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Current models of speech motor control rely on either trajectory-based control (DIVA,

GEPPETO, ACT) or a dynamical systems approach based on feedback control (Task

Dynamics, FACTS). While both approaches have provided insights into the speech

motor system, it is difficult to connect these findings across models given the distinct

theoretical and computational bases of the two approaches. We propose a new

extension of the most widely used dynamical systems approach, Task Dynamics, that

incorporates many of the strengths of trajectory-based approaches, providing a way

to bridge the theoretical divide between what have been two separate approaches

to understanding speech motor control. The Task Dynamics (TD) model posits that

speech gestures are governed by point attractor dynamics consistent with a critically

damped harmonic oscillator. Kinematic trajectories associated with such gestures should

therefore be consistent with a second-order dynamical system, possibly modified by

blending with temporally overlapping gestures or altering oscillator parameters. This

account of observed kinematics is powerful and theoretically appealing, but may be

insufficient to account for deviations from predicted kinematics—i.e., changes produced

in response to some external perturbations to the jaw, changes in control during

acquisition and development, or effects of word/syllable frequency. Optimization, such

as would be needed to minimize articulatory effort, is also incompatible with the current

TD model, though the idea that the speech production systems economizes effort has a

long history and, importantly, also plays a critical role in current theories of domain-general

human motor control. To address these issues, we use Dynamic Movement Primitives

(DMPs) to expand a dynamical systems framework for speech motor control to allow

modification of kinematic trajectories by incorporating a simple, learnable forcing term

into existing point attractor dynamics. We show that integration of DMPs with task-based

point-attractor dynamics enhances the potential explanatory power of TD in a number of

critical ways, including the ability to account for external forces in planning and optimizing

both kinematic and dynamic movement costs. At the same time, this approach preserves

the successes of Task Dynamics in handling multi-gesture planning and coordination.

Keywords: speech motor control, computational models, dynamical systems, optimal control, task dynamics,

dynamic movement primitives
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INTRODUCTION

The speech motor system comprises many individual subsystems
(respiratory, phonatory, articulatory), a larger number of
individual articulators (upper lip, lower lip, jaw, tongue tip,
tongue body, etc.), and an even larger number of muscles. The
highly redundant structure of this system ensures that there
are often many (perhaps infinite) ways for the system to move
between two given configurations (Bernstein, 1967). How are
speakers able to select from among the multitude of possible
movement patterns, to arrive at those representing the highly
accurate and precise movements that typify healthy, mature
speech? Attempts to explain the speech control systems that
produce such complex behavior have fallen into two opposing
approaches: (1) dynamical systems theory, which conceptualizes
movement patterns as emergent properties of synergistic groups
or systems of speech articulators whose evolution is determined
by the state of the system and current production goals, and (2)
trajectory-based approaches, which solve the highly redundant
control problem by pre-specifying a particular desired trajectory.
A subset of this latter approach which will be particularly relevant
to the current proposal are optimality-based approaches, which
attempt to find a desired trajectory that minimizes some cost
function (either kinematic properties of the movement, such as
jerk, or dynamic properties, such as total force). While both
dynamical systems and optimal control approaches have had
success in replicating certain aspects of human speech behavior,
they have arrived at essentially distinct understandings of the
nature of speech motor control.

The dynamical systems approach suggests that control of
the complex motor system can be considerably simplified by
understanding the motor system as a self-organizing system of
functional units of articulators, each of which corresponds to
a particular behavioral task. The behavior of the component
articulators, while governed by the higher-order functional unit,
need not be explicitly or directly specified. These functional units
thus serve to constrain the motor system in such a way that
its evolution serves to perform the particular task specified by
the functional unit, without the need to centrally control the
activity of each degree of freedom in the system. Practically,
these functional units are hypothesized to be autonomous
dynamical systems whose evolution depends on the system’s
current and goal states. The particular parameters of each
dynamical system (e.g., the goal, stiffness, damping, etc.) govern
the evolution of the system from its current state toward a
goal state, and the evolution of this dynamical system generates
the motor activity in the lower-level subsystems needed to
perform the task. Importantly, there is no specific plan or desired
kinematic trajectory in this approach. Instead, the kinematic
behavior of the system emerges from the dynamical regime
governing the functional unit (which could alternatively be called
the controller).

The most prevalent dynamical systems model of speech
production is the Task Dynamic Model1 (Saltzman, 1986;

1Both the FACTS (Parrell et al., 2019) and the ACT (Kröger et al., 2009) models

also incorporate dynamical systems control.

Saltzman and Munhall, 1989). In this theory, speech tasks are
modeled as a second-order, damped mass-spring systems. The
evolution of such a system is given by Equation (1) (discussed
in more detail in the Task Dynamics section).

z̈ = M−1
(

−Bż − K
(

z − g
))

(1)

Where z̈ is the system acceleration of the system state, z is
the current position, ż is the current velocity, g is the target
spatial position or goal, and M, B, and K, respectively, the mass,
damping, and stiffness coefficients, which are assumed to reflect
critical damping. Such systems have two desirable characteristics
for a motor controller. First, they exhibit equifinality, such that
the system will come to rest at its target position regardless of the
initial state of the system. This also assures that the system will
reach its resting position regardless of any perturbations that may
occur during themovement without the need for any re-planning
or change in control. Second, such systems are time-invariant,
in that the evolution of the system is a function governed by
its current state and dynamical parameters (spatial target, mass,
stiffness, damping) rather than being explicitly a function of
time. This is a particularly important consideration for speech,
where the duration of individual movements is affected by a
wide range of parameters, including speech rate, stress, and
prosodic structure.

Dynamical approaches to movement control receive some
support from research on neurobiological control systems.
For example, the VITE model (Bullock and Grossberg, 1988)
presents a relatively simple neural network model that is able
to generate appropriate kinematic behavior in directed reaching
movements. The model consists of three distinct but interacting
neural populations encoding (1) the present position of the
system, (2) the desired target position, and (3) the difference
between the target and present positions. The relational structure
between these populations is such that the behavior of the
controlled systems is consistent with second-order dynamics.
This suggests a plausible neural implementation of the more
abstract dynamical systems in Task Dynamics (Lammert et al.,
2018). Additionally, recent studies have identified dynamical
patterns in the neural activity that drives motor behavior
(Churchland et al., 2012; Shenoy et al., 2013). Using intracortical
recordings in non-human primates, these studies have shown
that oscillatory motor behavior, such as walking, is reflected
at a neural level by co-occurring oscillatory dynamics at the
population level in the activity of motor cortical neurons.
Importantly, cortical activity during goal-directed reaching, a
non-oscillatory behavior, also exhibits patterns of neural activity
consistent with a truncated limit-cycle oscillator. These results
have recently been extended to human speech, where similar
dynamical patterns have been demonstrated in the population-
level activity of primary motor cortex neurons during production
of monosyllabic words (Stavisky et al., 2018). Together, these
results suggest that a controller based on dynamical equations
may be an appropriate model of the neural implementation of
motor control.

The principal drawback of the Task Dynamics
implementation of dynamical systems control is that the
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dynamics driving the evolution of the functional task units
are limited in flexibility. The system is only able to generate
oscillatory dynamics (with various degrees of damping), such
that the system will evolve in a deterministic way from any given
initial state toward the goal state. Though these movements
can, in principle, be modified in a potentially profound way
by changing the damping, stiffness and inertial coefficients,
such changes would only globally affect each gesture within
the system.

