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Experimental studies of speech production involving compensations for auditory and

somatosensory perturbations and adaptation after training suggest that both types of

sensory information are considered to plan and monitor speech production. Interestingly,

individual sensory preferences have been observed in this context: subjects who

compensate less for somatosensory perturbations compensate more for auditory

perturbations, and vice versa. We propose to integrate this sensory preference

phenomenon in a model of speech motor planning using a probabilistic model in

which speech units are characterized both in auditory and somatosensory terms.

Sensory preference is implemented in the model according to two approaches. In the

first approach, which is often used in motor control models accounting for sensory

integration, sensory preference is attributed to the relative precision (i.e., inverse of the

variance) of the sensory characterization of the speech motor goals associated with

phonological units (which are phonemes in the context of this paper). In the second,

“more original” variant, sensory preference is implemented by modulating the sensitivity

of the comparison between the predicted sensory consequences of motor commands

and the sensory characterizations of the phonemes. We present simulation results

using these two variants, in the context of the adaptation to an auditory perturbation,

implemented in a 2-dimensional biomechanical model of the tongue. Simulation

results show that both variants lead to qualitatively similar results. Distinguishing

them experimentally would require precise analyses of partial compensation patterns.

However, the second proposed variant implements sensory preference without changing

the sensory characterizations of the phonemes. This dissociates sensory preference

and sensory characterizations of the phonemes, and makes the account of sensory

preference more flexible. Indeed, in the second variant the sensory characterizations

of the phonemes can remain stable, when sensory preference varies as a response

to cognitive or attentional control. This opens new perspectives for capturing speech

production variability associated with aging, disorders and speaking conditions.

Keywords: speech motor control, Bayesian modeling, sensory integration, sensory preference, speech

motor goals

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2019.02339
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2019.02339&domain=pdf&date_stamp=2019-10-25
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:pascal.perrier@grenoble-inp.fr
https://doi.org/10.3389/fpsyg.2019.02339
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.02339/full
http://loop.frontiersin.org/people/611234/overview
http://loop.frontiersin.org/people/69320/overview
http://loop.frontiersin.org/people/143355/overview


Patri et al. Modeling Sensory Preference in Speech

1. INTRODUCTION

The recent history of research that investigates the links
between phonology, production and perception of speech has
been marked by vigorous exchanges between proponents of
purely acoustic/auditory theories (Stevens, 1972; Stevens and
Blumstein, 1978; Blumstein and Stevens, 1979; Lindblom,
1990; Sussman et al., 1991) for whom the physical correlates
of phonological units would be exclusively in the acoustic
domain, and proponents of theories who rather saw these
correlates primarily in the articulatory/somatosensory domain
(Fowler, 1986; Saltzman, 1986). These debates were all the more
vigorous because they were related to important theoretical
issues around phonological theories (Chomsky and Halle, 1968;
Clements, 1985; Keyser and Stevens, 1994 vs. Browman and
Goldstein, 1989, 1992; Goldstein and Fowler, 2003) and cognitive
theories of perception (Diehl and Kluender, 1989 vs. Gibson,
1979 vs. Liberman et al., 1967).

As a consequence, models that were designed to simulate and
investigate the process of articulation and sound production from
the specification of phonological sequences (we will call these
models Speech Production Models henceforth) were split into
two main categories: models in which the goals of the speech task
were specified in the articulatory domain (Coker, 1976; The Task
DynamicsModel: Kelso et al., 1986; Saltzman andMunhall, 1989;
The DIVA Model Version 1: Guenther, 1995; Kröger et al., 1995;
The C/D model: Fujimura, 2000), and models in which the goals
were specified in the acoustic domain (The DIVAModel Version
2: Guenther et al., 1998; GEPPETO: Perrier et al., 2005).

A number of experimental studies have been carried out
in order to find clear support for one or the other of these
theories. The majority of them relied on perturbation paradigms,
in which one of the modalities, either acoustic or articulatory,
was perturbed. Patterns of behavioral adaptation to perturbation
of the jaw with bite-blocks (Gay et al., 1981) or of the lips with
lip-tubes (Savariaux et al., 1995) were interpreted as evidence
for the specification of the goal in the acoustic/auditory domain,
whereas adaptation in response to a perturbation of the jaw with
a velocity-dependent force field (Tremblay et al., 2003) supported
the hypothesis of a goal in the articulatory/somatosensory
domain. In the absence of any evidence supporting undeniably
one of these theories, new theories emerged assuming that
phonological units could be associated with both auditory
and somatosensory goals (see for example the concept of
“perceptuo-motor unit” in the Perception-for-Action-Control
Theory of Schwartz et al. (2012); or, for another perspective, the
phonological processing of the HFSC model of Hickok (2012)
distributed over an auditory-motor circuit for syllable and over
a somatosensory-motor circuit for the phonemes).

Today, the large majority of the Speech Production Models
associate both somatosensory and auditory goals to phonological
units (Guenther et al., 2006; Kröger et al., 2009; Hickok, 2012; Yan
et al., 2014; Parrell et al., 2018). In this context, a key-question
is the respective weight of each modality in the specification
of the goals. Lindblom (1996) and Stevens (1996) considered
that the articulatory/somatosensory correlates are not primary,
but are rather the secondary consequences of the articulatory

strategies that have emerged for a correct achievement of the
acoustic/auditory goals. In line with these suggestions, we have
assumed a hierarchical organization of the goals, with a higher
priority for the achievement of the auditory goals (Perrier,
2005). In its recent versions, the DIVA model assumes that
speech acquisition is based on purely auditory targets, and
that the somatosensory targets are learned in a second stage
during speech development as “sensations associated with the
sound currently being produced” (Guenther et al., 2006, p.
286), introducing also a hierarchy in the role of the modalities
in the specification of the goals. In an experimental study, in
which speech production was perturbed both in the auditory
domain (with an on-line shift of formant F1) and in the
somatosensory one (with an on-line alteration of the jaw opening,
which also affects F1), Feng et al. (2011) found that participants
compensated for the auditory perturbation regardless of the
direction of the perturbation of the jaw opening. This observation
was in support of a dominant role of the auditory modality in the
control of speech production.

