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Multinomial processing tree (MPT) models allow testing hypotheses on latent

psychological processes that underlie human behavior. However, past applications of

this model class have mainly been restricted to the analysis of main effects. In this

paper, we adopt the interaction concept as defined in log-linear models and show why

it is appropriate for MPT models. We then explain how to implement and test ordinal

and disordinal two-way interaction hypotheses in MPT models. We also show how

our method generalizes to higher-order interactions involving three or more factors. An

empirical example from source memory and aging demonstrates the applicability of this

method and allows for directly testing the associative deficit theory that age differences

are larger in associative (e.g., source) memory as opposed to item memory. Throughout

the paper, we explain how most analytic steps can be easily implemented in the freely

available software multiTree.

Keywords: multinomial processing tree models, interactions, parametric order constraints, associative deficit

hypothesis, cognitive aging

INTRODUCTION

Psychologists are typically interested in internal processes (e.g., cognitions and emotions) that drive
behavior but are not directly observable. Multinomial processing tree (MPT) models are stochastic
models that, based on observable participant responses, allow for estimation of the probabilities of
such unobservable processes taking place or not. Developed in the 1980s and 1990s (Batchelder
and Riefer, 1980, 1986, 1999; Riefer and Batchelder, 1988; Hu and Batchelder, 1994), they are
currently widely used in several branches of psychological research (see Erdfelder et al., 2009, for
a comprehensive review). However, so far almost all applications of MPT models in psychology
involve simple parameter comparisons across experimental conditions or groups of participants,
thus testing only main effects on model parameters, arguably because standard MPT parameter
tests do not readily allow to test interactions. In the present paper, we explain how MPT models
can be reparameterized to allow for testing interaction hypotheses. We provide an easy-to-follow
introduction and an application example from cognitive aging on how to implement parameter
constraints to test two-way (and higher-order) interaction hypotheses, using the softwaremultiTree
(Moshagen, 2010).

A Brief Introduction to MPT Models
MPT models are used to analyze categorical data such as response frequencies. In contrast to
general-purpose data analysis techniques for categorical data (e.g., log-linear models, Read and
Cressie, 1988; Agresti, 2002),MPTmodels are tailored to a specific psychological research paradigm
and are based on substantive theoretical work regarding the processes involved in the psychological
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phenomenon investigated in this paradigm (e.g., Bayen et al.,
1996; Rummel et al., 2011). Thereby, MPT models can be used
to evaluate theories of a given psychological phenomenon as well
as to estimate probabilities of the latent processes specified in the
theory. In this section, we provide a brief introduction to MPT
models and standard inferential tests available for MPT model
parameters (for technical details, see Riefer and Batchelder, 1988;
Hu and Batchelder, 1994; Batchelder and Riefer, 1999).

The upper half of Figure 1 displays a very simple generic
MPT model containing two parameters, θ1 and θ2. For now
we will ignore the second subscript, which indicates that the
model and its two parameters are estimated separately for
two groups (e.g., experimental conditions). The boxes to the
right indicate observable categorical participant responses in
a psychological paradigm, for example “Remember,” “Know,”
and “New” responses in a Remember-Know recognition task
(Gardiner, 1988), with three distinct responses in total (f 1, f 2,
and f 3 again observed separately per condition). The core idea of
any MPT model is to relate the probabilities of such observable
responses to the probabilities of unobservable psychological
processes (measured by parameters θ1 and θ2). Specifically, in
this simplified generic model1, the three observable response
probabilities relate to the model parameters as follows:

p(f1) = θ1· θ2

p(f2) = θ1·(1− θ2) (1)

p(f3) = (1− θ1)

To estimate these parameters, MPT models assume that the
frequencies of the observable responses follow a (product)
multinomial distribution. This distribution is then described in
terms of the model parameters by replacing the multinomial
response probabilities with the right side of the corresponding
model equation. Thus, any parameter in the model is an
unknown probability varying in the real interval [0, 1]. Parameter
estimates are typically obtained bymeans of maximum likelihood
estimation, more specifically, by minimizing the log-likelihood
ratio goodness-of-fit statistic G2(df ) using the expectation-
maximization algorithm (Hu and Batchelder, 1994). Given that
the model holds and certain regularity conditions are met (Read
and Cressie, 1988, Chapter 4), the resulting minimum G2(df ) is
asymptotically χ2(df ) distributed, with the degrees of freedom
(df ) corresponding to the number of independent response
probabilities minus the number of estimated parameters. The
obtained model fit statistic can thus be compared to a χ2(df )
distribution to evaluate the null hypothesis (H0) that the model
fits the data. The H0 of model fit is rejected when the observed
G2(df ) fit statistic falls in the upper α·100% of the corresponding
χ2(df ) reference distribution (typically, α = 0.05 or α =

0.01) and retained otherwise. Several computer programs are
freely available for model fitting and parameter estimation (Hu
and Phillips, 1999; Stahl and Klauer, 2007; Moshagen, 2010;
Singmann and Kellen, 2013; Heck et al., 2018).

1For a more elaborated MPT model of the processes involved in the Remember-

Know recognition task see Erdfelder et al. (2007).

FIGURE 1 | Generic two-by-two experimental design with MPT parameters as

dependent variables. Two MPT parameters (θ1·, θ2·) representing the

probabilities of two distinct psychological processes are estimated within two

(within- or between-subjects) conditions, resulting in a total of four parameters.

The first subscript indicates the process parameter (1, 2) and the second the

condition level (1, 2). fic denotes response i, i = 1, …, 3, observed in condition

c (1 or 2).