Extensions of Task Dynamics have attempted to address
this limitation for specific cases. Prosodic gestures have been
proposed that allow for temporally-specific changes in the
rate and/or extent of movements (Byrd et al., 2000; Byrd
and Saltzman, 2003; Saltzman et al., 2008), though these
prosodic gestures act concurrently on all active gestures, rather
than specifically on individual gestures. Also, multiple gestures
produced with varying degrees of temporal overlap have been
shown to result in movements that are truncated and forced to
reverse direction prematurely, which can account for reduction
phenomena, such as undershoot, flapping, and spirantization
(Browman and Goldstein, 1990, 1992; Edwards et al., 1991;
Beckman and Edwards, 1992; Beckman et al., 1992; Parrell, 2011;
Parrell and Narayanan, 2018).

Despite these important modeling advances, the Task
Dynamics implementation of dynamical systems control is still
unable to produce local changes in the rate of change or reversals
of direction arbitrarily, or for any single activated tract-variable
(TV) gesture. While such behavior may not be critical for
some aspects of speech (see the large literature on modeling
speech using second order dynamics), some speech behaviors
do require more complex control. For example, when speakers
are exposed to a velocity-dependent force field on the jaw,
they initially produce jaw trajectories that deviate, or curve
away, from the relatively straight trajectories observed under
unperturbed conditions (Tremblay et al., 2003, 2008; Tremblay
and Ostry, 2006; Lametti et al., 2012). However, after a period
of exposure, jaw trajectories return to their baseline curvature.
When the force field is subsequently removed, jaw trajectories
are curved in the opposite direction as under initial exposure.
These results suggest that the speech motor control system
can learn to account for the dynamics of the force field to
generate motor commands that maintain a straight trajectory.
Moreover, some have argued that speech motor control may
rely on explicit trajectory representations rather than discrete
attractors (Guenther, 2016) or that the speech motor system
seeks to balance effort and intelligibility (Lindblom, 1990; Perrier
et al., 2005; Patri et al., 2015). These types of behavior cannot
be generated in Task Dynamics or any control system whose
dynamics are dependent only on the system state.

In order to account for behaviors exhibited by speakers in
the jaw perturbation paradigm discussed above, the controller
must be sensitive to other types of information beyond the
instantaneous system state. One solution to this problem is found
in theories that rely on optimization to generate motor output.
Such schemes, known as optimal controllers, seek to generate
a movement that minimizes some cost function. Typically,
this involves the generation of a pre-planned motor trajectory,
such that the cost of the full movement can be calculated

and minimized prior to movement onset [though see optimal
feedback control, e.g., Todorov and Jordan (2002), for a variation
of optimal control without pre-planned trajectories].

Optimal control has a long history in modeling discrete
reaching tasks (Nelson, 1983; Flash and Hogan, 1985; Uno et al.,
1989; Hoff and Arbib, 1993; Harris and Wolpert, 1998) as well
as in speech (Perrier et al., 2005; Patri et al., 2015). While these
models share the general concept of optimizing movements to
minimize some cost, the nature of the cost function has been
a matter of debate. It is often claimed that the central nervous
systems minimizes the total muscle activation of a movement
(Harris and Wolpert, 1998; Todorov and Jordan, 2002; Todorov,
2004; Perrier et al., 2005; Patri et al., 2015), either to minimize the
amount of energy expended during a movement or to minimize
error. Error is minimized along with total muscle activation
because noise in the motor system is signal dependent, such that
the variance of force scales proportionally with the square of the
force (O’Sullivan et al., 2009; Diedrichsen et al., 2010). Other
proposals suggest that the kinematic characteristics of movement
determine the cost function. Cost functions have been suggested
to minimize jerk, which is the third derivative of position (Flash
and Hogan, 1985; Hoff and Arbib, 1993), torque change (Uno
et al., 1989), or path curvature (Kistemaker et al., 2010, 2014).
Regardless of their specific implementation, such proposals are
able to account for external as well as internal dynamics in
control, and are able to produce changes in behavior in response
to force field perturbations (Izawa et al., 2008).

In speech, optimal control has been implemented in the
GEPPETO (Perrier et al., 2005) model and its Bayesian
reformulation (Patri et al., 2015). It is also, implicitly,
incorporated into DIVA (Guenther, 2016). DIVA differs from
many optimal control approaches in that it attempts to
optimize planned motor trajectories with respect to a given
reference (sensory) trajectory. Optimization serves the purpose
of accurately following the reference trajectory, rather than
minimizing some criterion intrinsic to the planned trajectory
itself, such as effort. This is accomplished by summing, over
time, corrective motor commands issued by the auditory and
somatosensory feedback controllers, which can be seen as a type
of iterative optimization.

Most optimal control models, including those of speech, rely
on the generation ofmovement trajectories. This is partly because
identifying specific, optimal trajectories is more computationally
tractable when compared to identifying more general optimal
control policies (Schaal et al., 2007). Trajectories (or, more
precisely, time-varying targets) have also been suggested to
be necessary for speech (Guenther, 2016). Trajectory-based
control can also substantially simplify the degrees-of-freedom
problem if trajectories are planned in mobility space2 (as occurs

2The term “mobility space” comes from the robotics literature (Sciavicco and

Siciliano, 2000). It is used here rather than the more common “articulatory space”

to provide a neutral reference to the kinematic configuration of the vocal tract and

avoid confusion over whether “articulatory” refers to a low-level description of

the vocal tract geometry (e.g., a concrete description of muscle lengths, or a more

abstracted version of vocal tract kinematics such as that provided by the model

articulators currently used in TD or in our jaw movement example given below)

or a higher-level description of task spaces (such as that provided by the gestural

tract-variable space currently used in TD and in our jaw example below).
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in DIVA and GEPPETO), since each degree of freedom is
explicitly accounted for. However, trajectories lack flexibility,
and may require frequent replanning/reoptimization in the face
of changing environments or task demands. Trajectory-based
control is also inherently time-indexed, in that trajectories are
defined as a function of time. Such time-indexing has strict
consequences for the validity of trajectory-tracking control
policies in changing environments, and may also be difficult
to reconcile with the temporally malleable speech production
system (e.g., movement durations are affected by speech rate,
stress, prosodic boundaries, etc.). Moreover, trajectory-based
optimal controllers make inaccurate predictions about the types
of variability observed in human kinematics (Todorov and
Jordan, 2002). And, perhaps most importantly, there is growing
evidence that human movement does not rely on fully pre-
planned trajectories, at least for limb control (Sergio and Scott,
1998; Desmurget and Grafton, 2000; Nashed et al., 2012).

Thus, the field of speech motor control is left with a situation
where neither the dynamical systems nor optimal control
approaches provide fully satisfactory accounts of human motor
behavior. An ideal control system would provide the flexibility,
temporal flexibility, and robustness of the dynamical systems
approach with the ability to account for the behavioral evidence
that humans do produce motor behavior in accordance with
particular dynamic and/or kinematic constraints.

A few approaches in human motor control and robotics have
sought to bridge this divide. These include Optimal Feedback
Control (Todorov and Jordan, 2002; Todorov, 2004), Dynamic
Movement Primitives (Schaal et al., 2007; Ijspeert et al., 2013),
and Embodied Task Dynamics (Simko and Cummins, 2010a,b,
2011). Optimal Feedback Control (OFC) replaces trajectory-
based optimization with an optimal feedback control law. While
this solves many of the issues with traditional optimal control,
the derivation and calculation of this optimal feedback control
law is difficult, especially for non-linear systems like speech.
The approach based on Dynamic Movement Primitives (DMPs)
incorporates an additional forcing function into a second order
dynamical control system that can be tuned to alter the trajectory
produced by the dynamical control system. This approach is
substantially easier to compute and, perhaps more importantly,
retains the many benefits provided by existing dynamical control
schemes. Embodied Task Dynamics is an extension of Task
Dynamics that incorporates the physical masses of the speech
articulators into the equations of control. This allows for the
quantification of effort (sum of forces), which is then used in a
cost function along with constraints on movement duration and
speech intelligibility.