However, three important experimental findings have
contested the validity of the hierarchical hypothesis. The first
finding is the fact that, when the auditory feedback is perturbed,
the compensation to the perturbation is never complete,
with a magnitude commonly being at the most at 1/3 of the
perturbation (Houde and Jordan, 2002; Purcell and Munhall,
2006; Villacorta et al., 2007; Cai et al., 2010). A convincing
explanation for this phenomenon is the fact that the strength of
the specification of the somatosensory goal limits the authorized
magnitude of the articulatory changes used to compensate for
the auditory perturbation (Villacorta et al., 2007; Katseff et al.,
2012). The second finding is that motor learning associated
with a perturbation of the auditory feedback generates a shift
of the perceptual boundaries between the phonemes of interest
(Shiller et al., 2009; Lametti et al., 2014). Using a simplified
Bayesian model of speech production, we have shown that
the perceptual boundary shift was also in part due to the
strength of the somatosensory goals (Patri et al., 2018). The
third finding is the observation of “sensory preference” in a
speech production task in which both auditory feedback and jaw
movement were perturbed on line (Lametti et al., 2012). Indeed
Lametti et al. (2012) found that contrary to the observations
of Feng et al. (2011) not all the participants did compensate
in priority for the auditory perturbation: some of them did
compensate more for the auditory perturbation, but some
others did compensate more for the jaw perturbation, and a
significant negative correlation was found between the amounts
of compensation to the perturbation in each modality. This
completely changed the way to consider the crucial question
of the physical domain in which the speech goals are specified
in adults speakers for the production of phonological units.
The answer to this question would not be generic and only
depending on the characteristics of the language, but would
be strongly subject-dependent and related to a preference of
the subjects for one feedback modality or the other. From a
general linguistic point of view, the debate currently moves
toward considering speaker-specific characteristics of the way
to deal with the constraints of the language. Developing models
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of such phenomena will open doors for the elaboration of new
experimental paradigms to question how speakers deal with the
constraints of their language, and to investigate the consequences
on speaker behaviors in terms of adaptation, coarticulation, and
possibly diachronic phonetic changes.

In this work, we address the question of the “sensory
preference” within a Bayesian model of speech motor planning,
in which speech units are characterized both in auditory and
somatosensory terms. This approach includes internal models
predicting the sensory consequences of motor commands,
and the definition of the sensory characterization of the
motor goals, also called henceforth “sensory targets,” associated
with phonemes. These components are described in terms of
probability distributions. We show that sensory preference can
be implemented in the model in two ways.

In the first variant, sensory preference is attributed to the
relative accuracy measured as the precision (i.e., inverse of
variance) of the sensory targets. This is inspired from well-
acknowledged models of sensory fusion for perception (Ernst
and Banks, 2002; Alais and Burr, 2004; Kersten et al., 2004)
and of sensorimotor integration (Körding and Wolpert, 2004).
It corresponds in particular to the approach proposed by the
DIVA model (Villacorta et al., 2007; Perkell et al., 2008). In this
view, sensory preference originates from the level of the stored
sensory targets that are intrinsically associated with phonological
units. This suggests that sensory preference would be an inflexible
property of each individual. We call this modeling approach
“Target-based approach.”

In the second, more original variant, sensory preference is
implemented by modulating the sensitivity of the comparison
between the predicted sensory consequences ofmotor commands
and the sensory characterization of speech motor goals. This
approach differs from linear weightings of the error associated
with each modality in the computation of the feedback
correction signal (see for example the “synaptic weights”
in Guenther et al., 2006, Equation 9, p. 286), because of
our probabilistic formulation. Indeed, we will see that the
probabilistic formulation enables an interesting interpretation
of the variation of sensory preference in terms of “clarity” or
“sharpness” of the sensory pathway. Furthermore, in this second
view, sensory preference is more flexible, as it can be modified
without changing the stored sensory targets. Such a modification
can then result from cognitive control, attentional processes or
features of the task, without affecting the sensory characterization
of speechmotor goals associated with phonological units. We call
this modeling approach “Comparison-based approach.”

The main purpose of the current study is to compare these
two variants, in the context of the adaptation to a long-lasting
steady-state external sensory perturbation. As we recalled above,
numerous experimental studies have used such a perturbation
paradigm, and they have shown that perturbation leads to two
kinds of compensation depending on the exposure time to the
perturbation: first to an almost immediate change of speech
articulation aiming at compensating for the unpredicted newly
introduced perturbation; second, after a sufficiently long period
in presence of the sustained perturbation, to a long-lasting
compensation resulting from adaptation. Adaptation has been

shown to induce after-effects (Houde and Jordan, 1998; Tremblay
et al., 2003) which has been interpreted as evidence for long-
lasting changes in the internal representations of the relations
between motor commands and sensory outputs (called internal
models in this paper). Thus, it is important to distinguish
immediate compensation, associated with instantaneous motor
control of speech movements, and compensation resulting
from adaptation, associated with changes in the planning of
speech movements. In this work we focus on the compensation
resulting from adaptation, without considering the dynamics of
the learning process underlying the transition from immediate
compensation to final adaptation.

This paper is structured as follows. In section 2, we introduce
all the elements of the modeling framework. We first describe
the GEPPETO model, overall, and detail the Bayesian version
of its motor planning layer. Then we explain how we simulate
sensory perturbations and how we account for the resulting
adaptations. Finally, we describe both variants of our model
of sensory preference. In section 3, we simulate the two
variants, highlighting their equivalence, which we then analyze
formally. Finally, we discuss our results and possible extensions
in section 4.

2. METHODS

2.1. Overview of the Framework
2.1.1. The GEPPETO Model
GEPPETO (see Figure 1) is a model of speech production
organized around four main components: (i) a biomechanical
model of the vocal tract simulating the activation of muscles
and their influence on the postures and the movements of
the main oro-facial articulators involved in the production of
speech (Perrier et al., 2011); (ii) a model of muscle force
generation mechanisms (the λ model, Feldman, 1986) that
includes the combined effects on motoneurons’ depolarization
of descending information from the Central Nervous System
and afferent information arising via short delay feedback loops
from muscle spindles (stretch reflex) or mechano-receptors; (iii)
a pure feedforward control system that specifies the temporal
variation of the control variables (called λ variables) of the λ

model from the specification of the target values inferred in the
motor planning phase and of their timing; and (iv) a motor
planning system that infers the target λ variables associated with
the phonemes of the planned speech sequence.

