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Mouse-tracking recording techniques are becoming very attractive in experimental

psychology. They provide an effective means of enhancing the measurement of some

real-time cognitive processes involved in categorization, decision-making, and lexical

decision tasks. Mouse-tracking data are commonly analyzed using a two-step procedure

which first summarizes individuals’ hand trajectories with independent measures, and

then applies standard statistical models on them. However, this approach can be

problematic in many cases. In particular, it does not provide a direct way to capitalize

the richness of hand movement variability within a consistent and unified representation.

In this article we present a novel, unified framework for mouse-tracking data. Unlike

standard approaches to mouse-tracking, our proposal uses stochastic state-space

modeling to represent the observed trajectories in terms of both individual movement

dynamics and experimental variables. The model is estimated via a Metropolis-Hastings

algorithm coupled with a non-linear recursive filter. The characteristics and potentials

of the proposed approach are illustrated using a lexical decision case study. The results

highlighted how dynamic modeling of mouse-tracking data can considerably improve the

analysis of mouse-tracking tasks and the conclusions researchers can draw from them.

Keywords: mouse tracking, state space modeling, dynamic systems, categorization task, aimed movements,

Bayesian filtering

1. INTRODUCTION

Over the last decades, the study of computer-mouse trajectories has brought to light new
perspectives into the investigation of a wide range of cognitive processes [e.g., for a recent
review see Freeman (2017)]. Unlike traditional behavioral measures, such as reaction times and
accuracies, mouse trajectories may offer a valid and cost-effective way to measure the real-time
evolution of ongoing cognitive processes during experimental tasks (Friedman et al., 2013). This
has also been supported by recent researches investigating mouse-tracking in association to more
consolidated experimental devices, such as eye-tracking and fMRI (e.g., Quétard et al., 2016;
Stolier and Freeman, 2017). In a typical mouse-tracking experiment, participants are presented
with a computer-based interface showing the stimulus at the bottom of the screen and two
competing categories on the left and right top corners. Participants are asked to select the
most appropriate label given the task instruction and stimulus while the x-y trajectories are
instantaneously recorded. The main idea is that trajectories of reaching movements can unfold
the decision process underlying the hand movement behavior. For instance, the curvature of
computer-mouse trajectories might reveal competing processes activated in discriminating the
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two categories. Mouse-tracking has been successfully applied
in several cognitive research studies, including lexical decision
(Incera et al., 2017; Ke et al., 2017), social categorization
(Carraro et al., 2016; Freeman et al., 2016), numerical cognition
(Faulkenberry, 2014, 2016), memory (Papesh and Goldinger,
2012), moral decision (Koop, 2013), and lie detection (Monaro
et al., 2017). Moreover, the availability of specialized and
freely-available software for mouse-tracking experiments have
strongly contributed to the wide-spread application of such
a methodology in the more general psychological domain
(Freeman and Ambady, 2010; Kieslich and Henninger, 2017).
Recently, the debate on the nature of cognitive processes tracked
by this type of reaching trajectories have also received attention
from the motor control literature (Van Der Wel et al., 2009;
Friedman et al., 2013).

So far, mouse-tracking data have been analyzed using simple
strategies based on the conversion of x-y trajectories into
summary measures, such as maximum deviation, area under
the curve, response time, initiation time (Hehman et al., 2015).
Although these steps are still meaningful in case of simple
and well-behaved x-y trajectories, they can also provide biased
results if applied to more complex and possibly noisy data.
To circumvent these problems, other approaches have been
proposed more recently (Cox et al., 2012; Calcagnì et al., 2017;
Krpan, 2017; Zgonnikov et al., 2017). However, also the more
recent proposals require modeling empirical trajectories before
the data-analysis. Although these approaches potentially provide
informative results in many empirical cases, they can also suffer
from a number of issues, which revolve around the reduction of
x-y data to simple scalar measures. For instance, problems may
arise in the case of trajectories showingmultiple phases, averaging
with non-homogeneous curves, and signal-noise discrimination
(Calcagnì et al., 2017). As far as we know, a proper framework
to simultaneously model and analyse mouse-tracking data in a
unified way is still lacking.