The current paper presents a step toward bridging the
substantial theoretical gap that separates dynamical systems
and optimal or trajectory-based approaches to speech motor
control. We accomplish this by leveraging the tools of Dynamic
Movements Primitives (Ijspeert et al., 2013) to incorporate
optimization into the most well-developed dynamical-systems
framework of speech motor control, Task Dynamics. In the
sections below, we lay out the basics of dynamical control in Task
Dynamics, DMPs, and the coordination of DMPs with second-
order dynamical systems. We then demonstrate the utility of

this combined model by showing how this approach can be
used to generate corrections for dynamic jaw perturbations that
are consistent with experimentally measured human behavior.
Lastly, we show how the mechanisms developed to incorporate
DMPs into second-order dynamical systems can also be used as
a system of intergestural coordination (Nam and Saltzman, 2003;
Saltzman et al., 2008; Goldstein et al., 2009) as well as movement
initiation (Tilsen, 2013).

TASK DYNAMICS MODEL

Articulatory Phonology (AP) posits that constriction actions (i.e.,
gestures) of the vocal tract represent both the primitive units
of spoken language and the controlled tasks that characterize
speech motor control (Browman and Goldstein, 1992). The
Task Dynamics (TD) model asserts that the controlled evolution
in time of these constriction actions is governed by second-
order equations of motion, consistent with a critically damped
harmonic oscillator.

Speech gestures and their associated dynamics take place in
a space described by a vector of N tract variables, z, where z =

[z1, z2, . . . , zN], that correspond to the degree and location of
vocal tract constrictions. Each specific gesture, k, is associated
with its own pair of constriction degree and location tract-
variables and its own set of mobility variables. Additionally, each
gesture is associated with a corresponding set of tract-variable
dynamic parameters (spatial target, mass, damping, and stiffness,
all time-invariant) and articulator weights. Articulator weights
are described below in conjunction with Equation 6. Gestures
themselves are governed by equations of motion consistent with a
damped harmonic oscillator, as described by Saltzman and Kelso
(1987) and Saltzman and Munhall (1989):

Mz̈ = −Bż − K1z (2)

where 1z = (z − g), and g is a vector containing the time-
varying set of parameters representing the current set of tract-
variable spatial motor goals—i.e., the target positions to which
the tract variables are compelled to move and upon which they
will tend to converge. M, B, K are diagonal matrices containing
the mass, damping, and stiffness coefficients, respectively. All
tract variable parameters, M, B, K, and g, change over time
as functions of the currently active set of gestures. As noted
above, the stiffness, damping and inertial gestural parameters
can have a profound influence on the gesture-related movement
trajectories. These parameters, from a broader perspective, may
therefore be considered part of the motor goals of the system,
e.g., stiffness parameters are lower for vowels than consonants
to capture the fact that vowel gestures are typically slower than
consonant gestures.

The TD model also defines the relationships between the
tract variables and relatively lower-level mobility variables, φ.
Tract variables describe the state of the vocal tract with respect
to speech gestures. However, the vocal tract, like many motor
systems, is typically considered to have a hierarchical structure,
where motor goals are defined in a high-level task space, and
motor commands are issued in a low-level mobility space. For
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example, in a speech context, mobility space variables might be
expressed in terms of the positions of the speech articulators (e.g.,
upper lip, lower lip, tongue tip, etc., called the model articulators
in TD), or even in terms of muscle activations3. The relevant
kinematic equations that define the relationships between the
task and mobility spaces are expressed as follows:

z = h(φ), (3)

ż = J(φ)φ̇, (4)

z̈ = (φ) φ̈ + J̇(φ, φ̇)φ̇ (5)

where h represents the direct kinematic mapping between task
and mobility spaces, and J is the Jacobian matrix of first-order
partial derivatives of z with respect to φ.

Using these kinematic relationships, one can express
accelerations of the controlled, mobility space variables with
respect to the task-space error:

φ̈ = J∗
(

M−1
[

−BJφ̇ − K1z
])

− J∗ J̇φ̇, (6)

where J
∗

= W−1JT
(

JW−1JT
)−1

is the pseudo-inverse of the
Jacobian, weighted by a matrix W. The equation of motion,
in Equation (6), for mobility space variables represents the full
expression of the dynamical control law that characterizes TD,
with integrated inverse kinematics, specifying how task-space
error is equated to a preferred change in mobility space. It is
worth noting that the weighted Jacobian pseudo-inverse provides
a minimum norm solution that can be considered optimal in the
sense that it minimizes the weighted sum of squared mobility-
space accelerations selected for the solution. As evidenced by
this fact, it is possible to incorporate some aspects of preferred
optimality directly into a dynamical systems control algorithm.

In Task Dynamics, the activation of a gesture is determined
by its associated planning oscillator, a second order dynamical
system with non-linear damping. The activation of a gesture is
determined by the phase of this planning oscillator. Essentially,
the phase of the oscillator determines the value of the “go”
signal (G), which allows motion associated with a gesture to
proceed. Early versions of Task Dynamics used a step function
to define this relationship—e.g., G = 1 while the planning
oscillator phase is between 0 and 270◦). More recent versions
have used a cosine-ramped activation function, which results in
more realistic kinematics (Byrd and Saltzman, 1998).

Note that accelerations are potentially experienced by all
mobility variables, even those that are not engaged by currently-
active gestures, due to the inclusion of a neutral attractor. The

3In the present work, and especially the jaw movement example given below, the

mobility space is taken to be an abstracted geometric description of the speech

articulator configuration. Such geometric variables are conceptually related to the

model articulators described in the literature on TD and included as part of the

CASY model (Rubin et al., 1996). Currently, neither TD nor our jaw example

include a model of the vocal tract’s musculature and dynamics. We note that future

developments in TD and in our work may implement a muscular mobility space as

a replacement for the current abstract geometric variables or, alternatively, use such

geometric variables as an intermediate step between task space and the control of

muscle activations. Either development could be easily integrated with the present

modeling efforts.

neutral attractor amounts to a mobility-space target position that
drivesmobility variables in the absence of driving influences from
currently-active gestures.

The “go” signal itself is incorporated into TD in the form of a
gating matrix, included as part of the inverse kinematics model
(Saltzman and Munhall, 1989)4, as well as a gesture-specific
parameter tuning function (spatial target g as well as damping
and spring coefficients—all mass coefficients have been set to 1
for simplicity) for the dynamical control law (see Figure 1). Note
that the role of the “go” signal used in gesture tuning is similar
to and consistent with other models of directed action—e.g.,
Bullock and Grossberg (1988).

DYNAMIC MOVEMENT PRIMITIVES

The general idea of Dynamic Movement Primitives (DMPs) is to
augment a dynamical systems model, like that found in Equation
(2), with a flexible forcing function input, f . The addition
of a forcing function allows the present model to overcome
certain inflexibilities inherent in the original TD model. Given
a speech gesture—conceptualized in AP and TD as comprising
a set of a constriction target and inertial, damping and stiffness
parameters—and a set of initial conditions, the unforced patterns
of movement in TD are entirely determined by Equation (2).
Without some method of otherwise influencing the dynamics,
a speech gesture under the same initial conditions will follow
the same pattern of movement during each instance of that
gesture. Conversely, if the system is subjected to some external
perturbation, the changes in movement associated with that
perturbation will persist indefinitely. The addition of the forcing
term allows for flexible modification of the trajectories of the
tract variables as they move toward the spatial motor goal, all
while preserving the dynamical form of the TD model. A forcing
term of this type, and for this purpose, has been suggested and
developed by Ijspeert et al. (Ijspeert et al., 2002, 2013; Hoffmann
et al., 2009).

