SC
violations than exclusive disjunctions.

The result extends to quantificational sentencesDAB, whereD
is a quantificational determiner, A its restrictor, and B its nuclear
scope. Suppose such sentences are typically used in answers to the
questionHowmany A B? If there are k individuals in the domain,
then this induces a partition with k + 1 cells (“none,” “exactly
1,” “exactly 2,” . . ., “exactly k”). When D is a logical existential
quantifier as in some A B, the basic meaning ∃ only eliminates
the “none” cell. This partiality is expected, given that existential
quantifiers are essentially disjunctive: “exactly 1 or exactly 2 or
. . . or exactly k.” Exhaustification can produce a slightly better
answer by eliminating the “exactly k” cell, but it still typically
leaves you without the expected and desired complete answer
because you are still left wondering which of exactly 1 or exactly
2 or . . . or exactly k − 1 is true. Thus, both ∃ and ∃+ violate
∗INC. However, because ∃ is semantic simpler than ∃+ (2 vs. 4;
cf. section 2.2), ∗SC decides in favor of ∃ and ∃+ is therefore
predicted to be costly.

If the question were one that induced a different partition, say
{∃∧¬∀,∀,¬∃}, then the costs for exh(∃) could disappear because
it would now satisfy the high-ranked ∗INC and ∃ still would not
(see Breheny et al., 2013 for evidence in this direction). This is
a general feature of the proposal: the costs for processing any
sentence S will depend on what the QUD is. Sometimes exh can
help you turn S into a complete answer, in which case no cost
is expected, but other times exh will only create more complex
meanings without also creating a complete answer, in which case
costs are expected23.

23A reviewer raises the question of how we can identify the QUD of an utterance.

For example, consider a context in which the goalkeeper Sue must not let in

more than 2 goals to keep her position as starting keeper. A asks: Did Sandy keep

her position? B responds: No, she let in three goals. In a sense, the strengthened

meaning of B’s response gives strictly more information than is required to answer

When D is a numeral, exh will typically produce a complete
answer to a how-many question. Suppose that there are k
individuals in the domain, and that the speaker produces nAB
where n < k. On its basic meaning, nAB is again only a partial
answer, eliminating all cells “exactly r” where r < n. Again, this
is expected given that the basic meaning is essentially disjunctive:
“either exactly n or exactly s(n) or . . . or exactly sj(n)” (where
sj(n) = k and is the result of j = k − n applications of the
successor function to n). But with numerals, unlike with logical
some, exh can produce a complete answer by also eliminating
cells “exactly r” where n < r ≤ k (because, following Horn,
1972, the alternatives for n A B include not just k A B, but
also r A B for n < r ≤ k)24. For example, consider the case
where n = 2. Refer to the basic “at-least” reading with [≥ 2],
and to the strengthened “exactly” reading with [= 2]. Then
the OT constraint evaluation system selects [= 2] as optimal
because it satisfies ∗INC, even though the “exactly” reading
incurs more violations of the lower-ranked ∗SC (cf. Note 17 in
section 2.2):

(24) Strengthening numerals from an “at least” to an “exactly”
reading:

2AB ∗INC ∗SC

a. < 2AB, [≥ 2] > ∗ ∗ ∗ ∗

b. ☞ < exh(2AB), [= 2] > ∗ ∗ ∗∗

The system in Singh et al. (2016b) thus accounts for CUPID by
appealing to the importance of complete answers in an overall
theory of processing costs. The complete answer perspective may
also speak to some of the questions that remain unanswered
in concept learning. Recall that conjunctive concepts are easier
to learn than inclusive disjunction concepts, and that universal
quantification is easier to learn than existential quantification.
We now have a rationale for this: if you learn that some element
satisfies a conjunctive concept (say red and triangle), you learn
right away that it is red and that it is a triangle. Disjunctive
concepts—whether inclusive or exclusive—leave this question
open. Similarly, learning that All wugs are red tells you that as
soon as you encounter a wug, you can infer something about its
color. Learning only that some wugs are red, or that only some
wugs are red, does not confer you with this inferential ability.
Presumably, as with conversation, it is better to have relevant
uncertainties resolved than to leave them unresolved. Recall