In this paper we describe an alternative perspective based on
a state-space approach with the aim to simultaneously model
and analyse mouse-tracking data. State-space models are very
general time-series methods that allow estimating unobserved
dynamics which gradually evolve over discrete time. As for
diffusion models, which are widely used in modeling the
temporal evolution of cognitive decision processes (Smith and
Ratcliff, 2004), they belong to the general family of stochastic
processes and offer optimal discrete approximation to many
continuous differential systems used to represent dynamics with
autoregressive patterns (Cox, 2017). In particular, we used a non-
linear and discrete-time model that represents mouse trajectories
as a function of some typical experimental manipulations.
The model is estimated under a Bayesian framework, using a
conjunction of a non-linear recursive filter and a Metropolis-
Hastings algorithm. Data analyses is then performed using
posterior distributions ofmodel parameters (Gelman et al., 2014).

The reminder of this article is organized as follows. In section
2 we motivate our proposal by reviewing the main issues of
a typical mouse-tracking experiment. In section 3 we present
our proposal and describe its main characteristics. In section 4
we describe the application of our method to a psycholinguistic

case study. Section 5 provides a general discussion of the results,
comments and suggestions for further investigations. Section 6
concludes the article by summarizing its main findings.

2. A MOTIVATING EXAMPLE

To begin with, consider a two-choice semantic categorization
task (Dale et al., 2007), in which participants have to
classify semantic stimuli (e.g., name of animals) into their
corresponding categories (e.g., mammal, fish). In themost typical
implementation of a mouse-tracking task, participants would
sit in front of a computer screen showing a resting frame (see
Figure 1A). They start a trial by clicking a starting button at
the bottom-center of the screen, after which they are presented
with a given stimulus (e.g., hen, see Figure 1B). To finalize
the trial, participants move the cursor on the screen by means
of a well-tuned computer-mouse in order to reach and select
one of the two labels presented on the top-left and top-right
corners of the screen (e.g., mammal vs. bird, see Figure 1C).
In the meanwhile, x-y coordinates, initiation time, and final
clicking time are registered for each participant and trial. The
basic idea is that x-y trajectories reflect the extent to which the
real-time categorization response is affected by the experimental
manipulation. More precisely, as a result of the assumption
that co-activation of competing processes continuously drive
the explicit hand response (Spivey and Dale, 2006), one would
suppose to see more curved—or generally irregular—trajectories
in association with stimuli showing higher ambiguity. In our case,
for instance, it would be expected that atypical exemplars, such
as hen, dolphin, and penguin, globally produce more curved or
irregular trajectories than typical exemplars like dog, rabbit, and
lion (see Figures 1D,E).

In the mouse-tracking literature, data analysis commonly
proceeds summarizing the recorded trajectories by means
of few indices, which are then used as input to standard
statistical techniques. In the current example, for instance, the
typicality manipulation could be tested by assessing whether
the distribution of maximum deviations (i.e., the maximum
curvature showed by trajectories) over trials and participants
is bimodal or not (Freeman and Dale, 2013). In a similar
way, linear models could be employed to test whether the
typicality effect varies as a function of external covariates, such
as psycholinguistic variables.

However, the two-step approach does have some issues.
For instance, it lacks a way to represent both the experimental
variability—that is induced by task manipulations—and
individual variability—that is instead produced by individual-
specific motor programs. Likewise, in some cases, it might
neglect relevant characteristics of x-y data, with the consequence
that similar classes of trajectories are treated as if they were
different. Still, a two-step approach does ignore the data
generation process underlying observed trajectories. This does
not allow, for example, making predictions or simulations on
new data given the experimental settings.

