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The Role of Temporal Modulation in
Sensorimotor Interaction
Louis Goldstein*

Department of Linguistics, University of Southern California, Los Angeles, CA, United States

How do we align the distinct neural patterns associated with the articulation and the
acoustics of the same utterance in order to guide behaviors that demand sensorimotor
interaction, such as vocal learning and the use of feedback during speech production?
One hypothesis is that while the representations are distinct, their patterns of change
over time (temporal modulation) are systematically related. This hypothesis is pursued
in the exploratory study described here, using paired articulatory and acoustic data
from the X-ray microbeam corpus. The results show that modulation in both articulatory
movement and in the changing acoustics has the form of a pulse-like structure related
to syllable structure. The pulses are aligned with each other in time, and the modulation
functions are robustly correlated. These results encourage further investigation and
testing of the hypothesis.

Keywords: speech production, temporal modulation, articulation, acoustics, syllable structure, sensorimotor
interaction

INTRODUCTION

Work over the last 20 years has revealed abundant evidence for real-time sensorimotor interaction
in both speech production and speech perception. In speech production (the topic of this volume),
the role of auditory feedback in guiding speech production has been demonstrated in experiments
showing that talkers may produce compensatory articulatory changes in response to altered
auditory feedback (Houde and Jordan, 1998). In addition, talkers can align their articulatory
patterning in real-time to that of a partner, in the so-called “synchronous speech” task (Cummins,
2002). While less obviously real-time, talkers have also been showed to alter the temporal profile of
their articulation to match that of a partner in experiments showing phonetic convergence (e.g.,
Lee et al., 2018). More generally, of course, vocal learning requires the ability to use auditory
information to guide changes in articulatory behavior.

The existence of such sensorimotor interactions would appear to require that speakers have some
common representation of speech articulation and acoustics that affords the kind of alignment
that these experiment results exhibit. At first blush, it is tempting to think that evidence for this
common representation might be found in the neural activation patterns in the motor cortex like
those that have been found during listening to speech (Wilson et al., 2004). Indeed, the dual-stream
model (Hickok and Poeppel, 2007) hypothesizes that such neural activation subserves sensorimotor
control of speech production. However, recent experiments using electrocorticography have shown
that the representation of speech segments in the motor areas during listening is quite distinct from
its representation in the same areas during speech production. Cheung et al. (2016) compared the
activation patterns while patients produced CV syllables and while they listened to recordings of
themselves producing those syllables. The activation patterns of speech segments in the anterior
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ventral sensorimotor cortex (vSMC or “motor cortex”) during
listening was found to be organized by their acoustic properties,
clustering segments by manner classes, as is also found in the
auditory areas such as the superior temporal gyrus and others
(Mesgarani et al., 2014). However, activation patterns during
speaking were found to be organized by vocal constricting
organ (labial, coronal, dorsal), consistent with other recent
work that has shown that electrode activity can be predicted
as a function of coordinated articulatory movement creating
constriction gestures of those three types (Chartier et al., 2018).
Thus, the patterns of neural activation associated with acoustics
and articulation of the same utterance are distinct, even in
the motor areas. So, what binds them together to afford their
interaction or integration?

Like most work contrasting articulatory versus acoustic
representations in speech production and perception (and in
phonology), the research described in the previous paragraph
focuses on the paradigmatic aspects of the neural representations,
e.g., how the neural representations of distinct speech segments
differ in the same context. However, this focus ignores the
temporal aspects of continuous acoustic and articulatory signals,
which must be lawfully related as the articulatory movements
actually cause the acoustic signals. Temporal aspects of the
corresponding cortical representations have been the focus of
recent work by Assaneo and Poeppel (2018) who found that
cortical oscillations in auditory and speech-motor areas are
synchronized with one another during listening, specifically to
syllable repetition rates around 4.5 Hz, and have proposed this
synchronization as a possible solution to the binding problem.
Their model of the synchronization involves entrainment of
theta-band (4–8 Hz) oscillations in the auditory cortex to the
speech envelope as has been shown in other recent work
(Doelling et al., 2014), as well as the coupling of neural
oscillators in the auditory and speech-motor areas. In this
listening situation, rhythmic regularities of the acoustic speech
envelope in the theta band plays a key role in the entrainment
model, and they have also been shown to contribute to the
intelligibility of the speech (Ghitza and Greenberg, 2009) and
to listener sensitivity in detecting gaps in artificial stimuli with
speech-like rhythmic properties (Henry et al., 2014). However,
turning to speech production, it is unknown whether there
are periodic components in ongoing articulatory-motor activity
that could play a role like that of the speech envelope in
entraining cortical oscillations and contribute to synchronization
of auditory and speech-motor areas. This may be due to
the difficulties in obtaining “clean” brain responses from
talking participants (both in the MRI scanner and during
EEG acquisition) and provides a motivation for probing the
temporal modulation of speech articulation and its relation to
acoustic modulation.

The temporal dimension of the articulatory and acoustic
structure of speech is the focus of the work to be described here.
This work hypothesizes that there should be a systematic relation
between the temporal modulation of articulation (how much is it
changing at any given moment) and the corresponding temporal
modulation of the acoustic signal, specifically ignoring in what
way the signals are changing.

The cognitive significance of patterns of modulation or change
over time has been addressed in a variety of domains. For
example, viewers can perceive humans engaging in a variety
of actions when watching dynamic point-light displays (e.g.,
Rosenblum et al., 1996), but there may be nothing in the static
displays of the dots to suggest different human body parts or their
similarity structure. Sinewave approximations to human speech
(Remez et al., 1981), which were loosely modeled on point-light
displays, preserve information about how frequency information
in the signal changes over time, but static moments of the signal
may not be so readily perceived as speech.