A’s question, whereas the basic meaning itself gives exactly the right amount. The

reviewer wonders whether the QUD for she let in three goalsmight nevertheless be

a howmany question. There is certainly room for flexibility of QUDs, and numerals

might strongly be associated with how many questions. At the same time, we have

not said anything about how to incorporate an overly strong answer in ourmeasure

of “distance from a complete answer.” I leave this as a challenge for now.
24Bar-Lev and Fox (2017) propose that “innocent inclusion”—a new method

for computing free-choice—is obligatory and hence cost-free while “innocent

exclusion” (Fox, 2007)—used for more standard scalar implicatures (like ∃+)—

has a cost due to context-sensitive optionality. The case of numerals suggests

that complete answerhood is the more fundamental notion. Of course, this does

not speak at all to the motivation for introducing innocent inclusion in the

first place (the need for a global mechanism to compute universal free choice—

Chemla, 2009b).
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that these considerations cannot be reduced to considerations
of semantic strength: for example, conjunction and exclusive
disjunction are both stronger than inclusive disjunction, but only
conjunction is easier to process.

3.3. Complete vs. Partial Answers
We have been assuming with Singh et al. (2016b) that the
parser cares only about whether a given form-meaning pair
provides a complete answer to the QUD. As we noted earlier,
this assumption is motivated in part by the observation that
our pronunciation patterns distinguish between complete and
partial answers but not between different kinds of partial answer.
An additional motivation comes from considerations of our
obligations in general. If I ask my son to help me carry a stack of
books from one room to the other, and the request is reasonable,
I expect him to help me move all of them. I would be surprised
and disappointed with anything less.

But what if he helped me move half of them and then
went back to his video games? Is that not better than opting
out entirely? The system in Singh et al. (2016b) treats all sub-
optimal answers on a par. For example, in (22) both the inclusive
disjunction and exclusive disjunction receive a single penalty
for violating ∗INC, even though the exclusive disjunction is a
better answer (it rules out two cells instead of only one). Even
if prosody is blind to this distinction, it is not obvious that the
parsing mechanism should be. Some partial answers are closer
to complete than others, and it is conceptually natural to think
that the parser might care about how close different possibilities
get to the end goal. To facilitate comparison with Singh et al.’s
(2016b) binary choice (complete or not?), it would be useful to
formulate a measure that allowed partial answers to be compared
for how far they are from complete. Here we aim to find such a
measure, and to examine its usefulness in accounting for the facts
under discussion. Here I review some fairly simple measures, but
I will reject them in favor of the information-theoretic entropy
measure proposed in section 3.4. Readers may skip straight to
the proposal there, but I provide details here because it might be
instructive to see why arguably simpler proposals don’t work.

One natural amendment of Singh et al. (2016b) that could
accommodate the ordering assumption would be to count the
number of remaining cells in the partition and to use that
as the number of ∗INC violations (1 being the minimum
value associated with the complete answer). Call our new
constraint ∗INC-G (where G is for “graded”). Under this
view, conjunctions would still be optimal when compared with
inclusive disjunctions: they identify a unique cell, whereas
disjunctions leave three cells to choose from.

(25) Strengthening inclusive disjunction to conjunction:

A or B ∗INC-G ∗SC

a. <A or B, A ∨ B > ∗ ∗ ∗ ∗∗

b.☞< exh(exh(A or B)), A ∧ B > ∗ ∗∗

Unfortunately, the move from ∗INC to ∗INC-G quickly runs
into trouble. For example, exclusive disjunctions come out as

optimal in competition with inclusive disjunctions because they
only leave behind two cells:

(26) Strengthening inclusive disjunction to exclusive
disjunction:

A or B ∗INC-G ∗SC

a. <A or B, A ∨ B > ∗ ∗ ∗ ∗∗

b.☞<exh(A or B), A⊕ B > ∗∗ ∗ ∗ ∗∗

This is the wrong result. We could correct for this by actually
reordering the constraints such that ∗SC outranks ∗INC. This
would work for (26) and for (25), but it would not work for
numerals. For example, if the sentence 2 AB is offered in response
to the question how many (of these 4) As are B?, the evaluation
component would select the basic “at-least” reading as optimal:

(27) Strengthening numerals from an “at least” to an “exactly”
reading:

2AB ∗SC ∗INC-G

a. ☞ < 2AB,≥ 2 > ∗ ∗ ∗ ∗ ∗ ∗

b. < exh(2AB),= 2 > ∗ ∗ ∗∗ ∗

These considerations could of course be taken as an argument
that the parser does not after all distinguish between different
kinds of partial answer, and thus that the parsing mechanism
incorporates ∗INC instead of ∗INC-G and orders ∗INC over
∗SC. The challenge for this view would be to provide
a rationale for why the constraints should be ordered in
this way.