In the implementation of GEPPETO used in this study, the
biomechanical model is a 2-dimensional finite element model of
the tongue in the vocal tract, which includes 6 principal tongue
muscles as actuators and accounts for mechanical contacts
with the vocal tract boundaries. The motor planning layer
specifies the target λ variables by considering the motor goals
associated with the phonemes of the speech utterance to be
produced and using an optimal approach. Complete descriptions
of GEPPETO, available elsewhere (Perrier et al., 2005; Winkler
et al., 2011; Patri et al., 2015, 2016; Patri, 2018), also involve the
specification of intended levels of effort. This enables in particular
to perform speech sequences at different speaking rates; however,
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FIGURE 1 | Schematic representation of the GEPPETO model. (A) Overview of the four layers of the GEPPETO model. The red dashed box indicates the planning

layer on which we focus in the present work and which is the object of the Bayesian modeling. (B) Illustration of phoneme sensory target regions in the model. Top

plots: ellipses representing auditory target regions in the (F2, F1) acoustic plane (left) and in the first two PCA dimensions of the somatosensory space (right). Colors

enable to visualize the distortion of geometry induced by the non-linearity of the relation between the auditory and somatosensory spaces. Dashed boxes indicate the

portion of auditory and somatosensory spaces on which we focus for the results presented in this paper. Bottom plots: probabilistic characterization of phoneme

target regions in the Bayesian model as multivariate Gaussian distributions.

for simplicity, we do not consider this aspect of the model in the
current study.

A key hypothesis in GEPPETO is that speech production is
planned on the basis of units having the size of the phonemes.
The account for larger speech units is given in the model via
optimal planning: larger speech units correspond to the span of
the phoneme sequence on which optimal planning applies (CV
syllables, CVC syllables, VCV sequences, see Perrier and Ma,
2008; Ma et al., 2015). Given the limitations of the biomechanical
model used in this study, which only models the tongue and
assumes fixed positions for the jaw and the lips, we only consider
French vowels that do not crucially involve jaw or lipmovements,
which are {/i/, /e/, /E/, /a/, /oe/, /O/}. GEPPETO further
assumes that the motor goals associated with phonemes are
defined as particular target regions in the sensory space. These
regions are assumed to describe the usual range of variation
of the sensory inputs associated with the production of the
phonemes. Previous versions of GEPPETO have only considered
the auditory space for the definition of these target regions. The
auditory space is identified in GEPPETO to the space of the first
three formants (F1, F2, F3) and target regions are defined in
this space as dispersion ellipsoids of order 2, whose standard-
deviations have been determined from measures provided by
phoneme production experiments (Calliope, 1984; Robert-Ribes,

1995; Ménard, 2002) and adapted to the acoustic maximal vowel
space of the biomechanical model (Perrier et al., 2005; Winkler
et al., 2011). The top left part of Figure 1B represents the
projection of these target regions in the (F2, F1) plane.

In the present study, we consider an updated version of
GEPPETO that includes both auditory and somatosensory
characterizations of the phonemes. We call it “Bayesian
GEPPETO,” because the planning layer, which is at the core
of the present study, is described with a Bayesian model. In
this formulation, the somatosensory space only accounts for
tongue proprioception. This account is based on the shape of
the tongue contour in the mid-sagittal plane. More specifically,
the somatosensory space is defined as the space of the first
three Principal Components that model the covariation of the
17 nodes of the tongue contour in the Finite Element tongue
mesh in the mid-sagittal plane, when the target λ variables
vary over a large range of values, which covers all possible
realistic tongue shapes associated with vowel productions. In
line with the idea that auditory goals are primary in speech
acquisition and that somatosensory goals are learned as a
consequence of the achievement of the auditory goals (Lindblom,
1996; Stevens, 1996; Guenther et al., 2006), GEPPETO assumes
that somatosensory target regions characterizing phonemes are
dispersion ellipsoids that approximate the projections of the
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auditory target regions into the somatosensory space. The top
right part in Figure 1B illustrates the somatosensory target
regions in the plane of the first two principal components.
Data points within increasing elliptical rings in the auditory
target regions are plotted with identical colors in the auditory
and somatosensory spaces, providing an intuitive idea of the
geometry distortion resulting from the non-linear relation
between the auditory and the somatosensory space.

For a given phoneme sequence, the goal of the motor planning
layer of GEPPETO is to find the λ target variables that enable
to reach the sensory target regions of the phonemes with the
appropriate serial-order. In the most recent developments of
GEPPETO, this inverse problem is addressed as an inference
question formulated in a Bayesian modeling framework (Patri
et al., 2015, 2016). It is on this Bayesian component of GEPPETO
that we focus in this work.

2.1.2. Bayesian Modeling of Speech Motor Planning

in GEPPETO
The Bayesian model formulates the key ingredients of the motor
planning stage of GEPPETO in a probabilistic framework, where
key quantities are represented as probabilistic variables and
their relations are represented by probability distributions. It
is mathematically based on the theoretical concepts defined
in the COSMO model of speech communication (Moulin-
Frier et al., 2015; Laurent et al., 2017). In previous works
we have described our modeling framework in the context of
coarticulation modeling, planning of sequences of phonemes
(Patri et al., 2015), and the specification of effort levels for
the planning of speech at different speaking rates (Patri et al.,
2016). However, these previous implementations of the model
only considered auditory goals for the phonemes. A novelty
in the present work is the integration of both auditory and
somatosensory goals in “Bayesian GEPPETO.” This integration is
based on modeling principles that we have recently elaborated in
the context of a simplified Bayesian model of speech production
(Patri et al., 2018), in the aim to study various potential
explanations for the shifts of perceptual boundaries observed
after speech motor learning (Shiller et al., 2009; Lametti et al.,
2014). Note that for simplicity we focus here only on the
production of single phonemes. However, the extension of the
present formulation to consider sequences of phonemes as in
Patri et al. (2015) is straightforward.

In the case of single-phoneme planning, “Bayesian
GEPPETO” includes eight probabilistic variables, described
in Figure 2 along with their dependencies. The right hand side
of the diagram represents variables involved in the definition
of the motor goals associated with phonemes: variable 8 is
the variable representing phoneme identity, variables A8 and
S8 are auditory and somatosensory variables involved in the
sensory characterization of phonemes (we call them sensory-
phonological variables). The left hand side of the diagram
represents variables involved in sensory-motor predictions:
the 6-dimensional motor control variable M represents the
six λ variables that control muscle activation and then tongue
movements in the biomechanical model (M = (λ1, . . . , λ6));
variables AM and SM are sensory-motor variables representing

FIGURE 2 | Diagram describing the Bayesian representation of the motor

planning layer in GEPPETO. Nodes represent variables in the model and

arrows represent their dependencies. The diagram is a graphical

representation of the decomposition of the joint probability distribution given in

Equation (1).

the auditory and somatosensory consequences of motor
variableM.

