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In many large-scale tests, it is very common that students are nested within classes or

schools and that the test designers try tomeasure their multidimensional latent traits (e.g.,

logical reasoning ability and computational ability in the mathematics test). It is particularly

important to explore the influences of covariates on multiple abilities for development and

improvement of educational quality monitoring mechanism. In this study, motivated by a

real dataset of a large-scale English achievement test, we will address how to construct

an appropriate multilevel structural models to fit the data in many of multilevel models,

and what are the effects of gender and socioeconomic-status differences on English

multidimensional abilities at the individual level, and how does the teachers’ satisfaction

and school climate affect students’ English abilities at the school level. A full Gibbs

sampling algorithm within the Markov chain Monte Carlo (MCMC) framework is used

for model estimation. Moreover, a unique form of the deviance information criterion (DIC)

is used as a model comparison index. In order to verify the accuracy of the algorithm

estimation, two simulations are considered in this paper. Simulation studies show that

the Gibbs sampling algorithm works well in estimating all model parameters across a

broad spectrum of scenarios, which can be used to guide the real data analysis. A brief

discussion and suggestions for further research are shown in the concluding remarks.

Keywords: education assessment, teacher satisfactions,multidimensional item response theory,multilevelmodel,

Bayesian estimation

1. INTRODUCTION

With the increasing interest in multidimensional latent traits and the advancement in estimation
techniques, multidimensional item response theory (IRT) has been developed vigorously which
made the model estimation become easy to implement and effective. Single-level multidimensional
IRT (MIRT) models were proposed decades ago, as it have the primary features of modeling the
correlations amongmultiple latent traits and categorical response variables (Mulaik, 1972; Reckase,
1972, 2009; Sympson, 1978; Whitely, 1980a,b; Way et al., 1988; Ackerman, 1989; Muraki and
Carlson, 1993; Kelderman and Rijkes, 1994; Embretson and Reise, 2000; Béguin and Glas, 2001; Yao
and Schwarz, 2006). The MIRT models later incorporated covariates to elucidate the connection
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between multiple latent traits and predictors (Adams et al., 1997;
van der Linden, 2008; De Jong and Steenkamp, 2010; Klein
Entink, 2009; Klein Entink et al., 2009; Höhler et al., 2010; Lu,
2012; Muthén and Asparouhov, 2013).

It has become frequent practice to regard IRT model
calibration’s latent ability as a dependent variable in resulting
regression analysis in relation to educational and psychological
measurement. Measurement error within latent ability estimates
is ignored in this two-stage treatment resulting in statistical
inferences that may be biased. Specially, measurement error can
reduce the statistical power of impact studies and deteriorate
the researchers’ ability to ascertain relationships among different
variables affecting student outcomes (Lu et al., 2005). One error
that can reduce the statistical capabilities of impact studies and
make it difficult for researchers to identify relationships between
variables related to student outcomes is the measurement error.

Taking a multilevel perspective on item response modeling
can avoid issues that arise when analysts use latent regression
(using latent variables as outcomes in regression analysis)
(Adams et al., 1997). The student population distribution is
commonly handled as a between-student model with the IRT
model being placed at the lowest level as a within-subject model
within the structure of multilevel or hierarchical models. Using
a multilevel IRT model gives analysts the ability to estimate
item and ability parameters along with structural multilevel
model parameters at the same time (e.g., Adams et al., 1997;
Kamata, 2001; Hox, 2002; Goldstein, 2003; Pastor, 2003). This
results in measurement error associated with estimated abilities
being accounted for when estimating the multilevel parameters
(Adams et al., 1997).

Although the multilevel IRT models have been deeply studied
in the last 20 years, there are significant differences between our
multilevel IRT models and the existing literatures in the problem
to be solved and the viewpoint of modeling. Next, we discuss
the differences frommany aspects. Multidimensional IRTmodels
that have a hierarchical structure relationship between specific
ability and general ability were developed in 2007 by Sheng
and Wikle. Specifically, general ability has a linear relationship
with specific ability, or all specific abilities linearly combine
within a general ability. However, the hierarchical structure in
our study refers to the nested data structure, for example, the
students are nested in classes while classes are nested in schools,
rather than the hierarchical relationships between specific ability
and general ability. The modeling method similar to Sheng
and Wikle (2007) also includes Huang and Wang (2014) and
Huang et al. (2013). Note that in Huang and Wang (2014),
not only the hierarchical abilities models are discussed, but
also the multilevel data are modeled. Muthén and Asparouhov
(2013) proposed the multilevel multidimensional IRT models
to investigate elementary student aggressive-disruptive behavior
in school classrooms and the model parameters were estimated
in Mplus (Muthén and Muthén, 1998) using Bayes. Although
Muthén and Asparouhov (2013) and our current study also focus
on the multilevel multidimensional IRTmodeling, there are great
differences in themodel construction. In themultilevel modeling,
they suggested that the ability (factor) of each dimension has
between-and within-cluster variations. However, the sources

of the between—and within—cluster variations are not taken
into account. More specifically, whether these two types of
variation are affected by the between cluster covariates and within
individual background variables have not been further analyzed.
Similarly, in the works of both Höhler et al. (2010) and Lu (2012)
demonstrated the same modeling method. In our study, the
between—and within—cluster variations are further explained
by considering the effects of individual and school covariates
on multiple dimensional latent abilities. For example, we can
consider whether the gender difference between male and female
has an important influence on the vocabulary cognitive ability
and reading comprehension ability. Moreover, Chalmers (2015)
proposed an extended mixed-effects IRT models to analyze PISA
data. By using a Metropolis-Hastings Robbins-Monro (MH-RM)
stochastic imputation algorithm (cf. Cai, 2010a,b,c, 2013), it
evaluates fixed and random coefficients. Rather than directly
explaining the multiple dimensional abilities, the individual
background (level-1) and school (level-2) covariates are used to
model the fixed effects.

In order to illustrate the interactions between unidimensional
ability and individual—and school—level covariates where the
ability parameters possess a hierarchical nesting structure, Fox
and Glas (2001) and Kamata (2001) proposed multilevel IRT
models. In this current research, we broaden Fox and Glas (2001)
and Kamata (2001)’s models by swapping their unidimensional
IRT model with a multidimensional normal ogive model because
we want to assess students’ four types of abilities from a large-
scale English achievement test. We particularly pay attention
to investigating the connection between multiple latent traits
and covariates. Taking the proposed multilevel multidimensional
IRT models as the basis, the following issues will be addressed.
(1) According to the model selection results, which model is
the best to fit the data and how can judge the individual-level
regression coefficients be judged as fixed effect or random effect?
(2) How will students from different ends of the socioeconomic-
status (SES) score in English performance as tested in four types
of latent abilities, based on the level-2 gender (GD), level-3
teacher satisfaction (ST) and school climate (CT) [The details
of the Likert questionnaires for measuring teacher satisfaction
and school climate, please refer to (Shalabi, 2002)]. (3) What
relationship exists between males and females’ performances in
different latent abilities by controlling for SES, ST and CT. (4)
What effects, if any, are seen with different teachers’ or schools’
effects (covariates)? (5) Is it possible to use a measurement
tool to determine whether items’ factor patterns correlate to the
subscales of the test battery? In particular, will the four subtests
of the test battery be discernable according to the discrimination
parameters on the four dimensions?

The rest of the article is organized as follows. Section 2
presents the detailed development of the proposed multilevel
multidimensional IRT models and procedure for hierarchical
data. Section 3 provides a Bayesian estimation method to meet
computational challenges for the proposed models. Meanwhile,
Bayesian model assessment criteria is discussed in section 3.
In section 4, simulation studies are conducted to examine the
performances of parameter recovery using the Gibbs sampling
algorithm. In addition, a real data analysis of the education
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quality assessment is given in section 5. We conclude this article
with a brief discussions and suggestions for further research
in section 6.

2. MULTILEVEL MULTIDIMENSIONAL IRT
MODEL

The model contains three levels. At the first level, a
multidimensional normal ogive IRT model is defined to
model the relationship between items, persons, and responses.
At the second level, personal parameters are predicted by
personal-level covariates, such as an individual’s social economic
status (SES). At the third level, persons are nested within schools,
and school-level covariates are included such as school climate
and teacher satisfaction.

• The measurement model at level 1 (multidimensional two
parameter normal ogive model; Samejima, 1974; McDonald,
1999; Bock and Schilling, 2003)

pijk = P
(
Yijk = 1

∣∣θ ij, ξ k
)
=

1
√
2π

ηijk∫
−∞

e−
t2

2 dt. (2.1)

In terms of notation, let j = 1, . . . ,J indicate J schools (or
groups), and within school j, there are i = 1, . . . ,nj individuals.
The total number of individuals is n = n1 + n2 + . . . +
nJ . k = 1, . . . ,K indicate the items. In Equation (2.1), Yijk

denotes the response of the ith individual in the jth group
answering the kth item. The corresponding correct response
probability can be expressed as pijk, and θ ij denotes a Q-
dimensional vectors of ability parameters for the ith individual

in the jth group, i.e., θ ij =
(
θij1, θij2, . . . ,θijQ

)′
, and ξ k =

(
ak1, ak2, . . . ,akQ, bk

)′
denotes the vector of item parameters, in

which ak =
(
ak1, ak2, . . . ,akQ

)′
is a vector of discrimination or

slope parameters, and bk is the difficulty or intercept parameter.