We refer to the dynamic control law augmented with a flexible
forcing function input as the control system. In order for this
forcing function to flexibly alter the evolution of the dynamical
system, it must be time-variant. However, if the forcing function
is explicitly a function of time—i.e., f(t)—such a formulation
would remove one of the key benefits of dynamical systems
control, which is that they are time invariant. To avoid this,
we replace any explicit time dependency with a dependency
on a separate dynamical system, the planning system, f (x). In
the sections that follow, we first describe the nature of the
control system and forcing function, then discuss details of the
planning system5.

4Building on the weighted Jacobian pseudo-inverse above, the gating role of the

‘go’ signal was implemented using a diagonal matrixG (i.e., a matrix of ‘go’ signals),

J∗ = W−1GJT
(

GJW−1GJT + [I − G]
)−1

.
5The control and planning systems are called the canonical and output systems,

respectively, in previous presentations of DMPs (Schaal et al., 2007; Ijspeert et al.,

2013). We have chosen to rename these systems to be consistent with the task-

level dynamical control law (Equation 2) and planning oscillators in the Task

Dynamics model. We also believe that these names more intuitively reflect these

systems’ functions.

Frontiers in Psychology | www.frontiersin.org 5 October 2019 | Volume 10 | Article 2251

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Parrell and Lammert Dynamical Systems Optimization in Speech

FIGURE 1 | Graphical overview of the TD model, as presented in Saltzman and Munhall (1989) and Byrd and Saltzman (1998). The dynamical systems controller

takes, as input, gesture-specific sets of parameter values (task-space target, as well as inertial, damping and stiffness parameters) for all active gestures, and

determines via forward dynamics (dynamical control law) a corresponding set of accelerations for these active tract-variables. This set of active tract-variable

accelerations is then gated into a corresponding set of mobility-variable accelerations via inverse kinematics for those mobility variables associated with the active

tract-variables. All gesture-specific parameters are gated by the “go” signal, which is a function of a gesture initiation signal as well as the value of a gesture-specific

planning oscillator. This oscillator is potentially coupled to the planning oscillators of other gestures.

Control System
In the control system, the dynamical systems model in Equation
(2) is augmented with a forcing function input, f , as follows:

Mz̈ = −Bż − K1z + f (7)

The forcing term is a vector of forces acting on the vocal tract
dynamics, where each element is also associated with a specific
tract variable and specific gesture over that tract variable.

For a specific gesture k, the forcing term fk, an input to the
control system, is a function of the planning system state, x, with
the following form:

fk (xk) =

∑n
j=1 9j (x)wj
∑n

j=1 9j (x)

(

2π − xmod2π

2π

)

(gk − z0) (8)

where z0 is the initial state of the tract variable associated with the
gesture. Thus, the forcing term is essentially a linear combination
of n fixed kernel functions 9j, each of which are a function
of the planning system state and scaled according to kernel-
specific weights wj. Because the planning system will be defined
to converge to 2π , scaling this weighting by (2π − xmod2π)/2π
ensures that the overall forcing function will tend toward zero

as the planning system converges. This, in turn, ensures that the
control system will converge to zero, eventually, as the dynamics
revert to that of a damped spring-mass system. The purpose of
scaling by gk − z0 is to ensure certain advantageous invariance
properties when scaling movements, as outlined by Ijspeert et al.
(2013). We will not treat these invariance properties in depth in
the current discussion.

The kernel functions have an exponential form:

9j (x) = exp

(

−
1

2σ 2
j

(

x− cj
)2

)

(9)

giving them a Gaussian shape, with a specific kernel center cj
that situates the kernel center relative to some planning system
state, and also defined by a kernel width parameter σj. As the
planning system state evolves, kernel functions that are centered
on specific state values will become more highly weighted, to the
point where their centers align exactly with the planning system
state, and subsequently become less weighted as the planning
system evolves beyond that point. As pointed out by Ijspeert
et al. (2013), this has similarities with vector-coding models of
neural activation.
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Several aspects of the model related to the kernel functions
are worth noting. First, the kernels as implemented are defined
as symmetrical in the planning system domain, x, which means
that they are not necessarily symmetrical in the time domain.
This can be clearly seen in Figure 2. Second, the degree of
flexibility afforded to the control system via the kernels—insofar
as they are used to compose the forcing function that directly
influences the control system—will depend on the number of
kernels used, their spacing in x, and the width parameter σ

associated with each kernel. In broad terms, more flexibility will
be associated with more, narrower kernels that are more closely
spaced. Increased flexibility comes, however, at the expense of
parsimony of the model. The tradeoff between flexibility and
parsimony is an interesting one, the solution to which will
certainly be application-specific, and could even be determined
as part of an optimization process. For present purpose, it is
assumed that the number, spacing, and width of the kernels is
fixed. Following previous presentations of DMPs (Schaal et al.,
2007; Ijspeert et al., 2013), we leave the question of the optimal
kernel parameterization open for future work.

Planning System
To coordinate the activation of kernel functions in conjunction
with a specific gesture, it is helpful to define a planning system
for that gesture. Importantly, the use of a planning system also
allows the control system to be abstracted away from linear
time dependency. The planning system comprises a first-order
dynamical system of the following form:

miẋk = αx

(

2π − xkmod2π
)

. (10)

The state of this system is xk, the constant αx determines the
rate of convergence, and mi is a tract variable-specific inertial
parameter, a component ofM from above. For present purposes,
it is assumed that this system is initiated, at the beginning of a
discrete gesture, with a value of 0. The dynamics of the planning
system will cause it to subsequently converge to the next multiple
of 2π, completing one full cycle6.

The planning system serves two purposes. First, the evolution
of the system’s state also serves as the basis for activating the
primitive kernels at the appropriate time during that gesture.
Second, the planning system can also be used to define the “go”
signal, which allows motion associated with a gesture to proceed.
For present purposes, we define the “go” signal as a rectangular
step function of the planning system state:

Gk =

{

1 · I, if 0+ ε < ximod2π < 2π − ε

0, otherwise
(11)

6The range of planning system values (i.e., 0–2π) differs from the literature on

DMPs, which use a range of 1–0. This change was made so that the planning

system values would be compatible with the model of multi-gesture planning

presented below. In that model, the temporal coordination of multiple gestures

is accomplished through gestural coupling and entrainment during an oscillator

phase preceding the initiation of action, similar to Saltzman and Byrd (2000) and

later work (Goldstein et al., 2009; Nam et al., 2009). The discrete planning system

described here is conceptualized as a single, final oscillation of those planning

oscillators that governs movement execution.

where ε ≈ 0 and k is the gesture. As shown in Figure 3, the “go”
signal gates the inclusion of a gesture-specific target g into the
vector of currently-active targets, similar to its function in the
original TDmodel (see Figure 1), as well as the inclusion of other
gestural parameters into the dynamical control law. In the present
model, the “go” signal also gates the contribution of the forcing
function f to the control system.

The “go” signal G is also modulated by an initiation signal,
which is the results of a higher-level process monitoring an initial
planning phase, during which the several (perhaps coupled)
planning systems associated with an utterance are allowed to
oscillate and converge to a stable temporal coordination pattern
(see below for an extended example). Before convergence, the
value of I is set to 0 and, after convergence, the value of becomes
1, and remains at that value until the entire utterance is complete.
This change in value has the effect of allowing the movement
associated with some gestures to commence, in accordance with
the coordination pattern converged upon during the planning
period. A similar initiation signal must be present in the planning
oscillator formulation of Task Dynamics to drive the switch from
planning to action.