Measures of change over time have been incorporated
into automatic speech recognition systems through use of
the modulation spectrum (e.g., Kingsbury et al., 1998) or
by using the derivatives of acoustic measures, such as Mel-
frequency cepstral coefficients (mfccs), as additional feature
vectors (Furui, 1986). Derivatives have also been incorporated
into some approaches to acoustic-to-articulatory inversion
(Ghosh et al., 2009; Mitra et al., 2012). However, the structure
of the modulation patterns in articulation and acoustics and
their alignment have not been systematically or quantitatively
investigated, nor has the potential relation of those modulation
patterns to phonological structure. A first step at such an
investigation is the goal of this paper.

The investigation takes as input temporal modulation
functions of articulation and acoustics derived for utterances
drawn from the X-ray Microbeam Speech Production Database
(Westbury et al., 1994). Of necessity, the investigation is
largely exploratory, as such modulation signals have not
been explicitly investigated previously. Nonetheless, the main
underlying hypothesis is that the modulation functions should
be systematically correlated in some fashion. In addition,
consideration of what is generally known about the structure
of speech leads to some expectations, or predictions (in a loose
sense), about the nature of these functions and their correlation.

We know that the speech signal does not change in a
continuous way but rather is temporally structured. There are
intervals of time, such as during a long, stressed vowel, during
which the articulation and acoustics are not changing very
rapidly, and there are other intervals, such as at the time of
release of an onset consonant into a vowel or at the formation
of a coda consonant, when change is rapid. Sharp acoustic
change is seen in discontinuities in a spectrogram that are used
as acoustic segmentation criteria for durational measurement.
At the level of articulatory kinematics, several gestures are
proceeding in close temporal sequence at release of an onset
consonant, for example: release of the consonant constriction
gesture, production of the vowel gesture, adduction of the vocal
folds if the consonant is voiceless, lowering of the velum if
the consonant is nasal (see Tilsen and Goldstein, 2012). This
leads to two predictions: (1) Modulation functions of both
articulation and acoustics should exhibit a pulse-like structure,
alternating between periods of rapid change (change “pulses”)
and periods of little change. (2) The period of repetition of the
pulses should be related to the syllable repetition rate, with one
to three pulses per syllable depending on its complexity: one
pulse in a simple CV syllable, somewhere between the onset
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consonant’s release and the vowel, and additional pulses if the
syllable has one or more coda consonants. Considering next the
relation between the articulatory pulses and the acoustic ones—
further predictions can be made: (3) Since articulatory change
generally gives rise to acoustic change, there should be robust
correlations between the articulatory and acoustic modulation
functions, which have not been systematically evaluated in
the past. One possible source of the correlations is that over
the course of running speech, prosodic structure influences
the velocity of articulator movements, such that velocities are
slower near boundaries (Edwards et al., 1991). This slowing
should be observable in the magnitudes of the modulation
functions, both articulatory and acoustic. If this were the only
source of correlation, it would suggest that spans of speech
long enough to include prosodic phrase boundaries would be
required in order for the system to solve the binding problem,
which might not be realistic. It is important, therefore, to
investigate the correlations in temporal windows of different
length. (4) Finally, the temporal locations of articulatory and
acoustic modulation maxima (pulses) should be systematically
aligned. To the extent that speech has a rhythmic structure
(Tilsen and Arvaniti, 2013; Lancia et al., 2019), the pulses
observed in both modulation functions should have a repetitive
structure, and that repetitive structure should be shared across
the two functions.

MATERIALS AND METHODS

Data
The study described here is a secondary analysis of publicly
available, already published data from the X-ray Microbeam
Speech Production Database (Westbury et al., 1994). For the
analysis here, one sentence from the database was selected from
one of the read paragraph tasks that the participants performed
(the ‘Hunter’ paragraph): Once he thought he saw a bird, but it
was just a large leaf that had failed to drop to the ground during
the winter. Of the participants who recorded this sentence, 23
were selected (15 female and 8 male) who read the sentence with
no audible hesitations and with only a single pause (after “bird”).
The speakers were all students at the University of Wisconsin in
the early 1990s. Their Dialect Base (described in Westbury et al.,
1994, as “place of residence during linguistically formative years”)
included 13 from Wisconsin, 3 from Illinois, 2 from Minnesota,
and one each from Indiana, Colorado, California, Massachusetts,
and New Jersey. The data analyzed include markers attached
midsagittally to the upper lip (UL), lower lip (LL), lower incisor
(LI), four tongue markers (tip to dorsum: T1, T2, T3, T4), and
simultaneous audio.

Pause durations following the word “bird” were measured
manually from a wide-band spectrogram, from the release of
the final/d/in “bird” to the release of the initial/b/in “but.”
The average syllable duration for each speaker’s production was
estimated by taking the duration of the entire sentence for a given
speaker, subtracting the pause duration (following “bird”), and
dividing the result by the number of syllables (n = 27).

Articulatory Modulation Functions
Articulatory change, or modulation, was defined for a given frame
as the sum of the squared velocities of the 14-dimensions defined
by the 7 markers× 2 dimensions (x,y), as in (1):

MBEAM(k) =
7∑

i=1

2∑
j=1

(m(i, j, k+ 1)−m(i, j, k))2 (1)

where m(i,j,k) are the marker positions for marker (i) 1-7 (UL,
LL, T1, T2, T3, T4, LI), dimension (j) 1-2 (x,y), at frame k.
Ignoring the mass of the articulators (i.e., treating all masses = 1),
MBEAM also is twice the kinetic energy of the set of articulators
(KE = 0.5 mv2).

