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Several programs have been developed worldwide to improve children’s executive
functions (EFs). Yet, the role played in EF development by learning activities embedded
in the school curriculum has received scarce attention. With two studies, we recently
tested the effects of computational thinking (CT) and coding—a new element of the
primary school curriculum—on the development of children’s EFs. CT stimulates the
ability to define a clear and orderly sequence of simple and well-specified steps to solve
a complex problem. We conjecture that CT skills are associated to such EF processes as
response inhibition and planning. In a first between-group cluster-randomized controlled
trial, we tested the effects of 1-month coding activities on 76 first graders’ planning
and response inhibition against those of 1-month standard STEM activities of a control
group. In a second study, we tested the effects of 1-month coding activities of 17
second graders in two ways: within group (longitudinally), against 7 months of standard
activities experienced by the same children (experimental group); and between groups,
in comparison to the effects of standard STEM activities in a control group of 19 second
graders. The results of the two studies show significant benefits of learning to code:
children exposed to coding improved significantly more in planning and inhibition tasks
than control children did. The longitudinal data showed that improvements in planning
and inhibition skills after 1 month of coding activities (eight lessons) were equivalent to
or greater than the improvement attained after 7 months of standard activities. These
findings support the hypothesis that learning CT via coding can significantly boost
children’s spontaneous development of EFs.

Keywords: coding, computational thinking, programming, executive function, primary school children

INTRODUCTION

Between the ages of 5 and 7, in the transition period from preschool to primary school, children
undergo rapid changes in their cognitive functioning (Roebers et al., 2011; Traverso et al., 2015;
Vandenbroucke et al., 2017). The product of these changes, i.e., their resulting executive functioning
(EF), has long-lasting effects on their future academic achievements and self-regulation skills
(Altemeier et al., 2006; Friedman et al., 2014; Blair, 2016; Schmitt et al., 2017; Escobar et al., 2018;
Stad et al., 2018). Interventions to enhance executive functions (EFs) in this time window thus are
extremely important. The scientific literature suggests that the training of EFs has wider benefits
if implemented early (Diamond et al., 2007; Espinet et al., 2013; Traverso et al., 2015; Blair, 2017)
and if embedded in children’s everyday activities (Traverso et al., 2015; Diamond and Ling, 2016;
Blair, 2017).
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Several studies have been conducted in the last few years to test
the contribution of early intervention on the development of EFs
(Liu et al., 2015; Traverso et al., 2015; Howard et al., 2018; Zhang
et al., 2019). Other studies have explored the efficacy of ad hoc EF
training programs (Kronenberger et al., 2011; Espinet et al., 2013;
Grunewaldt et al., 2013; Hardy et al., 2016; Aarnoudse-Moens
et al., 2018; Boivin et al., 2019; Zhang et al., 2019). For a review
of intervention programs, see Diamond and Ling (2019). To date,
however, the role played by everyday curriculum-based, learning
activities on children’s EFs has received scarce attention.

This paper addresses this gap by examining the effects of
a new curriculum-based activity (coding) on first and second
graders’ EFs. Coding (i.e., programming) is the instrumental
skill of computational thinking (CT), broadly referred to as
the set of problem-solving processes that underlie the solution
of computational problems (i.e., those whose solution can be
performed by a computing agent) (Wing, 2006; Roman-Gonzalez
et al., 2017). Although related to an approach to problem-
solving that is proper of computer science (Wing, 2006; Nardelli
and Ventre, 2015; Florez et al., 2017), CT can be conceived
as a general way of thinking of problems, and thus it can be
generalized to various types of problems that do not directly
involve programming tasks or computers (Wing, 2006). Coding
is the prime means used to teach CT in primary schools (Lye and
Koh, 2014; Nardelli and Ventre, 2015; Saez-Lopez et al., 2016;
Roman-Gonzalez et al., 2017; Tuomi et al., 2018).

Testing the Effects of Coding on EF
Some studies have focused on the general effects of schooling on
EFs (Brod et al., 2017; Zhang et al., 2019). Yet, very few studies
have examined the association between specific curriculum-based
activities at school (e.g., literacy activities) and EFs (Diamond
et al., 2007; Burrage et al., 2008; Baker et al., 2015). Except
for a few notable exceptions (e.g., Diamond et al., 2007; Blair
and Raver, 2014), such studies did neither apply a randomized
controlled trial design (Baker et al., 2015) nor compare children
of the same level of instruction (Burrage et al., 2008). For
example, Burrage et al. (2008) compared pre-kindergarten to
kindergarten children of the same age, the former waiting to enter
the kindergarten, the latter attending it. Thus, their study lacked
a comparison condition in which the specific literacy activity
(e.g., letter and word reading) had not been introduced yet in the
curriculum at that grade level (kindergarten).

The problem in determining the benefits for EFs drawn from
specific learning activities in school is that no control groups
(i.e., children who lack the relevant experience) typically exist: All
children learn to read and write, though with alternate success.
However, the recent introduction of CT, and with it, of coding in
the primary school curriculum in Europe and the United States,
provides the opportunity to test the effects of a new curriculum-
based learning activity on children’s EFs.

Computational thinking involves a set of higher order
cognitive abilities, such as (1) to analyze problems and
decompose them in smaller parts; (2) to plan a sequence of
steps or instructions for the solution of each sub-problem,
intended for the execution by either a computer or a human
agent; (3) to recognize errors in the solution, and fix them

(i.e., debugging); (4) to generalize or apply the problem-
solving strategies learnt to different contexts and other kinds of
problem-solving tasks (Wing, 2006; Shute et al., 2017). Owing
to its being a problem-solving process, CT makes significant
demands on the individual’s EFs, requiring a significant extent
of working memory capacities (Shute et al., 2017), response
inhibition (Di Lieto et al., 2017), and planning (Chao, 2016).
Conceivably, therefore, guided experience of CT problems,
through coding activities in school, might boost children’s
EFs significantly.

In several countries, including Italy, children enter school with
no prior or very limited knowledge of coding. While spreading
worldwide, coding instruction is not yet adopted in all schooling
institutions and classroom laboratories. These circumstances
allow researchers to explore the effects of this specific learning
activity on children’s cognitive skills and EFs.

The Teaching of Coding in Primary
School
The state-of-the-art literature in this field suggests that several
approaches and tools can be used to teach coding in
primary schools (Florez et al., 2017), with block-based visual
programming, like Scratch1 (Resnick et al., 2009; Saez-Lopez
et al., 2016) or Code.org2 (Kalelioglu, 2015), seen as the most
effective for preschoolers and children beginning primary school
(Saez-Lopez et al., 2016). The two studies presented in this paper
used resources from Code.org to train the coding skills (and EFs
through them) of Italian children in first and second grades.

Code.org is an open-source programming platform launched
by the Code.org non-profit to expand access to computer
science in schools among young children (Kalelioglu, 2015;
Nardelli and Ventre, 2015), and to increase participation to it by
under-represented gender and social minorities. Coding exercises
on Code.org employ intuitive drag-and-drop applications and
block-based visual language, particularly appropriate for young
learners (Kalelioglu, 2015; Saez-Lopez et al., 2016). The platform
provides engaging scenarios for children of different age and
gender, and personalized feedback, which allow tailoring the
pedagogical experience to the individual child. The teaching of
coding may involve plugged (computer based) and unplugged
(e.g., paper and pencil) learning activities, whose common goal is
to introduce children to problem-solving through programming.
Children are introduced to a programming language (prevalently
block-based and visual) and to the use of the logical operators
involved in developing a program, such as sequencing (defining
a sequence of steps to achieve a goal), or debugging (locating
errors in the program and correcting them). A program is
operatively defined to children as any sequence of instructions
that guide an artificial agent (a computer) or a fellow human
to achieve a stated goal. Thanks to the accessibility of resources
like Code.org or Scratch, instructional coding activities are slowly
spreading across schools. Yet, the schools in which coding has
been regularly embedded in the STEM curriculum are still
few, and most teachers lack familiarity with coding resources

1http://scratch.mit.edu
2https://code.org/
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as well as with the instructional basics to introduce their
classrooms to coding.

To the best of our knowledge, the only study that has
investigated the cognitive effects of Code.org activities at primary
school (Kalelioglu, 2015) exposed fourth graders to a 5-h course
(1 h per week) through the Code.org platform. Kalelioglu (2015)
assessed the effects of that learning activity on children’s reflective
thinking toward problem-solving. Such trial found no evidence of
significant positive effects of coding on it. Yet, the ability assessed
by Kalelioglu (2015) (reflective thinking, which is part of critical
thinking) might arguably be too complex for fourth graders, and
with insufficient sensitivity to the nuances in cognitive changes
induced by the coding activities at that age.