Note that the function defined in Equation (11), above, might
be most appropriately cast as another kernel function, which
would be consistent with the use of kernel functions in the
present framework, and which would allow for continuous rise
and fall times, consistent with the gestural activations presented
in the TD framework (Byrd and Saltzman, 1998; Saltzman, 1999).

KERNEL WEIGHT ESTIMATION AND
MOVEMENT OPTIMIZATION

Having established the general form of the forcing function and
planning system, we move to a discussion of how the weights
of the kernels in forcing function can be assigned. Importantly,
this is where optimization is incorporated into the model. While
kernel weights could, in theory, be assigned to achieve any goal,
in practice we show how the weights can be assigned to minimize
some movement cost, following optimal control approaches.
We take an agnostic stance over what aspect of movement
may be optimized: there is evidence that both kinematic (Flash
and Hogan, 1985; Uno et al., 1989; Hoff and Arbib, 1993;
Kistemaker et al., 2010, 2014; Mistry et al., 2013) and dynamic
properties (Todorov and Jordan, 2002; Todorov, 2004; Izawa
et al., 2008; Diedrichsen et al., 2010) of movement may serve
this function. In the following sections, we first show how DMPs
may be used to minimize a kinematic constraint (trajectory
tracking or straightness) as well as a dynamic constraint (effort
minimization). We then show how both approaches are able to
replicate the behavior of human speakers exposed to velocity-
dependent force fields applied to the jaw during speech.

Trajectory Tracking Optimization
One approach to assigning the kernel weights is to do so such that
some reference trajectory is accurately reproduced. If a specific
trajectory shape is desirable, e.g., a straight line (Kistemaker
et al., 2010), it is possible to compute a set of weights that
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FIGURE 2 | Example behavior of the proposed model, showing the model’s evolution over the course of one simulation. The one-dimensional control system is

initialized with a displacement of 1 task-space unit, and aims to reach a target displacement of 0. The top figure shows the movement of the control system (red) in

task space, the shape of which is being partially determined by a forcing function, and is therefore modified relative to a generic, unforced dynamical system (blue)

with identical parameters. The middle figure shows the shape of the forcing function (red), and the five weighted kernel functions (blue) that contribute to that shape.

Note that the kernels appear asymmetrical in the time domain—i.e., simulation iterations—because they are defined as symmetrical in the planning variable, x. The

bottom figure shows the evolution of the planning system (red) as it completes one cycle, and converges to a value of 2π .

will approximate that shape to the extent possible given the
number and spacing of kernel functions available. Computing the
weights requires an inversion of the control system dynamics,
with environmental effects taken into account, in order to find
the forcing function, which is what must be approximated by the
weighted kernel functions.

With a detailed internal model of the dynamics of both the
body and the environment, an estimate of the forcing function
can be estimated. This can begin with Equation (7), accounting
for the DMP-related forcing term (fs), as well as any additional
forces (fp), due to environmental influences (e.g., perturbations).
If one has a reference trajectory measured as a function of
time, zref (t), the dynamics can be directly inverted, leading to
the estimate:

fs (t) =
(

Mz̈ref (t) − K
(

zref (t) − g
)

+ Bżref (t)

+fp (t)
)

/
(

g − zref (0)
)

(12)

This estimate of the forcing function can be used to form an
estimate of the kernel weights. Because the kernels are a function
of the planning system (x) and not time (t), this first requires
that the planning system be integrated, providing an estimate of
the planning system as a function of time, x(t). Finally, linear
regression can be used to solve for the weights, given the known
shape of the kernel functions, using these time functions. This
general procedure was outlined by Hoffmann et al. (2009).

Minimum Effort Optimization
Many possible approaches exist to optimizing a function based on
the system output. One approach is to optimize the accumulated
effort associated with a movement by minimizing it. Minimum-
effort optimization criteria have a long history inmodels of motor
control (Nelson, 1983; Todorov and Jordan, 2002; Todorov,
2004; Perrier et al., 2005; Patri et al., 2015), and minimal-
effort criteria have been suggested to play an important role in
speech production (Lindblom, 1990). DMPs afford the necessary
flexibility to optimize dynamical systems control in this way.
We provide an example of an iterative approach to effort
minimization, using a simple method of updating the kernel
weights, over many instances of a movement, based on an effort
calculation. While more complicated optimization algorithms
could be used, this straightforward iterative approach is used here
as a proof of concept.

Admitting that, due to stochastic factors, such as those
associated with neural activity, no two repetitions of any action
will be precisely the same, a small extension of Equation (8) can
be made, as follows:

fk (xk) =

∑n
j=1 9j (x) [wj + εN (µ, σ 2)]

∑n
j=1 9j (x)

(

2π − x

2π

)

(gk − z0),

(13)
for some small value of ε, and where N (µ, σ 2) is the normal
distribution with mean µ and variance σ 2. Deviations in the
controlled forces implied by this change will likely result in
deviations in the overall effort associated with an action, defined
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FIGURE 3 | Graphical overview of the present model. In this model, many properties of the TD model are preserved, with the main difference being the addition of

mechanisms surrounding the generation of the forcing function. The forcing function influences the control system. It is generated on the basis of several kernels,

which are a function of the planning system state, as well as weighting values assigned to each kernel. Like the targets, the forcing function associated with each

gesture is gated by the “go” signal, and the value of a gesture-specific planning system, which is potentially coupled to the planning system of other gestures.

as the integral of control forces τj,k over the entire ith instance of
gesture k, summed over all pmobility space dimensions:

ei =

p
∑

j=1

∫ 2π

x=0
τ 2i,j,k (14)

If ei is smaller than the smallest value of e observed prior to
iteration i, then the value of εN (µ, σ 2) from the current iteration
is added to the kernel weights in Equation (14). Any instance i
that does not reach the target is considered a failed trial, and is
not considered further. This, or a similar constraint on target
achievement, is necessary because the “optimal” movement,
from this perspective, would otherwise be to remain motionless.
Similar constraints have been used in existing optimal control
models of speech (Perrier et al., 2005; Patri et al., 2015).

These small deviations in weight, when summed over the
course of many trials, will be associated with an overall change in
the overall energy expenditure associated with the gestures, and
with the overall trajectory of the jaw in task and mobility spaces.

Example: Jaw Control With Perturbation
Adaptation
In order to provide an illustration of these optimization concepts
in the domain of speech motor control, we present an example

using greatly simplified model of the speech motor system.
The example is inspired by the experiments of Tremblay et al.
(2003), in which subjects were asked to speak the utterance “see-
at” while a velocity-dependent force field was applied to the
jaw that induced jaw protrusion. Initially, this caused increased
curvature away from the relatively straight-line jaw movements
produced as baseline. After a period of exposure, this curvature
was reduced and the jaw movements became similar to the
movement produced in the absence of the force-field.

We model jaw movements as a two degree of freedom system

in terms of elevation and protrusion. The dimensions of elevation

and protrusion align relatively well with the biomechanical

forces applied to the human jaw by orofacial musculature

in the relatively restricted range of jaw movements used for
speech. They therefore represent a reasonable, if simplified,
definition of the mobility space. Making the assumption that the
tongue is passively moving in conjunction with the jaw, in this
narrow experimental situation, it is also possible to define vocal
tract constrictions in the pharyngeal and the palatal regions as
higher-level descriptions of the articulatory speech tasks. This
conceptualization of jaw movements is shown in Figure 4.