To test more specific hypotheses concerning the model
parameters, restrictions can be imposed reflecting the H0 that
a model parameter is either equal to (1) a constant value (e.g.,
chance level for guessing between two options = 0.50) or (2)
another parameter in the model. It is then tested whether this
restriction significantly worsens model fit by comparing the fit of
the restricted model [G2

r (df r)] to the fit of the unrestricted model
[G2

u(df u)], based on a χ2 difference test [i.e., 1G2(df r-df u) =
G2
r (df r) – G2

u(df u)]. If model fit is significantly worsened by the
restriction, the H0 that the parameter restriction holds is rejected.

However, neither of these standard MPT parameter tests
allows for testing interactions in multifactorial designs. To
illustrate this problem, consider the two-factorial experimental
design exemplified in Figure 1. First, there is a Condition factor
with two levels (Condition 1, Condition 2). Our generic MPT
model is assumed to hold in each of these two conditions with
presumably different parameter values. Second, there is a Process
factor representing the psychological mechanism of interest,
again with two levels (θ1, θ2). A standard MPT parameter test
can be used to test for a main effect of the Condition factor on the
psychological processes by restricting θ1 and θ2 to be equal across
conditions (θ11 = θ12 and θ21 = θ22). Alternatively, one can test
for a main effect of the psychological process by simultaneously
restricting θ1 and θ2 to be equal within each condition (θ11 =

θ21 and θ12 = θ22). Additionally, the simple main effects of the
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Process factor can be assessed for each condition separately or, if
more appropriate, the simple main effects of the Condition factor
separately for each psychological process. However, all these tests
do not straightforwardly implement the test of an interaction of
the Condition factor with psychological process. For example, a
theory might predict that there should be a general condition
main effect with Condition 1 outperforming Condition 2 but
that this effect is moderated by the type of psychological process,
such that the condition effect is more strongly pronounced in
the process represented by parameter θ2 than in the process
represented by θ1. In this case, one could test the effect of
condition on both parameters but would lack a test for comparing
the strengths of this condition effect between the two processes.

METHOD

In the following, we will derive a method to test interactions
on MPT model parameters. We will primarily focus on two-
way interactions but later explain how our method generalizes
to testing higher-order interactions. For now, we will assume
the experimental design with two factors illustrated in Figure 1

comprising a Condition factor with two levels (Condition 1,
Condition 2; within- or between-subjects) and a Process factor
with two levels (Parameter θ1·, Parameter θ2·). Note that, in
principle, the second factor could also reflect any different
grouping (such as an experimentally manipulated within or
between condition factor). In this case, only one MPT model
parameter would be of interest that is estimated in the four cells
resulting from fully crossing both condition factors.

Appropriate Interaction Concept for MPT
Models
When assessing interactions, a distinction needs to be made
between interactions as defined in analysis of variance (ANOVA)
models and interactions as defined in Log-Linear Models (LLM).
In our Condition × Process design, a null interaction in the
ANOVA sense would refer to invariance of parameter differences
between the levels of one factor across the levels of the second
factor. That is, a null interaction would mean that the difference,
δ, between conditions is identical on both parameters. Likewise,
the difference between the two process parameters would need
to be the same across conditions. In the following, we will
demonstrate that due to the nature of MPT model parameters,
which represent probabilities and are thus bounded by 0 and
1, this linear interaction concept is not suited for this type of
models and may falsely imply the presence of an interaction in
the presence of strong main effects. To demonstrate this, let us
assume, without loss of generality, that factor levels are arranged
such that moving from Level 1 to Level 2 on either factor results
in a constant decrease of the corresponding parameters under
the null interaction model. Therefore, the following would need
to hold for a null interaction of condition and process in the
ANOVA sense:

θ11 − θ12 = θ21 − θ22 = δC (2)

θ11 − θ21 = θ12 − θ22 = δP (3)

with δC and δP indicating the main effects of the two factors
[Condition (C), Process (P)], 0 ≤ δC ≤ 1 and 0 ≤ δP ≤ 1.
Therefore, under the null hypothesis of no interaction, parameter
θ22 would be affected by both main effects as follows

θ22 = θ11 − δC − δP. (4)

Because θ22, like all MPT parameters, represents a probability,
it must lie within [0, 1]. Consequently, the following restriction
would be imposed on the main effects of condition and process
for a null interaction to be present:

(δC + δP) ≤ θ11 (5)

A weird consequence of (5) is that strong main effects would
automatically imply a violation of (5) and thus an interaction
in the ANOVA sense. If, for example, θ11 = 0.70 and θ12 =

0.10 (i.e., δC = 0.60), an interaction of condition and process
would automatically be implied whenever the Process factor has
a main effect larger than δP = 0.10 to ensure that θ22 ≥ 0.
More generally, if the largest parameter is quite small (e.g., 0.05)
not much shrinkage is possible if defined as a difference (i.e., 0
≤ δ ≤ 0.05). In the standard ANOVA framework, in contrast,
main effects and interactions could vary independently because
parameters are not bounded by 0 and 1.

This obvious problem can be avoided in MPT modeling by
adopting the LLM interaction concept in which a null interaction
refers to invariance of parameter ratios across the levels of the
second factor. That is, in terms of the 2 × 2 model with a
Condition and a Process factor, a null interaction in the LLM
sense would imply:

θ12/θ11 = θ22/θ21 = αC (6)

θ21/θ11 = θ22/θ12 = αP (7)

In this case, assuming no LLM-type interaction, θ22 would be:

θ22 = θ11·αC·αP (8)

Crucially note that, in order to keep all MPT parameter values
within [0, 1], main effects must be represented as ratios αC and
αP with the larger parameter values always appearing in the
denominator. Most importantly, however, an interaction effect
is not automatically implied when αC and αP take on extreme
values in [0, 1], becausemain effects aremultiplicative rather than
additive under the null interaction hypothesis in the LLM sense.
Thereby, even strong main effects can occur (i.e., α parameters
close to 0) without implying an interaction. For the example given
earlier, if θ11 = 0.70 and θ12 = 0.10 (i.e., αC = 0.14), the difference
θ21 – θ11 could still exceed 0.10 without necessarily implying an
interaction. For example, if θ12 = 0.40 (i.e., αP = 0.57), a null
interaction in the LLM sense would require θ22 = 0.06, a valid
parameter value. Thus, main effects and interactions would not
be artificially confounded. Likewise, the α parameters are not
restricted by the value of the original parameter; even if the largest
parameter is quite small, the α parameter can, in principle, be
of any value between 0 and 1. Hence, we will adopt the LLM
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interaction concept, because it is better tailored to multinomial
models. For brevity, we refer to this latter concept of “interaction
as defined in LLM” simply as “interaction” in what follows2.