In the two studies presented in this paper, we tested the effects
of coding (problem-solving) activities selected from Code.org on
5- to 6-year-old children’s planning and response inhibition skills.
Those two EFs are especially interesting as their development
undergoes substantial changes from preschool to the first years of
primary school (Davidson et al., 2006; Diamond, 2006; Magi et al.,
2016; Zelazo et al., 2016; Di Lieto et al., 2017). We also show how
1 month of ad hoc designed coding activities in second grade can
produce a greater improvement in these EFs than that observed
in the same children after 7 months of regular curriculum and
learning activities.

The teaching of coding involves the ability to analyze
problems and to conceive algorithmic procedures (i.e., plans)
for their solution (Florez et al., 2017). Given the role played
by planning in (computational) problem-solving (Chao, 2016;
Chen et al., 2017), we believe that the cognitive ability to
plan can be scaffolded and enhanced by appropriate CT
activities in the class. For instance, putting individual program
instructions into an ordered sequence, a key methodical skill
of CT, does involve working memory and planning, that is,
the ability to organize a sequence of actions in a manner
apt to achieve a given goal (Bers et al., 2014). Moreover,
as analyzing the problem space to devise a multi-step plan
also requires cognitive control over immediate and impulsive
responses (Luciana et al., 2009; Wang and Chiew, 2010; Magi
et al., 2016), we conjecture that learning to code—to solve
computational problems—may also foster the development of
children’s response inhibition skills. Some preliminary evidence
(Di Lieto et al., 2017) suggests the association between coding
and the development of inhibition skills in young children
(aged 5–6 years). Di Lieto et al. (2017) demonstrated the
positive effects of programming in a tangible environment (one
in which children interact with physical objects, robots, in a
physical space, e.g., a room), on the working memory and
inhibition skills of a group of 12 5–6-year-old preschoolers.
Being tangible, that is, concrete, the learning environment
of educational robotics is deemed particularly appropriate to
stimulate the cognitive skills of preschoolers and young primary
school children (Wyeth and Wyeth, 2001; Bers et al., 2014; Shim
et al., 2017). Our studies extend the findings of Di Lieto et al.
(2017) by examining whether also virtual learning environments,
such as those provided by the Code.org platform, can be effective
in improving 5–6-year-old children’s EFs, i.e., planning and
inhibition skills.

As noted above, transition to school is a particularly sensitive
period for the development of EFs (Roebers et al., 2011;
Macdonald et al., 2014; Magi et al., 2016; Poutanen et al.,
2016). Recently, Macdonald et al. (2014) observed that response
inhibition skills develop rapidly in the early school years, from the
age of 5 to 7. Also, planning skills seem to develop significantly
in the first years of schooling (Magi et al., 2016; Poutanen et al.,
2016) and their development relate significantly to that of reading
and math skills (Crook and Evans, 2014; Magi et al., 2016). Thus,
interventions designed to boost the development of response
inhibition and planning can be particularly effective in this time
window. Delivered at this age, they also may have positive impact
on other school achievements.

STUDY 1

Study 1 addressed the following two research questions:

(1) Can a short training with coding (4 weeks) through
Code.org enhance the planning and response inhibition
skills of first graders? Based on prior research (Di Lieto
et al., 2017), we anticipated that learning to code would
affect positively both planning and response inhibition,
increasing planning time and accuracy on standardized
planning tasks, and contributing to decrease inhibition
errors and inhibition time on standardized inhibition tasks.

(2) Are the positive effects of such training retained at 1 month
from the end of the intervention? We predicted that
positive training effects would be maintained.

We performed a cluster-randomized controlled trial
(Campbell et al., 2012) to test the effects of exposure to
Code.org activities. Four classrooms of first graders (80 children)
were randomly assigned to an experimental condition (coding)
or control condition (waiting list), based on a matched design
procedure. Classrooms were matched in pairs on gender
distribution, age, socio-economic status (SES), and for teachers
(i.e., each classroom pair had the same team of teachers),
and then randomly assigned to either coding training or the
waiting-list condition. The coding abilities, planning skills,
and response inhibition skills were tested before (pre-test, T1)
and after (post-test, T2) the coding intervention, as well as at
1-month distance from the training (delayed post-test, T3). The
waiting-list group received the coding intervention after the
post-test (T2); hence, the assessment at T3 was the post-test for
this group (see Figure 1).

Participants
Eighty 5–6-year-old children at the beginning of first grade
participated in the study. The experimental group included 44
first graders (20 girls, 45%, 24 boys, 54%, mean age 6.07). The
waiting-list group consisted of 36 first graders (21 girls, 58%,
15 boys, 42%, mean age 5.9). None of those children needed
or received treatment for learning disabilities or developmental
disorders. All were native Italian speakers. Parental written
informed consent was collected before the study for all
participants. The study was approved by the Ethical Committee
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FIGURE 1 | Experimental design study 1.

of the Department of Developmental Psychology (University
of Padova, Italy). Demographic data for the experimental and
waiting control group are reported in Table 1.

Socio-Economic Status
As children’s ability to benefit from coding can be mediated by
low SES (Israel et al., 2015) and SES is associated with poorer
EF skills and school achievement in STEM (Blair and Raver,
2016; Blums et al., 2017), the SES of the two groups was assessed
to make sure they not differ on this variable. Socio-economic
data were collected through a socio-demographic questionnaire
that parents returned with the written informed consent to the
study. Children’s SES was estimated based on parents’ education
(from 0, less than elementary school, to 4, college) and occupation
(from 1, unemployed, to 4, professional roles). A composite score

TABLE 1 | Study 1: Demographic characteristics of the experimental
and waiting group.

Experimental Waiting p-value

Gender

Girls (n, %) 19, 45% 20, 59% 0.25

Boys (n, %) 23, 55% 14, 41%

Age (M, SD) 6.05 (0.58) 5.97 (0.46) 0.53

SES (M, SD) 6.14 (1.42) 5.71 (1.73) 0.23

was calculated as the sum of the highest education score and the
highest occupation score obtained by either parent (Arfé et al.,
2018), with a maximum score of 8.

Procedure and Materials
We used a selection of Code.org coding problems for training
(Arfé et al., under review). With Code.org, children move blocks
of basic instructions (code) to generate sequences of commands
that instruct a sprite (e.g., an angry bird) to perform actions,
in the intent to achieve a given goal. The platform provides
visual and written informative feedback upon execution. Task
difficulty increases progressively as children improve in coding,
so that children face coding trials of rising difficulty: e.g.,
sequences, loops, and conditional instructions. The overall lesson
plan involved eight coding sessions (two lessons a week for
4 weeks) and was designed to cause children to switch computing
functions or scenarios frequently, to maintain a problem-solving
approach to the coding tasks. Course 1 of the Code.org platform
“Programma il futuro”3 was used, as our participants were
beginning readers.

Children worked alone at their computer in a laboratory.
A post-graduate student, trained by the first and second author
of this study, conducted the coding lessons. Each coding lesson

3https://programmailfuturo.it/come/lezioni-tecnologiche/corso-1
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TABLE 2 | Lesson plan.

Coding

sessions Course A Trial number Content

Session 1 Lesson 3 1, 6 Jigsaw: Drag and Drop

Lesson 4 2, 5, 6, 7 Maze: Sequence

Session 2 Lesson 4 8, 10 Maze: Sequence

Lesson 5 3, 4, 5, 6, 7 Maze: Debugging

Session 3 Lesson 5 8, 9,10 Maze: Debugging

Lesson 8 4, 5, 6, 7, 8 Artist: Sequence

Session 4 Lesson 8 9, 10, 11 Artist: Sequence

Lesson 10 4, 5, 6, 7, 8 Artist: Shapes

Session 5 Lesson 13 1, 2, 3, 4, 5, 6, 7 Maze: Loops

Session 6 Lesson 13 8, 9, 10, 11, 12 Maze: Loops

Session 7 Lesson 14 3, 5, 6, 7, 8, 9 Bee: Loops

Session 8 Lesson 18 2, 4, 5, 6, 7 Artist: Loops

Closing session Classroom
discussion

What have we
learned?

Metacognitive reflection on
the goals of computational
thinking and the meaning
of programming

lasted about 60 min, and involved the execution of five to eight
coding problems (see Table 2 for the full lesson plan).

Pre-test, Post-test, and Delayed Post-test
Assessment
Coding skills
At the pre-test and post-test, and at the delayed post-test, children
performed four coding problems from Code.org (Course 1,
Italian platform) individually: trial 9 (lesson 4), trial 2 (lesson 5),
trial 3 (lesson 8), and trial 4 (lesson 14). Both the experimental
and the waiting group first familiarized with the Code.org
platform and the drag-and-drop mechanics, performing the first
trial of lessons 4, 5, 8, and 14 from Course 1, assisted by the
experimenter. The pre-test started after this familiarization phase.