In order to model the relationship between the task (speech
gesture) and mobility (jaw movement) spaces, we must ascertain
the kinematic relationships between the two. In our simulations,

Frontiers in Psychology | www.frontiersin.org 9 October 2019 | Volume 10 | Article 2251

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Parrell and Lammert Dynamical Systems Optimization in Speech

the direct kinematic relationships between the tract variables and
mobility variables are:

zTBCD−phar

=

√

(φTC−pro − TBCLphar,pro)
2
+ (φTC−elev − TBCLphar,elev)

2
− rt

zTBCD−pal (15)

=

√

(φTC−pro − TBCLpal,pro)
2
+ (φTC−elev − TBCLpal,elev)

2
− rt(16)

where rt represents the radius of the tongue body, as can be
seen in Figure 4. Movement of the tongue center (φTC), in this
example, is affected only by movement of the jaw, as measured
at a jaw reference (φJR) point on the mandible. In other words,
the tongue is assumed to move passively with the jaw, such
that φTC−pro = φJR−pro − δpro and φTC−elev = φJR−elev −

δelev, where δpro and δelev represent the horizontal and vertical
offsets, respectively, of φTC from φJR, and are constrained to be
constants (see middle panel of Figure 4). Future examples could
incorporate independent actuation of the tongue by defining δpro
and δelev as mobility variables.

The mobility state variable φ is considered to represent
the position of the tongue center and jaw reference points
in head-related coordinates described by protrusion (i.e.,
horizontal position relative to the head) and elevation (i.e.,
vertical position relative to the head). The variables zTBCD−phar

and zTBCD−pal are the constriction degree variables for the
tongue body, closely related to the Tongue Body Constriction
Degree (TBCD) tract variable described in Task Dynamics (e.g.,
Saltzman and Munhall, 1989).

For the purposes of illustration, the present example
maintains two constriction degree variables, each with its own
target value. The constriction degree values are defined with
respect to corresponding tongue body constriction location
(TBCL) targets in the pharyngeal (phar) and palatal (pal) regions
of the vocal tract, and represent the Euclidean distance between
tongue body center and the given constriction locations minus
the radius of the tongue body.

The forward dynamics of the jaw’s movement are modeled
simply, according to the following equations:

φ̈JR−pro = (τpro + fp)/mjaw, (17)

φ̈JR−elev = τelev/mjaw, (18)

where mjaw is the mass of the jaw, and τpro and τelev are
the control forces applied to the jaw. To model the velocity-
dependent force field, a force (fp) is used to perturb the jaw as
it moves:

fp = bφ̇JR−elev, (19)

where b is a constant.
The Jacobian, J, is the matrix of first-order partial derivatives

of z with respect to φJR:

J (φ) =









−(TBCLphar,pro−φTC−pro)
√

(TBCLphar,pro−φTC−pro)
2
+(TBCLphar,elev−φTC−elev)

2

−(TBCLphar,elev−φTC−elev)
√

(TBCLphar,pro−φTC−pro)
2
+(TBCLphar,elev−φTC−elev)

2

−(TBCLpal,pro−φTC−pro)
√

(TBCLpal,pro−φTC−pro)
2
+(TBCLpal,elev−φTC−elev)

2

−(TBCLpal,elev−φTC−elev)
√

(TBCLpal,pro−φTC−pro)
2
+(TBCLpal,elev−φTC−elev)

2









(20)

An example of adaptation to jaw perturbation via optimization
of both trajectory tracking and effort minimization is shown in
Figure 5. For these simulations, we generate trajectories from /i/
to /ae/ based on the “see-at” trajectories studied in Tremblay et al.
(2003).We assume /i/ has as a target a narrow palatal constriction
of 0.05 arbitrary units while /ae/ has as a target a wide pharyngeal
constriction of 0.3 arbitrary units (Browman et al., 2006). The
trajectories generated from both optimization approaches are
similar to the trajectories produced after adaptation to the
velocity-dependent force field in Tremblay et al. (2003). Both
approaches result in a return to fairly straight trajectories in both
task and mobility space, which are very similar to the baseline
condition. Interestingly, both approaches result in a small initial
over-correction for the force field. While we hesitate to read too
much into this result given the highly simplified model used in
theses simulations, this pattern matches the results seen in arm
reaching (Izawa et al., 2008), where the initial over correction has
been shown to be the optimal solution to minimize motor effort.
A hint of similar patterns for jaw movements can be seen in the
data shown in Tremblay et al. (2008), though this is not always
seen in the example data shown in these studies (Tremblay et al.,
2003; Lametti et al., 2012). Such differences could potentially be
attributed to cross-speaker differences in uncertainty about the
force field dynamics (Izawa et al., 2008).

COORDINATION OF MULTIPLE GESTURES

One of the benefits of the DMP approach is the use of a
separate planning system that governs the activation of the
forcing function. We have shown how this same signal can also
be used as a “go” cue to gate movement. In this latter sense, the
planning system functions in an analogous way to the planning
oscillators in Task Dynamics (Saltzman and Byrd, 2000; Saltzman
et al., 2008). These planning oscillators, which are themselves
dynamical systems, serve to gate the activation of gestures in
that model. For example, a gesture might be activated when the
phase of the planning oscillator reaches 0◦, and be deactivated at a
later phase (e.g., 270◦). Essentially, we have replaced the planning
oscillator from Task Dynamics with our planning system, which
controls both the activation of a gesture as well as the evolution
of the gesture’s associated forcing function.

However, one of the key benefits of the planning oscillators
in Task Dynamics has been their additional use in modeling
the coordination between separate gestures (Browman and
Goldstein, 2000; Nam and Saltzman, 2003; Goldstein et al., 2007,
2009; Saltzman et al., 2008). If we are to replace the planning
oscillator with our proposed planning system, we need to ensure
that the planning system can also account for this inter-gestural
coordination. In order to do this, we will need to slightly amend
the planning system dynamics presented earlier.

We start from the assumption that each gesture is associated
with its own planning system. However, a planning system with
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FIGURE 4 | Overview of the articulatory model used for illustrative examples in the present paper. Indicated are the relevant elements of vocal tract anatomy and

head-related coordinate system (i.e., protrusion and elevation), mobility variables (i.e., jaw and tongue body position) and task variables (tongue body constriction

degree in the pharynx and near the palate). The tongue is assumed to move passively with the jaw. TBCLphar and TBCLpal are fixed points in task space that are used,

in conjunction with corresponding constriction degree targets, to shape motion patterns in the tongue body constriction variables, zTBCD−phar and zTBCD−pal , that

create the desired palatal or pharyngeal constrictions.

FIGURE 5 | Kinematics of the jaw in mobility (jaw protrusion vs. jaw elevation) and task (pharyngeal constriction degree vs. palatal constriction degree) spaces,

showing three different DMP kernel weightings (11 kernels used, with linear spacing in planning space). Starting position is indicated by a black “x,” and the target is

indicated by a red bullseye, with the trajectory shown as a red dashed line. Unperturbed jaw motion would lead to a straight-line trajectory from the starting point to

the target. With a perturbation of the type described in Equation (19) (b = 0.07, mjaw = 1), the trajectory in both mobility and task space deviates substantially from a

straight line. Both optimization schemes lead to approximately straight trajectories, as shown. In the case of trajectory optimization, this is because the optimization is

explicitly seeking to reproduce a straight line. In the case of effort minimization, the straight line trajectory emerges as a consequence of lowering the overall control

forces applied to the jaw (200 iterations, ε = 0.001).
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the dynamics in Equation (11), which we have suggested controls
the evolution of the control system during movement, is not a
good model for planning, since it converges from its initial value
of 0 to a multiple of 2π without repeating. While this behavior is
useful to control the activation and time course of the control
system, it is less useful for replicating the phase coordination
between different gestures.