A version of microbeam corpus in Matlab format was
employed. In this format, the data of all markers was interpolated
to a fixed sampling rate of 145.6 Hz, so the duration of each frame
was 6.866 ms. Because of the differencing involved in computing
the MBEAM function, it is effectively high-pass filtered and
can be noisy. The resulting MBEAM functions were therefore
smoothed. To determine the appropriate frequency cutoff for
the smoothing filter, the frequency content in the microbeam
marker signals themselves was considered. Since the tongue tip
marker was acquired at the shortest original (nominal) sampling
period during the data acquisition (before the acquired data were
interpolated by a smoothing spline to make samples all equal
in duration, Westbury et al., 1994), the magnitude spectrum of
the vertical movement of the marker closest to the tip of the
tongue (T1) for the test sentence produced by each of the speakers
was examined. The results of a typical speaker are shown in
Figure 1. For all speakers, the amplitude of the spectrum at
10 Hz is down by 60 dB from its peak value, and changes little
at higher frequencies. A cutoff frequency of 12 Hz was chosen,
and the MBEAM functions were filtered in Matlab (Mathworks,
Inc.) using a zero-phase, low-pass, nine-point Butterworth filter
with a 12 Hz cutoff. In order to test if the resulting filtering
overly determines the correlation results, another version of the
MBEAM functions was created using a 25 Hz cutoff filter, and
analyses were replicated using these functions.

The temporal structure of each MBEAM function was
characterized by finding the times of the successive maxima of
the function (using the zero-crossings of its derivative). These
maxima will be referred to as the modulation pulses. The mean
inter-pulse interval and its standard deviation were calculated.
An alternative would be to define pulses as the maxima of the
derivative of the modulation function, i.e., acceleration maxima
where the velocity is changing most rapidly and which can be
thought of points of maximum force, but this was not explored
in this work. In order to test the predictions about the relation
between pulses and syllable structure, the segment and word
transcriptions of the 23 sentences were aligned to the audio
signals using the Penn Forced Aligner (Yuan and Liberman,
2008). The segmentations were checked by hand and corrected
where necessary. Almost all errors involved the low intensity
fricative in “failed,” which was often mistakenly characterized
as a short pause. Since all but two of the words (“during” and
“winter”) were monosyllabic, the word-level segmentation also
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FIGURE 1 | Magnitude spectrum of the vertical position of T1 (marker nearest
the tongue tip) for the test sentence produced by of the speaker (S11).

served as a syllable segmentation. “During” was divided into
syllables between the [r] and the [I], and “winter” between the
[n] and the [t]. For each syllable of the transcription, the number
of pulses falling in the temporal window of that syllable was
automatically tallied. For each speaker, the mean number of
pulses falling on open syllables (no coda consonant), syllables
with single coda consonants, and syllables with more than one
coda consonant were calculated.

Acoustic Modulation Functions
The signal representation chosen as the basis of the acoustic
modulation functions is a set of mel-frequency cepstral
coefficients (mfcc). In addition to fact that this representation
has been widely used in speech technology applications (Rabiner
et al., 1993), it encodes the resonance structure of the vocal
tract, but not voiced source fundamental frequency, which of
course is also not captured by microbeam markers on the surfaces
of the vocal tract. Mfccs have been used in work that has
successfully estimated articulator point marker time functions
from acoustics using deep neural nets (Chartier et al., 2018) and
other techniques (Mitra et al., 2011; Afshan and Ghosh, 2015).
Mfcc parameters were calculated for the audio signals paired
with the microbeam data using Matlab code developed by Kamil
Wojcicki and available on the Mathworks File Exchange1. The
window size for the analysis was 25 ms, and time between frames
was chosen to be equal to the frame rate of the MBEAM functions,
i.e., 6.866 ms. The audio signal was preemphasized using a high-
pass filter (coefficients [1, −0.97]), analyzed using 20 filterbank
channels over the frequency range 0–3,700 Hz, as changes in
this frequency range can be expected to be well-determined
by changes in the anterior articulator positions that do not
produce the narrow constrictions associated for example with
fricatives. The spatial representation of such narrow constrictions
is expected to be poorly related to fricative acoustics due to the

1https://www.mathworks.com/matlabcentral/fileexchange/32849-htk-mfcc-
matlabh

potential mechanical interaction of the marker with the palate.
13 mfcc parameters were extracted, similar to the dimensionality
of the microbeam data.

As the bandwidth of the unsmoothed mfcc parameters may
be considerably higher than that of the microbeam markers, each
coefficient was filtered using the same (12 Hz) smoothing filter
used preceding calculation of the MBEAM modulation function.
The (MFCC) modulation function was calculated as in (2) in a
similar manner as the MBEAM modulation function:

MFCC(k) =
13∑
i=1

(f (i, k+ 1)− f (i, k))2 (2)

where f(i,k) represents the ith mfcc at frame k. Due to
the resulting high-pass filtering, the resulting MFCC function
was also smoothed using a zero-phase, low-pass, nine-point
Butterworth filter with a 12 Hz cutoff. As with the MBEAM
functions, another version was created using a 25 Hz filter.
The mean inter-pulse interval and its standard deviation were
calculated in the same way as for the MBEAM function, and the
mean number of pulses per syllable type for each speaker was
calculated in the same way as for the MBEAM pulses.

Correlation Methods
In order to test the predictions that (a) there are robust
correlations between articulatory and acoustic modulation
functions and that (b) there is a repetitive temporal structure
shared between articulatory and acoustic modulation functions,
Correlation Map Analysis (CMA) was employed (Barbosa et al.,
2012; Gordon Danner et al., 2018). CMA calculates a correlation
time function between two signals using a sliding window
centered on each sample of the signals. The window is actually a
kernel: every sample in the signals contributes to the correlation,
but the contribution of samples to the correlation decreases as
a function of lag from the center of the window, as determined
by a weighting function. (3) Shows the expression for calculating
a covariance function between two signals x and y, at every
sample (k).