Motor planning of a single phoneme is achieved in the model
by identifying the sensory-motor predictions that match the
sensory specification of the intended phoneme. This matching
is imposed with two coherence variables CA and CS (Bessière
et al., 2013), that act as “probabilistic switches,” and can be
understood as implementing a matching constraint between the
predicted sensory-motor variables and the specified sensory-
phonological variables.

The diagram in Figure 2 also represents the decomposition of
the joint probability distribution of all the variables in the model:

P(M 8 AM A8 CA SM S8 CS) = P(M)P(8)

P(AM |M)P(A8 | 8)P(CA | AM A8) (1)

P(SM |M)P(S8 | 8)P(CS | SM S8) .

Each of the factors on the right hand side of Equation (1)
corresponds to one particular piece of knowledge involved in
motor planning:

P(M) and P(8) are prior distributions representing prior
knowledge about possible values of motor variable M and
of phoneme variable 8. We assume all possible values to be
equally probable (no prior knowledge) and thus define P(M)
and P(8) as uniform distributions over their domains. The
domain of variable M is a continuous 6-dimensional support
defined by the allowed range of values of each parameter λi of
the biomechanical model. 8 is a discrete, categorical variable
including the identity of the different phonemes considered in
the model.
P(A8 | 8) and P(S8 | 8) correspond to the auditory
and somatosensory characterizations of phonemes. We define
them as multivariate Gaussian distributions in the auditory
and somatosensory spaces:

P([X8 = x] | [8 = φ]) : = N (x ; µ
φ
X , Ŵ

φ
X), (2)

where X refers to the sensory modality (A for “Auditory”

or S for “Somatosensory”), and µ
φ
X and Ŵ

φ
X correspond
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to the parameters specifying the distribution associated to
phoneme φ in the sensory space X (i.e., mean vector

µ
φ
X and covariance matrix Ŵ

φ
X). This definition of the

sensory characterizations translates in probabilistic terms the
hypothesis that phonemes are characterized by the ellipsoid
regions illustrated in Figure 1B. In particular, the mean vector
and covariance matrix of each distribution are identified from
these ellipsoid regions. The correspondence between these
two representations is illustrated in the top and bottom plots
of Figure 1B.
P(AM | M) and P(SM | M) correspond to the knowledge
relating the motor control variable M to its predicted sensory
consequences AM and SM , in the auditory and somatosensory
space, respectively. We identify this knowledge to sensory-
motor internal models in the brain (Kawato et al., 1990; Jordan
and Rumelhart, 1992; Tian and Poeppel, 2010). In the current
implementation we assume that these internal models are
deterministic and we implement them as Dirac probability
distributions centered on the outputs of sensory-motor maps,
ρa and ρs:

P([Xm = x] | [M = m]) := δ(x− ρx(m)) , (3)

where Xm stands for AM or SM , depending on the modality,
δ denotes the Dirac distribution (i.e., P([XM = x] | [M =

m]) is zero unless x = ρx(m)). The sensory-motor maps ρa
and ρs have been created from the results of around 50,000
simulations carried out with the biomechanical model by
randomly sampling the space of the λ motor control variables.
We implemented these sensory maps by learning the relation
between the λ variables and the sensory variables with Radial
Basis Functions (RBF; Poggio and Girosi, 1989) with a usual
supervised learning approach.
P(CA | AM A8) and P(CS | SM S8) implement the two sensory
matching constraints. CA and CS are both binary variables
(taking values 0 or 1) that activate the corresponding matching
constraint when their values are set to 1. This is implemented
with the following definition:

P([CX = 1] | [XM = xm] [X8 = xφ]) :=

{

1 if xm = xφ

0 otherwise.
(4)

where again XM stands for AM or SM , and X8 stands for A8

or S8.

2.1.3. Motor Planning in the Bayesian Model
The goal of the motor planning layer in GEPPETO is to find
values of the motor control variable M that correctly make
the tongue articulate the intended phoneme. The Bayesian
model enables to address this question as an inference question
that can be formulated in three ways: (i) by activating only
the auditory pathway with [CA = 1]; (ii) by activating
only the somatosensory pathway with [CS = 1]; (iii) by
activating both the auditory and somatosensory pathways with
[CA = 1] and [CS = 1] (we call this the “fusion”
planning model). These three planning processes are computed
analytically, by applying probabilistic calculus to the joint

probability distribution P(M AM SM A8 S8 8 CA CS) specified
by Equation (1). The outcome of these computations for each
planning process gives:

P([M = m] | 8 [CA = 1]) ∝ P([A8 = ρa(m)] | 8), (5)

P([M = m] | 8 [CS = 1]) ∝ P([S8 = ρs(m)] | 8), (6)

P([M = m] | 8 [CA = 1] [CS = 1]) ∝ P([A8 = ρa(m)] | 8)

P([S8 = ρs(m)] | 8), (7)

where the mathematical symbol “∝” means “proportional to.”
Equations (5–7) give the probability, according to each of

the three planning process, that a given value m of the motor
control variable M will actually produce the intended phoneme
8. Practically, in order to have for each planning process a
reasonable set of values covering the range of variation of
the motor control variable with their probability to correctly
produce the intended phoneme, we randomly sampled the space
of the motor control variable according to these probability
distribution. This sampling was implemented to approximate
the probability distributions with a standard Markov Chain
Monte Carlo algorithm (MCMC) using Matlab’s “mhsample”
function. The MCMC algorithm performs a random walk in the
control space resulting in a distribution of random samples that
converges toward the desired probability distribution. The left
panels in Figure 3 present the dispersion ellipses of order 2 in the
auditory and somatosensory spaces of the result obtained from
2.104 random samples, taken from 20 independent sampling runs
(after removal of the first 103 burn-in samples in each chain), for
the production of phoneme /O/ for each of the three planning
processes. It can be observed that all three planning processes
correctly achieve the target region in both sensory spaces.