For each test trial, we recorded both accuracy and
planning time:

(1) Accuracy: a score of 2 was given if the child successfully
solved the item at first attempt, 1 on solving it at the second
attempt, 0 otherwise;

(2) Time spent planning: the seconds elapsed from the moment
the child received the task instructions to the moment s/he
moved the first block was recorded.

Planning and response inhibition skills
We used standardized tests to assess children’s response
inhibition and planning at T1, T2, and T3: two tasks were used to
assess inhibition and planning skills to verify whether potential
benefits on EFs generalized across different tasks.

Planning skills
The Elithorn maze test (Spinnler and Tognoni, 1987) and the
Tower of London (ToL; Luciana et al., 2009) were used to assess
non-verbal planning skills.

The Elithorn maze test assesses non-verbal planning by
requesting the child to trace a line on a maze to connect a number
of black dots, arranged randomly on grids. Three rules are

given: trace lines from the bottom up; do not cross over the grid;
and do not backtrack. The overall test consists of eight mazes,
each of which to be performed in no more than 2 min. Although
originally standardized for Italian adolescents aged 12–18 years
(BVN, Batteria per la Valutazione Neuropsicologica) (Gugliotta
et al., 2009), recently the task has been used also with younger
children, from the age of 6, demonstrating good sensitivity to
their planning skills (Arfé et al., 2018). The children’s individual
performance was scored for:

(1) Accuracy: i.e., the total number of mazes successfully
completed within 2 min. The scoring system was 2 for each
trial successfully solved within 1 min; 1 if the task was
solved within 2 min; 0.5 when the solution was incomplete
(i.e., all the dots except for the final one) at the expiry of the
2 min; 0 otherwise.

(2) Planning time: the response latency, in seconds, from the
time the child receives the instructions until when s/he
starts tracing the path on the grid.

The ToL assesses problem-solving and planning skills in
children and adolescents (Luciana et al., 2009). The version
used in this study is standardized for a population aged
4–13 years (Fancello et al., 2013). The task requires reproducing
a configuration of three colored balls (blue, red, and green) on
three vertical sticks of different heights, according to a set of rules:
moving one ball at a time; once picked up, not holding the ball or
placing it on the table; not placing more than one ball on the lower
stick; not placing more than two balls on the medium stick. The
entire test consists of 12 trials of increasing difficulty. Only one
attempt per trial was allowed, and all 12 trials were presented,
with no interruption criteria. The children’s performance was
scored for:

(1) Accuracy: the attempt was scored 1 if the child performed
the trial correctly within 1 min, without breaking any
rule; 0 otherwise.

(2) Planning time: the seconds elapsed from when the trial is
shown to the child until when s/he makes the first move.

Response inhibition skills
The inhibition (squares/circles) subtest of NEPSY-II (Korkman
et al., 2007) and the Numerical Stroop test of the Batteria Italiana
ADHD (BIA, Marzocchi et al., 2010) were used to assess children’s
ability to inhibit automatic responses.

The NEPSY-II inhibition (squares/circles) subtest is
standardized for children aged 3–16 (Korkman et al., 2007).
The child is presented with a sheet displaying a set of figures
(squares and circles) in five rows (eight figures per row) and
asked to name aloud the figures from left to right as quickly and
accurately as possible. The inhibition task is then performed: the
child is instructed to say “circle” when seeing a square, and say
“square” when seeing a circle, thus inhibiting automatic name
retrieval. The children’s execution time is recorded.

The children’s performance was scored for:

(1) Accuracy: number of errors and self-corrections made by
the child in performing the task;

(2) Inhibition time: the seconds required to complete the task.
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The Numerical Stroop test of the BIA (Marzocchi et al.,
2010) is standardized for children aged 6–11. The test assesses
response inhibition by asking the child to suppress automatic
digits recognition to pronounce the number of digits (ranging
from 1 to 5) displayed on a table. Each cell of the table shows
a digit from 1 to 5 repeated n times (for example, the digit 5,
repeated three times). The child is asked to say as quickly and
accurately as possible how many times the given digit (in the
example, “5”) is shown in the cell (in the example, “three” times).
The children’s performance is scored for:

(1) Accuracy: number of errors and self-corrections;
(2) Inhibition time: the seconds required to complete the task.

Data Analyses
Scores distribution was checked by inspecting skewness and
kurtosis. Four outliers were identified (two with absolute
skewness >2 and two with absolute kurtosis >7) and deleted
from subsequent analyses resulting in a final sample size of 76
(n = 42 for the training group and n = 34 for the waiting-list
group). Levene tests showed that variance was homogeneous
between groups. The first research question of this study was
whether training coding skills through Code.org would enhance
the planning and response inhibition skills of first graders.
Our hypothesis was that learning to code would enhance
not only children’s coding skills but also their planning and
response inhibition, increasing planning time and accuracy
on standardized planning tasks, and contributing to decrease
inhibition errors and inhibition time on standardized inhibition
tasks. The second research question of the study was whether the
positive effects of such training would be retained at 1 month
from the end of the intervention. We predicted that positive
training effects would be maintained.

As assignment to the different treatment conditions was at
classroom level, a multilevel analysis was initially conducted
to test the hypotheses of the study, while accounting also
for the nested structure of the data. Intervention effects were
tested by comparing the post-test performance of the two
groups, with classroom as random contextual factor. Age,
SES, and pre-test scores were included as covariates. The
models showed non-significant and insufficient inter-cluster
variance (across classrooms). Only intra-cluster variance (i.e.,
at participant level) was significant. As only the fixed-factor
(group) and the covariates accounted for significant variance in
children’s performance scores, analyses of variance (ANOVAs)
were subsequently used to test the effects of the intervention
and their maintenance. According to our hypotheses, learning
to code (i.e., improvements in coding skills) would transfer to
planning and response inhibition skills. Thus, we first tested
that the training was effective in developing coding skills, and
then verified its effects on children’s planning and response
inhibition skills. Accordingly, planning time and accuracy on the
coding tasks, planning time and accuracy on the Elithorn and
ToL tasks, and inhibition time and accuracy on the NEPPSY-
II and the numerical Stroop task were the dependent measures
of the ANOVAs. A two (Group: experimental, waiting-list
control) × two (Time: T2-post-test, T3-delayed post-test) mixed

ANOVA tested the effects of the intervention. SES, age, and
pre-test scores were covaried. Pre-test (T1) scores were covaried
to control for variance in the dependent variables at the pre-
test. This analytic strategy allowed testing in the same analysis
both hypothesis 1 (the positive effects of the coding training)
and hypothesis 2 (retention of the training effects at the delayed
post-test). As the experimental group received the intervention
between T1 and T2, while the wait list control group received
it between T2 and T3 (see Figure 1), an interaction between
Group and Time was expected, with better performance of
the experimental group at the post-test (T2) and significant
improvement of the performance of the wait list control group
only between T2 and T3. Lack of significant differences between
T2 (post-test) and T3 (delayed post-test) for the experimental
group would indicate that the training effects were retained at
1 month from the end of the intervention. Significant interactions
were explored by paired- and independent-samples t-tests. Effect
sizes were computed using Cohen’s d, and correlations between
repeated measures were used to correct for dependence between
means (Morris and DeShon, 2002).

Results
Between-group differences in age and SES and in the dependent
(EF and coding) variables’ pre-test scores were explored by t-
tests. A chi-square analysis was conducted to test for differences
in gender distribution. The analyses showed that the two
groups were equivalent for age, t(74) = −0.63, p = 0.53, SES,
t(74) = −1.21, p = 0.23, and gender, χ2 = 1.39, p = 0.24.
Statistically significant differences between the groups at the pre-
test were found for accuracy on the coding task, t(74) = −3.47,
p = 0.001 and the ToL, t(74) = −2.88, p = 0.005. In both cases,
the experimental group showed a better pre-test performance
than the wait list control group (see Tables 3, 4). The difference
approached significance for inhibition time and errors on the
NEPSY-II, t(74) = 2.00, p = 0.05 and t(74) = 1.96, p = 0.05
(see Table 3). In the following, we report the results of the
mixed ANOVAs for each dependent measure (planning time
and accuracy at coding tasks, and planning time and accuracy,
response inhibition time, and errors at standardized tasks).