Sxy(k) =
∞∑

l=−∞

ce−η|l|x(k− l)y(k− l) (3)

l is the sample lag from the center of the window, and η (eta) is the
parameter that determines the sharpness of the window. Greater
values of η result narrower time windows. c is a constant chosen
so that the sum of the weights over all samples is 1. Correlation
(ρ) at each sample is then calculated as in (4).

ρ(k) =
Sxy(k)√

Sxx(k)Syy(k)
(4)

The choice of η determines an effective frequency cutoff of the
resulting correlation time function, for which Barbosa et al.
(2012) provide an approximation function. Three values of η

were chosen: a narrow window (η = 0.8) that produces a
frequency cutoff of 12.4 Hz (roughly equal to cutoff frequency of
the modulation functions themselves), a wide window (η = 0.08)
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that has a much lower frequency cutoff (1.24 Hz), and an
intermediate value (η = 0.2) with a frequency cutoff of 3.1 Hz.
For each value of η, the median of the correlation values
across all the samples in the correlation function for a given
speaker was calculated.

In order to provide a baseline with respect to which the
observed correlation values can be evaluated, surrogate signal
pairs where created, in which there is no systematic causal
relation between the values of two signals. To create a surrogate
pair, the k samples of each MFCC modulation function were
divided into two halves (first and second k/2 samples), the order
of the two halves was then reversed, and the resulting signal was
paired with the unchanged MBEAM function. As a result, the first
half of the MBEAM function was paired with the second half of
the MFCC function, and second half of the MBEAM function
was paired with the half of the MFCC function (Note that the
same result would have been achieved by reversing halves of
the MBEAM function). Any remaining correlation between the
surrogate signals reflects general properties of signals of this type
(as calculated with this method), not a causal relation between
the two signals. The surrogate signal pairs were analyzed using
the same conditions of filtering and η as used with the original
signals. For each value of η, the median of the correlation values
across all the samples in the correlation function for the original
signal pairs was compared with the median values obtained with
the surrogate pairs.

Correlation map analysis also calculates the correlation
functions between signals as they are shifted in time with
respect to each other. Critically, this allows us to evaluate
the hypothesis that there is a repetitive temporal structure
to the modulation pulses shared between the articulatory and
acoustic functions. One way of characterizing the repetitive
(or periodic) structure of a single signal is to examine the
autocorrelation function of the signal, which represents the signal
correlated with itself at different lags. To the extent that the
signal has a periodic structure, there will be a clear peak in
the autocorrelation function at a non-zero lag corresponding
to the fundamental period of repetition. The autocorrelation
functions of the MBEAM and MFCC functions were calculated
individually using CMA to compare the signals with themselves
at different lags, and the period of the repetition associated
with each was determined by finding the lag associated with
the maximum median correlation of the correlation function
(other than zero-lag, which in the case of correlating a signal
with itself always yields a correlation equal to 1). To evaluate the
shared repetitive structure of the MBEAM and MFCC functions,
the median correlation of MBEAM and MFCC at lags from
−200 to +200 ms were compared to find the lags at which
the correlation is maximal. The zero-lag is predicted to be
maximal, because at this lag, the acoustic change at a given
frame is aligned in time with the articulatory change that caused
it. The changing shape of the vocal tract causes an immediate
change in its acoustic source and filter properties. If there is
any delay at all, it is much shorter than the 6.86 ms frame
duration. If the form of the function relating lag to correlation
has the form of an autocorrelation function, it will also be
possible to find robust secondary maxima in the function. At

the lag corresponding to a secondary maximum, the articulatory
change is not aligned in time with the acoustic change that it
caused, but the repetitive structure of the signals is such that
articulatory modulation pulses (maxima) are still aligned with
acoustic modulation pulses, and frames with little articulatory
modulation are aligned with frames of little acoustic modulation.
This is then the period of shared repetitive structure for the pair
of signals. These values will be compared against the single-signal
autocorrelation functions.

RESULTS

Characterization of Modulation
Functions
Figure 2 shows an example of the MBEAM and MFCC
modulation functions (obtained with the 12 Hz filtering) along
with the correlation function resulting from the CMA analysis
(for η = 0.8) in the bottom panel. The first clause of the test
sentence is shown (both waveform and spectrogram) for one of
the 23 speakers. The pulse structure of the MBEAM function
is obvious from the figure. As expected, the pulse peaks (times
of maximum articulatory change; shown with vertical magenta
lines) align reasonably well with points of rapid or discrete change
in the spectrogram. Two peaks are found during the syllable
corresponding to “once,” one peak for “he,” one for “thought,”
etc. The MFCC modulation function exhibits a similar structure,
although it has more peaks than the MBEAM function. This is
reasonable, as there is more information in the MFCCs than
in the MBEAM and it is more fine-grained temporally: source
changes and nasalization are not represented in the MBEAM
data, and it is derived from measurements of the anterior tract

FIGURE 2 | Sample of modulation functions and their correlation function for
the first clause of the test sentence, for one of the speakers. Panels represent
(from top to bottom): audio waveform, sound spectrogram, MBEAM
modulation function filtered at 12 Hz, MFCC function filtered at 12 Hz, and the
correlation function from Correlation Map Analysis for the narrow window
condition, η = 0.8. Green vertical lines represent acoustic segmentation into
syllables. Purple vertical lines mark the peaks of the MBEAM function.
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only. But for every MBEAM peak there is an MFCC peak close
in time to it. Typically, the MBEAM peak lags the MFCC peak
(except in “bird”). Presumably this is due to the fact that the
MFCC frames are based on 25 ms windows and so “look ahead”
of the corresponding MBEAM frame. Overall, the correlations
shown in the bottom panel are quite high, with the clear majority
of points showing positive correlations.