Estimating MPT Parameter Ratios via
Parametric Order Constraints
Testing an interaction hypothesis essentially entails comparing
a factor’s simple main effect under different conditions. As
reasoned above, it is crucial that the main effects are expressed
as parameter ratios (rather than differences) to test an interaction
in the LLM sense. In order to perform this type of comparison
with the parameter tests available in MPT models, it is thus
necessary to introduce parameters that quantify a factor’s simple
main effect in each possible condition as a ratio. Then, these ratio
parameters can be compared across conditions to assess whether
an interaction is present (i.e., the factor’s simplemain effect differs
depending on conditions) or not.

Knapp and Batchelder (2004) introduced reparameterizations
of MPT models that allow estimating parameter ratios via
parametric order constraints. As described earlier, all estimated
MPT model parameters vary in [0, 1] when freely estimated
but can be restricted to be equal to a constant or to another
parameter. In contrast, parametric order constraints allow to
implement restrictions that still let the constrained parameter
vary freely but only within a restricted range of values. For
example, the restriction 0≤ θ1 ≤ θ2 ≤ 1 constrains the parameter
θ1 to vary only in [0, θ2] instead of [0, 1], with the upper boundary
being determined by the value of another model parameter, θ2.
Once a parametric order constraint, such as θ1 ≤ θ2, has been
defined and a MPT model has been reparameterized to reflect
this constraint, a new parameter α is estimated that reflects the
shrinkage of θ1 relative to θ2. Crucially, we propose that this
shrinkage parameter α can be used to test interactions because
it reflects the relative change in parameters and thus, in essence,
represents the ratio α = θ1/θ2.

Knapp and Batchelder (2004) introduced two equivalent
reparameterization methods for MPT models to assess
parametric order constraints. We will focus on their Method
A, which has been implemented in the software multiTree
(Moshagen, 2010). This method replaces a parameter θ by a
novel parameter α such that α reflects decreases in θ, allowing
the implementation of a constraint that restricts one parameter
(e.g., θ1) to be smaller than or equal to a second parameter (e.g.,
θ2). Note that such a reparameterization does not change the
dimensionality of the model (i.e., the number of parameters) and
thus does not change the df of the model test. Also, note that
this reparameterization is data-equivalent to the original model
whenever the implemented order constraint actually holds in the
observed data.

2Because invariant parameter ratios correspond to invariant differences between

the logarithms of the parameters, a technically more accurate term would be

“interaction on a logarithmic scale” (cf. Klauer et al., 2000, p. 861). In fact,

Klauer and collaborators already employed the LLM concept of no interaction in

the context of their belief bias MPT model (Klauer et al., 2000), albeit without

discussing its implementation in MPT models and its implications for MPT

modeling in general.

To apply this method for purposes of testing interactions, data
from at least two (within- or between-subjects) conditions are
required across which a parameter may change. Returning to our
two-factorial example illustrated in Figure 1, there is a Condition
factor with two levels/groups (e.g., younger and older adults). As
before, let us assume that Condition 1 outperforms Condition
2 on both psychological processes measured by the model’s
parameters θ1·and θ2·. Via Knapp and Batchelder’s method A, we
can replace θ12 and θ22 by two new parameters, αC,θ1 and αC,θ2,
representing the shrinkage factors for each process in Condition
2 compared to Condition 1. In the reparameterized model, the
parameters of Condition 2 are thus reparameterized as follows:

θ12 = θ11·αC|θ1 (9)

θ22 = θ21·αC|θ2 (10)

Importantly, each occurrence of θ12 and θ22 in the original model
is replaced with the corresponding product. The introduction of
two new parameters αC,θ1 and αC,θ2 to the model of course also
requires the introduction of the corresponding complementary
branches (1-αC|θ1) and (1-αC|θ2). Figure 2 shows how the
reparameterized model can be derived from the original model.
Whereas the equations for Condition 1 correspond to those
presented in Equation (1) except for an additional index “1”, for
Condition 2 the reparameterized model equations become:

p(f12) = θ11·αC|θ1·θ21· αC|θ2

p(f22) = θ11·αC|θ1·θ21·(1− αC|θ2)+ θ11·αC|θ1·(1− θ21)

p(f32) = θ11·(1− αC|θ1)+ (1− θ11) (11)

Obviously, the reparameterized model will always be larger (in
terms of the number of branches) than the original model.
Therefore, an automatized implementation of order constraints
is recommended not only because it is less tedious but, more
importantly, less error-prone. To our knowledge, multiTree is

FIGURE 2 | Illustrative instructions on how to reparameterize a MPT model to

reflect the parametric order constraint θ1 ≤ θ2. T1 represents the sub-MPT

that follows occurrences of θ1 in the original model, T2 the sub-MPT that

follows occurrences of (1–θ1) in the original model. In the reparameterized

model, all occurrences of θ1 are replaced by α1 · θ2 and (1–θ1) is replaced by

(1–θ2). Sub-MPTs follow the new parameters as illustrated. Adapted from

Knapp and Batchelder (2004).
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the only MPT modeling software that offers this automatic
reparameterization of MPT models to reflect parametric order
constraints. Apart from this, the reparameterized model is
equivalent to the original model for the subspace of the parameter
space fulfilling the implemented order constraints (cf., Meiser,
2014). Thus, the properties (e.g., identifiability; validity) of the
original model, already shown by Bayen et al. (1996), also hold for
the reparameterized model. Crucially note that this only pertains
if the reparameterization is implemented correctly, that is if the
larger parameter is in the denominator of the ratio. Indeed, in
this case, and further given that the ratio parameters are not at
the boundary of parameter space (i.e., 0 or 1), model fit of the
reparameterized model will be identical to the original model.