2.2. Implementation of Sensory
Perturbations and Adaptation in the Model
Sensory perturbations alter the sensed consequence of motor
actions such that the sensory output predicted by the internal
model becomes erroneous.When the perturbation is consistently
maintained, a new relation between motor control variables and
sensory outputs is experienced and the sensory-motor internal
models (P(AM | M) and P(SM | M)) are updated as a result
of motor learning and adaption (Shadmehr and Mussa-Ivaldi,
1994; Houde and Jordan, 1998; Haruno et al., 1999; Tremblay
et al., 2003), in order to capture the new sensory-motor relation
imposed by the perturbation.We define adaptation, in themodel,
as the update of the parameters of the internal models.

According to Lametti et al. (2012), differences in sensory
preference lead to differences across speakers in their tolerance
to errors in each of the sensory modalities (auditory or
somatosensory). This phenomenon has been assumed to
explain the observed inter-speaker differences in the amount
of compensation after adaptation. The evaluation of our two
implementations of sensory preference is based on their capacity
to account for these differences in compensation. Importantly,
whatever the nature of the sensory perturbation (auditory or
somatosensory), compensation induces changes in both the
auditory and somatosensory outputs, generating errors in both
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FIGURE 3 | Results of the three planning processes obtained with the model for the production of phoneme /O/, in the auditory space (top panels) and the

somatosensory space (bottom panels). Results are presented in three conditions: in unperturbed condition (left panels); with auditory perturbation before adaptation

(middle panels); and with auditory perturbation once adaptation has been achieved (right panels). Black ellipses indicate the phoneme target regions (see Figure 1B).

Colored ellipses present results as dispersion ellipses of order 2 obtained from 2.104 samples for each of the three planning processes: auditory planning in red,

somatosensory planning in blue and fusion planning in green.

domains. Hence, the amount of compensation is modulated
by sensory preference even if the perturbation affects only
one sensory modality. Therefore in this paper, for the sake of
simplicity, we only consider auditory perturbations (but see Patri,
2018 for results involving somatosensory perturbations).

2.2.1. Implementation of Sensory Perturbations
We simulate auditory perturbations in the model by altering
the spectral characteristic of the acoustic signal associated with
the tongue configurations of the biomechanical model. More
specifically, if a tongue configuration T produced an acoustic
output au in unperturbed condition, then with the auditory
perturbation the same tongue configurationwill result in a shifted
acoustic output a∗ = au + δ. The middle panel of Figure 3
illustrates the effect of an auditory perturbation that shifts the
first formant F1 down by δ = −100 Hz, during the production of
vowel /O/ for the three planning processes.

2.2.2. Implementation of Adaptation
In the context of an auditory perturbation, only the auditory-
motor internal model P(AM |M) becomes erroneous. Hence, we
implement adaptation to the auditory perturbation by updating
the auditory-motor map ρa of the auditory-motor internal model
P(AM | M) (see Equation 3). This update is defined in order to

capture the new relation between the motor control variable and
its auditory consequence. In the case of an auditory perturbation
that shifts auditory values by a constant vector δ, we assume the
resulting update to be complete and perfect, of parameter δA = δ:

ρ∗
a (m) = ρu

a (m)+ δA. (8)

where ρ∗
a and ρu

a denote the auditory-motor maps in the
perturbed and unperturbed condition, respectively. In all
simulations involving the perturbation, we choose to shift
only the first formant F1 down by −100 Hz, such that
δA = [−100, 0, 0].

The right panel of Figure 3 illustrates the effect of the auditory
perturbation and the outcome of adaptation for each of the three
planning processes. In unperturbed conditions (left panels), all
three planning processes correctly achieve both the auditory and
the somatosensory target regions. In the middle panel, which
represents the situation before adaptation occurs, the auditory
perturbation induces for the three planning processes a shift
in the auditory domain (top middle panel), and obviously not
in the somatosensory domain (bottom middle panel), since the
perturbation only alters the auditory-motor relations. The right
panels illustrate the outcome of the three planning processes after
adaptation has been achieved, as implemented by Equation (8). It
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can be seen that the results corresponding to the somatosensory
planning, P(M | 8 [CS = 1]), remain unchanged. This is
because somatosensory planning does not involve the auditory-
motor map ρa (Equation 6), and is then not concerned by the
update of the auditory-motor map induced by the adaptation.
On the other hand, and as expected, after the perfect update
of the auditory-motor internal model, the auditory planning
P(M | 8 [CA = 1]) (Equation 5) fully compensates for the
perturbation and results in a correct reaching of the auditory
target region (top right panel). However, this compensation
is achieved by a change in the value of the motor control
variable, which results in a tongue posture associated with
a somatosensory output that is outside of the somatosensory
target region (bottom right panel). Finally, the fusion planning
P(M | 8 [CA = 1] [CS = 1]) (Equation 7) combines the two
previous results: since auditory and somatosensory target regions
are no more compatible due to the update of the auditory-motor
internal model, fusion planning cannot reach both sensory target
regions at the same time, and therefore it makes a compromise
between the auditory and the somatosensory constraints. As
a result, fusion planning leads to auditory and somatosensory
consequences that lie midway between those of a pure auditory
or a pure somatosensory planning.

In summary, we have described how the three planning
processes achieve similar results in unperturbed condition but
generate very different results after adaptation to the sensory
perturbation. Intuitively, if we are able to modulate in the model
the weight associated with each sensory modality in the fusion
planning process, we would be able to achieve a continuum
of compensation magnitudes after adaptation. This continuum,
representing all the possible patterns of sensory preference,
would go from full compensation for the auditory perturbation,
when sensory preference induces a full reliance on the auditory
modality, to no compensation at all when sensory preference
induces a full reliance on the somatosensory modality.

For the evaluation of the two variants of our model of
sensory preference, we mainly consider the “fusion” planning,
as it is the planning process that combines both auditory and
somatosensory pathways, and then enables an account of the
sensory preference phenomenon (see Equation 7). However, we
will also study the planning processes based on each sensory
pathway individually, in order to have them as reference
to evaluate the consequences of different sensory preference
patterns. The impact of sensory preference on planning will
be evaluated by modulating the relative involvement of each
sensory pathway in the planning process. In general terms, the
involvement of a sensory pathway is related to the magnitude
of the mismatch between sensory-motor predictions and the
intended target: for example, by increasing the magnitude of this
mismatch for the auditory modality we obtain an increase of the
involvement of auditory pathway in the planning process.