Box plots showing the mean number of MBEAM pulses
occurring during open syllables, syllables closed by a single
consonant, and syllables closed by more than one consonant are
shown in the top panel of Figure 3 (again for the 12 Hz filtering
condition). Each speaker contributes one mean per box plot. As
predicted, the mean of the open syllables is close to 1 (0.97),
while the mean of syllables closed by a single consonant is 1.51,
possibly suggesting that half the syllables have two pulses while
the other half have only one. The difference between these two
syllable types is highly significant (sign test p< 0.001), as 22 of the
23 speakers have more pulses in the case of the coda condition.
(Here and in all the sign tests performed, p-values obtained that

FIGURE 3 | (Top) Box plots of the mean number MBEAM peaks (pulses) per
syllable as a function of syllable type: “open: (no coda consonant), “final C”
(single coda consonant), “final CC(C)” (two or more coda consonants). Each
speaker contributes a single value to each box plot, which is the mean
number of peaks found in syllables of that type for the speaker. (Bottom)
Same plots as top panel, but for MFCC peaks.

are less than 0.001 are reported as p< 0.001). Finally, the mean of
syllables with more than one coda consonant is almost twice the
mean with a single coda (2.4). The differences between one and
two coda consonants is likewise highly significant (p < 0.001), as
all speakers have more pulses with multiple codas. The pattern
of results for MFCC pulses are very similar but with a few more
pulses overall, as shown in the bottom panel of Figure 3. The
means for the three conditions are 1.15, 1.69, and 2.91, and the
differences are highly significant in a sign test.

Figure 4 shows box plots for the mean frequency of the
23 speakers’ inter-pulse intervals for the MBEAM and MFCC
functions (calculated from the mean inter-peak durations) for
both 12 and 25 Hz smoothing conditions. Also shown are the
syllable frequencies, calculated from the mean syllable durations.
Examining the 12 Hz results, the MFCC frequencies are higher
than the MBEAM frequencies (not surprisingly, since there are
more MFCC pulses than MBEAM pulses), and the difference is
highly significant (p < 0.001) in a sign test across the 23 speakers
(all but two show higher MFCC frequencies). It is also clear that
both of those frequencies are higher than syllable frequency. The
median syllable frequency is 4.9 Hz and the median MBEAM
frequency is 7.5 Hz. Their ratio is 1.5, which is consistent with
the results in Figure 3, showing about one pulse per open syllable,
but more pulses for syllables with coda consonants. Considering
the results for the 25 Hz smoothing, the MBEAM frequencies are
basically unchanged from the 12 Hz condition (median frequency
for the 25 Hz condition is 7.7 Hz); the difference is not significant
by sign test. Thus, the 7.5 Hz inter-peak frequency value for
MBEAM modulation function data appears to characterize the
temporal modulation in these (relatively slowing changing)
articulatory signals quite well. The MFCC inter-peak modulation
frequency is obviously much higher in the 25 Hz condition than
in the 12 Hz condition (16 vs. 8.5 Hz). The 12 Hz filtering has
removed higher modulation frequencies that are contained in the
faster-changing acoustic signals and smoothed it to make it more
comparable to the MBEAM function.

FIGURE 4 | Box plots of estimated frequencies of: syllables, MBEAM pulses,
and MFCC pulses, for 12 and 25 Hz filter conditions. Each speaker
contributes a single value to each boxplot.
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Correlation Analysis
Surrogate Analysis and Window Width
For the 12 Hz filtering condition, the global (‘overall’) correlation
of the MBEAM and MFCC functions is positive and significant
for every speaker (p < 0.001). The box plot of the 23 correlation
values is shown in the left plot in Figure 5. For the surrogate
data plotted on the right, only 12 speakers show significant
correlations (significance varying from p < 0.05 to p < 0.001)
and of those 8 are negative and 4 are positive. Because so many
of the surrogate pairs are negatively correlated, comparison of
the original and surrogate data is most conservatively done with
the magnitudes of original and surrogate correlations, i.e., taking
the absolute values of the surrogate correlations. Box plots of the
resulting values are shown in the leftmost pair of columns of
Figure 6 (top panel); original on the left, surrogate on the right.
A sign test confirms that the magnitude of the correlations is
higher for the original than for the surrogate data (p < 0.001).
All speakers but one (S34) have higher magnitude correlations in
the original data. S34’s surrogate correlation is in fact negative.

The remaining boxplots in Figure 6 (top panel) plot the results
of the CMA analysis for the three values of η. For each value,
the results of the original data are plotted on the left, and the
surrogate data on the right. For each value of η, the median
value of the correlation function from the CMA analysis for each
subject was calculated for each signal lag, and the maximum
positive correlation value and the maximum negative correlation
of that median across the lags was determined. The lag with
the higher magnitude was taken to represent the correlation for
that speaker, and is plotted in the box plots. For every value of
η, a sign test confirms that the magnitude of the original data
correlation is higher than that for the surrogate data (p < 0.001).
There are two other ways in which the original data correlations
exhibit a strikingly different pattern of results than the surrogate
data. First, for the original data, for every value of η and for
every speaker (except for speaker S30 for η = 0.8), the maximum
positive correlation was higher in magnitude than the maximum
negative correlation. However, for the surrogate data, a sign test

FIGURE 5 | Box plots of the overall global correlation values between the
MBEAM and MFCC modulation functions—filtered at 12 Hz—for the 23
speakers, original data on the left, surrogate data on the right.