During the planning phase, we assume that the planning
systems are, instead, rhythmic dynamical systems with constant
phase velocity. It is then possible to allow phase coupling between
planning systems in the following way:

miẋk = αx + Ckl (21)

where Ckl = αkl sin ([xk − xl]+ ϕkl) , (22)

for two gestures k and l. The variable ϕkl denotes the target
relative phase between xl and xk, where their relative phase is
defined as xk − xl. Note that this sine-based coupling term is
typical of many papers in the coordination dynamics literature
(Haken et al., 1985; Rand et al., 1988; Schmidt et al., 1991, 1993),
but differs from the linear coupling term typical of the published
literature on DMPs. A linear termmay be viewed as a small-angle
approximation of sine-based coupling.

Additional coupling terms can be added for additional
oscillators that may also be coupled in a multi-way coupling
unit. During planning, the planning systems are initiated with a
random relative phase. The systems are then allowed to converge
to a stable phase relationship. Convergence can be defined in
several ways, but is presently defined as:

∑

i

∑

j

Ċ2
i,j < δ, (23)

where Ċi,j is the derivative, with respect to time, of the
coupling term between gestures i and j, and δ is the
convergence parameter.

After convergence, and upon initiation (triggered at x1 =

0), the rhythmic planning systems switch to discrete systems,
as in Equation (10). Conceptually, the discrete dynamics cause
the oscillating planning system to compete a single, final cycle.
This transition from rhythmic to discrete dynamics allows us
retain the benefits of both rhythmical planning systems, such
as stable relative phasing, on the one hand, as well as those
of a discrete system for movement control on the other. These
include intuitive activation gating, where the planning system
triggers movement from its initial value until it converges to its
stable final value (c.f. the relatively arbitrary phases formovement
gating in the Task Dynamics planning oscillator model), as well
as ensuring that the forcing function terminates at the end of
the movement (a rhythmic system, such as an underdamped
oscillator, would repeat the forcing function). Lastly, the discrete
planning system effectively turns itself off when it reaches its
convergence value, while planning oscillators would continue to
cycle indefinitely.

This model effectively suggests that the planning and
movement execution, while both governed by dynamical

systems, exhibit different dynamical patterns. Interestingly, this
hypothesis receives some support from intracranial recordings
made in non-human primates during reaching movements
(Churchland et al., 2006, 2010; Shenoy et al., 2013). These
studies have shown that bothmovement planning andmovement
execution exhibit reliable patterns of neural activity consistent
with the evolution of a dynamical system, but that the
character of these dynamical patterns is qualitatively different
between the two phases, and that this transition can be
characterized as a transition between two different network
dynamics (Shenoy et al., 2013).

As a proof of concept, an example of planning system
oscillation, coupling and initiation can be seen in Figure 6. In this
simulation, three gestures (C1, C2, and V) are coupled together
to form a syllable with a complex onset. C1 and C2 are both
coupled in phase with V (ϕC1−V = 0, ϕC2−V = 0) but anti-
phase with each other (ϕC1−C2 = −π, ϕC2−C1 = π). During
planning, each planning system oscillates with a stable frequency
(shown with phase unwrapped in Figure 6). During planning,
the three gestures settle into a stable relative phase relationship
due to their coupling, with C1 slightly preceding V, which in
turn precedes C2. When these relationships converge to become
stable, the planning systems switch from rhythmic to discrete
dynamics when they next reach a phase 0, triggering initiation
of their associated gestures. During movement execution, the
discrete dynamics drive each planning system asymptotically
toward their final value, 2π. This example demonstrates the
capability of this framework to reproduce the well-studied c-
center effect (Browman and Goldstein, 2000; Goldstein et al.,
2009), where initial consonants in an onset cluster begin before
the onset of the syllable’s vowel, which in turn precedes the
onset of the final consonant in the onset cluster. For example,
in the word /spa/, tongue tip movement for the [s] begins
before tongue body movement for [a], which in turn begins
before lip movement for [p]. The ability of Task Dynamic’s
planning oscillator model to derive c-center and other patterns
of intergestural coordination is a strength of that model, which is
maintained in the proposed approach.

DISCUSSION

We have presented a framework for incorporating principles
of optimal control into a dynamical systems framework
for modeling the speech motor control system. This was
accomplished through the addition of a forcing function to
the second-order dynamical system previously hypothesized
to regulate speech motor control in the Task Dynamics
model. Specifically, this forcing function took a form
consistent with the Dynamical Movement Primitives (DMPs)
framework, which provides the ability to flexibly modulate
the dynamics of the control system. We then showed how
the integration of DMPs into the control system allows us
to model the observed adaptation to velocity-dependent
force fields applied to the jaw during speech production.
Importantly, this framework is flexible enough to incorporate
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FIGURE 6 | Example of planning system oscillation, coupling and initiation. The state of three separate planning systems (xV, xC1 and xC2) are shown. Both xC1 and

xC2 are coupled in-phase (i.e., ϕC1−V = 0, ϕC2−V = 0) with xV, but coupled anti-phase with each other (i.e., ϕC1−C2 = −π , ϕC2−C1 = π ). The three planning systems

oscillate across time, according to Equation (21), with their relative phases shifting due to coupling, until they eventually converge on a stable phase pattern. The point

of convergence is shown with a dotted, vertical black line. After convergence, each planning system continues to oscillate until it begins a new cycle (i.e., x = 0), at

which point its associated gesture initiates, and the system becomes governed by Equation (10). The coupling pattern shown here results in gestural initiation in the

following order: xC1, xV, xC2. This ordering, and the coupling relationships that produce it, are consistent with the well-studied c-center effect (Browman and Goldstein,

1988), if one interprets the gesture associated with xV as a vowel, and xC1 and xC2 as onset consonants within the same syllable as that vowel.

a wide variety of features to be optimized and optimization
algorithms. We showed how two different approaches can
result in similar behavior, by optimizing over dynamic
(total force) or kinematic (straight line) criteria. Lastly, we
showed how the planning system which governs the temporal
unfolding of the control system can also account for the
temporal gating of individual speech gestures as well as the
temporal organization between separate gestures (such as the
c-center effect).

The DMP approach outlined here provides a coherent way to
account for speech behavior that is otherwise difficult to reconcile
with the dynamical systems approach to speech motor control,
while retaining many of the benefits of that approach that have
been developed over a long history of research. Importantly, the
DMPmodel may have applications outside the narrow case of jaw
perturbations explored here.

First, DMPs can provide a way to model competing
constraints on the speech production system, such as the balance
between articulatory effort on one hand and target achievement
or intelligibility on the other (Lindblom, 1990). Importantly,
models based on optimal trajectory control have shown that
by changing the relative costs associated with these factors, it
is possible to produce speech with varying degrees of target
undershoot (Perrier et al., 2005; Patri et al., 2015). These changes
may plausibly underlie articulatory changes associated with
different speaking conditions and contexts (Lindblom, 1990;
Bradlow, 2002). Undershoot can also be modeled in a dynamical
systems framework by decreasing the duration of a gesture’s
activation (Browman and Goldstein, 1992; Parrell, 2011; Parrell
and Narayanan, 2018) or by changing the other parameters of

the dynamical controller (e.g., mass, damping, and stiffness).
However, there is to date no principled way to relate changes in
the control system parameters to the hypothesized constraints
of effort and intelligibility. DMPs provide this bridge, and
could provide a principled way of modeling articulatory changes
associated with different speech registers or conditions.