Note that even though this reparameterization restricts θ12
and θ22 to vary only in [0, θ11] and [0, θ21], respectively, all
parameters in the reparameterized model may vary in [0, 1], so
that standard MPT procedures can be used to estimate and test
the model. This is because the restricted parameters, θ12 and
θ22, are not included in the reparameterized model and the new
parameters, αC|θ1 and αC|θ2, reflect shrinkage factors (i.e., αC|θ1
= θ12/θ11 and αC|θ2 = θ22/θ21) that can vary in [0, 1]. If αC|θ1
= αC|θ2 = 1, then there is no condition effect on both process
parameters, that is θ12 = θ11 and θ22 = θ21. In contrast if αC|θ1 <

1 and αC|θ2 < 1, then Condition 2’s parameters are smaller than
Condition 1’s for both psychological processes of interest.

In case of a design including factors with more than two levels
(e.g., three or more different psychological process parameters
of interest), one would specify additional ratio parameters. For
example, with three levels of the Process factor (θ1, θ2, θ3) and
two conditions, there would be three simple main effects of
Condition 1 vs. 2 (αC|θ1, αC|θ2, αC|θ3). Similarly, when there
are more than two conditions, one would specify additional
shrinkage parameters. In general, if there are K ≥ 2 levels of
the Condition factor, then the number of shrinkage parameters
required per process parameter would be K-1. For example, in
a design with two process parameters and three conditions, one
would have four shrinkage parameters in total, two for each of
the two processes. The two shrinkage factors per process could,
for example, represent the shrinkage in a process parameter from
Conditions 1 to 2 and from Conditions 2 to 3 or, alternatively,
the shrinkage from Conditions 1 to 2 and from Conditions 1 to
3. The first method would be appropriate if one expects a main
effect decrease from Conditions 1 to 2 and, additionally, from
Conditions 2 to 3. In contrast, if one simply expects Condition
1 to perform best with no specific ordering of Conditions 2 and
3, then one would select the second pattern of order constraints.
Although the values of the second shrinkage parameter will
in general differ between both methods, they are equivalent in
the sense that they will yield identical interaction test results,
provided that the imposed order constraints are in agreement
with the observed data.

So far, we have assumed that the process effect is in the same
direction across all conditions. In this case, an ordinal interaction
would be present if this process effect significantly differs in size
across conditions. In contrast, a disordinal interaction would
be present if a factor has opposite effects across at least two
levels of the other factor (also called “crossover interaction” or

“double dissociation”). For example, if the Condition factor in
our example from Figure 1 produced a decrease from the first
to the second level in the first process parameter (i.e., θ12 < θ11)
but an increase in the second parameter (i.e., θ22 > θ21) then this
would establish a disordinal interaction. In turn, we will explain
how to test both types of interactions.

Testing Ordinal Two-Way Interactions in
MPT Model Parameters
In ordinal interactions, the effect of one factor is in the same
direction for each level of the other factor while it may vary in
effect size (including zero effects). In our example, Condition
2 may always have lower process probabilities than Condition
1 irrespective of the type of process (θ1, θ2) but this difference
may be more pronounced for one process than the other. To
test such an interaction, one would implement the shrinkage
parameters as above to reflect the effect in the expected direction
at each level of the other factor. When the observed data satisfy
all imposed order constraints (i.e., when an increase in the level
of the Condition factor is always associated with a decrease in
all relevant process parameter estimates), the model fit for the
original and the reparameterized model is necessarily identical.
To formally test whether there is an ordinal interaction, one then
restricts the corresponding shrinkage parameters to be equal (i.e.,
αC|θ1 = αC|θ2). If this restriction significantly worsens model fit,
that is, if the observed 1G2(df ) falls in the upper α·100% of the
reference distribution, using the asymptotic χ2(df ) distribution
as a reference with df = number of equality constraints (i.e.,
df = 1 in our example), the H0 assuming no interaction (i.e.,
identical shrinkage parameters across all levels of the other factor)
would be rejected in favor of the H1 that there is an ordinal
two-way interaction.

Assuming that the interaction test turned out to be not
significant, the H0 of no interaction is maintained. The next
step would be to test the main effect of the Condition factor
(restricted to be equal across processes, i.e., αC|θ1 = αC|θ2 = αC)
for significance. The most straightforward way to do this would
be to test H0: αC = 1 using a 1G2(df ) difference test with respect
to the null interaction model. However, since this H0 lies at the
boundary of the parameter space, the regularity conditions for
the asymptotic χ2(df ) test are not met (Read and Cressie, 1988).
This problem can be remedied using the parametric bootstrap
option of multiTree (Moshagen, 2010) that generates the relevant
reference distribution under H0 empirically using Monte-Carlo
methods (Efron and Tibshirani, 1993).