In the next section, we will present a dynamic probabilistic
model that handles mouse-tracking data in a unified way.
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FIGURE 1 | (A–C) Conceptual diagram of a typical mouse-tracking task: (A,B) stimulus presentation, (B) participant’s response. (D,E) Prototypical mouse-tracking

trajectories collapsed over participants and trials as a function of manipulation task: (D) case where the manipulation has an effect—as revealed by the curvature of

the trajectories, (E) case where the manipulation has no effect. (F) Conceptual diagram for the atan2 conversion: gray circles represent the sampled x-y trajectories,

yellow circles represent those x-y pairs projected onto the circumference outer the Cartesian plane, whereas red lines represent the projection direction. Note that in a

two-choice categorization task, the correct category C2 is presented on the top-right label (target) whereas the competing category C1 is presented in the opposite

top-left label (distractor).

Our proposal is based upon a Bayesian non-linear state
space approach, which offers a good compromise between
model flexibility and model simplicity while overcoming many
drawbacks of the standard mouse-tracking analyses.

3. STATE-SPACE MODELING OF
MOUSE-TRACKING DATA

A state-space model is a mathematical description used to
represent linear or generally non-linear dynamic models. In their
general form, state-space systems consist of (i) a measurement
density fy(yn; zn, θy) that describes how the observed vector of
data yn at time step n is linked to a possibly underlying process
zn and (ii) a state density fz(zn; θ z) describing the transition
dynamics that drive the vector of states zn. Temporal dynamics
can be discrete or continuous and, in the latter case, stochastic
differential equations are used to model the transition dynamics.
By and large, there are two aims of any analysis involving
state-space models. The first is to infer the unobserved process
Z̃ = (z0, . . . , zN) given the data Y = (y0, . . . , yN). This task
is usually accomplished by means of filtering and smoothing
procedures (Jazwinski, 2007). The second aim regards estimating
the parameters (θy, θ z) given the complete set of data (̃Z,Y).
This is commonly performed using gradient-based methods
on the likelihood of the model (Shumway and Stoffer, 1982).
Although state space models were originally used in the area
of aerospace modeling (Kalman, 1960), they are now applied
in a wide variety of domains, including control theory, remote

sensing, economics, and statistics (Hamilton, 1994; Shumway
and Stoffer, 2006). Recently, there has also been an increasing
interest in psychology, where state-space models have been used
to analyse, for example, dyadic interactions (Song and Ferrer,
2009), affective dynamics (Lodewyckx et al., 2011; Bringmann
et al., 2017), facial electromyography data (Yang and Chow,
2010), individual differences (Hamaker and Grasman, 2012;
Chow and Zhang, 2013), and path analysis (Gu et al., 2014).

In line with this, we developed a state-space representation
to simultaneously model and analyse mouse-tracking data. In
particular, our proposal is to represent the empirical collection
of computer-mouse trajectories as a function of two independent
sub-models, one representing the experimental manipulations
(stimuli equation) and the other capturing the main features of
the mouse movement process (states equation). Thus, the goal
of our analysis is 2-fold: (i) to determine the states equation for
each participant over a set of experimental trials, (ii) to estimate
the parameters governing the stimuli equation. The first goal will
provide information on how participants differ from each other
in terms of movement dynamics. By contrast, the second goal will
find out to what extent the experimental manipulations affect the
individual variations in producing mouse-tracking responses.

3.1. Data
Let S be a I (individuals) × J (trials) array representing
the observed data. The element sij of S defines the sub-
array containing the streaming of Cartesian coordinates of the
computer mouse movements:
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sij =
(
(x̃0, ỹ0), . . . , (x̃n, ỹn), . . . , (x̃Nij , ỹNij )