Effects of Learning to Code on Coding Skills:
Planning Time
The covariates planning time at T1 and age were significant:
F(1,71) = 6.49, p = 0.01, η2

p = 0.08, and F(1,71) = 4.42, p = 0.05,
η2

p = 0.06. The main factor Group was also significant, with a large
effect size: F(1,71) = 36.04, p < 0.001, η2

p = 0.34. Finally, also the
interaction between Time and Group was significant (the effect
size was very large): F(1,71) = 46.56, p < 0.001, η2

p = 0.40. At the
post-test (T2), the experimental group spent significantly less time
than the waiting-list (control) group on planning, t(74) = 6.78,
p < 0.001, Cohen’s d = −1.56 (the effect size was very large), but
no significant differences between the two groups were observed
at T3, after the wait list control group received the intervention,
t(74) = −0.16, p = 0.87 (see also Table 4). Between T2 and
T3, the waiting-list group’s planning time decreased significantly,
with a very large effect size, t(33) = −6.53, p < 0.001, Cohen’s
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TABLE 3 | Study 1—between-group comparison: planning and response inhibition at T1, T2, and T3.

Wait list Experimental Independent Cohen’s d

M (SD) M (SD) samples t-test

Planning time Elithorn T1pre-test 22.76 (15.97) 25.71 (13.92) −0.859 0.19

T2post-test 20.61 (11.61) 25.50 (10.38) −1.93 0.45

T3delayed post 23.88 (9.59) 23.18 (7.78) 0.35 −0.08

Accuracy Elithorn T1pre-test 5.47 (3.35) 6.75 (2.87) −1.79 0.41

T2post-test 7.29 (3.53) 9.96 (3.04) −3.54∗∗∗ 0.82

T3delayed post 11.06 (3.29) 11.51 (2.54) −0.677 0.15

Planning time ToL T1pre-test 9.20 (4.42) 7.77 (3.33) 1.60 −0.37

T2post-test 8.21 (3.33) 7.22 (3.09) 1.35 −0.31

T3delayed post 9.04 (4.17) 7.93 (3.77) 1.21 −0.28

Accuracy ToL T1pre-test 6.03 (2.47) 7.52 (2.05) −2.88∗∗ 0.66

T2post-test 7.85 (2.08) 9.71 (1.86) −4.11∗∗∗ 0.95

T3delayed post 10.29 (2.29) 9.93 (1.99) 0.74 −0.17

Inhibition time NEPSY-II T1pre-test 56.21 (14.57) 50.97 (7.83) 2.00 −0.46

T2post-test 47.88 (11.46) 45.45 (7.92) 1.09 −0.25

T3delayed post 39.66 (9.21) 42.33 (8.24) −1.33 0.31

Errors NEPSY-II T1pre-test 3.56 (2.58) 2.43 (2.43) 1.96 −0.45

T2post-test 2.85 (2.35) 1.56 (1.65) 2.84∗
−0.65

T3delayed post 1.26 (1.78) 2.02 (2.36) −1.55 0.36

Inhibition time Stroop T1pre-test 216.3 (65.93) 218.0 (56.13) −0.12 0.03

T2post-test 186.1 (69.85) 178.1 (36.75) 0.64 −0.15

T3delayed post 152.3 (37.11) 157.2 (39.20) −0.56 0.13

Errors Stroop T1pre-test 7.97 (6.14) 6.83 (6.47) 0.78 −0.18

T2post-test 5.47 (5.09) 2.02 (2.38) 3.89∗∗∗
−0.90

T3delayed post 2.53 (2.38) 3.33 (3.91) −1.05 0.24

∗∗∗p ≤ 0.001; ∗∗p < 0.005; ∗p < 0.01. Adjusted p = 0.02 after Bonferroni corrections.

TABLE 4 | Study 1—between-group comparison: performance at the coding tasks at T1, T2, and T3.

Wait list Experimental Independent Cohen’s d

M (SD) M (SD) samples t-test

Planning time coding T1pre-test 48.00 (23.29) 42.30 (22.45) 1.08 −0.25

T2post-test 38.95 (25.26) 11.56 (6.29) 6.78∗∗∗
−1.56

T3delayed post 11.33 (6.89) 11.54 (4.43) −0.16 0.04

Accuracy coding T1pre-test 3.09 (1.60) 4.31 (1.46) −3.47∗∗∗ 0.80

T2post-test 3.68 (1.92) 6.12 (1.06) −7.03∗∗∗ 1.62

T3delayed post 5.70 (0.94) 5.81 (1.09) −0.44 0.11

∗∗∗p < 0.001. Adjusted p = 0.02 after Bonferroni corrections.

d = 3.21, whereas no significant differences were observed for the
experimental group, t(41) = −0.022, p = 0.98.

Effects of Learning to Code on Coding Skills:
Accuracy
The covariates coding pre-test accuracy and age were significant,
respectively: F(1,71) = 31.72, p < 0.001, η2

p = 0.31, and
F(1,71) = 11.96, p = 0.001, η2

p = 0.14. Group was significant,
F(1,71) = 13.00, p = 0.001, η2

p = 0.15. The effect size was large.
Moreover, also the interaction Time × Group was significant,
with a very large effect size: F(1,71) = 32.93, p < 0.001,
η2

p = 0.32. Table 4 shows that the experimental group, who
received the coding intervention between T1 and T2, performed
significantly better than the wait list control group at the post-test

(T2): t(74) = −7.03, p < 0.001, Cohen’s d = 1.62 (the effect
size was very large). However, at T3, once the waiting-list group
was exposed to the intervention, the difference between the two
groups was no longer significant, t(74) = −0.44, p = 0.66. In fact,
the performance of the waiting-list group improved significantly
between T2 and T3, with the intervention, t(33) = 6.63, p < 0.001,
Cohen’s d = −1.94 (the effect size was very large), whereas that of
the experimental group remained stable, t(41) = −1.73, p = 0.09.

Effects of Learning to Code on Planning Skills:
Planning Time
Elithorn
The ANOVA did not reveal significant effects of Group or Time
on Elithorn planning time. The covariates (age, SES, and pre-test
Elithorn planning time) were non-significant.
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ToL
The covariates, pre-test planning time, and age were significant:
respectively, F(1,71) = 17.16, p < 0.001, η2

p = 0.19 and
F(1,71) = 8.94, p < 0.005, η2

p = 0.11. The main factor Time was
also significant, F(1,71) = 4.44, p < 0.05, η2

p = 0.06. The means
reported in Table 3 show that planning time slightly increased
for both groups between T2 and T3. Group and the interaction
Time × Group were non-significant.

Effects of Learning to Code on Planning Skills:
Planning Accuracy
Elithorn
The covariate Elithorn pre-test accuracy was significant,
F(1,71) = 9.65, p < 0.005, η2

p = 0.12. Group and the interaction
Time × Group were also significant, both with a medium
effect size: F(1,71) = 4.62, p < 0.05, η2

p = 0.06 (Group), and
F(1,71) = 5.28, p < 0.05, η2

p = 0.07 (Time × Group). The post hoc
t-tests, reported in Table 3, show that at the post-test (T2) the
experimental group performed significantly better than the
control group: t(74) = −3.54, p < 0.001, Cohen’s d = 0.80. The
effect size was large. However, at the delayed post-test (T3), the
wait list control group caught up with the experimental group:
t(74) = −0.677, p = 0.500. The paired-samples t-tests showed that
the waiting-list group improved indeed significantly from T2 to
T3 (the effect size was large): t(33) = 5.68, p < 0.001, Cohen’s
d = −1.01. Also, the experimental group improved, but less:
t(41) = 3.19, p < 0.005, Cohen’s d = 0.55 (see Figure 2A).

ToL
The covariates age and pre-test ToL accuracy were significant,
respectively, F(1,71) = 7.01, p = 0.01, and η2

p = 0.09, and
F(1,71) = 18.10, p < 0.001, and η2

p = 0.20. The interaction
Time × Group was significant, F(1,71) = 16.84, p < 0.001,
and η2

p = 0.19. The effect size of the interaction was large. The
experimental group performed significantly better than the wait
list control group at T2 (the post-test), t(74) = −4.11, p < 0.001,
Cohen’s d = 0.95. Between T2 and T3, with the intervention,
the performance of the waiting-list group improved significantly:
t(33) = 6.30, p < 0.001, d = −1.03 (the effect size was large),
equaling that of the experimental group at T3, t(74) = 0.744,
p = 0.459 (see Table 3). No significant differences were found
between T2 and T3 for the experimental group, t(41) = −0.795,
p = 0.43, indicating that the performance of this group remained
stable (see Figure 2B).

Effects of Learning to Code on Response Inhibition
Skills: Response Inhibition Time
NEPSY-II
The covariate, pre-test inhibition time, and the factor Group were
significant, respectively: F(1,71) = 72.07, p < 0.001, η2

p = 50, and
F(1,71) = 4.36, p < 0.05, η2

p = 06. The interaction Time × Group
approached statistical significance, F(1,71) = 3.92, p = 0.05,
η2

p = 0.05 (the effect size was medium). However, no significant
differences emerged between the two groups at the post-test
(T2): t(74) = 1.09, p = 0.28, or at the delayed post-test (T3),
t(74) = −1.33, p = 0.19. Between the post-test (T2) and the

delayed post-test (T3), inhibition time decreased significantly for
both groups, with a large effect size for the waiting-list control
group, t(33) = −4.68, p < 0.001, and, d = 0.92, and a small effect
size for the experimental group, t(41) = −2.47, p < 0.05, and
d = 0.37. Inspection of the means reported in Table 3 shows
that the decrease in inhibition time was steady from T1 to T3
for both groups.