In the rest of this paper I will continue to take a different path
so that we have a concrete viable alternative that allows room for
orderings of partial answers. As a starting point, suppose that the
problem is not with ∗INC-G but with the OT evaluation system.
Specifically, assume that costs are equated with the total number
of constraint violations. Different cost functions are imaginable,
but let us take summation as a simple starting point. Under this
view, it turns out the above facts can all be captured. For example,
in the case of binary connectives, conjunctions are less costly
than inclusive disjunctions (three vs. five) which in turn are less
costly than exclusive disjunctions (six). Similar results hold for
quantified sentences. Suppose that there are k individuals in the
domain. Then ∃ costs k + 2 and ∃+ costs k + 3: ∃ incurs two
violations of ∗SC and k violations of ∗INC-G (it only eliminates
the cell in which no individuals that satisfy the restrictor satisfy
the scope, leaving behind k cells), and ∃+ incurs four violations
of ∗SC and k−1 violations of ∗INC-G (it also eliminates the cell in
which all individuals that satisfy the restrictor satisfy the scope).
Finally, numerals nAB (where n < k) are also accounted for: the
“at-least” reading has n + 1 violations of ∗SC and (k − n) + 1
violations of ∗INC-G, and hence k+2 violations in total, whereas
the “exactly” reading has n+2 violations of ∗SC and one of ∗INC-
G, for n+ 3 violations in total. For all values of n and k such that
n < k, the “exactly” reading is no more costly than the “at least”
reading, and for all but the case k = n + 1 the “exactly” reading
is less costly.
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Unfortunately, this perspective leads to some counter-
intuitive predictions. Consider the case of a general k-ary
disjunction Pk, and consider the costs associated with the basic
meaning of the sentence, as well as with exh(Pk) (leading to the
“only one” reading) and with exh2(Pk) (leading to the conjunctive
reading when the alternatives are not closed under conjunction;
see note 4). Recall from section 2.1 that the semantic complexity
of Pk is k (the smallest formula representing this meaning is p1 ∨
p2 ∨ . . . ∨ pk), which is also the semantic complexity of exh2(Pk)
because this gives the incompressible p1 ∧ p2 ∧ . . . pk. Recall also
that exh(Pk) is more complex: its meaning is given by k disjuncts
each of which contains k conjuncts that assert that one of the pi
is true and all other k− 1 pj are false. Thus, exh(Pk) has semantic
complexity k2. We also need to say something general about how
these meanings affect the QUD. With k literals, there are 2k cells
of the partition. Conjunctions completely answer the QUD, and
hence leave behind a single cell in which each literal pi in Pk is
true. Inclusive disjunctions Pk eliminate only the cell in which all
literals pi in Pk are false, and hence they leave behind 2

k − 1 cells.
Finally, exh(Pk) leaves behind k cells in each of which only one of
the literals pi in Pk is true. We summarize these costs in (28):

(28) Costs of update (to be revised):

Formula ∗SC ∗ING-G

Pk k 2k − 1

exh(Pk) k2 k

exh2(Pk) k 1

Continue to assume that costs are simply added together. The
cost of the conjunctive reading grows linearly with k (it is
the sum k + 1), and thus still comes out less costly than the
disjunctions because their costs grow more rapidly: exh(Pk)
grows as a polynomial k2 + k, and Pk grows exponentially k +

2k − 1. The competition between the two disjunctions thus boils
down to how quickly k2 grows vs. 2k − 1. It turns out that
exclusive disjunctions are predicted to be slightly more costly
than inclusive disjunctions for 2 ≤ k ≤ 4 (in this range 2k −

1 < k2), after which point the costs of inclusive disjunctions start
to increasingly dwarf the costs of exclusive disjunctions (here
2k − 1≫ k2). See Figure 2 for an illustration.

It would be surprising, hence interesting, if this prediction
were true. But it seems rather unlikely. A more natural result
would be one under which inclusive disjunctions are truly
sandwiched between exclusive disjunctions and conjunctions for
all values of k. Certainly, this is what all the evidence would
suggest (Feldman, 2000). The problem, clearly, is the exponential
cost associated with inclusive disjunctions because of the poor job
they do at answering questions. They eliminate only one among
an exponential space of cells, and they therefore leave behind an
exponentially large amount of relevant uncertainty.