2.3. Modeling Sensory Preference
2.3.1. The Target-Based Approach: Modulating the

Precision of Sensory Targets
In the Target-based approach we modulate the involvement
of each sensory modality at the level of the target regions

associated with phonemes, as illustrated in the left panel of
Figure 4. In our model, the target regions result from the
sensory characterization of phonemes which is represented
by the terms P(A8 | 8) and P(S8 | 8). These terms are
specified in Equation (2) as multivariate Gaussian probability
distributions with mean vectors µ8

A and µ8
S and covariance

matrices Ŵ8
A and Ŵ8

S , respectively. We implement sensory
preference in the model by modulating the precision of these
distributions with the introduction of two additional parameters,
respectively κA and κS for the auditory and the somatosensory
pathway. These parameters multiply the covariance matrices of
the corresponding Gaussian distributions:

P([X8 = x] | [8 = φ]) = N (x ; µ
φ
X , κXŴ

φ
X), (9)

where X, once more, stands either for the auditory or the
somatosensory modality. The left panel of Figure 4 illustrates
the effect of parameters κX on the target distributions in a
one-dimensional case: increasing κX results in widening the
distribution, and as suggested previously this induces a decrease
of the involvement of the corresponding sensory modality in
the planning process, since larger distributions will less penalize
sensory signals that depart from the center of the target region
and will thus allow larger errors in this sensory modality. The
same reasoning applies to a decrease of κX , which will induce a
narrowing of the distribution and an increase of the involvement
of the corresponding sensory modality.

Replacing the forms given by Equation (9) into Equation (7)
gives a first formulation of the influence of sensory preference in
the fusion planning process:

P([M = m] | 8 [CA = 1] [CS = 1])

∝ N (ρs(m) ; µ8
S , κSŴ

8
S )N (ρa(m) ; µ8

A , κAŴ8
A ), (10)

2.3.2. The Comparison-Based Approach: Modulating

the Weight of the Sensory Matching Constraints
In the Comparison-based approach we modulate the
involvement of each sensory modality at the level of the
comparison between sensory-motor predictions and sensory
characterizations of phonemes, as illustrated on the left panel
of Figure 5. To do so, we have to slightly modify the definition
of the operator that performs the comparison, i.e., the sensory
matching constraint defined in Equation (4). Until now we
have defined the sensory matching constraint in an “all-or-
nothing” manner, where terms are either “1” when values of the
variable predicted with the sensory-motor map match exactly
the sensory-phonological variables, or “0” when they differ,
regardless of the magnitude of the difference (see Equation 4).
This definition is very strict, as it requires an extreme accuracy in
the achievement of the speech motor task in the sensory domain.
Intuitively, if we are able to soften this constraint, we may be
able to modulate the strengths of the comparisons and hence the
involvement of each sensory pathway in the planning process.

We relax the sensory-matching constraint by extending its
definition given in Equation (4) as follows (Bessière et al., 2013):

P([CX = 1] | [XM = x1] [X8 = x2]) = e−dX(x1 ,x2). (11)
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FIGURE 4 | (A) Illustration of the effect in the Target-based approach of parameters κA and κS (see text) on the auditory and somatosensory target regions associated

with phonemes P(A8 | 8) and P(S8 | 8). The greater the value of κ parameter, the wider the target region, and the weaker the contribution of the corresponding

sensory pathway to the planning process. (B) Results of the fusion planning process after adaptation to the auditory perturbation described in section 2.2.2, for

different values of parameters κA and κS.

FIGURE 5 | (A) Illustration of the effect in the Comparison-based approach of parameters ηA and ηS on their corresponding sensory matching constraints. The

smaller the value of η, the sharper the constraint function and the stronger the relative contribution of the corresponding sensory pathway to the planning process.

(B) Results of the fusion planning process after adaptation to the auditory perturbation described in section 2.2.2, for different values of parameters ηA and ηS.

Here dX(x1, x2) is a distance measure between sensory values
x1 and x2. Since e−x is a decreasing continuous function of x,
the function defined in Equation (11) gives high probability of
matching for x1 and x2 values that are close (small distance
dX(x1, x2)) and low probability of matching for values that
are far from each other. Note that the definition given in
Equation (4) can be considered to be a degenerate case of this
new expression of the sensory-matching constraint, in which the
distance measure would be zero when x1 = x2 and infinite
otherwise. For computational reasons, we choose a distance

measure that is quadratic, i.e., dX(x1, x2) = (x1−x2)
2. This choice

enables to obtain a closed analytic form for the derivation of the
motor planning question.

With this new expression of the matching constraint, we

implement sensory preference in the model by introducing two

additional parameters, respectively ηA and ηS, for the auditory
and the somatosensory pathway. These parameters modulate

the sensitivity of the distance measures dA(a1, a2) and dS(s1, s2)
associated with the sensory pathways:

dX(x1, x2; ηX) =
(x1 − x2)

2

2η2X
. (12)

With this choice of parametric quadratic measure,
Equation (11) becomes:

P([CX = 1] | [XM = x1] [X8 = x2]) = e
−

(x1−x2)
2

2η2X (13)

Figure 5A illustrates the form of the matching constraint
defined by Equations (13) in the Comparison-based approach
for different values of parameter ηX : small values of ηX lead
to sharper matching constraints; large values lead to flatter
constraints. Note in particular that for ηX → 0 the rigid
constraint formulated in Equation (4) is recovered, while
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for ηX → +∞ the constraint function becomes constant,
independent of the sensory values, which in fact corresponds to
an absence of constraint.

3. RESULTS

3.1. Simulating Sensory Preference
3.1.1. Simulation of the Target-Based Approach
We now illustrate results of simulations using the Target-based
approach to model sensory preference in the context of the
adaptation to the auditory perturbation described above in
section 2.2.2. The colored triangles in Figure 4 present the
mean results computed for different values of parameters κA
and κS based on 2.104 samples in the motor control space. For
reference, colored ellipses present the results obtained with the
three planning processes of the previous Section [i.e., purely
auditory (red color), purely somatosensory (blue color), or
“fusion” planning (intermediate color)].

It can be seen that, as expected, progressively increasing
parameter κA leads to results that progressively drift toward the
outcome of the pure somatosensory planning process. Similar
results are obtained toward the outcome of the pure auditory
planning when progressively increasing κS. Hence, parameters
κA and κS effectively modulate the strength of each sensory
pathway. This confirms the possibility of implementing sensory
preference in our model in a way similar to previous approaches:
modulating the relative precision of sensory target regions
effectively modulates the contribution of the corresponding
sensory pathway.