Stroop
The analyses revealed only an effect of the covariate, pre-test
Stroop time, F(1,71) = 88.99, p < 0.001, η2

p = 0.56. Table 3
shows that the between-group difference was not significant at
the post-test (T2), t(74) = 0.64, p = 0.52 or at the delayed post-
test (T3), t(74) = −56, p = 0.58. For both groups, Stroop time
decreased significantly between T2 and T3: The effect size was
large for the wait list control group, t(33) = −3.62, p = 0.001,
d = 1.07, and medium for the experimental group, t(41) = −4.29,
p < 0.001, d = 0.64. Similar to the NEPSY-II inhibition task, a
steady decrease in inhibition time from T1 to T3 was observed
(see Table 3).

Effects of Learning to Code on Response Inhibition
Skills: Response Inhibition Errors
NEPSY-II
The covariate, pre-test inhibition errors, was statistically
significant, F(1,71) = 5.71, p < 0.05, η2

p = 0.07. The interaction
Time × Group was also significant, F(1,71) = 7.97, p < 0.01,
η2

p = 0.10 (the effect size was medium). The experimental
group, who received the intervention between T1 and T2, made
significantly fewer errors than the waiting-list group at T2,
t(74) = 2.84, p < 0.01, Cohen’s d = −0.65 (the effect size was
medium), but at T3, the performance of the two groups was
equivalent, t(74) = −1.55, p = 0.12. Indeed, between T2 and T3,
the wait list control group showed a significant decrease in the
number of inhibition errors, t(33) = −3.76, p < 0.001, Cohen’s
d = 0.76 (the effect size was medium). The performance of the
experimental group remained instead stable in this time interval,
t(41) = 1.18, p = 0.246 (Figure 3A).

Stroop
The covariate T1 Stroop errors was significant, F(1,71) = 11.76,
p = 0.001, η2

p = 0.14. The interaction Time × Group was also
significant, F(1,71) = 21.00, p < 0.001, η2

p = 0.23 and the effect size
was very large. At T2, the experimental group made significantly
fewer Stroop errors than the wait list control group, t(74) = 3.89,
p < 0.001, Cohen’s d = −0.90 (the effect size was large). At T3,
the difference between the two groups was no more significant,
t(74) = −1.05, p = 0.30 (see Table 3), due to the significant
decrease in the number of inhibition errors of the waiting-list
group between T2 and T3, t(33) = −3.74, p = 0.001, Cohen’s
d = 1.16 (see Figure 3B). The effect size was large. The number
of Stroop errors slightly increased for the experimental group
between T2 and T3, t(41) = 2.58, p = 0.01, Cohen’s d = −0.35.
The effect size was small.

Conclusions From Study 1
The results of study 1 confirmed that learning to code may
benefit planning and response inhibition skills significantly
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FIGURE 2 | Study 1: planning accuracy at T2 and T3 (age, SES, and accuracy at Tl covariates) at the Elithorn (A) and ToL (B) tasks.

even after relatively short practice with coding. A stepped-
wedge cluster randomized trial design (Campbell et al.,
2019) was used to test the effects of the intervention,
with the experimental and wait list control group receiving
the intervention at different times (the former between T1
and T2; the latter between T2 and T3). After the coding
training, at T2, the experimental group outperformed the
wait list control group on the two standardized planning
tasks (Elithorn and ToL) and the two standardized inhibition
tasks (NEPPSY-II and Stroop). Between T2 and T3, with the
coding training, also the waiting-list control group improved

significantly in coding and, with it, in planning and response
inhibition, showing at T3 levels of performance equivalent
to those of the experimental group. The performance of
the experimental group remained stable, indicating that the
positive effects of the coding training were retained at the
delayed post-test. The only exception is the Stroop task,
for which the performance of experimental group worsened
between T2 and T3.

The benefits of the coding activities were also more
evident on accuracy than on planning or inhibition time. In
fact, the findings did not confirm the predicted increase of
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FIGURE 3 | Study 1: errors in response inhibition at T2 and T3 (errors at Tl covariate): NEPSY-II (A) and Stroop (B) tasks.

time spent planning following the intervention. A possible
explanation of this unexpected effect is that the latency time
before initiating the task (our planning time measure) may
reflect other processes than planning alone (for example,
children’s exploration of the problem space or familiarity
with the task). Consistently with this interpretation, after the
coding intervention, by becoming familiar with the Code.org
platform and its tooling (e.g., the visual block commands),
the children likely needed significantly less time to explore the
visual interface and the trials. Consequently, their planning
time (measured as response latency) decreased (rather than
increase) and such decrease was associated with an increase

in accuracy on the same tasks. (We return to this point
below). Thus, this finding can be interpreted as an indication
of the acquired efficiency of the children in solving the
coding problems.

The analysis of performance on the coding and standardized
tasks proves that the children exposed to coding not only
learned to code, but also developed planning and response
inhibition skills, showing significant transfer effects. To check
whether the improvement observed in EF was associated to
children’s gains in coding, bivariate correlations were run
between change scores (i.e., score difference between T2 and
T1 and between T3 and T2) in coding and the corresponding
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change scores in planning accuracy and response inhibition
at the EF assessment. These further analyses showed that
a decrease in planning time on the coding tasks between
T1 and T2 was significantly associated with coding accuracy,
r(76) = −0.61, p < 0.001, and with improvements in accuracy
on the Elithorn and ToL tasks between T1 and T2, respectively,
r(76) = −0.29, p = 0.01 and r(76) = −0.31, p < 0.01.
Change scores in coding accuracy between T1 and T2 were
also positively associated with change scores in accuracy on
the Elithorn, r(76) = 0.26, p < 0.05. A decrease in planning
time on the coding tasks, between T2 and T3, was significantly
associated with change scores (improvement) in coding accuracy
in the same time period, r(76) = −0.70, p < 0.001, with
the improvement in accuracy on the Elithorn and ToL tests:
r(76) = −0.38, p = 0.001 and r(76) = −0.47, p < 0.001,
and also with a decrease in inhibition errors on the NEPSY-
II, r(76) = 0.23, p < 0.05, and Stroop tasks, r(76) = 0.45,
p < 0.001. Finally, improvements in coding accuracy between
T2 and T3 were positively associated with improvements in
accuracy on the Elithorn, r(76) = 0.33, p < 0.005, and ToL
task, r(76) = 0.42, p < 0.001, and were negatively associated
with the decrease in inhibition errors on the Stroop test,
r(76) = −0.35, p < 0.005.

Complementing other recent investigations (Di Lieto et al.,
2017) showing that experience with coding in tangible (i.e.,
physical) environments can improve significantly children’s
working memory and inhibition skills, the findings of study 1
suggest that guided exposure to coding through a virtual learning
environment can benefit considerably also more complex EFs
such as planning, and these effects can be detected from an early
age (5–6 years).

The question of whether learning to code can accelerate the
development of 5–6-year-old children’s EFs significantly was

further explored in study 2, by integrating these results with
longitudinal data.

STUDY 2

This second study explored further the effects of coding on
children’s EFs by combining a longitudinal and randomized
controlled trial design. The aims of the study were:

(1) To replicate the findings of study 1 with a group of second
graders, novice to coding;

(2) To examine the extent to which coding experience
could boost the spontaneous development of children’s
planning and inhibition skills. We explored whether
children’s improvements in planning and response
inhibition following 1-month coding intervention were
greater than those occurring in the same children in
7 months of spontaneous development and standard
curricular activities.

This experimental design was similar to that of study 1, except
that one group of children (experimental group) was followed
longitudinally, and tested at three time points (T0, test; T1,
pre-test, after 7 months from T0, to assess the spontaneous
development of EFs in a long time period; and at T2, post-test,
after 1 month of exposure to coding). The other group (control
group) was tested only twice (at T1 and T2) (see Figure 4).

Participants
Thirty-eight second graders participated in this trial. The
experimental group included 19 children followed longitudinally
for 1 year, from grade 1 to grade 2 (7 girls, 37%, 12 boys,
63.2%, mean age, 6.89), the control group consisted of other

FIGURE 4 | Experimental design study 2.
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TABLE 5 | Study 2—demographic characteristics of the experimental
and control group.