)

with 0 and Nij being the first and the last coordinates for
the i-th participant in the j-th trial. The coordinates in sij are
temporally ordered (0 < . . . < n < . . . < Nij) because
they are usually collected while the computer-mouse is moving
along its surface with a constant sampling rate. Further, to
make the observed data comparable, we rescale and normalize
sij as a function of a common ordered scale, which indicates
the cumulative amount of progressive time from 0% to N =
100% (e.g., Tanawongsuwan and Bobick, 2001; Ramsay and
Silverman, 2007). Thus, the final trajectories sij lie on the real
plane defined by the hyper-rectangles [−1, 1]N× [0, 1]N , with the
first movement being equal to (x̃0i, ỹ0i) = (0, 0) by convention.
Since we are interested in studying the co-activation of competing
processes as reflected in some spatial properties of the response—
such as location, direction, and amplitude of the action dynamics
(Spivey and Dale, 2006; Freeman, 2017)—we need to simplify
the original data structure so that these properties can easily
emerge. Inspired by earlier work on this problem (Gowayyed
et al., 2013; Kapsouras and Nikolaidis, 2014; Calcagnì et al.,
2017), we reduce the dimensionality of the data by projecting
sij in a proper lower-dimensional subspace of movement via
the restricted four-quadrant inverse tangent mapping [atan2,
see Burger and Burge (2010)] from the real coordinates to the
interval [0,π]N as follows:

(y0, . . . , yn, . . . , yN)︸ ︷︷ ︸
yij

= atan2
(
(x̃0, ỹ0), . . . , (x̃n, ỹn), . . . , (x̃Nij , ỹNij )︸ ︷︷ ︸

sij

)

where y0 is the angle at the beginning of the process whereas
yN is the angle at the end of the process. Figure 1F shows
a graphical example of the atan2 function for a hypothetical
movement path. Finally, the array of angles yij is the input for
our state-space model.

3.2. Model Representation
The unobserved states equation of the model is a AR(1) Gaussian
model Zi,n|Zi,n−1 with transition density equal to:

f (zi,n|zi,n−1, θ) =
(
σ 2
i

√
2π

)−1 · exp
(
−(zi,n − zi,n−1)

2/2σ 2
i

)
(1)

which models how the movement process of the i-th subject
changes from the step n − 1 to the next step n. The stochastic
dynamics for the i-th subject is constrained by the variance
parameter σ 2

i ∈ R
+ that represents the uncertainty about the

future location zi,n+1 given the current state zi,n.
The measurement equation for the observations yij =

(y0, . . . , yn, . . . , yN) is modeled by means of a two-component
von-Mises mixture distribution with density equal to:

f (yijn|πijn, θ) = f (yijn|µ1, κ1)πijn + f (yijn|µ2, κ2)(1− πijn) (2)

where the generic density is the standard von-Mises law:

f (yijn|µ, κ) =
1

2πI0(κ)
exp

(
cos(yijn − µ)κ

)

In the density formula, the term I0(.) , (2π)−1
∫ 2π
0 eκ cos xdx

is the exponentially scaled Bessel function of order zero
(Abramowitz and Stegun, 1972). The parameters of the mixture
density are mapped to the experimental interface of the two-
choice categorization task (see Figures 1D,E). In particular, the
means {µ1,µ2} ∈ [−3.14, 3.14)2 are mapped to the label
categories C1 and C2 whereas the concentrations {κ1, κ2} ∈ R

2
+

indicate how the observations are spread around the means.
Since {µ1,µ2} are determined by the fixed and known positions
of the labels C1 and C2 on the screen, they are not treated as
parameters to be estimated. Finally, the terms πijn and (1 − πijn)
are the probabilities to activate the first and second density of
the von-Mises components and are expressed as function of the
latent states zi,0 :N and some additional covariates. The model is
Markovian, in the sense that the unobserved states {Zn; n > 1}
form a Markov sequence and the measurements {Yn; n > 1} are
conditionally independent given the unobserved states.

To further characterize our state-space representation, the
probability πijn is defined according to a logistic function:

πijn ,
(
1+ exp(−βj − zi,n)

)−1
(3)

with βj ∈ R being the intercept of the model. Equation (3)
can be interpreted as the probability for the i-th subject at step
n to categorize the j-th stimuli as belonging to C1 (πijn tends
to 1) or C2 (πijn tends to 0). In addition, when the categories
C1 and C2 are expressed in terms of distractor and target
(Freeman, 2017), the sequences π ij,0 :N can be interpreted as
the attraction probability that the distractor has exerted on the
trajectory process zi,0 :N .