Let ηijk =
Q∑

q=1
akqθijq − bk. The latent abilities of different

dimensions can be explained by individual-level background
covariates. Note that the multidimensional IRT model used in
this paper actually belongs to the within-items multidimensional
IRT model. That is, each item measures multiple dimensional
abilities, and each test item has loadings on all these abilities.
Unlike the between-items multidimensional IRT model, each
item has a unity loading on one dimensional ability and zero
loadings on other dimensional abilities. For a further explanation
of themodel used in this paper, please seeTable 1 in the following
simulation study 1.

• Multilevel structural model at level 2 (individual level) can
be represented by

θijq = β0jq + x1ijβ1jq + x2ijβ2jq + . . . + xhijβhjq + eijq, (2.2)

In Equation (2.2), the level-2 individual covariates are denoted
as Xij =

(
x1ij, x2ij, . . . ,xhij

)
, where h is the number of individual

background covariates. Xij can contain both continuous and
discrete variables (e.g., socio-economic status, gender). The

residual term, eij =
(
eij1, eij2, . . . ,eijQ

)′
is assumed to follow

a multivariate normal distribution N (0, 6e). Here, 6e is a
Q-by-Q variance-covariance matrix. The individuals’ abilities
are considered to be the latent outcome variables of the
multilevel regression model. Differences in abilities among
individuals within the same school are modeled given student-
level characteristics. Therefore, the explanatory information Xij

at the individual level explains variability in the latent abilities
within school.

• Level 3 (school level) model in this current study can be
expressed as follows:

βhjq = γh0q + w1jγh1q + w2jγh2q + . . . + wsjγhsq + uhjq, (2.3)

In Equation (2.3), the level-3 school covariates are represented

by wj =
(
wj1,wj2, . . . ,wjs

)′
, where s is the number of

school covariates at level 3. Each level-2 random regression
coefficient parameter is βhjq, which can be interpreted by

school level covariates. The level-3 residual
(
u0jq, u1jq, . . . uhjq

)′

is multivariate normally distributed with mean 0 and
(
h+ 1

)
-by-(

h+ 1
)
covariance matrix Tq, q = 1, . . . ,Q. The variation across

schools is modeled given background information at the school
level. To control themodel complexity, we assume that the level-3
residual covariance between different dimensions is 0; that is

Cov
(
uhjq1 , uhjq2

)
= 0, q1, q2 ∈ 1, 2, . . . ,Q, and q1 6= q2,

j = 1, 2, . . . ,J, h = 1, 2, . . . (2.4)

Different from Equation (2.2) in this paper, Huang and Wang
(2014) proposed a high-order structure model to construct
ability parameters with hierarchical strucutre. More specifically,
all specific abilities linearly combine within a general ability.

Assuming that there are two order of ability, including θ
(1)
iqv and

θ
(2)
iv , their relationship is described by the following model

θ
(1)
iqv = β0qv + β1qvθ

(2)
iv + ε

(1)
iqv , (2.5)

where θ
(1)
iqv and θ

(2)
iv denote first-order ability and second-order

ability for the ith student sampled from school v, the subscript
q denotes the dimension of the first-order ability. β0qv, β1qv,

and ε
(1)
iqv are the intercept, slope, and residual for the qth first-

order ability in the vth school, respectively. ε
(1)
iqv is the within-

school residual and is typically assumed to be homogeneous
across schools and normally distributed with a mean of zero and
a variance of σ 2

ε and independent of the other ε and θ . However,
in this current study, we only focus on the specific abilities of
four dimensions without the general ability, which is the different
between Huang and Wang (2014) and us in the construction of
the ability structure model.

Moreover, in Huang and Wang (2014)’s paper, the multilevel
data structure is investigated by introducing the individual
level predictions directly into the above-mentioned higher-order
ability model (Equation 2.5). The specific model is as follows:

θ
(1)
iqv = β0qv + β1qvθ

(2)
iv +

H∑

h=2

βhqvGhiv + ε
(1)
iqv , (2.6)
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where Ghiv is the hth individual level predictor for the ith student
in the vth school and βhqv is its corresponding regression weight
for the qth ability and school v. At the school level, the random
coefficients β can be modeled as

β0qv = γ00q + u0qv,
β1qv = γ10q + u1qv,
βhqv = γh0q + uhqv,

(2.7)

where h = 2, . . . ,H, and the residuals uv
′ =(

µ0qv,µ1qv, . . . ,µHqv

)
are assumed to follow a multivariate

normal distribution with a mean vector of zero and a covariance
matrix of 6u. Further, school level predictors (e.g., school type,
school size) can be added to the random intercept model. That is,

β0qv = γ00q +
K∑

k=1

γkqWkv + u0qv, (2.8)

where Wkv is the kth school level predictor and γkv is its
corresponding regression weight for the qth ability.

However, in this current study, the multiple dimensional
abilities are directly built into the random regression models
through the individual level predictors (Equation 2.2). It is not
the same as Huang and Wang (2014, p. 498, Equation 4) that
constructs hierarchical structure ability and multilevel data in
one model. In addition, when constructing the school level
models in our paper, school level predictive variables, such as
teacher satisfaction, school climate, are used tomodel the random
intercept and random slopes (Equation 2.3). Considering if
different predictors are added to the school level model, multiple
versions of the school level models are generated. Therefore,
we can use the Bayesian model assessment to select the best-
fitting model. However, Huang and Wang (2014) only model the
random intercept by predictive variables at school level, without
considering the impact of predictive variables on other random
coefficients (page 498, Equation 8).

3. BAYESIAN PARAMETER ESTIMATION
AND MODEL SELECTION

3.1. Identifying Restrictions
In this current study, the multilevel multidimensional IRT
models are identified based on discrimination and difficulty
parameters (Fraser, 1988; Béguin and Glas, 2001; Skrondal and
Rabe-Hesketh, 2004). The most convenient method is to set Q
item parameters bk equal to 0 if k = q, and impose the restrictions
akq = 1, where k = 1, 2, . . .Q, and q = 1, . . . ,Q. If k 6= q,
akq = 0. If k > q, bk and akq will be free parameters to estimate.
The basic idea is to identify the model by anchoring several
item discrimination parameters to an arbitrary constant, typically
akq = 1. Meanwhile, the location identification constrains is
required by restricting the difficulty parameters for given items,
typically, bk = 0. Based on the fixed anchoring values of
item parameters, other parameters are estimated on the same
scale. The estimated difficulty or discrimination values of item
parameters are interpreted based on their relative positions to
the corresponding anchoring values (Béguin and Glas, 2001,
p. 545). Additionally, in order to have a clear understanding

of the process of restricting the identifiability, we illustrate the
identifiability of the two-dimensional models. For details, please
refer to item 1 and item 2 in Tables 1, 2 for the restrictions of
discrimination and difficult parameters.

3.2. Gibbs Sampling Within the MCMC
Framework
In the framework of frequentist, two commonly used estimation
methods are used to estimate the complex IRT models. One
is the marginal maximum likelihood estimation (MMLE; Bock
and Aitkin, 1981), and the other is the weighted least squares
means and variance adjusted (WLSMV; Muthén et al., 1997).
However, the main disadvantage of the marginal maximum
likelihood method is that it inevitably needs to approximate
the tedious multidimensional integral by using numerical
or Monte Carlo integration, which will increase large the
computational burden. Another disadvantage of the MMLE
are that it is difficulty to incorporate uncertainty (standard
errors) into parameter estimates (Patz and Junker, 1999a), and
the comparison method of the MMLE is simplistic, except
the RMSEA (Root Mean Square Error of Approximation)
which is often used, other comparison methods are seldom
used. In addition, there are some disadvantages in WLSMV
compared with Bayesian method used in this paper. Firstly,
Bayesian method outperforms WLSMV solely in case of strongly
informative accurate priors for categorical data. Even if the
weakly informative inaccurate priors are used when the sample
size is moderate and not too small, the performance of Bayesian
method does not deteriorate (Holtmann et al., 2016). Secondly,
compared with WLSMV, Bayesian method does not rely on
asymptotic arguments and can give more reliable results for
small samples (Song and Lee, 2012). Thirdly, Bayesian method
allows the possibility to analyze models that are computationally
heavy or impossible to estimate with WLSMV (Asparouhov
and Muthén, 2012). For example, the computational burden
of the WLSMV becomes intensive especially when a large
number of items is considered. Fourth, Bayesian method has
a better convergence rate compared with WLSMV. Fifth,
Bayesian method can be used to evaluate the plausibility of the
model or its general assumptions by using posterior predictive
checks (PPC; Gelman et al., 1996). For the above-mentioned
reasons, Bayesian method is chosen for estimating the following
multilevel multidimensional IRT models.