FIGURE 6 | (Top) Box plots comparing correlations between the original
MBEAM and MFCC modulation functions filtered at 12 Hz and the correlations
of the corresponding surrogate data functions, for four different correlation
types: the overall correlation and the median values of the CMA correlation
function for three different values of η. For each of the correlation types, the
original data is plotted on the left and the surrogate data on the right. In all
cases, the absolute values of the correlations are plotted. (Bottom) Same
plots as top, for modulation functions filtered at 25 Hz.

revealed that there was no tendency for the highest magnitude
correlation to be either positive or negative. Second, the lags that
show the maximum positive correlations for the original data
are tightly clustered around 6.866 ms (or a one frame delay of
the MBEAM signal)2, with very small standard deviations, as
shown in Table 1. The lags at which the maximum correlations
(positive or negative) occur for the surrogate data are much more
variable; the standard deviations of these lags are an order of
magnitude higher than for the original data. Thus, the original
data show robust, positive correlations between MBEAM and
MFCC functions when the signals are temporally aligned with
close to zero lag. The correlations exhibited by the surrogate data
are weaker and are variable both in sign and in the lag at which
the highest magnitudes are found.

2We might expect that zero lag would result in the highest correlations, but because
of the temporal advance of MFCC function due to the size of its analysis window
as discussed earlier, this is not always the case. For example, the median of the lags
that show the highest correlation for the η = 0.8 condition is 6.866 ms: the MBEAM
function is delayed by one frame.
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TABLE 1 | Medians and standard deviations (across speakers) of the lag (in ms) at
which the highest positive and negative correlations are found between MBEAM
and MFCC functions.

Positive r Negative r

Median SD Median SD

η = 0.08 Original 6.9 7.3 75.5 126.6

Surrogate 20.6 98.3 −34.3 114.1

η = 0.2 Original 13.7 5.8 48.1 94.9

Surrogate 20.6 101.9 −13.7 105.8

η = 0.8 Original 6.9 7.3 −48.1 68.0

Surrogate 27.5 92.3 −27.5 99.6

Results shown separately for original and surrogate data as a function of eta. 12 Hz
smoothing condition.

As can also be seen in Figure 6, the results show that
the correlation is higher in narrower time windows than
in wider ones. The correlation values for the original data
show a regular progression as a function of window size—
η = 0.8 > η = 0.2 > η = 0.08 > overall. The difference between
each of the adjacent steps in the progression was tested in three
sign tests, and each is significant (at least p< 0.005). However, the
same trend is found with the surrogate data, and the difference
between the overall correlation and η = 0.08 is significant in a
sign test, as is the difference between η = 0.8 and η = 0.20. Thus,
the differences between narrow and wide windows may be due
to some aspect of the method, rather than being informative
of the locus of the correlation between the functions. However,
the results clearly demonstrate that a wide (i.e., temporally long)
window is not necessary to obtain meaningful correlations.

The results for the 25 Hz filtering condition are shown in
the bottom panel of Figure 6. The correlations are lower than
those in the top panel, as expected given the increased number of
MFCC pulses in this condition. Nonetheless, the overall pattern
of results is the same as for the 12 Hz filtering condition. A sign
test confirms that the magnitude of the correlations is higher for
the original than the surrogate data for the overall correlation and
for all values of η (p < 0.001, except for η = 0.08, p = 0.011).
As was the case for the 12 Hz condition, all speakers showed
positive overall correlations for the original data, but there was
no cross-speaker tendency for the sign of the correlation in the
surrogate data. In the CMA analyses, for the original data, for
every value of η the maximum positive correlation was higher
in magnitude than the maximum negative correlation for a
significant number of subjects (p < 0.005). However, for the
surrogate data, a sign test revealed no tendency for the highest
magnitude correlation to be either positive or negative. Likewise,
as is shown in Table 2, the lags that exhibit the maximum positive
correlations for the original data are clustered around 6.866 ms,
with relatively small standard deviations; while lags at which
the maximum correlations (positive or negative) occur for the
surrogate data are much more variable.

For the original data, the pattern of correlations across the
width of analysis windows is the same as in the 12 Hz condition
(η = 0.8 > η = 0.2 > η = 0.08 > global) with pairwise differences
are highly significant (p < 0.001) in a sign test. For the surrogate

TABLE 2 | Medians and standard deviations (across speakers) of the lag (in ms) at
which the highest positive and negative correlations are found between MBEAM
and MFCC functions.

Positive r Negative r

Median SD Median SD

η = 0.08 Original 6.9 49.6 −48.1 82.7

Surrogate −20.6 121.0 −89.3 111.0

η = 0.2 Original 6.9 24.7 −48.1 91.6

Surrogate 6.9 92.6 −61.8 111.0

η = 0.8 Original 6.9 28.3 −48.1 71.4

Surrogate −6.9 111.5 −55.0 111.3

Results shown separately for original and surrogate data as a function of eta. 25 Hz
smoothing condition.

data, however, there are no significant differences between values
of η, though all of the CMA conditions show significantly higher
magnitude correlations than the overall.

Lag Analysis
The lag analyses were conducted on the η = 0.8 condition, which
exhibits the highest correlations. The top panel of Figure 7 shows
how the median of the CMA correlation function varies as a
function of the lag between the MBEAM and MFCC functions
for one speaker, for lags between+200 and−200 ms. Positive lags
represent delay of the MBEAM signal with respect to the MFCC,
and negative lags represent relative delay of the MFCC function.
The lower panel shows the percentage of values in the correlation
function at a given lag that are positive. The two functions of
lag track each other quite closely, and the analysis will focus
on the median correlation lag function. Even though the figure
represents correlation of two different signals, it has the form of
an autocorrelation function. Very high values are found at lag = 0,
in this case 0.71 (Of course, if this were an actual autocorrelation
function, the value would be equal to 1 at lag = 0). As the signals
are shifted in time, the correlation decreases to minimum values
at lags (± 65 ms), and then increases again to maxima between
100 and 150 ms of shift (in either direction). The surrogate data
did not in general exhibit this kind of structure and was not
considered further in the lag analysis.