If, in contrast, the interaction effect turns out to be significant,
it will often be of interest to test whether the interaction is weakly
ordinal with respect to a certain factor (e.g., θ12 < θ11 and θ22
= θ21, also called “simple dissociation”) or strictly ordinal (e.g.,
θ12 < θ11 and θ22 < θ21, also called “no dissociation”), that is,
whether each of the simple main effects is significant or not. This
can be done in the same way as previously described for the
test of the main effect null hypothesis H0: αC = 1. This time,
however, one would test the simple main effects separately, for
example, H0: αC|θ1 = 1 or H0: αC|θ2 = 1. Again, we recommend
the parametric bootstrap to evaluate statistical significance.
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Note that if one or both factors have three or more levels
and there are no specific predictions concerning which specific
combination of the two factors should differ from the other
design cells, one should first conduct an omnibus test by
equating all shrinkage parameters. If this effect is significant,
resulting in an acceptance of the overall interaction hypothesis,
one can then follow up with pairwise comparisons of the
shrinkage parameters to describe this interaction in more detail.
We recommend adjusting such exploratory multiple pairwise
comparisons using the Bonferroni-Holm method (Holm, 1979)
to prevent alpha inflation. If there are more specific a priori
predictions concerning which design cells should differ from
the others, then only the corresponding shrinkage parameter
constraints should be tested directly to minimize the overall
number of tests.

Notably, presence vs. absence of an interaction between two
factors of course does not depend on the order in which these
factors enter into the interaction test. Applied to our example,
rather than testing the null interaction hypothesis as outlined
above, that is, by equating the shrinkage parameters representing
simple condition main effects (i.e., αC|θ1 = αC|θ2 = αC), we
could also invert our reparameterization scheme and equate
shrinkage parameters representing simple process main effects
within conditions (i.e., αP|C1 = αP|C2 = αP). Both constraints
are equivalent and thus lead to the same null interaction model.
By implication, the goodness-of-fit statistics 1G2(1) and test
results will be identical for both types of constraint. To see the
equivalence, note that αC|θ1 = αC|θ2 = αC can be rewritten as:

θ12 = θ11·αC|θ1 = θ11·αC (12)

θ22 = θ21·αC|θ2 = θ21·αC (13)

Dividing (13) by (12) immediately leads to

θ22/θ12 = θ21/θ11 ⇐⇒ αP|C2 = αP|C1 = αP. (14)

Testing Disordinal Two-Way Interactions in
MPT Model Parameters
In disordinal interactions, the direction of the effect of one
factor differs across the levels of the other factor. If such an
interaction holds, then a model imposing order constraints in
the same direction across all levels of another factor will not
fit the observed data perfectly. However, not all cases with
order-constrained models resulting in G2 > 0 automatically
justify acceptance of the disordinal interaction hypothesis. One
possibility is that the levels of the Condition factor were just
all specified in the wrong order. By re-arranging the order of
factor levels one could perhaps have an order-constrained model
with perfect fit to the data. This option should be checked first
by inspecting raw parameter estimates for the unconstrained
model. If re-arranging factor levels results in perfect fit of the
order-constrained model one should proceed with this revised
order model and test for an ordinal interaction as described
in the previous section. Of course, such a change in the order
constraints relative to the originally expected order must be
reported in any publication on these data.

If inspection of the data shows that misfit of the order-
constrained model cannot be avoided by re-arranging the order
of factor levels, the possibility remains that a weakly ordinal
interaction underlies the data but sampling error caused a
disordinal interaction pattern in the observed data. Given this,
the H0 of a weakly ordinal interaction (represented by the order-
constrained model without any further constraints) cannot be
evaluated using the asymptotic χ2(df ) as a reference distribution
(Read and Cressie, 1988). However, one can again use the
parametric bootstrap to estimate the limiting distribution of G2

under the H0 of an ordinal interaction. If the reparameterized
model with shrinkage parameters in line with the ordinal
interaction hypothesis fits the data, indicated by a bootstrapped
p-value larger than the desired alpha-level, then the H0 of an
ordinal interaction is maintained.

Again, in the case of three or more levels per factor one
should either only test pairwise comparisons that were a priori
hypothesized to differ or conduct an omnibus restricting all
ratio parameters to be equal first and proceed with pairwise
tests of all possible combinations only if the omnibus test is
significant. As before, we recommend applying a Bonferroni-
Holm correction of the alpha significance level, especially if many
levels are compared.

In contrast, if the bootstrapped p-value is equal to or
smaller than the specified alpha-level, then the H0 of an ordinal
interaction is rejected. In other words, there are substantial effects
in opposing directions, thus establishing a disordinal interaction.
Again, this approach can be easily extended to factors with three
or more levels by specifying as many ratio parameters as there
are levels.

RESULTS

We now illustrate our method to test a prominent theory of
cognitive aging that predicts an ordinal two-way interaction
of age group and type of memory on memory performance.
Specifically, the associative deficit hypothesis (Naveh-Benjamin,
2000) maintains that aging particularly impacts memory for
associations such that differences between younger and older
adults are most pronounced on tests of associative memory but
less so on tests of simple item memory. One type of associative
memory is source memory (memory for the context in which
item information was first learned), such as determining whether
we read information in a reliable or unreliable newspaper
(Johnson et al., 1993). Thus, source memory involves memory
for the association of an item to perceptual (e.g., font type)
and spatio-temporal context features that together make up the
source or origin of the item and should thus be more affected by
aging than memory for the item itself.