3.4. Entropy, Questions, and Answers
There is a natural perspective that tames the costs associated with
exponential relevant uncertainty (van Rooij, 2004, building on
Bar-Hillel and Carnap, 1952 among other work). Suppose that
we identify relevant uncertainty with the entropy of a partition,
which measures the amount of information a receiver would

FIGURE 2 | Cost of update (to be revised).

expect to receive from observing an outcome of this partition.
Your relevant uncertainty is eliminated when you observe a given
outcome, and the entropy of the partition therefore provides
a natural measure of the amount of relevant uncertainty you
started with. Clearly, the greater the number of alternatives we
are considering, the more relevant uncertainty there is and hence
the more informative any particular outcome would be. We thus
want a measure of relevant uncertainty that is monotonically
increasing in the number of cells. Simply counting the number
of cells provides such a measure but as we saw it runs into
trouble. Note also that the count measure makes no use of
probabilities. For example, there is a sense in which a less
likely cell is more informative than a more likely one. There
is also a sense in which we are most uncertain if all cells are
equally likely.

To account for these and other desiderata, Shannon (1948)
argued that the information associated with any given cell qi in
partition Q should be identified with log(1/P(qi)), where P(qi)
is the probability that qi is the answer to the question (the
message that we receive). From this, the relevant uncertainty of
the partition is identified with its entropy, which in turn is just
the expected information (the sum of the information provided
by each cell weighted by its probability)25:

(29) Entropy and Information: Let Part(c) = Q =

{q1, . . . , qk}. Let P(qj) be the probability of qj. Then:

a. Expected information: The entropy of
Q, H(Q), is the expected information

H(Q) =
∑k

j=1 P(qj)inf (qj)
26.

25Shannon (1948) posited some basic axioms that any measure of relevant

uncertainty should follow, and proved that (29) is the unique measure satisfying

these axioms. Throughout this paper, we will assume that our logarithms are binary

(log2n is that number k such that 2k = n).
26To reduce clutter, we omit the multiplicative constant that is sometimes

presented in the derivation of entropy.
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b. Information: The information received from any
particular cell qj is inf (qj) = log2(1/P(qj)).

(30) Examples:

a. Let Q = {11, 10, 01, 00}, and suppose that the
elements in Q have the same probability: ∀qj ∈

Q : P(qj) = 1/4. Then for all qj ∈ Q, inf (qj) =

log2(4) = 2, and H(Q) = 2.
b. Let Q = {11, 10, 01, 00}, and suppose that the

elements in Q have the following probabilities:
P(11) = 1/8, P(10) = P(01) = 1/4, P(00) = 3/8.
Then inf (11) = 0.53, inf (10) = inf (01) = 0.5,
inf (00) = 0.375, and thus H(Q) = 1.9.

c. Let Q = {111, 110, 101, 100, 011, 010, 001, 000},
and suppose that the elements in Q have the same
probability: ∀qj ∈ Q : P(qj) = 1/8. Then for all
qj ∈ Q, inf (qj) = log2(8) = 3, and H(Q) = 3.

The examples in (30) indicate some general properties that
motivate the entropic measure of relevant uncertainty. When
the elements of a partition Q have the same probability
(∀qi ∈ Q : P(qi) = 1/|Q|), the entropy is the log
of the size of the set: H(Q) = log2(|Q|). This makes
sense: each cell qi provides information log2(1/P(qi)) =

log2(1/(1/|Q|)) = log2(|Q|), and since each cell is equally
likely, log2(|Q|) is the amount of information we expect to
receive. Note also that the partition induced by considering
whether k literals are true has entropy k when all cells are
equally probable. Thus, when there are more literals, and
hence more cells in the partition, there is more uncertainty.
Finally, note that the entropy is reduced when probabilities
are not equal (you are most uncertain when you have no bias
among alternatives).

Assume now that the cost associated with relevant uncertainty
in a context is identified with the information-theoretic
entropy of the QUD in that context. Assume also (to keep
calculations simple) that the cells in the partition have
equal probability27. The logarithmic growth of entropy
means that the corresponding cost functions are now
more contained.