3.1.2. Simulation of the Comparison-Based Approach
We now illustrate the Comparison-based approach to model
sensory preference, and study the effect of parameters ηA and
ηS in the model in the context of the adaptation to the auditory
perturbation described above in section 2.2.2. The colored
triangles in Figure 5 present the mean results computed for
different values of parameters ηA and ηS based on 2.104 samples
in the motor control space. As in Figure 4, colored ellipses
present the results obtained with the three initial planning
processes, for reference.

It can be seen that progressively increasing parameter ηA
of the auditory matching constraint leads to results that
progressively drift toward the outcome of the somatosensory
planning process. Similarly increasing parameter ηS of the
somatosensory matching constraint results in a drift toward the
outcome of the auditory planning process. Hence, parameters
ηA and ηS successfully enable to modulate the strength of the
constraint imposed by the corresponding sensory pathways.

3.2. Equivalence of the Approaches
We have formulated two alternative approaches to implement
sensory preference in Bayesian GEPPETO. Although these
approaches account for clearly different ways to process sensory
variables, simulations with the model have shown that they
lead to qualitatively similar results (right panels of Figures 4,
5). Increasing parameter κA or parameter ηA decreases in a
comparable manner the involvement of the auditory modality

in the model, and, thus, the magnitude of the changes induced
by the compensation for the auditory perturbation. Thus, at the
limit, for very large values of κA or ηA, the magnitude of the
compensation for the auditory perturbation tends toward zero,
which perfectly matches the results of the pure somatosensory
planning process. Conversely, increasing parameter κS or
parameter ηS decreases the involvement of the somatosensory
modality and induces an increase of the magnitude of the
compensation for the auditory perturbation. At the limit, for
very large values of κS or ηS, the magnitude of the compensation
tends toward the magnitude obtained with the pure auditory
planning process.

However, a closer comparison of the results presented in
the right panels of Figures 4, 5 reveals differences in the ways
the compensation for the auditory perturbation varies when
parameters κX or ηX vary. In the Target-based approach, the
sequence of compensatory results follows a slightly more simple
and straight path than in the Comparison-based approach.

Despite these slight differences, the qualitative similarity of the
results obtained with both approaches can be formally explained.
Indeed, let us consider the outcome of the fusion planning
P([M = m] | 8 [CA = 1] [CS = 1]) using the generalized
sensory matching constraints given by Equation (11) in the
Comparison-based approach. It yields:

P([M = m] | 8 [CA = 1] [CS = 1])

∝
∑

a8

P([A8 = a8] | 8)P([CA = 1] | [A8 = a8] [AM = ρa(m)])

∑

s8

P([S8 = s8] | 8)P([CS = 1] | [S8 = s8] [SM = ρs(m)]), (14)

where we have omitted intermediate steps for the sake of brevity.
Now, using the definition of sensory targets given in Equation (2)
and the quadratic distance in the matching constraints as given
in Equation (13), we note that all terms on the right hand
side of Equation (14) are Gaussian. Hence, we can rewrite
Equation (14) as:

P([M = m] | 8 [CA = 1] [CS = 1])

∝
∑

a8

N (a8;µ
8
A , Ŵ8

A )N (a8; ρa(m), η2AIA)

∑

s8

N (s8;µ
8
S , Ŵ8

S )N (s8; ρs(m), η2SIS), (15)

where we have denoted by IA and IS the identity matrices in
the auditory and somatosensory space, respectively. With the
introduction of variable y = ρx(m) − x8, each of the sums
in Equation (15) are in fact the convolution of two Gaussian
distributions, one with mean µ8

X and covariance Ŵ8
X , the other of

mean 0 and covariance η2XIX . The convolution of two Gaussian
distributions with mean vectors µ1, µ2 and covariances 61, 62

is known to result in another Gaussian distribution with mean
vector µ1 + µ2 and covariance 61 + 62. Hence, the planning
process becomes:

P([M = m] | 8 [CA = 1] [CS = 1])

∝ N (ρs(m) ; µ8
S , Ŵ8

S + η2SIS)N (ρa(m) ;µ8
A , Ŵ8

A + η2AIA). (16)
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Let us compare Equation (16) and Equation (10): they
are almost identical, except for the form of the covariance
matrices in auditory and somatosensory spaces. The planning
process in the Target-based approach (Equation 10) involves
Gaussian distributions with covariance matrices that are
modulated multiplicatively by the parameters κA and κS,
whereas the planning process in the Comparison-based
approach (Equation (16)) involves Gaussian distributions
with covariance matrices that are modulated additively
by parameters ηA and ηS. Hence, the effect of parameters
ηX and κX are qualitatively similar, as we have illustrated
experimentally: they both induce an increase in the covariance
of the sensory characterization of phonemes. However,
quantitatively, we have shown that parameters κX increase
them multiplicatively, whereas parameters ηX increase
them additively.

We note that if the auditory and somatosensory spaces
would be one-dimensional, both approaches would be exactly
equivalent, since any additive increase Ŵ + η can be written
as a multiplicative increase κŴ, with κ = 1 +

η
Ŵ
. This is not

true anymore in higher dimensions though, since the Target-
based approach scales all coefficients of the covariance matrices,
whereas the Comparison-based approach only modifies their
diagonal terms. More specifically, the Target-based approach
increases the size of the target regions while preserving their
orientation, whereas the Comparison-based approach stretches
the regions along the coordinate axes, inducing a progressive
alignment of the main axes of the target regions with the
coordinate axes (off-diagonal terms in the covariance matrices
become negligible compared to the increased diagonal terms,
and the resulting ellipsoid regions progressively lose their
orientations). We assume that the slight differences observed
above in the consequences on compensation of progressive
variations of the κX and ηX parameters find their origins in these
changes in target orientations.

Figure 6 gives an intuitive interpretation of the equivalence
of these two approaches. On the one hand, the Target-based
approach directly modulates the size of the target regions, while
keeping their orientations, as illustrated on the left lens of
the glasses in Figure 6. On the other hand, the Comparison-
based approach does not change the targets, but modifies the
precision of the comparison of the target with the sensory-
motor predictions. This is as if the target were seen through
a blurring lens, that would “spread” the borders of the target,
making it appear bigger. This “blurring effect” is induced by
the convolution of the target with a Gaussian term that acts as
noise (Equation 15). The larger the value of parameter ηX , the
larger the power of the noise, and the stronger the “blurring”
of the target.