Crucially, the fact that there are secondary maxima means
that there is a repetitive period in the signals that is shared
between them, just as the secondary maxima in autocorrelation
can be used to determine the major periodicity of a single
signal. Twenty-one of the twenty-three speakers exhibit these
second maxima. The lag values at which the secondary maxima
occur for a given speaker were determined as follows. First, the
lags corresponding to correlation minima were determined by
analyzing the median correlation lag function and finding the
negative extrema closest to lag = 0. Then, the secondary maxima
were found by finding a maximum between the time of the
minima and + or −170 ms. Since the function was noisy around
the secondary maxima for several speakers, there were sometimes
multiple nearby maxima in which case the most extreme one was
chosen. The lag values at which the secondary maxima occurred
for a given speaker were referenced to the lag value exhibiting
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the (primary) maximum. This is lag = 0 for the speaker shown
in Figure 7, but this varied across speakers with a median value
of 6.866 ms, or a delay of MBEAM by one frame. The measured
lag was subtracted from the lag at which the primary maximum
occurs. The positive lag and the absolute value of the negative lag
were averaged to derive a single secondary maximum lag value
for each speaker.

Box plots of the lag of the secondary maxima are shown in
Figure 8. The leftmost plot shows the lags for the MBEAM-
MFCC correlation for the 12 Hz filtering condition. The median
value is 127 ms, which is very close to the median duration of
the MBEAM inter-pulse intervals (132 ms). The next box plot
shows the secondary maxima lags of the MBEAM function with
itself (autocorrelation), with a median value of 124 ms, very close
to the value for the MBEAM-MFCC correlation (though the

values MBEAM-MFCC are more variable across speakers). This
indicates that there is a repetitive structure to MFCC modulation
function that aligns with the repetitive structure of the MBEAM
function, even though the median inter-pulse interval for the
MFCC function is actually shorter (116 ms), as is the median of
the secondary maxima lags of the autocorrelation of the MFCC
(110 ms). These differences are small in magnitude, to be sure, but
the next three box plots from the 25 Hz filtering condition show
the same pattern with a much larger magnitude. The MBEAM-
MFCC correlation shows a median secondary maximum lag at
127 ms, similar to the median duration of the MBEAM inter-
pulse intervals in this condition, 131 ms. However, the median
duration of the MFCC inter-pulse intervals in this condition is
63 ms. This suggests that the MBEAM pulses are aligning with
approximately every other MFCC pulse in this condition.

FIGURE 7 | Sample results of CMA lag analysis for one speaker for correlation between MBEAM and MFCC modulation functions filtered at 12 Hz with η = 0.8.
(Top) Shows the median value of the correlation function for each signal lag in ms. Vertical lines indicate correlation minima and secondary maxima. (Bottom)
Shows the percentage of correlation values that are positive at each lag.

FIGURE 8 | Box plots of the lag value (in ms) at which secondary maxima of correlation function are found. Lags are the average of the absolute values of the
negative and positive lags. The three leftmost plots show (respectively): the lags for correlation of MBEAM with MFCC, the autocorrelation of MBEAM, and the
autocorrelation of MFCC, all for the 12 Hz filtering condition. The three rightmost plots show the same three signal correlations for the 25 Hz filtering condition.

Frontiers in Psychology | www.frontiersin.org 9 December 2019 | Volume 10 | Article 2608

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-02608 December 5, 2019 Time: 16:14 # 10

Goldstein Temporal Modulation in Sensorimotor Interaction

DISCUSSION

The results of the analyses provide support for the primary
hypothesis that there are robust correlations between the acoustic
and articulatory modulation functions, as instantiated here
in the MFCC and MBEAM functions [prediction (3) in the
Introduction]. On the one hand, it is not surprising that they
should be correlated given their causal relationship, but there are
several reasons why these particular functions might not have
revealed that. Primarily, there are several articulatory dimensions
of change that are not represented in the microbeam data,
including information about the velum, glottis, and pharynx.
The lack of such information may be part of the reason
that the pulses in the MFCC function were observed to have
a considerably higher frequency than those of the MBEAM
function (in addition to the intrinsic smoothness of articulatory
movement), particularly when the MFCC function is not low-
pass filtered at the 12 Hz frequency that appears to be the highest
frequency in the MBEAM function. So, the fact that significant
correlations are observed even in the 25 Hz filtering condition,
where the pulse frequencies are quite different, is testament to the
robustness of the co-modulation effect. Another indicator of its
robustness is that fact that the correlation values are so consistent
across speakers. Almost all speakers show predominantly positive
correlations with maximal correlations close to zero lag, and the
differences across various conditions tested were generally highly
significant in simple sign tests, meaning all or almost all of the
speakers showed differences in the same direction. The surrogate
data show highly variable correlations across speakers in both
sign and lag. This is consistent with the idea that correlations
in the original data are intrinsic to the physics in combination
with the phonological structure and are not parameters that
set differently by individual speakers. Also, the fact that robust
correlations can be found in narrow time windows indicates that
the correlations are not dependent on including long enough
stretches of speech such as to include systematic variation in
articulator velocity due to prosodic boundaries.

The lag analysis revealed that pulse sequences of the
articulatory and acoustic modulation functions share a repetitive
structure (prediction 4), even when the MFCC function was
twice the frequency of the MBEAM function. Returning to the
issue raised in the introduction of how sensory and motor
representations could be aligned within the nervous system,
this result supports the possibility of modulation functions
contributing to the solution. Rhythmic properties of articulatory
modulation could entrain oscillations in speech-motor areas, and
acoustic modulation could entrain oscillations in auditory areas.
The correlations of the modulation functions demonstrated
in the results could contribute therefore to auditory-motor
synchronization. The correlations are high and are also sensitive
to lag, so oscillations in motor and auditory areas, entrained
respectively to articulatory and acoustic modulation functions
would tend to be in-phase and effectively synchronized. One way
to quantify the sensitivity to lag is to find the threshold lag at
which the percentage of positive correlations in the correlation
function drops to under 50%. For the η = 0.8 (12 Hz filtering
condition), the median threshold across speakers is∼40 ms. This

means that the auditory and speech motor cortical oscillations
based on these respective acoustic and articulatory modulation
functions would intrinsically be within 40 ms of being in phase
during speech production. Coupling between activity in these
brain areas, as demonstrated during listening by Assaneo and
Poeppel (2018) could further strengthen the synchronization.