The state-space representation is completed by linearly
expanding the intercept term βj as follows:

βj ,

K∑

k=1

djkγk + xj

(
η +

K∑

k=1

djkδk

)
(4)

where {γk, η, δk} ∈ R
3, xj is an element of the array x ∈ R

J ,
whereas djk is an element of the (Boolean) partition matrixDJ×K ,
with djk = 1 indicating whether the j-th stimulus belongs to
the k-th level of the variable D. Note that the matrix D satisfies
the property

∑K
k=1 djk = 1, for all j = 1, . . . , J. In our model

representation, Equation (4) is the stimuli equation and conveys
information about the experiment. It consists of three main
terms. (i) A categorical term

∑K
k=1 djkγk describing how the

stimuli J = {1, . . . , j, . . . , J} have been arranged into K < J
distinct levels of a categorical variable D. (ii) A continuous term
xjη that expresses the stimuli as a function of a continuous
variable X weighted by the coefficient η. (iii) An interaction
term xj(η +

∑K
k=1 djkδk) between the levels of D and X, where

δk ∈ R and δ1 = 0. This definition allows for modeling all
the cases implied by an univariate experimental design with at
most one covariate variable. Indeed, for η = 0 and δK = 0K
this formulation boils down to the simplest experimental case
with a single categorical variable D. By contrast, for δK = 0K
and γ K = 0K it reduces to the case where stimuli are simply
paired with a continuous predictorX. Finally, whenDJ×K = IJ×J ,
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FIGURE 2 | Graphical representation of our state-space model. Note that

white circles represent unobserved random variables, white double circles

indicate transformed random variables, gray circles are observed random

variables. Finally, square objects depict scalar quantities. Loop over individuals

i, trials j, and time steps n are represented by outer squares.

the stimuli equation reduces to the most simple case where we
have as many parameters as trials1. Figure 2 shows a graphical
representation of state-space model whereas Figure 3 illustrates
the inner-working of the model for the simplest design with a
two-level experimental factor.

In our model representation, the observed movement angles
yij,0 :N are sampled from C1 (resp. C2) with probabilities equal
to π ij,0 :N (resp. π c

ij,0 :N = 1 − π ij,0 :N), which in turn are

expressed as a function of the AR(1) latent trajectory zi,0 :N .
Hence, an increase in the latent process zi,n > 0 will also
increase the probability that yijn is sampled from the hemispace
C1 (e.g., πijn > 0.5). By contrast, a decrease in the latent process
zi,n < 0 will increase the chance to sample yijn from C2 (e.g.,
πijn < 0.5). As a result of Equation (4) such an increasing (or
decreasing) pattern can be modulated by the stimuli component
βJ . Moreover, as the coefficients βJ are decomposed as a function
of η, γ K , and δK , we can also analyse the effect of βJ on π ij,0 :N in
terms of the experimental manipulationD, the covariateX, or the
interaction termDX. Figure 3 shows a conceptual representation
of the modeling steps involved by our approach. Panel (A) shows

1To understand the meaning of the stimuli equation, consider the case of an

experiment with a two-level manipulated factor A and B, each with twenty stimuli.

In this case, K = 2 and J = 20 whereasD20×2 is the design matrix codifying which

stimulus belongs to level A (dj1 = 1, dj2 = 0) or level B (dj1 = 0, dj2 = 1). In the

simple additive case, the stimuli equation is β20×1 = D20×2γ 2×1 where γ contains

the coefficients associated to the experimental levels A and B. If we also have an

external covariate x on the stimuli, we can include this information in the stimuli

equation in two ways: (i) as additive component β20×1 = D20×2γ 2×1 + ηx20×1,

(ii) by including an interaction term β20×1 = D20×2γ 2×1 + ηx20×1 + (x20×1 ⊙
D20×2δ2×1), where δ now codifies the interaction between the covariate and the

levels A and B included inD (note that⊙ is the element-wise product). For further

information on how codify categorical and continuous variables, see Fox (1997).