The combination of dynamical systems control with
movement optimization via DMPs may also be useful in a
number of other areas of speech motor control. For example,
it is well-established that articulatory kinematics do not reach
stable, adult-like patterns until at least late adolescence (Walsh
and Smith, 2002). Such protracted maturation of kinematic
patterns could potentially be related to the development of stable
forcing functions in the dynamical controller. Additionally,
we have shown the DMPs are able to incorporate tracking of
explicit trajectories into a dynamical systems framework. Targets
with an explicit temporal component have been suggested
to be critical for speech (Guenther, 2016). DMPs could thus
potentially bridge this seemingly otherwise intractable divide
between trajectory- and point-target- based theories. Indeed,
it seems highly probable that the auditory target trajectories in
DIVA (Guenther, 2016) could be reformulated as dynamical
systems with DMPs in an auditory task space. Moreover, DMPs
also provide a way to produce trajectories without an explicit
time-dependency, which allows them to be more flexible.

Another possible use of our DMP model is in explaining
temporo-spatial variation in production across different words.
For example, words that are produced more frequently are
typically more reduced than less frequent words (Munson and
Solomon, 2004). This result is compatible with a stochastic
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optimization process driven by reinforcement from a listener.
For example, the production-driven criteria for a “failed trial,”
discussed surrounding Equation (14) (i.e., whether the target was
achieved) could be replaced by a reinforcement signal provided
by a listener (i.e., they understand what was said). More frequent
words would be more likely to be perceived correctly, and so
more likely to receive a positive reward signal for any given
amount of reduction. Moreover, given a stochastic optimization,
more frequent words provide more opportunities for learning,
which would lead to a more optimal production. Separately from
word frequency, neighborhood density has also been shown to be
related to reduction, such that words with more lexical neighbors
exhibit less reduction than words of similar frequency with fewer
lexical neighbors (Munson and Solomon, 2004). Again, such a
pattern could plausibly be generated by a DMP controller, as
words with more lexical competition would be more frequently
confused by a listener, leading to less positive reinforcement of
more reduced productions than in cases where there is little
lexical competition. Importantly, such a system would implicitly
adjust production based on a history of reinforcement, without
the need to explicitly include an estimate of a listener’s perceptual
system (c.f. Lindblom, 1990; Wright, 2004). Alternatively, a
more complex criteria that quantifies the degree of articulatory
undershoot (Simko and Cummins, 2011) would be able to drive
similar behaviors.

The scheme outlined above would imply that different words
may be associated with their own (set of) forcing functions.
To this point, we have avoided a discussion of the scope
of the DMP forcing functions. However, it seems likely that
they are associated with higher-level production units, such as
words. The evidence for this, aside from the potential utility
of the DMPs to model differential effects of word frequency
and lexical neighborhood density, comes primarily from studies
that have examined the generalizability of learned alterations to
speech motor behavior. For example, participants who learned
to adapt to a velocity-dependent force filed applied to the jaw
failed to transfer this learning to untrained words, even when
the patterns of jaw movement were very similar (Tremblay
et al., 2008). However, other studies using auditory, rather than
force-field, perturbations have shown that learning is somewhat
generalizable (Rochet-Capellan et al., 2012). While force-field
and sensory-perturbation learning are likely driven by different
processes (Krakauer et al., 1999), this suggests that learning
or optimization may be occurring at multiple levels of the
production hierarchy (gestures, phonemes, syllables, words, etc.).
It remains a question for future work to determine the precise
nature of how and where optimization may play a role in speech
production. However, the notion that words or syllables may be
used at the units of speech planning, at least in some cases, is a
common idea in many models (Levelt et al., 1999; Kröger et al.,
2009; Guenther, 2016).

The DMP approach used here shares some conceptual
similarities with the Embodied Task Dynamics model (Simko
and Cummins, 2010a,b, 2011). Both approaches augment the
basic Task Dynamics model in order to allow for optimization
of a cost function. However, the present approach differs from
the Embodied Task Dynamics model in a number of critical

ways and addresses complementary phenomena. We optimize a
forcing function that affects the production of individual gestures
at the task level, but that does not change the timing of gestural
activation. We show how optimization can be accomplished on
the basis of minimizing effort/force, or through the use of an
inverse model. The resulting model is shown to account for
adaptation to a force-field applied to the jaw. On the other
hand, the Embodied Task Dynamicsmodel optimizes the stiffness
and activation timing of gestures. This optimization is done of
the basis of a cost function that includes terms for articulatory
effort, target achievement, and total movement duration. This
model has been successful in replicating some important aspects
of interarticulator timing and articulatory undershoot. A more
thorough comparison of the two approaches is needed in
future work.

We have demonstrated that DMPs provide a method for
modeling adaptation to altered system dynamics introduced
by a novel force field. Such adaptation has alternately been
viewed as either the generation of an “internal model” of the
system dynamics that can be used to counteract the external
forces (Shadmehr and Mussa-Ivaldi, 1994; Krakauer et al., 1999)
or as a process of reoptimization of movement to achieve
maximum performance (Izawa et al., 2008). We have shown that
DMPs are compatible with both views. Given the demonstrated
flexibility of the DMP approach (Schaal et al., 2007; Ijspeert
et al., 2013), it is likely that it could also be used to adapt
to more complex force field dynamics, including time-varying
dynamics. However, adaptation inmotor performance occurs not
only in the presence of novel dynamics but also when alterations
are introduced to movement kinematics, such as visuomotor
rotations for reaching (Cunningham, 1989; Kagerer et al., 1997;
Krakauer et al., 1999; Mazzoni and Krakauer, 2006) or shifts to
vowel formants or pitch for speech (Houde and Jordan, 1998;
Purcell andMunhall, 2006). Importantly, dynamic and kinematic
adaptation have been suggested to be separate processes in
human behavior (Krakauer et al., 1999; Rabe et al., 2009; Donchin
et al., 2012). Adaptation to kinematic perturbations is typically
thought to occur through either changes to “forward models”
that predict the sensory consequences of movement (Mazzoni
and Krakauer, 2006; Tseng et al., 2007; Shadmehr and Krakauer,
2008) and/or changes to “inverse models” that associate a goal
with themotor commands necessary to achieve that goal (Kawato
and Gomi, 1992; Wolpert et al., 1995; Wolpert and Kawato,
1998; Kawato, 1999). In our view, it is unlikely that DMPs
would provide a satisfactory model for these types of kinematic
adaptation. From a theoretical standpoint, neither a forward
model (action-sensory mapping) nor inverse model of this type
(goal-action mapping) is well-captured by DMPs. Empirically, a
critical characteristic of adaptation to kinematic perturbations
is that the final, adapted movement remains distinct from the
initial, unperturbed movement. This is reflected in a change
in reach angle in visuomotor rotation or a change in formant
frequencies/vocal tract shape in auditory perturbations. While
DMPs are well-suited to model arbitrary trajectories, they retain
the (desirable) equifinality of critically-damped, second order
dynamical systems. In our view, this means they are likely unable
to cause the types of changes seen in kinematic adaptation.
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In sum, combining optimal control with dynamical systems
in speech motor control holds promise to provide a unified
account of a number of different speech behaviors. We have
shown that incorporating a tunable forcing function based on
Dynamic Movement Primitives provides a way to combine these
two separate approaches. Future work is needed to incorporate
DMPs into a more plausible model of the speech motor system
beyond the simplified jaw system in the current simulations, as
well as to test the limits of this approach to explain different
aspects of speech behavior.
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