In fact, Bayesianmethods have been widely applied to estimate
parameters in complex multilevel IRT models (e.g., Albert, 1992;
Bradlow et al., 1999; Patz and Junker, 1999a,b; Béguin and Glas,
2001; Rupp et al., 2004). Within the framework of Bayesian, a
series of BUGS softwares can be used to estimate these multilevel
IRTmodels, including OpenBUGS (Spiegelhalter et al., 2003) and
JAGS (Plummer, 2003). However, in this paper, we implement the
Gibbs sampling by introducing the augmented variables rather
than by constructing an envelope of the log of the target density
as in a series of BUGS softwares. The auxiliary or latent variable
approach has several important advantages. First, the approach is
very flexible and can handle almost all sorts of discrete responses.
Typically, the likelihood of the observed response data has a
complex structure but the likelihood of the augmented (latent)
data has a known distribution with convenient mathematical
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TABLE 1 | Estimation of simulated item parameter estimation using Gibbs sampling algorithm in simulation study 1.

ak1 ak2 bk

Item True EAP HPDI True EAP HPDI True EAP HPDI

1 1* 1* − 0* 0* − 0* 0* −

2 0* 0* − 1* 1* − 0* 0* −

3 0.914 0.877 [0.711, 1.044] 0.686 0.672 [0.551, 0.795] −1.182 −1.154 [−1.327,−1.005]

4 1.102 1.127 [0.915, 1.355] 1.468 1.485 [1.250, 1.717] 0.441 0.426 [0.203, 0.629]

5 2.055 2.046 [1.674, 2.466] 1.428 1.453 [1.214, 1.678] −1.197 −1.367 [−1.683,−1.101]

6 2.291 2.361 [1.876, 2.835] 1.146 1.159 [0.877, 1.406] −2.536 −2.524 [−3.068,−2.187]

7 2.131 2.185 [1.834, 2.576] 0.758 0.760 [0.595, 0.930] 1.782 1.759 [1.448, 2.081]

8 1.027 1.009 [0.806, 1.214] 1.720 1.736 [1.491, 2.009] 0.152 0.159 [−0.229, 0.225]

9 0.569 0.564 [0.403, 0.713] 1.119 1.152 [0.973, 1.324] 0.964 0.927 [0.735, 1.093]

10 0.578 0.550 [0.342, 0.761] 2.129 2.094 [1.776, 2.471] 1.462 1.485 [1.215, 1.745]

11 0.795 0.797 [0.615, 0.980] 1.445 1.466 [1.261, 1.691] 0.619 0.600 [0.376, 0.787]

12 2.279 2.389 [1.191, 2.867] 1.148 1.132 [0.875, 1.412] −2.020 −2.028 [−2.388,−1.696]

13 0.714 0.616 [0.391, 0.864] 2.225 2.210 [1.867, 2.532] 0.602 0.577 [0.293, 0.826]

14 2.200 2.216 [1.797, 2.651] 1.465 1.471 [1.217, 1.721] 0.127 0.091 [−0.219, 0.381]

15 1.565 1.589 [1.349, 1.847] 0.728 0.711 [0.558, 0.867] −0.587 −0.605 [−0.817,−0.419]

16 2.419 2.439 [2.076, 2.866] 2.408 2.380 [2.015, 2.796] −0.218 −0.225 [−0.635, 0.094]

17 1.561 1.595 [1.342, 1.869] 1.398 1.388 [1.182, 1.621] 0.830 0.789 [0.533, 1.022]

18 2.457 2.470 [1.981, 2.900] 2.111 2.152 [1.792, 2.547] 1.558 1.560 [1.182, 1.926]

19 0.714 0.686 [0.545, 0.843] 0.918 0.883 [0.743, 1.030] 1.504 1.487 [1.320, 1.670]

20 2.447 2.482 [2.023, 2.942] 1.704 1.754 [1.490, 2.018] 0.126 0.110 [−0.221, 0.421]

21 1.588 1.562 [1.217, 1.905] 2.170 2.177 [1.825, 2.534] −0.760 −0.789 [−1.123,−0.521]

22 1.724 1.721 [1.456, 2.037] 1.590 1.571 [1.320, 1.800] 0.769 0.671 [0.397, 0.912]

23 2.273 2.244 [1.909, 2.616] 0.948 0.917 [0.738, 1.119] 0.265 0.105 [−0.156, 0.343]

24 1.228 1.198 [0.902, 1.505] 2.782 2.755 [2.353, 3.128] −1.398 −1.429 [−1.834,−1.115]

25 0.687 0.674 [0.456, 0.923] 2.261 2.275 [1.925, 2.651] 1.802 1.778 [1.429, 2.111]

26 1.665 1.666 [1.427, 1.928] 0.572 0.568 [0.443, 0.709] 0.033 0.021 [−0.172, 0.208]

27 2.383 2.400 [1.904, 2.823] 1.871 2.021 [1.626, 2.359] 1.307 1.285 [0.915, 1.620]

28 1.778 1.772 [1.443, 2.111] 2.326 2.305 [1.957, 2.641] −0.871 −0.875 [−1.193,−0.581]

29 1.522 1.541 [1.175, 1.975] 2.909 2.934 [2.460, 3.505] 0.241 0.232 [−0.175, 0.588]

30 1.173 1.178 [1.940, 1.434] 1.703 1.710 [1.458, 1.977] 0.397 0.363 [0.104, 0.577]

*indicates the constraints for model identification. True denotes the true value of parameter. EAP denotes the expected a priori estimation. HPDI denotes the 95% highest posterior density intervals.
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TABLE 2 | Parameter estimates of the fixed effect, Level-2 variance-covariance and Level-3 variance-covariance in simulation 1.

Fixed effect True EAP HPDI Fixed effect True EAP HPDI

γ001 1.000 0.982 [0.928, 1.225] γ002 −0.350 −0.377 [−0.659,−0.115]

γ011 0.300 0.326 [0.129, 0.510] γ012 0.300 0.281 [−0.046, 0.524]

γ101 0.500 0.521 [0.244, 0.807] γ102 0.500 0.522 [0.296, 0.824]

γ111 0.350 0.325 [0.134, 0.501] γ112 −1.000 −0.986 [−1.234,−0.736]

Level-2 random effect True EAP HPDI

σ 2
e1

0.300 0.323 [0.269, 0.387]

σe1e2 0.075 0.093 [0.053, 0.136]

σe2e1 0.075 0.093 [0.053, 0.136]

σ 2
e2

0.500 0.529 [0.438, 0.648]

Level-3 T1 True EAP HPDI Level-3 T2 True EAP HPDI

τ001 0.100 0.115 [0.016, 0.380] τ002 0.100 0.073 [−0.058, 0.369]

τ011 0 0.013 [−0.229, 0.140] τ012 0 0.017 [−0.143, 0.192]

τ101 0 0.013 [−0.229, 0.140] τ102 0 0.017 [−0.143, 0.192]

τ111 0.100 0.074 [−0.068, 0.436] τ112 0.100 0.119 [−0.093, 0.298]

properties. Second, conjugate priors, where the posterior has
the same algebraic form as the prior, can be more easily
defined for the likelihood of the latent response data, which
has a known distributional form, than for the likelihood of
the observed data. Third, the augmented variable approach
facilitates easy formulation of a Gibbs sampling algorithm based
on data augmentation. It will turn out that by augmenting
with a latent continuous variable, conditional distributions can
be defined based on augmented data, from which samples are
easily drawn. Fourth, the conditional posterior given augmented
data has a known distributional form such that conditional
probability statements can be directly evaluated for making
posterior inferences. The likelihood of the augmented response
data is much more easily evaluated than the likelihood of the
observed data and can be used to compare models. In summary,
in this study, we adopt the Gibbs sampling algorithm (Geman
and Geman, 1984) with data augmentation (Tanner and Wong,
1987) to estimate multilevel multidimensional IRT models. In
particular, let θ and ξ denote the vectors of all person and item
parameters. Define an augmented variable Zijk that is normally

distributed with mean ηijk =
Q∑

q=1

akqθijq − bk and variance 1.

The joint posterior distribution of the parameters given the data
is as follows:

p (Z, θ , ξ , β ,6e, γ , T |Y , X, W ) ∝
nj∏

i=1

J∏

j=1

K∏

k=1

Q∏

q=1

p
(
Zijk

∣∣θijq, ξ k,Yijk

)
p
(
θijq

∣∣∣β jq, σ
2
q , Xj

)

× p
(
β jq

∣∣∣γ q, Tq, W j

)
p
(
γ q

∣∣Tq

)
p
(
ξ k
)
p (6e) p

(
Tq

)
. (3.1)

where σ 2
q is the conditional variance given the other ability

dimensions. It can be obtained from 6e. The details of the Gibbs
sampling are shown as follows

Step 1: Sampling Z given the parameters θ and ξ , where the
random variable Zijk is independent

Zijk |θ , ξ , Y ∼





N




Q∑

q=1

akqθijq − bk, 1


 truncated at the left by 0 if Yijk = 1,

N




Q∑

q=1

akqθijq − bk, 1


 truncated at the right by 0 if Yijk = 0.