4. DISCUSSION

The main contribution of our work is to present two different
approaches implementing sensory preference in a speech
production model that integrates both the auditory and the
somatosensory modality. This is done in the context of our

Bayesian GEPPETO model for speech motor planning and
speech motor control (Perrier et al., 2005; Patri et al., 2016;
Patri, 2018), which specifies both auditory and somatosensory
constraints to infer motor commands for the production of
a given phoneme. We have implemented sensory preference
in this model by modulating the relative involvement of
sensory modalities with two different approaches: (1) the Target-
based approach, which modulates the precision of auditory
and somatosensory target regions; (2) the Comparison-based
approach, which modulates the sensory-matching constraints
between predictions from internal models and sensory target
regions. At the core of the evaluation of the two approaches, we
have considered the phenomenon of incomplete compensation
for sensory perturbations in speech production and its inter-
subject variability, which has been evidenced by several
experimental studies. Although conceptually different, we have
shown in our model that these two approaches are able
to account for incomplete compensation variability under
the same amount of change in the internal model resulting
from adaptation. Furthermore, we have demonstrated the
mathematical equivalence of the two approaches in some specific
cases, which explains the qualitative similarity of results obtained
under both approaches.

In this context, the main outstanding question is whether
the two modeling variants are distinguishable. We consider
two aspects of this issue: mathematical formulation and
experimental evaluation.

Let us compare the mathematical formulations of the two
approaches. The Comparison-based approach is less compact
and contains more degrees-of-freedom than the Target-based
approach. We have also demonstrated that, under certain
assumptions, both models behave similarly. On parsimony
grounds, then, the Target-based approach certainly wins over the
Comparison-based approach. On the other hand the additional
degrees of freedom enable the Comparison-based approach to be
more flexible.

For further experimental evaluation we consider two possible
directions. First, our simulation results illustrate that the
particular pattern of partial compensation obtained under both
approaches slightly differ. Whether and how these differences
could be assessed experimentally is an open question. The main
difficulty arises from the fact that the observed differences
in partial compensation do not only depend on differences
in compensation mechanisms induced by each approach, but
also on speaker specific relations between motor commands
and sensory variables. Taking into account these speaker
specific characteristics would be the main challenge in this
experimental evaluation.

The second direction for experimental evaluation, would be
related to the different flexibility associated with each approach.
Whereas the Target-based approach would predict fixed
compensation strategies, ascribing any remaining variability to
causes unrelated to sensory preferences or measurement errors,
the Comparison-based approach would potentially relate sensory
preference with some aspects of the structure of the observed
variability. Furthermore, experimentally induced effects (e.g.,
asking subjects, for a given trial block, to focus especially on
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FIGURE 6 | Illustrative interpretation of the equivalence between the two implementations of sensory preference. In the Target-based approach (left part of the figure)

the size of the auditory or somatosensory target regions are directly modified with parameters κA and κS. In the Comparison-based approach (right part of the figure)

parameters ηS and ηA modulate the sensitivity of the corresponding sensory matching constraint, as if target regions were “blurred,” making them appear larger.

somatosensation; introducing a dual-task condition to induce
attentional load, etc.) could help discriminating between the
predictions of the two models.

Overall, the results of our study provide a new contribution to
the understanding of the sensory preference phenomenon. They
highlight that two factors could influence sensory preference,
that mostly differ by their temporal stability. On the one hand,
the Target-based approach represents sensory preference as the
precision of target regions. This suggests that sensory preference
is learned through language interaction and is stable over time,
as the target regions would be used during everyday speech
planning. On the other hand, the Comparison-based approach
represents sensory preference “elsewhere” in the model, so
that it can mathematically be manipulated independently of
sensory target regions. Indeed, in this second approach, we
have explicitly considered two independent components: (1) the
sensory characterization of phonemes, which are mathematically
characterized as constraints via the specification of sensory target
regions; (2) matching-constraints, which modulate the precision
with which sensory predictions from the internal models are
compared with phoneme related sensory target regions. This
allows a more general and flexible model, as compared to the
Target-based approach. This flexibility suggests ways in which
sensory preference would be modulated by cognitive control or
attentional processes. Such an attentional model would explicitly
modulate on the fly sensory preference depending on the context.
This modulation could arise, for example, from changes in the
access to one of the sensory modality due to disorders, aging,
or noise, or from the absence of congruence between the two
sensory pathways. A proposal for such an attentional model, as
an extension of the Comparison-based model presented here, is
outlined in Supplementary Material.

Finally, we turn to possible theoretical extensions and
applications of our model. So far, the Comparison-based

approach of sensory preference we have described here

is constrained by the specific hypotheses of the Bayesian-

GEPPETO model in which it is included. For instance, it

only concerns sensory preference between somatosensory and
acoustic descriptions of targets during serial order planning of
sequences of vocalic speech sounds. Of course, the application
scope could be extended, e.g., toward sensory preference during

movement execution and movement correction, with a finer
temporal resolution than we have considered so far. This would
for instance allow to study time-varying sensory preference, or
sensory preference that depends on speech sounds. Indeed, it is
an open question whether consonant and vocalic sounds would
differ on the sensory pathway they more precisely rely on. We
could also consider using our Comparison-based architecture
for describing how low-level sensory acuity would affect the
learning of the target representations, and how different sensory
preference during this learning would result in different sizes and
separations of targets in each sensory pathway. Finally, such a
learning mechanism with individual-specific sensory preference
could contribute to the emergence of learned idiosyncrasies.

Furthermore, to put our approach in a wider theoretical
context, we observe that the Comparison-based approach has a
structure that could be cast into the general predictive coding
framework, as popularized recently by the free-energy principle
proposal (Friston and Kiebel, 2009; Feldman and Friston, 2010;
Friston, 2010). Indeed, even though ourmodel does not represent
time or time-delays specifically, it nevertheless features the idea
that “predictions” from internal models would be compared
with sensory targets. We note that this is not exactly the
same situation as for a comparison between forward predictions
and sensory feedback, as would be used for instance in
models of trajectory monitoring; nevertheless, the architecture is
similar. In the Comparison-based approach, we have proposed a
mathematically specific expression of the “comparison” operator,
using probabilistic coherence variables and match measures.
Whether this would be a plausible, or at least useful mathematical
implementation of probabilistic comparison in predictive coding
or free-energy architectures is an open question.
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