27This assumption might turn out to be problematic. It is conceivable that

probabilities decrease with the number of true alternatives. For example, an a

priori assumption that predicate extensions are as small as possible might provide

a rationale for theories of “minimal worlds/models” theories of exhaustivity (e.g.,

van Benthem, 1989; van Rooij and Schulz, 2004; Spector, 2005, 2006, 2016; Schulz

and van Rooij, 2006). Given the symmetry problem (von Fintel and Heim, 1999;

see also Fox (2007), Katzir (2007)), the Maxim of Quantity cannot motivate

the minimal worlds/models assumption. For example, suppose we learn from a

speaker that R(a) and we are in a context in which it is relevant whether b satisfies

R. A speaker obeying the Maxim of Quantity could only be taken to be ignorant

about whether R(b). However, if R(b) is a priori less likely than ¬R(b), this might

make it rational for the listener to conclude that R(b) is false. More generally, it is

plausible to assume that for an arbitrary predicate P and arbitrary individual c, P(c)

is less likely to be true than false. This assumption may relate to the “size principle”

proposed in concept learning (e.g., Tenenbaum, 1999), and may also underlie our

ability—granted by exh—to state only the positive instances of a predicate (these

being the least likely, and hence worth the cost of expression). See also Bar-Hillel

and Carnap (1952) on (a-)symmetries between a predicate and its negation. I hope

to return to this set of ideas in future work.

FIGURE 3 | Cost of update (final version).

(31) Costs of update (final version):

Formula Complexity Entropy

Pk k log2(2
k − 1)

exh(Pk) k2 log2k

exh2(Pk) k 0

More to the point, we now predict the desired result
that for all values of k, conjunctions are less costly than
inclusive disjunctions which in turn are less costly than
exclusive disjunctions (see Figure 3).

3.5. How Many Kinds of Cost?
With (31), we have completed our development of the cost
function we stated in (19). We repeat the statement below in (32):

(32) Processing costs during disambiguation: Let S be a
sentence uttered in context c. Suppose that grammar G
assigns k analyses to S: G(S) = {λ1, . . . , λk}, where each
λi is a form-meaning pair < fi,mi >. Let S(mi) be the
semantic complexity ofmi, let ci be the result of updating
context c withmi, c+mi, and letH(ci) be the entropy in
context ci. Then the cost of selecting λi ∈ G(S) in context
c, C(λi, c), is: C(λi, c) = S(mi)+H(ci).

At first blush, the two kinds of cost seem different. Semantic
complexity is a measure of compressibility: what is the smallest
representation that can produce the desired meaning? Entropy
is a measure of relevant uncertainty: how much information is
needed to resolve our uncertainty? As it happens, entropy has
a coding interpretation. Shannon (1948) noted that the entropy
tells us the length of the representation (in bits) that would be
needed to communicate outcomes in Q28. Thus, both S and H

give compression-based costs: semantic complexity tells us how
much cost we have to pay for the current message, and entropy

28More generally, the noiseless coding theorem states that the minimal average code

length for encoding outcomes inQ is very close to the entropy ofQ.
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tells how much it would cost to get to a complete answer and
hence how much cost we can expect to pay before our work
is done29.

We may also want a more general variant of (32) that allows
for other kinds of costs to be incorporated, and for different ways
of combining them. For example, it is natural to consider the
possibility that the information of a given answer might itself
have a cost, or that entropy reduction (the difference in entropy
between the input and output contexts) is more central than
the entropy in the output context alone. To allow for these and
other possibilities in formulating theories of the cost function, a
less committed variant would say that C(λi, c) is a monotonically
increasing function of S(mi) andH(ci).

4. CONCLUDING REMARKS

We have in (32) a function that assigns a cost to any given
interpretation to an ambiguous sentence uttered in a context c.
So far, I have said nothing about the disambiguation mechanism.
I assume here that disambiguation decisions are made by
finding optimal solutions to a coordination problem between
speaker and hearer [see (6)]. In general, such decisions will
involve assigning utilities to the space of output contexts, where
coordination gets more utility than non-coordination and where
the utilities might take the costs in (32) into account. There
will also be a probability distribution over the space of output
contexts (the probability that the speaker intends for each
candidate to be the output context), and this will be partly
determined by assumptions about the speaker’s epistemic state.
There will also be assumptions about what the QUD is, and
these will determine (in conjunction with exh and the Maxim
of Quantity) what the space of output contexts will be. In
such a framework, the cost function puts a certain pressure
to minimize costs (by the utility function), but the costs will
be just one factor in the set of considerations that help a
listener disambiguate. I should like to emphasize, however, that
probabilities in this architecture only enter into disambiguation
considerations, and hence the approach developed here is quite
different than systems that allow probabilities to enter into the
strengthening mechanism itself (e.g., Franke, 2011; Potts et al.,
2015; Bergen et al., 2016). In the terminology of Fox and Katzir
(2019), I assume that exh does not take a probability distribution
as an argument, although the function that solves the decision
problem in (6) does.