(3.2)

Step 2: Sampling θ ij according to Gibbs sampling
characteristics. A divide-and-conqueror strategy is used

to draw each sampling element of θ ij =
(
θij1, θ ij(−1)

)′
,

where θ ij(−1) =
(
θij2, · · · ,θijQ

)
. Let β j =

(
β j1, · · · ,β jQ

)′
,

µ =

(
Xijβ j1, µ

(2)
1

)′
, where µ

(2)
1 =

(
Xijβ j2, · · · ,

Xijβ jQ

)
and 6e =

(
σ 2
e1

612

621 622

)
. The conditional prior

distribution of θij1 can be written as

p
(
θij1

∣∣∣θ ij(−1), β j,6e

)
∼ N

(
µ1
ij, σ 2

1

)
,

µ1
ij = Xijβ j1+6126

−1
22

(
θ ij(−1) − µ

(2)
1

)
, σ 2

1 = σ 2
e1
−6126

−1
22 621.

Therefore, the full conditional posterior density of θij1 (Lindley
and Smith, 1972; Box and Tiao, 1973) is given by

θij1

∣∣∣Zij, θ ij(−1), ξ , β j1, σ
2
1 ∼ N

((
v+ σ 2

1

)−1
(
θ̃ij1σ

2
1 + µ1

ijv
)
,

(
v+ σ 2

1

)−1 (
vσ 2

1

))
. (3.3)
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where

θ̃ij1 =

(
K∑

k=1

a2
k1

)−1[ K∑

k=1

ak1
(
Zijk + bk − ak2θij2 − · · · − akQθijQ

)
]
,

v =

(
K∑

k=1

a2
k1

)−1

. For q = 2, . . . ,Q, θijq can be drawn in the

same manner.
Step 3: Sampling ξ k, ξ k =

(
ak1, · · · ,akQ, bk

)′
, Given θ , Zk =(

Z11k, · · · ,Zn11k, · · · , ZnJ Jk
)′
, Here n

(
n = n1 + n2 + · · · + nJ

)

represents the total number of individuals in different groups.

The residual can be written as εk =
(
ε11k, · · · ,εn11k, · · · ,εnJ Jk

)′

and each element is distributed as N (0, 1) . Therefore, we have

Zk = [θ − 1] ξ k + εk.

Let H = [θ − 1] , the likelihood function of ξ k is

normally distributed with mean ξ̃ k =
(
H

′
H

)−1
H

′
Zk

and H0 =
(
H

′
H

)−1
. Suppose that the priors

of the discrimination and difficult parameters are
ak ∼ N

(
µa,6a

)
I
(
ak

∣∣akq > 0, q = 1, . . . ,Q
)

and

bk ∼ N
(
µb, σ

2
b

)
, respective, Here µa =

(
µa1, . . . ,µaQ

)′

and 6a = diag
(
σ 2
a1, . . . ,σ

2
aQ

)
. The prior of item parameter

ξ k is a multivariate normal distribution with mean

µξ0
=

(
µa1, . . . ,µaQ,µb

)′
and 6ξ0 = diag

(
σ 2
a1, . . . ,σ

2
aQ, σ

2
b

)
.

Therefore, the full conditional posterior distribution of the item
parameters is given by

ξ k |θ , Zk, Y ∼ N

((
H

−1
0 + 6−1

ξ0

)−1 (
H

′
Zk + 6−1

ξ0
µξ0

)
,

(
H

−1
0 + 6−1

ξ0

)−1
)
I
(
ak

∣∣akq > 0, q = 1, . . . ,Q
)
.

(3.4)

Step 4: Sampling β j=
(
β j1, . . . ,β jQ

)′
, given θ , σ 2

q , γ and T. Dawn

an element of vector β j, β j1 =
(
β0j1, . . . ,βhj1

)′
. Let θ j1 =

(
θ1j1, . . . ,θnjj1

)′
, and Xj =

(
X1j, . . . ,Xnjj

)′
, with Xij as defined

in the part of model introduction. The level-2 residual ej1 can be

defined as ej1 =
(
e1j1, . . . ,enjj1

)′
. Therefore, we have

θ j1 = Xjβ j1 + ej1.

The level-2 likelihood function of β j1 is normally distributed with

mean β̃ j1 =
(
X

′
jXj

)−1
X

′
jθ j1 and variance 6j1 = σ 2

1

(
X

′
jXj

)−1
.

Furthermore, wj is the direct product of wjs =
(
1,wj1, . . . ,wjs

)

and a
(
h+ 1

)
identity matrix, that is, wj = I(h+1) ⊗ wjs. The

random regression coefficient β j1 is induced by a normal prior
at level 3 with mean wjγ 1 and covariance T1, where γ 1 =
(γ001, γ011 . . . ,γ0s1, . . . ,γh01, γh11, . . . ,γhs1)

′
. The level-3 residual

uj1 can be defined as uj1 =
(
u0j1, . . . ,uhj1

)′
. Therefore, we have

β j1 = wjγ 1 + uj1.

Thus, the fully conditional posterior distribution of β j1 is
given by

β j1

∣∣θ j1, σ 2
1 , γ 1, T1 ∼ N

((
6−1

j1 + T
−1
1

)−1

(
6−1

j1 β̃ j1 + T
−1
1 wjγ 1

)
,
(
6−1

j1 + T
−1
1

)−1
)
, (3.5)

and β jq, q = 2, . . . ,Q, is drawn in the same manner.

Step 5: Sampling γ , γ =
(
γ 1, · · · ,γQ

)
. An element of vector γ

is drawn, and thematrix γ 1 is thematrix of regression coefficients
corresponding to the regression of β j1 on wj. An improper
noninformative prior density for γ 1 is used. Similar prior is used
as shown in Fox and Glas (2001). Therefore, the full conditional
posterior distribution of γ 1 is given by

γ 1

∣∣∣β j1, T1 ∼ N






J∑

j=1

w
′
jT

−1
1 wj




−1
J∑

j=1

w
′
jT

−1
1 β j1,




J∑

j=1

w
′
jT

−1
1 wj




−1
 ,

(3.6)
and γ q is drawn in the same manner for q = 2, · · · ,Q.
Step 6: Sampling the residual variance-covariance structure

6e. A prior for 6e is an Inverse-Wishart
(
v0,6

−1
0

)
distribution.

The full conditional posterior distribution of 6e is given by

6e |θ , β ∼ Inverse-Wishart
(
v0 + N, (S+ 60)

−1
)

(3.7)

where S =
J∑

j=1

nj∑

i=1

(
θ ij − Xijβ j

) (
θ ij − Xijβ j

)′
,whereN = J×nj.

Step 7: Sampling the level-3 variance-covariance structure T =
diag

(
T1, · · · ,TQ

)
. T1 is drawn first. A prior for T1 is an Inverse-

Wishart
(
v1,6

−1
1

)
distribution. The full conditional posterior

distribution of T1 is given by

T1

∣∣∣β j1, γ 1 ∼ Inverse-Wishart
(
v1 + J, (S1 + 61)

−1
)

(3.8)

where S1 =
J∑

j=1

(
β j1 − wjγ 1

) (
β j1 − wjγ 1

)′
,and Tq is drawn in

the same manner for q = 2, · · · ,Q.

3.3. Model Selection
The deviance information criterion (DIC) was introduced by
Spiegelhalter et al. (2002) as a model selection criterion for
the Bayesian hierarchical models. Similar to many other criteria
(such as the Bayesian information criterion or BIC; BIC is not
intended to predict out-of-sample model performance but rather
is designed for other purposes, we do not consider it further here
(Gelman et al., 2014), it trades a measure of model adequacy
against a measure of complexity. Specifically, the DIC is defined
as the sum of a deviance measure and a penalty term for the
effective number of parameters based on a measure of model
complexity. The model with a larger DIC has a better fit to
the data. In the framework of a multilevel IRT models, the
performances of DICs based on five versions of deviances have
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been investigated in Zhang et al. (2019). The DIC used in this
current study belongs to the top-level marginalized DIC in their
paper. The reason for using the top-level marginalized DIC in our
paper is that our main purpose is to investigate the influences of
fixed effects (γ ) on the multiple dimensional abilities. Therefore,
the deviance is defined at the highest level fixed effects (γ ),
where the random effects of intermediate processes, such as the
second-level random individual ability effects θ or the third-
level random coefficient effects β , will not be considered in the
defined deviance. Next, the calculation formula of the top-level
marginalized DIC is given.

Let �1 = (ξ , 6e, T) (�1 do not include the intermediate
process random parameters θ and β). According to the
augmented data likelihood p (Z |�1 ), we can obtain the
following deviance

D (γ ) = −2 log p (Z |�1 ) .