In the typical source-monitoring paradigm, participants study
items (e.g., words) presented in one of two different sources
(e.g., in bold vs. italic text type). Subsequently, participants are
tested with a list of previously studied (i.e., old) items intermixed
with unstudied (i.e., new) items, all presented in a source-neutral
manner (e.g., a regular text type). For each test item, participants
are required to provide an old vs. new judgment. If an item is
judged as old, they also have to indicate the source of the item.
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A well-validated MPT model commonly used for this
paradigm is the two-high threshold (2HT) model of source
monitoring (Bayen et al., 1996; see Bröder and Meiser, 2007,
for a review of alternative MPT models). A simple variant
(Submodel 4) of this model is depicted as a tree structure in
Figure 3. There are three trees, one for test items that were
originally studied in Source A (e.g., italic text type), another for
test items originally studied in Source B (e.g., bold text type),
and an additional tree for new distractor items. The model
reflects the theoretical assumption that memory and guessing
processes operate together in a source-monitoring task (cf.,
Johnson et al., 1993). That is, a correct source attribution at test
for items originally studied in one of the two sources may result
from actual memory for both the item (probability D) and the
source (probability d), or from a series of guessing processes in
the absence of memory. That is, if participants remember an
item (probability D) but not its source (probability 1-d), they
guess “Source A” with probability g and “Source B” with the
complementary probability (1-g). In a state of uncertainty about
the item (probability 1-D), the guessing process b captures the
probability of guessing “old” and the complementary probability
1-b reflects the probability of guessing “new.” For new items,
parameter D reflects the probability of distractor detection. In a
state of uncertainty about the new item’s status (with probability
1-D), item and, if applicable, source guesses follow as they do for
previously studied but unrecognized items.

Thus, the 2HT-MPT model of source monitoring provides
measures of item memory (parameter D) and source memory
(parameter d) that are unconfounded by inferential guessing
processes. These process parameters are thus ideal dependent
variables to test the age group by memory type interaction
postulated by the associative-deficit hypothesis.

Using younger and older adults’ source monitoring data from
Kuhlmann and Touron (2011; all-once condition) we will now
illustrate how to implement our method delineated above to
test the ordinal interaction predicted by the associative-deficit
hypothesis. In Kuhlmann and Touron’s study, 30 younger (mean
age = 18.5 years) and 30 older (mean age = 67.2 years) adults
studied 50 words, 25 appearing in italic text type and the
remaining 25 appearing in bold text type. At test, participants
judged the old-new status of 100 words (50 studied, 50 new
distracters) presented in neutral text type and indicated the
study text type (bold or italic) for any word judged to be old.
The raw responses frequencies, aggregated across participants
and items in each condition, are reported in the Appendix of
Kuhlmann and Touron. We constructed a two-group version of
the 2HT-MPTmodel of source monitoring displayed in Figure 3,
yielding separate parameter estimates of the four parameters (D,
d, b, and g) for the younger (subscript YA) and older (subscript
OA) adults, and used multiTree (Moshagen, 2010) for parameter
estimation and hypothesis tests. The data file, equation files,
and multiTree file of this application example are provided as
Supplementary Material.

The two-group joint standard model fit the data well, G2(4)=
6.75, p= 0.150.Table 1 presents parameter estimates for both age
groups. Given the good fit of the model to the data, the parameter
estimates may be interpreted and submitted to inferential tests.
In this standard model, one can test the main effect of age

FIGURE 3 | Four-parameter version of the two-high-threshold multinomial

processing tree model of source monitoring. D, probability of recognizing a

previously presented item or detecting a distractor item; d, probability of

remembering the source an item was presented in; b, probability of guessing

that an unrecognized item is old; g, probability of guessing that an item was

presented in Source A. Adapted from Bayen et al. (1996, p. 202).

group on item and source memory, respectively, via standard
parameter comparisons. Restricting the itemmemory parameters
to be equal across younger and older adults (i.e., DYA = DOA)
significantly worsens model fit, 1G2(1) = 16.90, p < 0.001,
showing that, as to be expected, older adults item recognition
is significantly poorer than younger adults’. Likewise, restricting
the source-memory parameters to be equal across younger and
older adults (i.e., dYA = dOA) significantly worsens model fit,
1G2(1)= 8.25, p= 0.004. Again, older adults’ source memory is
significantly poorer than younger adults’. Thus, these inferential
tests confirm to-be-expected simple main effects of age group on
both item and source memory. However, these tests do not assess
whether the age effect is more pronounced on source than on
item memory as predicted by the associative deficit theory.

In order to test the age group x memory type interaction, we
proceeded as detailed above. Specifically, we introduced two new
shrinkage parameters, αA|I and αA|S, to reflect the effect of age
group (A; in the direction OA < YA) on item (I) and source (S)
memory, respectively. Therefore, older adults’ item and source
memory parameters are reparameterized as a proportion of
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TABLE 1 | Parameter estimates from the original and the reparameterized four-parameter version of the two-high threshold multinomial model of source monitoring for

younger and older adults in Kuhlmann and Touron (2011).

Sample D d b g α A|I α A|S G2(4)

Original model 6.75

Younger 0.72 (0.01) 0.38 (0.03) 0.28 (0.02) 0.50 (0.02) – –

Older 0.64 (0.01) 0.25 (0.03) 0.31 (0.02) 0.54 (0.02) – –

Reparameterized model 6.75

Younger 0.72 (0.01) 0.38 (0.03) 0.28 (0.02) 0.50 (0.02) – –

Older – – 0.31 (0.02) 0.54 (0.02) 0.89 (0.02) 0.65 (0.10)

D, probability of recognizing an old item or detecting a new distractor item; d, probability of remembering the source (i.e., text type) of a recognized old item; b, probability of guessing

“old” if item is not recognized; g, probability of guessing “italic” if text type source is not remembered; αA|I, age-related decline in item recognition (relative to younger adults’ item

recognition); αA|S, age-related decline in source memory (relative to younger adults’ source memory). G
2 (4) values smaller than 9.49 indicate a good model fit (p > 0.05).

younger adults’ respective memory parameter as follows (see
Supplementary Material for full set of model equations):

DOA = αA|I·DYA (15)

dOA = αA|S·dYA (16)