29Roni Katzir (p.c.) notes that the picture here is quite analogous to Minimum

Description Length (MDL) approaches to learning (Rissanen, 1978). Such

approaches compare competing hypotheses for a given set of data by minimizing

the sum of (i) the cost to encode the hypothesis, and (ii) the cost to encode the

data given the hypothesis. Semantic complexity straightforwardly relates to (i), but

it is unclear (to me) how to relate entropy to (ii). For example, in MDL learning

we compare hypotheses that can make sense of the data. In our disambiguation

scenario, we have different form-meaning pairs that can be associated with the

observable data (the sentence S), but what the entropy measure is concerned with

is how these different analyses affect the context, and different analyses will (in

general) lead to different contexts. I hope to return to the comparison with MDL

in future work.

The cost function in (32) aims to make sense of CUPID,
the puzzle of why and how exhaustification can be treated
with uniformity in the competence system but with diversity
in the performance system. I have argued that this can be
made sense of by assuming that exhaustification itself is not the
source of cost. Instead, I assume that costs are calculated by
systems that ignore the computations internal to the language
faculty. The cost calculation looks at the proposition denoted
by each candidate analysis of the sentence, as well as the way
this proposition would affect the information in the context,
and assigns a cost to each using domain-general considerations.
Like other models proposed from the early days of generative
grammar (e.g., Miller and Chomsky, 1963) up to more modern
treatments (e.g., Levy, 2013), my proposal here identifies a
role for the complexity of the sentence itself as well as for
information-theoretic reasoning about uncertainty resolution.
However, the only aspect of the sentence that is relevant for
our purposes is its meaning, with no regard for or access to its
computational history.

The commitment to domain-general principles pursued
here means that I have not considered language-dependent
characterizations of scalar diversity in processing. For example,
acquisition studies have argued that children differ from adults
in one important way: they do not make lexical substitutions
in generating ALT (e.g., Barner and Bachrach, 2010; Barner
et al., 2011; Singh et al., 2016b; Tieu et al., 2017). One might
pursue the idea that lexical substitutions, even when they emerge
in the adult state, are the source of processing costs (see
Chemla and Bott, 2014 and van Tiel and Schaeken, 2017 for
steps in this direction). Note that free-choice inferences do
not require lexical substitutions (the constituents are enough
of a substitution source), and numerals cannot in general
require lexical substitutions because the set of alternatives
is infinite and hence must be generated by the successor
function (see also section 1.4). This perspective would need
to make sense of why lexical substitution does not seem to
be hard with only (Marty and Chemla, 2013), and in any
event working this all out raises non-trivial challenges that
would take us too far afield to discuss here (Chemla and
Singh, 2016). I hope to return to a fuller comparison in
future work.

We have considered the idea that exh has several functions:
it typically strengthens meanings, but it also often complicates
meanings and gets us to better and better answers without having
to verbalize them outright. Consider for example assertion of
a disjunction Pk = p1 ∨ p2 ∨ . . . pk in a world with no exh
and in which the Maxim of Quantity governs communication.
In such a world, you only eliminate one cell of the 2k cells of
the partition, and you thus generate lots of ignorance inferences
(Fox, 2007). But suppose that the speaker in this world knows
that exactly one of the pi is true but doesn’t know which.
They would then have to produce a complex utterance to
convey this thought: (p1 ∧ ¬p2 ∧ . . . ∧ ¬pk) ∨ (¬p1 ∧ p2 ∧

¬p3 ∧ . . .¬pk) ∨ . . . (¬p1 ∧ . . . ∧ ¬pk−1 ∧ pk). This is a k2

mouthful. If a super-engineer were kind enough to give the
speaker and hearer access to exh, they could communicate this
complex piece of information by uttering Pk and hoping the
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listener would realize they should parse the sentence with exh.
Presumably, the joint cost of exh and Pk, together with the
risk of error (given the new ambiguity), is a better way to
communicate a good and complex answer than having to utter
it outright.
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