Then the top-level marginalized DIC is defined as

DIC =
∫

[DIC |Z, �1 ] · p (Z, �1 |Y ) dZd�1

=
∫ [

D (γ |Z, �1 ) + 2pD (Z, �1)
]
· p (Z, �1 |Y ) dZd�1

= EZ, �1

[
D (γ ) + 2pD (Z, �1) |Y

]
(3.9)

In Equation (3.9), the conditional DIC is a function of Z and
�1, which can be written as [DIC |Z, �1 ]. D (γ ) denotes the
deviance of the posterior estimation mean given augmented data
Z and �1. pD (Z, �1) is the effective number of parameters
given the augmented data Z and �1, which can be expressed as
pD (Z, �1) = D (γ ) − D (γ ).

An important advantage of DIC is that it can be easily
calculated from the generated samples. It can be obtained
by MCMC sampling augmentation auxiliary variable Z and
structural parameters �1 from the joint posterior distribution
p (Z, �1 |Y ).

4. SIMULATION

4.1. Simulation 1
A simulation study is conducted to evaluate the performance
of the proposed Gibbs sampler MCMC method for recovering
the parameters of the multilevel IRT models. For illustration
purposes, we only consider one explanatory variable on both
levels, and the number of dimensions is fixed at 2

(
q = 2

)
. The

true structural multilevel model is simplified as
The individual-level model:

θijq = β0jq + xijβ1jq + eijq, (4.1)

where

e =
(

eij1
eij2

)
∼ N

((
0
0

)
,

(
σ 2
e1

σe1e2
σe2e1 σ 2

e2

))
. (4.2)

The school-level model:

β0jq = γ00q + γ01qwj + u0jq, (4.3)

β1jq = γ10q + γ11qwj + u1jq,

where

(
u0jq
u1jq

)
∼ N

((
0
0

)
, T

)
, T =

(
τ00q τ01q
τ10q τ11q

)
.

(4.4)
We use the multidimensional two-parameter normal ogive
model to generate the responses. The test length is set to 30.
In the multidimensional item response theory book, Reckase
(2009, p. 93) points out that the each element of discrimination
parameter vectors, akq, can take on any values except the usual
monotonicity constraint that requires the values of the elements

of ak be positive, where ak = (ak1, ak2)
′
. Therefore, we adopt

the truncated normal distribution with mean 1.5 and variance 1
to generate the true value of the each element of discrimination
parameter vectors ak. That is, akq ∼ N (1.5, 1) I

(
akq > 0

)
,

q = 1, 2, k = 1, . . . ,30. For the difficulty parameter, the
selection of the true values is the same as that of the traditional
unidimensional IRT models. Here we assume that the difficult
parameters are generated from the standard normal distribution.
That is, bk ∼ N (0, 1), k = 1, . . . ,30. The ability parameters of

2,000 students from population N
(
Xijβ j, 6e

)
are divided into

J = 10 groups, with nj (200) students in each group. The fixed
effect γ is chosen as an arbitrary value between −1 and 1. For
simplicity, we suppose that at level 3, each of the dimensional
covariances τ01q and τ10q is equal to 0 for q = 1, 2, which means
that the level-3 residuals between random coefficients βq =(
β0jq,β01jq

)
are independent of each other. The level-3 variances

τ00q and τ11q are, respectively, set equal to 0.100, for q = 1, 2 such
that they have very low stochastic volatility in the vicinity of the
level-3 mean. The level-2 residual variance-covariance (VC) are
set to 0.300, 0.500, and 0.075. The explanatory variables X andW
are drawn from N (0.25, 1) and N (0.5, 1), respectively.

The posterior distribution in the Bayesian framework can be
obtained by connecting with the likelihood function (sample
information) and prior distribution (prior information). In
general, the two kinds of information have important influence
on the posterior distribution. In large scale educational
assessment, the number of examinees is often very large, for
example, in our real data study, the number of examinees
and items, respectively, reach 2000 and 124. Therefore, the
likelihood information plays a dominant role, and the selection
of different priors (informative or non-informative) has no
significant influence on the posterior inferences. As a result,
the non-informative priors are often used in many educational
measurement studies, e.g., van der Linden (2007) and Wang
et al. (2018). In this paper, the prior specification will be
uninformative enough for the data to dominate the prior, so
that the influence of the prior on the results will be minimal.
Next, we give the prior distributions of parameters involved in
the simulation 1. The priors of the discrimination parameters
and difficulty parameters are set as the non-informative priors
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ak ∼ N

((
0
0

)
,

(
100 0
0 100

))
I (ak |ak1 > 0, ak2 > 0 )

and N (0, 100). The fixed effect γ follows a uniform distribution
U (−2, 2). The prior to the VC matrix of the level-2 ability
dimensions is a 2-by-2 identity matrix. As used in many
educational and psychological research studies (see Fox and Glas,
2001; Kim, 2001; Sheng, 2010), the priors to the VC matrices of
the level-3, T1 and T2, are set to the non-informative priors based
on Fox and Glas (2001)’s paper (see Fox and Glas, 2001), where
p
(
Tq

)
∝ 1, q = 1, 2.

The convergence of Gibbs sampler is checked by monitoring
the trace plots of the parameters for consecutive sequences of
20,000 iterations. The trace plots of two items randomly selected,
fixed-effect parameters, level-2 residual variance-covariance
component parameters and level-3 residual variance-covariance
component parameters are shown in Supplementary Material.
The trace plots show that all parameter estimates stabilize after
5,000 iterations and then converge quickly. Thus, we set the
first 5,000 iterations as the burn-in period. In addition, the
Brook-Gelman ratio diagnostic Brooks and Gelman (1998) (̂R; as
updated Gelman-Rubin statistic) plots are used to monitor the
convergence and stability. Four chains started at overdispersed
starting values are run for monitoring the convergence. Our
Brook-Gelman ratios are close to 1.2. The true values, the
expected a priori (EAP) estimation and the 95% highest posterior
density intervals (HPDIs) for item parameters are shown in
Table 1. Table 2 presents the true values and the estimated values
of fixed effects γ , level-2 covariance components, and level-3
variance components T1 and T2.

The accuracy of the parameter estimates is measured by two
evaluation indexes, namely, Bias and root mean squared error
(RMSE). The recovery results are based on 100 times MCMC
repeated iterations. That is, 100 replicas are generated. The
results of the accuracy of the parameter estimates are displayed
in Tables 3, 4. From Tables 3, 4, we see that Gibbs sampling
algorithm provides accurate estimates of the item parameters and
multilevel structure parameters in the sense of having small Bias
and RMSE values.

4.2. Simulation 2
The purpose of this simulation study is to verify whether
the Gibbs sampling algorithm can guarantee the accuracy of
parameters estimation when the dimensions of latent ability
increase so that it can be used to guide real data analysis later.
The simulation design is as follows.

The number of dimensions is fixed at 4. Themultidimensional
normal ogive IRT model is used to generate responses. Two
factors and their varied conditions are considered: (a) number
of individuals, N = 1,000, 2,000, or 3,000; (b) number of
items, K = 40, 100, or 200, and for per subtest number
of itmes, 10, 25, or 50. Fully crossing the different levels of
these two factors yield 9 conditions. Individuals (N = 1,000,
2,000, 3,000) are equally distributed to 10 schools (J =
10). True values of item parameters and priors of all of
parameters are generated by the same in simulation 1. The
true values of the fixed effects are, respectively, 1.000

(
γ00q

)
,

0.300
(
γ01q

)
, 0.500

(
γ10q

)
and 0.350

(
γ11q

)
, q = 1, 2, 3, 4, and

the level-2 variance are 0.300
(
σ 2
e1

)
, 0.500

(
σ 2
e2

)
, 0.750

(
σ 2
e3

)
, and

1.000
(
σ 2
e4

)
, and the covariance are set to 0.075. The level-

3 variance are 0.1
(
τ00q, τ11q

)
, and the covariance are 0(

τ01q, τ10q
)
. The multilevel structural models (Equations 2.2 and

2.3) in simulation study 1 are used, but the dimensions are
fixed at 4.

The accuracy of the parameter estimates is measured by
two evaluation indexes, namely, Bias and RMSE. The recovery
results are based on the MCMC iterations repeated 100 times.
The detail results of the accuracy of the parameter estimates
under nine conditions are display in Table 5. The Biases are
−0.089∼0.094 for the fixed effect parameters, −0.063∼0.117
for the level-2 variance-covariance component parameters,
−0.069∼0.105 for the level-3 variance-covariance component
parameters. The RMSEs are 0.152∼0.311 for the fixed effect
parameters, 0.147∼0.438 for the level-2 variance-covariance
component parameters, 0.132∼0.382 for the level-3 variance-
covariance component parameters. Furthermore, the Bias and
RMSE have a smaller trend with the increase in the number of
individuals and items; in other words, increasing the number of
individuals and items helps to improve the estimation accuracy
of the structural parameters. In summary, the Gibbs sampling
algorithm is effective for various numbers of individuals and
items, and it can be used to guide practices.