This reparameterized model yielded the same model fit (G2)
as the original model, implying that the data satisfy the
implemented same-direction order-constraints. In addition,
none of the shrinkage parameter estimates converged to the
boundary value 1 (or 0). We further ensured that identifiability
holds for the reparameterized model, as demonstrated for the
original model by Bayen et al. (1996), using multiTree’s tools
for identifiability check: We confirmed local identifiability by
repeatedly estimating the model parameters from the Kuhlmann
and Touron (2011) data 1,000 times. No deviations occurred in
any of the parameter estimates (i.e., all deviations ≤ 0.00001).
Similarly, the simulated identifiability analysis based on 1,000
simulations with the same number of observations per tree as
in the Kuhlmann and Touron data example, yielded only minor
deviations between actual and recovered model parameters
beyond the second decimal (maximum deviation of −0.00198;
tolerance 0.00001) in less than 0.5% of the cases (i.e., 39 out of
1,000) and an average deviation < 0.00001. These rare minor
deviations can be explained by numerical inaccuracies. The
output files from both identifiability checks are provided in
Supplementary Material.

Parameter estimates from the reparameterized model
are displayed in Table 1. Note that estimates for non-
reparameterized parameters (i.e., b, g, DYA, and dYA) are
identical to their estimates in the original model, whereas
DOA and dOA have been replaced by the shrinkage parameters
reflecting the ratios of the original memory parameter estimates
for older relative to younger adults, that is α̂A|I = D̂OA/D̂YA=

0.64/0.72 = 0.79, and α̂A|S =d̂OA/d̂YA = 0.25/0.38 = 0.65. In
essence, these values represent the simple main effect estimates
of age (A) on item (I) and source (S) memory, respectively. Thus,
there are decreases in item and source memory with increasing
adult age, as indicated by the parameter estimates α̂A|I < 1 and
α̂A|S < 1. The 95% CIs for α̂A|I, [0.85, 0.92], and for α̂A|S, [0.45,
0.85], exclude 1, suggesting significant age-related decreases in

item and source memory, in line with the earlier conducted
simple main effect tests.

Most importantly, we can now directly compare the age-
group effect on item vs. source memory by restricting αA|I =

αA|S to test the age group x memory type interaction postulated
predicted by the associative deficit hypothesis. Descriptively, with
α̂A|S < α̂A|I, there appears to be a larger age-group difference in
source (associative) memory than in item memory, as implied
by this theory, and restricting both α parameters to be equal
indeed significantly worsens model fit, 1G2(1) = 4.07, p =0.04,
indicating that the age difference is indeed significantly larger for
source than for item memory—a strictly ordinal interaction as
predicted by the associative deficit theory.

GENERALIZATION

So far, we have focused on two-way interactions. Interactions
of higher orders (with three or more factors involved) imply
that lower-level interactions (e.g., a two-way interaction) vary
between the levels of another factor. The method of testing
interactions as introduced here can be generalized to this scenario
in a straightforward way. For example, we can introduce a third
training factor to the experimental design illustrated in Figure 1

such that both processes were assessed in both conditions in
an untrained and in a trained group. That is, there are two
sets of parameter estimates per condition one for untrained
and one for trained, which can be denoted by a third subscript
index of “1” for untrained and “2” for trained (i.e., θ111 is the
estimate of process θ1 in the untrained Condition 1 whereas
θ112 is the estimate of process θ1 in the trained Condition
1). As previously, we assume a main effect of condition with
lower parameter estimates in Condition 2 than 1 and a main
effect of process with lower probabilities of θ2 than θ1. In
addition, we now assume higher process estimates in the trained
conditions for both Conditions 1 and 2. Of interest may now be
to test whether this training benefit differs between Conditions
1 and 2 for one or both of the processes. That is, we are
interested in testing a three-way interaction of condition, process,
and training.

Given this research question, we can again make use of
the reparameterization method introduced above. One way of
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reparameterizing the model would be to introduce the training
main effect αT, quantifying the relative decrease in the untrained
(u) compared to the trained (t) group in the first step. In a second
step, the conditional (i.e., simple) main effects of condition
within the two training groups, αC|u and αC|t, respectively,
would be specified. In the third and final step, one would
introduce the second-order conditional main effects of process
within the four condition × training combinations (αP|C1,u,
αP|C1,t, αP|C2,u, αP|C2,t, respectively). Applied simultaneously, all
remaining parameters are reparameterized as a function of the
largest parameter, θ112, as follows:

θ111 = αT· θ112

θ121 = αT·αC|u· θ112

θ122 = αC|t· θ112

θ211 = αT·αP|C1,u· θ112 (17)

θ212 = αT·αP|C1,t·θ112

θ221 = αT·αC|u·αP|C2,u· θ112

θ222 = αT·αC|t·αP|C2,t· θ112

Assuming that this reparameterized model fits the data as well as
the model without order constraints, several (ordinal) interaction
tests can be conducted. For example, if we would impose the
equality constraints αC|u = αC|t and αP|C1,u = αP|C1,t = αP|C2,u
= αP|C2,t simultaneously (i.e., four equality constraints in total),
this constraint would test the hypothesis that there are no
interactions whatsoever. In other words, for each of the three
factors of the design, single decrease parameters (αT, αC, and αP),
representing the main effects of each factor, suffice to describe
the relative differences between conditions, irrespective of the
levels of other factors. If no specific prediction has been made
before the study, this omnibus test of the H0 of neither two-way
nor three-way interactions is the recommended first test. The
three-way interaction can then be tested using the second-order
conditional main effects of process within the four condition ×

training combinations (i.e., αP|C1,u, αP|C1,t, αP|C2,u, and αP|C2,t,
respectively). For example, if αP|C1,u = αP|C1,t but αP|C2,u 6=

αP|C2,t there would be a three-way interaction such that in
Condition 2 the training effect differs by process whereas in
Condition 1 it does not differ by process.