Experimental Control p-value

Gender

Girls (n, %) 7, 36.8% 10, 52.6% 0.32

Boys (n, %) 12, 63.2% 9, 47.4%

Age (M, SD) 6.89 (0.205) 6.89 (0.315) 1.00

SES (M, SD) 6.11 (1.56) 6.79 (1.18) 0.14

19 second graders matched on age, gender, and SES to the
experimental group (10 girls, 53%, 9 boys, 47.4%, mean age
6.89), from a different school. All children were native speakers
of Italian and not signaled for learning disabilities or other
developmental disorders. Parental written informed consent was
collected before the study for all participants. Demographic data
are reported in Table 5.

Procedure and Materials
The procedure and materials were the same as for study 1.

Results are presented separately for the randomized controlled
trial and longitudinal part of the study.

Results of the Randomized Controlled
Trial
The two groups were equivalent in Age, t < 1, p = 1.00, SES,
t(36) = −1.52, p = 0.14, and for gender distribution, χ2 = 0.96,
p = 0.32. Between-group differences at the pre-test (T1) were
explored by t-tests, which confirmed that the two groups did
not differ significantly in any dependent measure except for T1
accuracy on the ToL, t(36) = 2.22, p = 0.03, where the control
group outperformed the experimental group.

Skewness and kurtosis values were within critical thresholds,
with the exception of Stroop time T1, for which kurtosis
slightly exceeded the critical value of 3.00 (kurtosis = 3.54).
Levene tests confirmed equal variance between the two groups.
Between-group ANOVAs were thus used to address the first
objective of the study (i.e., replicate the results of study 1
with second graders) and explore between-group differences in
the dependent measures at T2 (post-test) with T1 (pre-test)
performance, age, and SES as covariates. Table 6 displays group
means and independent samples t-tests for group comparison
at the two time points (T1 and T2). Similar to study 1,
the intervention effects on children’s coding skills were tested
first, followed by transfer effects on children’s planning and
response inhibition.

Effects of Learning to Code on Coding Skills:
Planning Time
The covariate, pre-test planning time was significant,
F(1,33) = 19.60, p < 0.001, η2

p = 0.37, and no significant
effects of Group were observed. As shown in Table 7, the two
groups spent equivalent time planning both at T1 and T2.

Effects of Learning to Code on Coding Skills:
Accuracy
The analyses revealed a significant effect of the covariate T1
coding accuracy, F(1,33) = 25.95, p < 0.001, η2

p = 0.44, and of
Group, F(1,33) = 38.11, p < 0.001, η2

p = 0.54. (The effect size was
very large). Table 7 shows that whereas at T1, the performance
of the two groups was equivalent, at T2, the experimental
group performed significantly better than the control group,
and the effect size was very large: t(36) = −5.87, p < 0.001,
Cohen’s d = 1.91.

TABLE 6 | Study 2—between-group comparison: planning and response inhibition at T1 (pre-test) and T2 (post-test).

Control Experimental Independent Cohen’s d

M (SD) M (SD) samples t-test

Planning time Elithorn T1pre-test 24.34 (11.72) 20.27 (11.58) 1.09 −0.35

T2post-test 18.24 (8.41) 19.17 (8.26) −0.34 0.11

Accuracy Elithorn T1pre-test 9.26 (4.19) 9.79 (4.91) −0.36 0.12

T2post-test 9.00 (4.10) 12.68 (3.33) −3.04∗∗ 0.96

Planning time ToL T1pre-test 5.48 (2.64) 5.34 (2.14) 0.19 −0.06

T2post-test 4.77 (2.14) 6.52 (3.15) −2.00# 0.65

Accuracy ToL T1pre-test 8.58 (2.27) 7.00 (2.11) 2.22#
−0.72

T2post-test 8.11 (2.49) 10.16 (1.86) −2.87∗ 0.93

Inhibition time NEPSY-II T1pre-test 36.88 (7.26) 35.75 (8.39) 0.44 −0.14

T2post-test 37.51 (7.22) 34.05 (9.77) 1.24 −0.40

Errors NEPSY-II T1pre-test 3.79 (2.68) 3.74 (3.31) 0.05 −0.02

T2post-test 2.89 (2.13) 1.05 (1.27) 3.24∗∗
−1.05

Inhibition time Stroop T1pre-test 124.88 (14.72) 138.24 (26.62) −1.91 0.62

T2post-test 127.77 (16.58) 132.27 (30.80) −0.56 0.18

Errors Stroop T1pre-test 3.68 (2.89) 4.32 (4.29) −0.53 0.17

T2post-test 2.74 (2.42) 2.11 (2.35) 0.82 −0.26

∗∗p < 0.005; ∗p < 0.01, #p ≤ 0.05. Adjusted p = 0.02 after Bonferroni corrections.
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TABLE 7 | Study 2—between-group comparison: performance at coding tasks at
T1 (pre-test) and T2 (post-test).

Control Experimental Independent Cohen’s d

M (SD) M (SD) samples t-test

Planning T1pre-test 9.77 (3.62) 7.42 (4.36) 1.81 −0.59

time Coding T2post-test 8.46 (2.47) 7.78 (3.80) 0.65 −0.21

Accuracy T1pre-test 5.58 (1.17) 6.05 (1.08) −1.30 0.42

Coding T2post-test 5.21 (1.08) 7.16 (0.96) −5.87∗∗∗ 1.91

∗∗∗p < 0.001. Adjusted p = 0.02 after Bonferroni corrections.

Effects of Learning to Code on Planning Skills:
Planning Time
Elithorn
Only the covariates Age and planning time at T1 were significant:
F(1,33) = 4.78, p < 0.05, η2

p = 0.13, and F(1,33) = 4.77, p < 0.05,
η2

p = 0.13. Group was not significant. As shown in Table 6, the
independent-samples t-tests did not reveal statistically significant
differences between the two groups neither at T1 nor at T2.

ToL
The covariate T1 planning time was significant, F(1,33) = 30.61,
p < 0.001, η2

p = 0.48. Group was statistically significant,
F(1,33) = 11.04, p < 0.005, η2

p = 0.25, and the effect size was very
large. At T1, the two groups spent equivalent time planning (see
Table 6), whereas at the post-test (T2), the experimental group
spent more time planning than the control, and the difference
approached statistical significance once Bonferroni corrections
were applied: t(36) = −2.00, p = 0.05, Cohen’s d = 0.65. The effect
size was medium.

Effects of Learning to Code on Planning Skills:
Planning Accuracy
Elithorn
The covariate T1 accuracy was statistically significant,
F(1,33) = 35.06, p < 0.001, η2

p = 0.51. Group was also statistically
significant, F(1,33) = 15.94, p < 0.001, η2

p = 0.32. The effect size
was very large. As shown also in Table 6, at T1, the performance
of the two groups was equivalent, whereas at the post-test (T2),
the experimental group performed significantly better than the
control group, with a large effect size: t(36) = −3.04, p < 0.005,
Cohen’s d = 0.96.

ToL
Also for the ToL, the covariate T1 accuracy was significant,
F(1,33) = 23.10, p < 0.001, η2

p = 0.41. The analysis showed a
significant difference between the two groups at the post-test
(T2): F(1,33) = 29.32, p < 0.001, η2

p = 0.47 (the partial eta-
squared shows that the effect size was very large). Inspection of
Table 6 shows that while the control group outperformed the
experimental group at the pre-test (T1), t(36) = 2.22, p < 0.05,
Cohen’s d = −0.72 (the effect size was medium), the situation
reversed at the post-test (T2), where the experimental group
performed significantly better, t(36) = −2.87, p < 0.01, Cohen’s
d = 0.93. The effect size was large.

Effects of Learning to Code on Response Inhibition
Skills: Response Inhibition Time
NEPSY-II
The analysis did not reveal any significant between-group
difference. Only the covariate T1 inhibition time was statistically
significant, F(1,33) = 69.43, p < 0.001, η2

p = 0.68.

Stroop
Like for the NEPSY-II inhibition task, only the covariate
T1 Stroop time was significant, F(1,33) = 37.19, p < 0.001,
η2

p = 0.53. The independent-samples t-tests showed a difference in
inhibition time between the two groups, approaching significance
at T1, t(36) = −1.91, p = 0.06, Cohen’s d = 0.62. The experimental
group showed longer inhibition time than the control and the
effect size was medium. Yet, the two groups did not differ
significantly at the post-test (T2) (see Table 6).

Effects of Learning to Code on Response Inhibition
Skills: Response Inhibition Errors
NEPSY-II
The covariate T1 inhibition errors were significant,
F(1,33) = 14.63, p < 0.001, η2

p = 0.31. Group was also statistically
significant, F(1,33) = 10.75, p < 0.005, η2

p = 0.25. The effect
size was large. The independent-samples t-tests showed that the
performance of the two groups did not differ significantly at
the pre-test (T1) (see Table 6). However, at the post-test (T2),
the experimental group made significantly fewer errors than
the control group and the effect size was large: t(36) = 3.24,
p < 0.005, Cohen’s d = −1.05.