5. REAL DATA ANALYSIS−EXAMINING THE
CORRELATION BETWEEN DIFFERENT
ABILITY DIMENSIONS AND COVARIATES

To illustrate the applicability of the multidimensional two-
parameter normal ogive model in operational large-scale
assessments, we consider a data set about students’ English
achievement test for junior middle schools conducted by NENU
Branch, Collaborative Innovation Center of Assessment toward
Basic Education Quality at Beijing Normal University. The
analysis of the test data will help us to gain a better understanding
of the practical situation of students’ English academic latent
traits and to explore the factors that affect their English academic
latent traits. The results of this analysis will be potentially
very valuable for development and improvement of educational
quality monitoring mechanism in China.

5.1. Data Description
The data contain a two-stage cluster sample of 2,029 students
in grade 7. These students are from 16 schools, with 121–
134 students in each school. In the first stage, the sampling
population is classified according to district, and schools are
selected at random. In the second stage, students in grade 7
are selected at random from each school. The English test is a
test battery consisting of four subscales: vocabulary (40 items),
grammar (24 items), comprehensive reading (40 items), and table
computing (20 items). All 124 multiple-choice items are scored
using a dichotomous format. The Cronbach’s alpha coefficients
for vocabulary, grammar, reading comprehension and table
computing items are 0.942, 0.875, 0.843, and 0.816, respectively.
Level-2 and level-3 background covariates of individuals, teacher
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TABLE 3 | Evaluating the accuracy of item parameter estimation.

ak1 ak2 bk

Item True Bias RMSE True Bias RMSE True Bias RMSE

1 1* 0 0 0* 0 0 0* 0 0

2 0* 0 0 1* 0 0 0* 0 0

3 0.914 −0.037 0.114 0.686 −0.014 0.090 −1.182 0.028 0.144

4 1.102 0.025 0.098 1.468 0.017 0.125 0.441 −0.015 0.093

5 2.055 −0.010 0.073 1.428 0.025 0.047 −1.197 −0.170 0.137

6 2.291 0.070 0.153 1.146 0.013 0.084 −2.536 0.012 0.126

7 2.131 0.054 0.119 0.758 0.002 0.035 1.782 −0.023 0.149

8 1.027 −0.018 0.159 1.720 0.016 0.140 0.152 0.007 0.094

9 0.569 −0.005 0.136 1.119 0.033 0.102 0.964 −0.037 0.072

10 0.578 −0.019 0.180 2.129 −0.035 0.185 1.462 0.023 0.103

11 0.795 0.002 0.088 1.445 0.021 0.137 0.619 −0.019 0.081

12 2.279 0.110 0.153 1.148 −0.016 0.098 −2.020 −0.008 0.053

13 0.714 −0.098 0.142 2.225 −0.015 0.053 0.602 −0.025 0.091

14 2.200 0.016 0.093 1.465 0.006 0.039 0.127 0.036 0.127

15 1.565 0.024 0.120 0.728 −0.017 0.092 −0.587 −0.018 0.116

16 2.419 0.020 0.162 2.408 −0.028 0.164 −0.218 −0.007 0.092

17 1.561 0.034 0.105 1.398 −0.010 0.072 0.830 −0.041 0.115

18 2.457 0.013 0.091 2.111 0.041 0.109 1.558 0.002 0.150

19 0.714 −0.028 0.155 0.918 −0.035 0.156 1.504 −0.017 0.197

20 2.447 0.035 0.198 1.704 0.050 0.143 0.126 −0.016 0.156

21 1.588 −0.026 0.185 2.170 0.007 0.124 −0.760 0.029 0.256

22 1.724 −0.003 0.147 1.590 −0.019 0.128 0.769 −0.098 0.153

23 2.273 −0.029 0.084 0.948 −0.031 0.060 0.265 −0.160 0.179

24 1.228 −0.030 0.189 2.782 −0.027 0.194 −1.398 −0.031 0.132

25 0.687 −0.013 0.075 2.261 0.014 0.107 1.802 0.024 0.193

26 1.665 0.001 0.120 0.572 −0.004 0.068 0.033 −0.012 0.090

27 2.383 0.017 0.148 1.871 0.015 0.095 1.307 0.022 0.158

28 1.778 −0.008 0.113 2.326 −0.021 0.140 −0.871 −0.004 0.083

29 1.522 0.019 0.096 2.909 0.025 0.163 0.241 0.009 0.127

30 1.173 0.005 0.181 1.703 0.007 0.098 0.397 −0.034 0.221

*indicates the constraints for model identification. RMSE denotes the root mean squared error.

satisfaction, and school climate (teachers and schools constitute
level 3) are measured. At the individual level, gender (0=male,
1=female) and socioeconomic statuses are measured; the latter
is measured by the average of two indicators: the father’s and
mother’s education, which are five-point Likert items; scores
range from 0 to 8. At the teacher and school levels, teacher
satisfaction is measured by 20 five-point Likert items, and school
environment from the principal’s perspective is measured by 23
five-point Likert items.

5.1.1. Prior Distributions
Based on the setting of priors in the simulation 1,
we give the prior distributions of parameters involved
in following the real data analysis. The priors of the
difficulty parameters and discrimination parameters are

set from bk ∼ N (0, 1) and ak = (ak1, ak2, ak3, ak4)
′ ∼

N (0, 100I4×4) I (ak |ak1 > 0, ak2 > 0, ak3 > 0, ak4 > 0 ) , j =
1, 2, . . . ,124, where I4×4 is 4-by-4 identity matrix. The fixed

effect γ follows a uniform distribution U (−2, 2). The prior to
the variance-covariance matrix of the level-2 ability dimensions
is a 4-by-4 identity matrix. The prior to the variance-covariance
matrix of the level-3 T1, T2, T3, and T2 are set to non-
informative priors based on Fox and Glas (2001)’s paper, where
p
(
Tq

)
∝constant, q = 1, 2, 3, 4.

5.1.2. Convergence Diagnosis
The full conditional distribution of Gibbs sampling is run for
20,000 iterations using real data. The trace plots of parameters
stabilize after 5,000 iterations. Thus, the first 5,000 iterations
are set as the burn-in period. The average over the drawn
parameters is calculated after the burn-in period. Moreover,
Four chains started at overdispersed starting values are run for
monitoring the convergence. The Brook-Gelman ratios are close
to 1.2. Therefore, it can be inferred that the estimated parameters
are convergent.
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TABLE 4 | Evaluating the accuracy of the two-dimensional fixed effects and variance-covariance components.

Fixed effect True Bias RMSE Fixed effect True Bias RMSE

γ001 1.000 −0.018 0.082 γ002 −0.350 −0.027 0.169

γ011 0.300 0.026 0.156 γ012 0.300 −0.019 0.096

γ101 0.500 0.021 0.148 γ102 0.500 0.022 0.147

γ111 0.350 −0.025 0.173 γ112 −1.000 0.014 0.121

Level-2 random effect True Bias RMSE

σ 2
e1

0.300 0.023 0.098

σe1e2 0.075 0.018 0.163

σe2e1 0.075 0.018 0.163

σ 2
e2

0.500 0.029 0.117

Level-3 T1 True Bias RMSE Level-3 T2 True Bias RMSE

τ001 0.100 0.015 0.164 τ002 0.100 −0.029 0.143

τ011 0 0.013 0.182 τ012 0 0.017 0.187

τ101 0 0.013 0.182 τ102 0 0.017 0.187

τ111 0.100 −0.026 0.139 τ112 0.100 0.019 0.167

TABLE 5 | Evaluating the accuracy of the structure parameters in the simulation 2.

Number of Number of Fixed effect γ Level-2 VC 6e Level-3 VC T

individuals items Bias RMSE Bias RMSE Bias RMSE

40 −0.089 0.031 0.046 0.438 0.064 0.038

1000 100 0.073 0.191 0.078 0.195 −0.037 0.203

200 0.094 0.174 −0.063 0.160 0.081 0.198

40 0.056 0.206 0.117 0.319 0.105 0.207

2000 100 0.028 0.167 0.064 0.177 −0.069 0.189

200 −0.041 0.152 −0.037 0.154 0.021 0.156

40 0.039 0.231 0.055 0.213 0.032 0.195

3000 100 −0.035 0.189 0.082 0.246 −0.058 0.145

200 0.017 0.159 0.041 0.147 0.045 0.132

The VC stands for the abbreviation of variance-covariance.

5.2. Model Selection in Real Data
In the real data example, we consider four dimensions of ability:
vocabulary cognitive ability, grammar structure diagnosing
ability, reading comprehension ability, and table computing
ability. These abilities are affected by individual covariates such
as socioeconomic status and gender. The individual can be
nested into higher group levels (school), which are affected
by group covariates such as teacher satisfactions and school
climate from the teachers’ perspective. In this current study,
we only focus on the specific abilities of four dimensions
without the general ability, which is different from Huang
and Wang (2014, p. 497, Equation 3)’s ability model with
hierarchical structure. According to the above-mentioned DIC
model selection method, three models are considered in
fitting the real data, in which the DIC can be formulated
to choose between models that differ in the fixed and/or
random part of the structural model to combine with the
measurement model. The multidimensional IRT measurement

model is identical to the three candidate models. The structural
multilevel model 1 consists of the two level-2 background
variables SES and Gender and the level-2 random intercept.
The effects of the level-2 background variables SES and Gender
are fixed across schools. The structural multilevel part is
given by

Model 1





θijq = β0jq + SESijβ1jq + Genderijβ2jq + eijq,
β0jq = γ00q + u0jq,
β1jq = γ10q,
β2jq = γ20q.