Importantly, note that the order in which the parametric
order constraints are implemented determines the research
questions that can be tested. If one was for example interested
in comparing the training benefits for each Condition x Process
condition, one should have first implemented the condition
and process effects and implemented the training effect as a
second-order conditional main effect for each Condition ×

Process combination. This order also determines which two-
way interactions can be tested. The reparameterization order
suggested first would allow to test for the condition x training
effect (i.e., αC|u 6= αC|t) whereas including the process effect
before the training effect would allow to test for the Condition
× Process interaction (i.e., αP|C1 6= αP|C2). In sum, the optimal
order in which parameters should be reparameterized depends
on the specific research hypotheses of interest.

Using this approach, a multitude of interaction test options
can be derived. In fact, all types of interactions as defined in
Log-Linear Models for three-way contingency tables (Read and
Cressie, 1988; Agresti, 2002) can be tested in this way, the
single exception being the model allowing for all possible two-
way interactions (condition by process, condition by training,
and training by process) but not the three-way interaction
of these factors. To our knowledge, there is no way to test
this specific hypothesis within the MPT framework. Despite
this limitation, the approach can be used to address a large
number of scientifically relevant interaction hypotheses for
multi-factorial designs.

DISCUSSION

In this article, we explain how to test interactions on MPT
model parameters. Our method relies on parametric order
constraints (Knapp and Batchelder, 2004) that represent a factor’s
conditional main effects at each level of another factor, thereby
allowing for a direct test of condition main effects against
each other to test for an interaction. Crucially, parametric
order constraints capture a (within- or between-subjects) factor’s
simple main effects as relative proportions (i.e., parameter
ratios from the factor’s different levels) rather than as absolute
parameter differences, thus an interaction in the LLM sense
is tested. We argue that the LLM concept is appropriate for
MPT models because of the restriction of model parameters
(i.e., probabilities) to the interval [0, 1]. Given this constraint,
scaling simple main effects as absolute parameter differences
would artificially imply an interaction in the presence of strong
main effects, a problem that disappears when simple main effects
are represented by parameter ratios. We explained in detail how
both ordinal and disordinal two-way interactions on MPTmodel
parameters can be tested. An empirical application example
from cognitive aging proves the usefulness of our method to
various psychological research questions. Finally, we explain how
our method generalizes to higher-order interactions involving
three or more factors. Our method can be easily implemented
within the freely available software multiTree (Moshagen, 2010),
operating on Windows, Mac and Unix. Thereby, users benefit
from all other options provided by multiTree, for example
the option to conduct an a priori power analysis of the
interaction tests.

Limitations
Our proposed method for testing interactions on MPT model
parameters is flexible and can be easily adapted to any MPT
model. Thus, it provides a powerful tool for psychological
research. Nonetheless, there are a few limiting aspects that one
should be aware of before implementing this method. The fact
that the order of parameter restrictions determines which specific
interactions can be assessed in more complex designs with three
or more factors, may be perceived as a limitation of this method.
However, the same applies to ANOVA models for which there
are different options to follow up with simple conditional main
effects analyses. As always, a good theoretical foundation of the
research study should ensure that the order of implementing
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parameter restrictions in complex designs does not become an
exploratory playground.

A more serious limitation may be the fact that one type
of interaction as defined in Log-Linear Models for three-way
contingency tables (Read and Cressie, 1988; Agresti, 2002)
cannot be tested with this method. More specifically, it is
not possible to set up a model that simultaneously allows
for all possible two-way interactions (Factor 1 × Factor 2,
Factor 1 × Factor 3, Factor 2 × Factor 3) but omits the
three-way interaction of these factors (Factor 1 × Factor 2 ×

Factor 3). Nonetheless, all other types of interactions can be
tested and as there are ways to specifically test each two-way
interaction, we think this does not pose a real limitation to the
applicability of MPT interaction tests for nearly all psychological
research questions.

Finally, we have focused on MPT model applications
based on data (i.e., observed frequencies) aggregated across
items and participants within each experimental condition,
as is traditionally done in MPT research (Batchelder and
Riefer, 1999; Chechile, 2009; Erdfelder et al., 2009). A
potentially problematic aspect of this “complete pooling”
approach is that observations are treated as independently
and identically distributed across the response categories.
More recent approaches, mostly based on Bayesian methods
and partial pooling, have been developed to estimate MPT
parameters in the presence of heterogeneity among observations
(Klauer, 2006, 2010; Stahl and Klauer, 2007; Smith and
Batchelder, 2008, 2010; Matzke et al., 2015; Heck et al.,
2018). Notably, as our approach to test interactions is based
on reparameterized standard MPT models, it can also be
used in combination with all of these hierarchical MPT
approaches as long as no between-subjects factor is involved.
When Bayesian hierarchical MPT models are used, however,
carefully note recommendations regarding prior distributions
for order-constrained parameters as standard settings may not
be appropriate (Heck et al., 2015).

We recommend that users test whether heterogeneity is
present in their frequency data (see Smith and Batchelder, 2008,
for such tests). If significant heterogeneity is present, parameter
estimates based on complete pooling should be compared with
partial-pooling approaches to assess potential risks of aggregation
bias in their data. Note that particularly in experimental MPT
research, complete pooling of data may have advantages even if
somemoderate degree of heterogeneity is present in the data (e.g.,
Chechile, 2009).

CONCLUSION

In summary, MPT models are valuable measurement tools
for psychological research (cf., Erdfelder et al., 2009) but its
previous applications have been primarily restricted to analyses
of main effects only. With the method outlined in this article,
various types of interactions can be tested on MPT model
parameters, rendering this tool even more powerful for future
psychological research.
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