Stroop
On the Stroop task, only the pre-test errors resulted
significant, F(1,33) = 26.19, p < 0.001, η2

p = 0.44 (see
Table 6). The performance of the two groups did not differ
significantly at T1 or at T2.

Overall, the results of study 2 largely replicated those of
study 1: the experimental group improved more than the
control group in the ability to code, while greater gains in
EFs (planning and response inhibition) were observed than
those made by the control group. After the coding training,
the experimental group spent significantly more time planning
on the ToL and was significantly more accurate than the
control group on both standardized planning tasks (Elithorn
and ToL). The experimental group also made significantly fewer
errors than the control group on the NEPSY-II inhibition task.
Pearson correlations confirmed that change scores (between
T1 and T2) in planning and response inhibition were
significantly associated with change scores in coding accuracy
and time planning on coding tasks. Like in study 1, change
scores in coding accuracy and coding planning time were
significantly correlated: r(38) = 0.46, p < 0.005. Yet, unlike
study 1 (in which a negative correlation occurred between
time spent planning and accuracy), a positive correlation
emerged between these two measures: the increased accuracy
on coding tasks was associated with increased time spent
planning in the coding tasks and with increased time planning
on the ToL, r(38) = 0.43, p < 0.01. Moreover, increase
in planning time on the coding and on the ToL tasks
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were significantly correlated: r(38) = 0.35, p < 0.05. Positive
significant correlations were also found between children’s
gains in coding accuracy and gains in accuracy on the
Elithorn, r(38) = 0.38, p < 0.05, and ToL, r(38) = 0.35,
p < 0.05, tasks. Finally, increased accuracy on coding tasks was
significantly associated with a decrease of errors in the NEPSY-II
inhibition task.

The experimental group was followed longitudinally and
tested also at T0, 7 months before the pre-test (T1) and the
intervention. The longitudinal data refer to only 17 children,
as two children of this group were not assessed at T0. To
determine in which measure the coding intervention boosted
the development of the children’s EFs (the second objective of
study 2), we compared the changes in the EFs of the experimental
group between T0 and T1, i.e., a period of 7 months in which
they were not exposed to coding, to those occurring between
T1 and T2, after 1 month (4 weeks) of coding training. Change
scores were used to compare children’s improvement in EFs and
coding between the T0–T1 and T1–T2 time intervals. Cohen’s
d effect size was calculated and correlations between repeated
measures were used to correct for dependence between means
(Morris and DeShon, 2002). Means and standard deviations are
reported in Table 8.

Longitudinal Data: Results
Effects of Learning to Code on Coding Skills:
Planning Time
The difference between the two time intervals (T0–T1 and
T1–T2) was significant t(16) = −3.58, p < 0.005, Cohen’s d = 0.75.
The (negative) change score between T0 and T1, indicating a
decrease in the time spent planning, was larger than the (positive)
change score (increase in planning time) between T1 and T2
(see Table 8).

Effects of Learning to Code on Coding Skills:
Accuracy
Accuracy in the coding tasks increased from T0 to T1 and from
T1 to T2. The dimension of the change was not significantly
different between the two time intervals.

Effects of Learning to Code on Planning Skills:
Planning Time
Elithorn
No statistically significant difference was found between the
two time intervals.

ToL
Also for the ToL, no statistically significant difference was found.
The means reported in Table 8 show that the time spent planning
on the ToL decreased between T0 and T1 and increased between
T1 and T2, but the difference between the change scores was
not significant.

Effects of Learning to Code on Planning Skills:
Planning Accuracy
Elithorn
On the Elithorn, the difference in the accuracy change scores
between T0–T1 and T1–T2 was not significant. The means in

TABLE 8 | Study 2–longitudinal data: performance of the experimental group at
T0 (test), at T1 (pre-test), and at T2 (post-test).

Time Score Change Paired Cohen’s d

M (SD) score t-test

Planning time T0 16.32 (12.66)

Elithorn T1pre-test 19.23 (11.69) 2.91T1−T0

T2post-test 17.47 (5.83) −1.76T2−T1 0.78 −0.19

Accuracy T0 5.65 (3.30)

Elithorn T1pre-test 8.91 (4.72) 3.26T1−T0

T2post-test 12.71 (3.50) 3.79T2−T1
−0.27 0.08

Planning time T0 5.39 (1.33)

ToL T1pre-test 5.10 (2.14) −0.29T1−T0

T2post-test 6.46 (3.30) 1.35T2−T1
−1.82 0.44

Accuracy ToL T0 6.00 (1.87)

T1pre-test 7.12 (2.18) 1.12T1−T0

T2post-test 10.18 (1.98) 3.06T2−T1
−2.18# 0.62

Inhibition time T0 36.44 (4.77)

NEPSY-II T1pre-test 34.13 (6.81) −2.31T1−T0

T2post-test 31.89 (6.63) −2.24T2−T1
−0.02 0.01

Errors T0 2.12 (2.20)

NEPSY-II T1pre-test 3.76 (3.47) 1.64T1−T0

T2post-test 1.06 (1.30) −2.70T2−T1 2.82∗
−0.74

Inhibition time T0 157.68 (22.05)

Stroop T1pre-test 134.21 (21.29) −23.47T1−T0

T2post-test 127.71 (25.16) −6.49T2−T1
−1.70 −38

Errors Stroop T0 7.00 (8.82)

T1pre-test 4.35 (4.50) −2.65T1−T0

T2post-test 2.24 (2.44) −2.12T2−T1
−0.18 0.03

Planning time T0 13.00 (5.24)

Coding T1pre-test 6.70 (2.54) −6.30T1−T0

T2post-test 7.15 (3.18) 0.45T2−T1
−3.58∗∗ 0.75

Accuracy T0 4.29 (0.920)

Coding T1pre-test 6.06 (1.14) 1.76T1−T0

T2post-test 7.24 (0.970) 1.18T2−T1 1.11 −0.24

∗∗p < 0.005; ∗p < 0.01; #p ≤ 0.05. Adjusted p = 0.02 after Bonferroni corrections.

Table 8 show an equivalent improvement in accuracy during the
two time intervals.

ToL
Applying Bonferroni corrections, the difference in change scores
approached statistical significance, t(16) = −2.18, p = 0.04,
Cohen’s d = 0.62. The effect size was medium. As shown by
Figure 5A, the improvement in accuracy was significantly greater
between T1 and T2 (1 month of exposure to coding) than between
T0 and T1 (7 months of regular learning activities).

Effects of Learning to Code on Response Inhibition
Skills: Response Inhibition Time
NEPSY-II
No significant differences emerged for inhibition time between
T0–T1 and T1–T2. As shown by change scores in Table 8,
children’s inhibition time decreased progressively from T0 to T2.

Stroop
Like for the NEPSY-II task, no significant differences were found
between the two time intervals (T0–T1 and T1–T2).
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FIGURE 5 | Study 2: longitudinal data: (A) ToL accuracy and (B) NEPSY-II inhibition errors at TO (test), Tl (pre-test), and T2 (post-test). BAS = business-as-usual.

Effects of Learning to Code on Response Inhibition
Skills: Response Inhibition Errors
NEPSY-II
A statistically significant difference in change scores was found
between the two time intervals, t(16) = 2.82, p = 0.01, Cohen’s
d = −0.74. The effect size was medium. As shown in Figure 5B,
inhibition errors increased between T0 and T1, but decreased
between T1 and T2 (see also change scores reported in Table 8).
The dimension of the change was larger between T1 and T2.

Stroop
The negative change scores reported in Table 8 indicate a
decrease in inhibition errors from T0 to T1 and from T1
to T2. The difference between these two time intervals was
not significant.

Conclusions From Study 2
Study 2 replicated the findings of study 1, but also furthered
our comprehension of the effects of coding on children’s EFs,
showing that learning to code can boost the development of
children’s EFs. The evidence we collected shows that children
with no prior experience of coding may benefit from a short (1-
month) coding intervention in terms of planning and response
inhibition. Notably, the longitudinal data showed that, on the
Elithorn task, the gains in planning after 1 month of coding
experience were equivalent to those obtained in the development
of the same function with 7 months of exposure to standard
curricular activities. On the ToL task, which involves a greater
extent of problem-solving skills (Luciana et al., 2009), the
observed gains, measured by change scores, were greater than
those occurring after 7 months of standard learning activities.
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Much like in study 1, we noted in study 2 too that the effects of the
intervention were more apparent for accuracy than for planning
and response inhibition time. Remarkably, inhibition errors
decreased in the experimental group, followed longitudinally,
only after the coding intervention and the change occurring
during the time interval between T1 and T2 (1 month) was
greater than that between T0 and T1. This finding suggests that
focused and targeted instructional problem-solving activities, like
those involved in coding, help boost inhibition skills in children
in their first years of schooling.