(5.1)
Model 2 is extended by including two latent predictors
at level 3, Satisfaction and Climate. The effects of
the level-2 background variable SES are allowed to
vary across schools. The structural multilevel part is
given by
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TABLE 6 | Estimated DIC values for the three models fitted to the English test

data.

PD D DIC

Model 1 134,470 1,010,030 1,144,500

Model 2 79,065 891,425 970,490

Model 3 81,607 895,073 976,680

Model 2





θijq = β0jq + SESijβ1jq + Genderijβ2jq + eijq,
β0jq = γ00q+Satisfactionjγ01q+Climatejγ02q+u0jq,
β1jq = γ10q + u1jq,
β2jq = γ20q.

(5.2)
Model 3 captures the effects of the level-2 background
variables SES and Gender, which are allowed to
vary across schools. The structural multilevel part is
given by

Model 3





θijq = β0jq + SESijβ1jq + Genderijβ2jq + eijq,

β0jq = γ00q + Satisfactionjγ01q + Climatejγ02q + u0jq,

β1jq = γ10q + u1jq,

β2jq = γ20q + u2jq.

(5.3)

Question (1): According to the model selection results, which
model is the best to fit the data and how can judge the
individual-level regression coefficients be judged as fixed effect
or random effect?

The estimated DIC values are presented in Table 6. Model 2
shows that the smallest effective number of model parameters
among the three models, which is preferred given the DIC
values of the three models. The DIC values of models 2 and
3 are smaller than those of model 1, which can be attributed
to the additional latent predictors at level 3, i.e., Satisfaction
and Climate. Note that in model 2, the individual random-effect
parameters are modeled as group-specific random effects (level-3
Satisfaction and Climate latent predictors), leading to a serious
reduction in the effective number of model parameters, which
can be inferred from the PD value in Table 6. The DIC value of
model 2 is smaller than that of model 3. The residual u2jq of the
random effect β2jq is estimated equal to 0, which is equivalent
to fixing the effect of the level-2 background variable Gender
across schools.

5.3. Structural Parameter Analysis
Over the past 40 years, a large number of studies have shown
that there is a direct relationship between the individuals’
language learning ability and the parents’ education. For
example, Teachman (1987) made use of high school survey
data in the United States to explore the influence of family
background on childhood education. The results of this
study indicated that the parents’ occupations, incomes, and
educations have a very important impact on children language
academic achievement. Moreover, Stern (1983) shows that
language is a social mechanism, which needs to be learned

TABLE 7 | Parameter estimation of the multilevel multidimensional IRT model for

vocabulary cognitive ability.

Vocabulary cognitive ability

Fixed effects EAP SD HPDI

γ001 0.760 0.186 [0.391, 1.137]

γ011
(
ST
)

0.502 0.143 [0.223, 0.788]

γ021
(
CT
)

0.225 0.149 [−0.068, 0.520]

γ101
(
SES

)
0.642 0.128 [0.390, 0.893]

γ201
(
GD

)
0.339 0.160 [0.025, 0.657]

Random effects EAP SD HPDI

τ 2
001 0.537 0.124 [0.227, 1.200]

τ 2
011 0.004 0.126 [−0.228, 0.241]

τ 2
021 −0.006 0.164 [−0.344, 0.383]

τ 2
111

(
SES

)
0.247 0.134 [0.112, 0.541]

τ 2
121 −0.064 0.112 [−0.292, 0.110]

τ 2
221

(
GD

)
0.030 0.191 [0.015, 0.043]

ST, teacher satisfaction; CT, climate; SES, socioeconomic-status; GD, gender. EAP

denotes the expected a posteriori estimation. SD denotes the standard deviation. HPDI

is the 95% highest posterior density interval.

TABLE 8 | Parameter estimation of the multilevel multidimensional IRT model for

diagnosing ability of grammar structure.

Vocabulary cognitive ability

Fixed effects EAP SD HPDI

γ001 0.760 0.186 [0.391, 1.137]

γ011
(
ST
)

0.502 0.143 [0.223, 0.788]

γ021
(
CT
)

0.225 0.149 [−0.068, 0.520]

γ101
(
SES

)
0.642 0.128 [0.390, 0.893]

γ201
(
GD

)
0.339 0.160 [0.025, 0.657]

Random effects EAP SD HPDI

τ 2
001 0.537 0.124 [0.227, 1.200]

τ 2
011 0.004 0.126 [−0.228, 0.241]

τ 2
021 −0.006 0.164 [−0.344, 0.383]

τ 2
111

(
SES

)
0.247 0.134 [0.112, 0.541]

τ 2
121 −0.064 0.112 [−0.292, 0.110]

τ 2
221

(
GD

)
0.030 0.191 [0.015, 0.043]

ST, teacher satisfaction; CT, climate; SES, socioeconomic-status; GD, gender. EAP

denotes the expected a posteriori estimation. SD denotes the standard deviation. HPDI

is the 95% highest posterior density interval.

in the social environment, even in the biological basis
play an important role of mother tongue acquisition, social
factors related to children and their parents also play an
important role. However, in our study, whether the parents’
educational level (SES) has influence on the four kinds
of abilities in English learning; the following question will
be considered:

Question (2): How will students from different ends of the
socioeconomic-status (SES) score in English performance as
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TABLE 9 | Parameter estimation of the multilevel multidimensional IRT model for

reading comprehension ability.

Reading comprehension ability

Fixed effects EAP SD HPDI

γ003 0.919 0.187 [0.548, 1.293]

γ013
(
ST
)

0.332 0.148 [0.041, 0.624]

γ023
(
CT
)

0.081 0.168 [−0.249, 0.417]

γ103
(
SES

)
0.542 0.118 [0.308, 0.780]

γ203
(
GD

)
0.232 0.155 [−0.070, 0.544]

Random effects EAP SD HPDI

τ 2
003 0.535 0.111 [0.223, 1.220]

τ 2
013 0.040 0.198 [−0.156, 0.275]

τ 2
023 −0.024 0.153 [−0.342, 0.264]

τ 2
113

(
SES

)
0.207 0.133 [0.091, 0.456]

τ 2
123 0.004 0.089 [−0.170, 0.182]

τ 2
223

(
GD

)
0.037 0.177 [0.027, 0.052]

ST, teacher satisfaction; CT, climate; SES, socioeconomic-status; GD, gender. EAP

denotes the expected a posteriori estimation. SD denotes the standard deviation. HPDI

is the 95% highest posterior density interval.

TABLE 10 | Parameter estimation of the multilevel multidimensional IRT model for

table computing ability.

Table computing ability

Fixed effects EAP SD HPDI

γ004 0.255 0.130 [−0.003, 0.514]

γ014
(
ST
)

0.039 0.104 [−0.165, 0.246]

γ024
(
CT
)

0.295 0.101 [0.099, 0.498]

γ104
(
SES

)
0.596 0.126 [0.351, 0.849]

γ204
(
GD

)
−0.266 0.120 [−0.506, -0.026]

Random effects EAP SD HPDI

τ 2
004 0.447 0.144 [0.201, 0.970]

τ 2
014 0.082 0.084 [−0.043, 0.269]

τ 2
024 −0.041 0.100 [−0.223, 0.098]

τ 2
114

(
SES

)
0.226 0.106 [0.101, 0.485]

τ 2
124 −0.014 0.069 [−0.160, 0.114]

τ 2
224

(
GD

)
0.022 0.102 [0.015, 0.035]

ST, teacher satisfaction; CT, climate; SES, socioeconomic-status; GD, gender. EAP

denotes the expected a posteriori estimation. SD denotes the standard deviation. HPDI

is the 95% highest posterior density interval.

tested in four types of latent abilities, based on the level-2 gender
(GD), level-3 teacher satisfaction (ST) and school climate (CT).

From Tables 7–10, we can find that the estimated fixed
effects γ10q(SES) are 0.642, 0.312, 0.542, and 0.596 for q =
1, 2, 3, 4, respectively. It can be observed that students with
high SES scores perform better than students with low SES
scores, where performance is measured by four types of latent
abilities when controlling for the level-2 GD individual covariates
and the level-3 ST and CT school covariates. That is, their
parents’ educational level differs by one unit for the male
students from the same class and school. In English learning,

vocabulary cognitive ability, the ability to diagnose grammar
structure, reading comprehension ability and table computing
ability have the differences of 0.642, 0312, 0.542, and 0.596,
respectively. The rate of increase in grammatical diagnostic
ability (0.312) is markedly smaller than that of the other three
kinds of abilities. In addition, compared to male students, the
differences in the four dimensions of ability are 0.981, 0.706,
0.874, and 0.330 for female students, respectively. In summary,
the education of parents (SES) is responsible for students’ English
learning abilities. The parents with a high SES values have more
prospective awareness in English learning based on their own
learning experiences, providemore diversified learning ways, and
know how to create a better English learning environment for
students. In addition, parents with better education can provide
more important learning guidance in English. In general, the
better the parents’ education, the better they will able to tutor
student’s English learning.