The approach used here to reveal the shared repetitive
stricture was somewhat indirect and limited, in that ultimately
it was based on a linear correlation method. A better analysis
that would avoid this limitation would to use a larger corpus of
material and possibly a technique like joint recurrence analysis
(Marwan et al., 2007; Lancia et al., 2019). Another alternative
method that avoids the linear correlation would be to measure
mutual information (Cover and Thomas, 2006) between the
modulation functions. Mutual information measures how much
knowledge of one signal reduces uncertainty about the other, and
does not depend on linear correlations. Other possible methods
of looking at temporal co-modulation, based on work with neural
oscillations, would deploy frequency coupling (e.g., between
faster and slower frequencies) or cross-wavelet power (Grinsted
et al., 2004) between modulations of acoustics and articulation in
different frequency bands.

The two other predictions about the structure of the
modulation functions and their relation to syllable structure were
supported by the analyses presented. The modulation functions
have a repetitive pulse-like structure (prediction 1). The pulse
structure appears to be related to syllable structure (prediction
2). On average one pulse was found for simple CV syllables,
approximately 1.5 for syllables with a coda consonant, and 2.5
for syllables with multiple coda consonants. Of course, this needs
to be tested on a larger and more varied corpus, particularly
including syllables with multiple onset consonants. To the extent
that such future analyses support the preliminary results obtained
here, it may be possible to develop a new fully spatiotemporal
model of syllable structure based on kinetic energy (of the
articulators or the spectrum), departing from previous models
that are either purely temporal (Goldstein et al., 2006; Nam
et al., 2009) or purely spatial (i.e., sonority-based3, for example,
Goldsmith and Larson, 1990).

While such a model of syllable structure would have several
attractive features, its development would require systematic
investigation of a wide variety of syllable structures and their
resulting kinetic energy functions. A few speculations are
nonetheless merited here. While kinetic energy is not an index of
sonority per se, it could be an index of sonority change, such that
a sharp sonority cline (the cross-linguistically preferred syllable
onset or coda pattern) is indexed by a high magnitude of the
kinetic energy pulse. Also, sequences of consonants in onset or
coda that obey the sonority sequencing principle might result in
single modulation pulses, while those that run counter to it could
exhibit multiple pulses. Which is to say, a preference for single,
high-magnitude pulses capable of entraining theta oscillations
could underlie the preferred syllable structures in languages.

3“Sonority” has never been given a precise physical definition, but has been
approximately described as the relative “acoustic energy” of a segment (Ladefoged,
1993). In general, relative sonority of segments within a syllable increases from
onset to nucleus and decreases again from nucleus to coda.
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Similar computations over sonority are the basis of Goldsmith
and Larson’s (1990) dynamical model of syllabification, but the
values of sonority in that model are stipulated rather than
representing measurable properties of speech, and temporal
properties are not considered.

This modulation pulse model might also be able to provide
insight into syllabification in languages in which syllables
without vowels are common, such as Tashliyt Berber (Dell and
Elmedlaoui, 1985) or Moroccan Arabic (Dell and Elmedlaoui,
2002). Data on articulatory organization of such vowel-less
syllables has shown that the sequence of consonants constituting
the onset and nucleus are organized such that the constriction
gesture for the first consonant is fully released before the second is
formed (Goldstein et al., 2006, for Tashhiyt; Gafos et al., 2019, for
Moroccan Arabic). The sequential production of the two gestures
could produce a modulation pulse that might be lacking if the two
gestures were coordinated in a temporally overlapping pattern.
Finally, the modulation pulse model might be able to distinguish
glides (like /j/) from their corresponding vowels (like /i/), even
though they are phonetically very similar in terms of static
articulatory and acoustic properties. In standard phonological
theory, the difference emerges as a function of being ‘parsed’
into the onset versus nucleus. In a modulation pulse model, this
difference could emerge due to different patterns of overlap of
an initial consonant gesture with a following glide (/Cj/) versus
an initial consonant gesture with a following vowel (/Ci/). The
overlap pattern in /Ci/ would presumably produce a modulation
pulse (as it does in the data analyzed here), but the overlap pattern
in /Cj/could fail to add a distinct modulation pulse.

CONCLUSION

While there is abundant empirical evidence for real-time
sensorimotor interaction in speech production and perception,
not the least of which is its requisite status in vocal learning
and development, the patterns of neural activation associated
with articulation and with acoustics of the same utterance
are in fact distinct. This raises the question of the nature
and basis of the neural binding that affords their integration.
This paper presents a novel approach to this question by
explicitly considering the temporal aspects of continuous acoustic
and articulatory signals, which must of physical necessity
be lawfully related, as the articulatory movements actually
cause the acoustic signals. We hypothesize that the systematic
relation between the temporal modulation of articulation

and the corresponding temporal modulation of the acoustic
signal offers the basis—or at least one critical basis—for the
binding of production and perception, offering here an initial
systematic and quantitative, albeit exploratory, investigation of
the structure of the co-modulation patterns in articulation and
acoustics. This preliminary data analysis identifies a pulse-like
modulation structure related to syllable structure that is aligned
systematically between oral articulatory movements and acoustic
mfccs. Temporal co-modulation of articulation and acoustics can
provide a springboard for illuminating the binding of language
production and perception and its cognitive significance in
phonological structuring.
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