It could be argued that the greater gains made by the
experimental group in planning and response inhibition after
the training were due to the shorter time lag (1 month versus
7 months) between the repeated standardized tasks, which could
have emphasized task familiarity effects. However, the finding
that similar improvements did not occur in the control group
suggests that the effects observed do relate to the specific benefits
of the training more than to task familiarity.

In terms of planning time, the effects of the intervention were
evident only on the ToL task. The children of the experimental
group spent more time planning than at the post-test, and they
planned better (with more accuracy) than the control group.
Moreover, the change in planning accuracy on the ToL was
significantly greater than that obtained after 7 months of standard
learning activities. The fact that the effects on planning time were
limited to the ToL might reflect the nature of the task, which is
more complex (and thus likely more sensitive) than the Elithorn,
where the child can visually explore the tracks in the maze.

The relationship found between planning time and accuracy
differs in the two studies. Whereas in study 1 their association
is negative, indicating that an increase in planning accuracy
corresponds to a decrease in planning time, the opposite
appears in study 2: An increase in accuracy in the coding
tasks correlates with an increase in the time spent planning.
Several variables could explain these divergent findings, including
children’s characteristics, or the different emphasis teachers
may put on planning skills in regular classroom activities.
A difference between study 1 and 2 is, however, the older age
of the participants in study 2. Older children could be more
self-regulated and thus more prone to plan (Magi et al., 2016;
Poutanen et al., 2016). A quick comparison between the average
planning time of study 1 and study 2 (see Tables 3, 6) suggests,
though, that this is not the case: The children of study 1 devoted
on average the same, or more, time planning than those of study
2. Yet, the participants of study 2 showed on average greater
accuracy on the planning tasks (Elithorn and ToL). It may be that
these older children were simply more efficient in using planning
to perform the tasks.

GENERAL DISCUSSION

The two studies presented in this paper explored the effects of
coding, a learning activity recently introduced in the primary
school curriculum, on first and second graders’ planning and
response inhibition skills. Examining the role played by everyday
curriculum-based learning activities on children’s EFs is essential

to taking informed educational decisions. Examples of such
decisions include determining at what age specific learning
activities should be introduced or what kind of activities can be
more fruitful at a given age for children’s cognitive development.

As discussed earlier in this paper, the studies that explore the
effects of curricular activities on the development of children’s
EFs are often challenged by the fact that it is difficult to
find a control group at equal educational level, not bound to
receive the target intervention (e.g., reading, writing, or math)
at the same time (Baker et al., 2015). The recent introduction
of coding instruction in primary school offers a “natural
experiment” to developmental and educational psychologists.
Since its integration in national curricula worldwide is not yet
completed, comparisons between children who receive coding
intervention and children who do not indeed are possible.

The two studies reported in this paper suggest the opportunity
to introduce children early—at the beginning of primary school—
to CT by means of guided exposure to coding. Faced with the
challenge of coding problems, children seem to develop not
only response inhibition skills (that is, command of prepotent
responses), but also more complex EFs such as planning abilities.
The positive effect of coding on children’s inhibition skills
has been observed earlier (Di Lieto et al., 2017) and our
findings provide further confirmatory evidence in this direction.
Furthermore, the two studies reported in this paper also provide
the first empirical evidence that learning coding early in school
positively affects complex EFs, such as planning.

Response inhibition and planning support learning and
humans’ problems solving (Hongwanishkul et al., 2005;
Altemeier et al., 2006; Roebers et al., 2011; Crook and Evans,
2014; Liu et al., 2015; Blair, 2017; Purpura et al., 2017). Thus,
improvements in these skills may have in turn strong impact on
children’s academic success and everyday life (Crook and Evans,
2014; Blair and Raver, 2016; Blair, 2017).

In general, the coding intervention deployed in the two
studies reported in this paper has been more effective for the
development of children’s planning than inhibition skills. The
finding that planning skills are plastic in first and second graders
and can be boosted effectively by curricular activities like coding
is an important finding, especially so, considering that planning
involves also more basic EF processes, such as inhibition and
working memory (Luciana et al., 2009).

However, whereas the planning abilities developed through
coding in studies 1 and 2 transferred to both standardized
planning tasks (the Elithorn and the ToL), the effects on
inhibition skills seemed less robust and generalized. In study
1, the accuracy gained in the Stroop task was not retained at
1 month from the intervention, and in study 2, the positive
effects of the training did not generalize to the Stroop task.
This observation could relate to general lesser plasticity of
inhibition processes or to specific training effects, that is, to
factors related to the nature of the training tasks or the
duration of the training. As noted above, response inhibition is
involved in planning (Luciana et al., 2009). However, promoting
response inhibition indirectly through planning may lead to
less strong or robust effects than direct interventions targeting
inhibition skills. Another explanation is that longer training
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might be required to consolidate gains in response inhibition
skills. Response inhibition may be more vulnerable indeed to
situational and external factors (e.g., tiredness, mood) than
planning. The latter, in fact, is a more complex cognitive process,
which may involve greater strategic control. The hypothesis
that the reduced effects on inhibition can originate from the
short duration of the intervention matches findings that suggest
that longer trainings lead to significant positive effects on
children’s response inhibition (Di Lieto et al., 2017) and other EFs
(Kronenberger et al., 2011).

Limitations
The short duration of the coding intervention and the lack of a
long-term follow-up are the two main limitations of the present
studies. Di Lieto et al. (2017), who found positive effects of
a coding training on 5-year-old children’s response inhibition,
employed a longer training than the one we had in studies 1 and 2:
13 sessions/6 weeks versus 8 sessions/4 weeks. Other EF trainings
destined to children of similar age to those involved in these
studies, although lasting 1 month, are typically more intensive
(Traverso et al., 2015). Traverso et al. (2015), for example, asked
children to take part in 12 training sessions over a period of
1 month. The well-known CogMed WM training involves 25
training sessions, from 10 up to 40 min each, administered 5 days
a week for 5 weeks (Kronenberger et al., 2011; Grunewaldt et al.,
2013, 2016; Hardy et al., 2016). Some of the findings of the
two studies discussed in this paper (i.e., the reduced impact
of the training on inhibition) might be explained by the short
duration or moderate intensity of the training (see Diamond
and Ling, 2016, for a discussion of the effects training duration
and intensity). Future studies should test this hypothesis by
comparing coding training of different duration and intensity.
Interestingly, however, the short duration of our training was
sufficient for children to earn significant benefits for simple and
complex EFs, and to retain them after 1 month from the end of
the intervention.

Our delayed post-test (follow-up) was at 4 weeks/1 month
distance from the end of the training, which prevents us from
drawing any conclusion about the long-term retention of the
effects. Yet, a comparison with other studies that used similar
follow-ups (Kronenberger et al., 2011) suggests that our training
was effective. Kronenberger et al. (2011) tested the efficacy of
CogMed, an intensive computerized working memory training
of the duration of 5 weeks. In their study, the magnitude of
children’s gains at post-training was retained only for forward
digit span scores (among four verbal and spatial WM measures)
at a 1-month follow-up. Given the duration and intensity of our
training, maintenance of the training effects at 1 month from the
end of the intervention can be regarded as a truly good outcome
in terms of efficacy.

A final limitation of the present studies is the lack of
information on the participants’ cognitive level or general
intelligence (IQ). Although none of the participants in these
studies were referred to intervention for intellectual disabilities,
an assessment of the children’s IQ performance through
standardized tests could have provided a better picture of the
sample involved in the coding training and helped interpret the

effects of the intervention. The same coding activities could have,
in fact, different effects based on the initial non-verbal and/or
verbal cognitive resources of a child.

CONCLUSION

The studies reported in this paper show how practice with coding
in school not only improves measurably children’s ability to solve
(computational) problems, but it may also show transfer effects
on important EFs such as planning and response inhibition.
In our two studies, these effects have been observed in the
period of transition to school or the first years of schooling,
which has been shown to be a particularly sensitive time window
for the development of EFs (Roebers et al., 2011; Macdonald
et al., 2014; Magi et al., 2016; Poutanen et al., 2016). Future
studies should test whether the positive effects of coding extend
also to older children and whether impairing factors such as
low SES may mediate the efficacy of coding interventions in
school. At present, coding is increasingly becoming part of
the primary school curriculum worldwide. However, little is
known as yet about the effects of this new learning activity
on children’s cognitive development. More research should
study the learning conditions that may amplify the effects of
coding on children’s EFs and thus promote children’s cognitive
development. The work we are conducting aims at bridging
this knowledge gap.
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