Etaugh and Bridges (2003), Li (2005), and Burstall (1975)
found that females were better thanmales inmost of the language
tasks (vocabulary, reading, grammar, spelling and writing), and
the difference in language ability appeared earlier than other
cognitive abilities. In infancy, females show more linguistic
advantages than males, and they speak more fluently, and have a
richer vocabulary. To about 11 years old, they are not only good at
simple spelling, but also are able to do more complicated writing
tasks. In schools, teachers have found that females do better in
reading comprehension, and they are less likely to have reading
problems, including reading barriers. However, whether or not
have the above conclusions in this study, next the following issues
will be considered:

Question (3): What relationship exists between males and
females’ performances in different latent abilities by controlling
for SES, ST and CT?

Results from Tables 7–10 show that for male and female
students from the same class and school with the same SES
scores, female students’ performances of vocabulary cognitive
ability, the ability to diagnose grammar structure and reading
comprehension ability are higher than those of male students
0.339, 0.394, 0.232. However, male students have a 0.266
advantage over female students in table computing ability. This
empirical study yields almost identical conclusions for Etaugh
and Bridges (2003). That is, male and female students, who have
the same SES scores in the same class and school, have a great
difference in the acquisition of English proficiency. Moreover, in
terms of vocabulary cognition, grammatical structure analysis,
reading comprehension it can be seen that females are better
than males at vivid memory and mechanical memory is stronger
than males. However, compared to females, males are markedly
better than females at logical reasoning, deductive induction, and
computing ability. In addition, according to gender difference
in English learning of middle school students, the improving
measure of learning from others’ strong points to offset one’
own weakness mainly covers: first, either teachers of students
should properly understand the gender difference; second, to
strengthen female students’ training of logical thinking; third,
to widen female students’ reasoning computing ability; fourth,
for the male students, to develop their vivid memory through a

Frontiers in Psychology | www.frontiersin.org 13 October 2019 | Volume 10 | Article 2387

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Zhang et al. Exploring Correlation Ability and Covariates

FIGURE 1 | Parameters of estimation ak1, ak2, ak3, and ak4 for subscale 1 (items 1–40), subscale 2 (items 41–64), subscale 3 (items 65–104), and subscale 4

(items 105–124).

variety of teaching methods. These four points should be parallel
in structure.

Question (4): What effects, if any, are seen with different
teachers’ or schools’ effects (covariates)?

For male students who have the same SES scores from
different schools, if the difference in teacher satisfaction is a
unit, the difference in vocabulary cognitive ability, the ability
to diagnose grammar structure and reading comprehension
ability are 0.502, 0.335, and 0.331, respectively. However, the
difference in the table computing ability is very small for
0.039. Teachers’ factor has an important effect on students’
cognitive ability, the ability to diagnose grammar structure and
reading ability. On the contrary, the table computing ability has
little impact.

This study indicates that the middle school teachers with
high teacher satisfactions have a strong sense of responsibility,
can be filled with enthusiasm in the work of education and
teaching, and inspire students’ learning motivation. This results
in a great improvement in the students’ vocabulary cognitive
ability, the ability to analyze grammatical structure and reading
comprehension ability owing to teachers’ teaching attitude and
responsibility. However, the margin of the improvement for
the table computing ability is small. It is possible to play a
decisive role in the students’ internal factors as compared with
the teachers’ external factors.

As we know, people are the product of the environment.
The environment has a great impact on cognition, emotion
and behavior intention. Different people live in different
environments so that there is a huge difference in cognition,
emotion and behavior intention. Similarly, in English teaching,
are whether or not the performances identical for different
schools’ effects (school climate)? If not, what are the effects?

The estimated results for school climate effects γ02q are 0.225,
0.081, 0.086, and 0.295 for q = 1, 2, 3, 4, respectively. The
performances associated with vocabulary cognitive ability and

table computing ability are markedly affected by the level-3 CT
covariates, whereas the ability to diagnose grammar structure
and reading comprehension ability are not markedly affected
when controlling for the level-2 SES andGD individual covariates
and the level-3 ST school covariates. Analysis of the level-3
variance components reveals that the values of τ 211q(SES) are

markedly different from 0, and their estimates are 0.247, 0.272,
0.207, and 0.226 for q = 1, 2, 3, 4, respectively. This result
illustrates that the effect of SES varies from school to school. In
addition, the τ 222q(GD) values are not markedly different from

0. In addition, according to the DIC model selection results,
model 2 shows the best fit to the real data when β2jq are
defined as fixed effects. The estimation results show that the
proportion of females to males does not vary among schools.
The estimation covariance between the random effects τ 201q,

τ 202q, and τ 212q are all not markedly different from 0. It can be

concluded that the random effects are independent of each other
for each type of ability. All estimated parameters are shown
in Tables 7–10.

5.4. Item Test Dimension Evaluation
Question (5): Is it possible to use a measurement tool to
determine whether items’ factor patterns correlate to the
subscales of the test battery? In particular, will the four subtests
of the test battery be discernable according to the discrimination
parameters on the four dimensions?

A test battery contains four subtests, which consist of items of
measuring four dimensional abilities, and a type of latent ability
can be measured mainly by a subtest. It can be observed that the
EAP estimates of the discrimination parameters are plotted to
determine whether the items’ factor patterns reflect the subtest
of the test battery in Figure 1. In the left-hand panel of Figure 1,
the discrimination parameters of the first two dimensions are
plotted for subtest 1 (items marked by a dot) and subtest 2 (items
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marked by a star), and the other items are marked by a diamond.
It can be observed that the items of subtest 1 (1–40 item) have
a high factor loading on the first dimension and a low factor
loading on the second dimension, and the items of subtest 2 (41–
64 item) have a high factor loading on the second dimension
and a low factor loading on the first dimension. The other items
do not vary appreciably between the two dimensions. The right-
hand panel of Figure 1 shows the pattern of the discrimination
parameters of the third and fourth subtests on the third and
fourth dimensions. The items of subtest 3 (65–104 item) have
a high factor loading on the third dimension and a low factor
loading on the fourth dimension, and the items of subtest 4 (105–
124 item) have a high factor loading on the fourth dimension
and a low factor loading on the third dimension. The overall
pattern of the discrimination parameters fit the test battery quite
well, demonstrating that each dimension is identified by items of
one subtest.

6. CONCLUDING REMARKS

In this study, we mainly focus on constructing a multilevel
multidimensional model to fit the hierarchical dataset about
a large-scale English achievement test. Particular attention
is given to assessing the correlation between multiple latent
abilities and covariates.

In view of the characteristics of the test structure (i.e.,
(1) the students are nested within classes or schools; (2) the
binary response consists of several subtests and each subtest
measures a distinct latent trait), we extend the measurement
model developed by Fox and Glas (2001) and Kamata (2001)
to the multidimensional case by replacing their unidimensional
IRT model with a multidimensional normal ogive model. The
numerical results show that the multidimensional IRT model
is appropriate for modeling the measurement model. It can
accurately model the item/person interaction and utilize the
correlations between subtests to increase the measurement
precision of each subtest.

From what has been using the above empirical data, we
may safely draw valuable conclusions to provide guidance for
the future English teaching. Socioeconomic status (SES) has a
positive impact on the abilities of four dimensions. That is,
the higher families’ SESs, the better performances in the four
dimensional abilities. In addition, the study also found that
students of different genders do not demonstrate the same level
of expertise in English skills are expert in the English skills are
not the same. Female students are good at the items related
to the memory of the image and mechanical memory, such
as the vocabulary, grammar and reading comprehension; but
the male students have the advantage in reasoning calculation.
Therefore, teachers should adjust the teaching methods based
on the gender differences so that he or she can acquire the
ability to overcome their own deficiency. Teachers’ satisfaction
as level 3 teacher covariate markedly impacts English table
computing ability. It is possible to play a decisive role in
the students’ internal factors as compared with the teachers’
external factors. Finally, the impact of the school climate

factor on students’ grammatical structure analysis and reading
comprehension is not very obvious, and the specific reasons are
to be studied later.

In the future studies, the correlations between schools at
the level-3 should be taken into consideration. For example,
the different secondary schools which are located in the same
district may share a common education resources. In addition,
the measurement model can be improved by considering
polytomous item response theory model to analyze ordinal
response data with more information. As an extension of this
paper, the polytomous response model associated with the
multilevel models can be used to help evaluate the multiple latent
abilities, which may be more suitable for the current complex
situation of educational and psychological research. In the field
of estimation method, Bayesian estimation method will face
serious challenges when the number of examinees or the number
of items, or MCMC sample size are substantially increased.
Therefore, the proposal of efficient Bayesian algorithm and the
development of easy-to-use software package are also important
research focus in the later period.
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