an example of the random-walk used to represent the movement
process (Equation 3). Instead, panel (B) shows the logistic
function used to form the stimuli equation (Equation 3) for two
typical cases of βJ . Panel (C) represents the probability π ij,0 :N

to activate the distractor C1 (upper panel) and the probability
π c
ij,0 :N to activate the target C2 (lower panel) as a function of

zi,0 :N and βJ . Finally, panel (D) depicts two cases of observed
radians that are associated to π ij,0 :N and π c

ij,0 :N . In particular,

the upper panel shows an example of data with a pronounced
attraction toward C1, which is in turn reflected by the blue
probability curve of the panels (B,C). By contrast, the lower panel
represents data with little attraction toward C1, as also reflected
by the red probability curve of the panels (B,C). In this sense,
as Equation (3) represents an intercept model, the parameter
βJ does not affect the shape of the movement dynamics zi,0 :N .
On the contrary, it acts by shifting the movement dynamics
upward (β < 0) or downward (β > 0) toward the C1 or C2
hemispaces, respectively.

3.3. Model Identification
State-space model identification consists of inferring the
unobserved sequence of states by means of filtering and
smoothing algorithms and estimating the model’s parameters via
Likelihood-based approximations (Shumway and Stoffer, 2006;
Särkkä, 2013). For instance, in the simplest linear gaussian case,
where both the states and measurement equations are linear
with additive gaussian noise, inference of latent states is usually
performed via Kalman filter whereas parameter’s estimation is
realized with the Expectation-Maximization algorithm. In our
case, as Equations (3) and (4) describe a more complex non-
linear model, we adopted a recursive Gaussian approximation
filter for the inference problem (Smith and Brown, 2003), coupled
with a marginal Metropolis-Hastings MCMC for the parameters
estimation (Andrieu et al., 2010)2.

To formulate the problem more precisely, let:

2 =
(
(β1, . . . ,βj, . . . ,βJ), (κ1, κ2)

)
(5)

Z =
(
(z1,0, . . . , z1,N), . . . , (zi,0, . . . , zi,N), . . . , (zI,0, . . . , zI,N)

)

(6)

be the arrays representing all the J × 2 unknown parameters and
I×N unobserved states that characterize the model’s behavior. In
this context, σ 2

I can be set to 1I without loss of model adequacy3.
The joint log-density of the complete-data given the array of
parameters and the observed data is defined as follows:

2Interestingly, this version of theMCMCalgorithm can be subsumed into themore

general family of particle-Metropolis Hasting (PMH) which, in turns, is a special

case of Multiple Try Metropolis (MTM) techniques. For a broader review of these

connections, see Martino (2018).
3Indeed, the constraint σ 2

I = 1I still guarantees the mapping πijn :R → [0, 1]

to cover the needed time-to-time variability of the random walk, as Equation

(3) acts as a shrinkage operator on the support of the r.vs {Zi,0, . . . ,Zi,n}. This
has also been confirmed by several pilot simulations we ran on our model. Note

that this assumption is not overly limiting, since our state-space representation is

built under the smoothness assumption on the movement behavior of the hand,

according to which large abrupt changes in the small interval [n, n + 1] are not

allowed (Yu et al., 2007).
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FIGURE 3 | Conceptual diagram of the state-space representation for two hypothetical sequences of mouse-trajectories. (A) Latent movement process z0 :N. (B)

Logistic curves π for two cases of βJ. (C) Probability to activate the cue C1 π0 :N (upper panel) and probability to activate the cue C2 πc
0 :N = 1− π0 :N (lower panel)

for both β < 0 and β > 0 cases. (D) Measurements y0 :N as a function of their frequency (rose diagram): A case of higher attraction (upper panel) and a case of lower

attraction (lower panel).

log f (Z,Y|2) = log f (Y|Z,2)+ log f (Z|2) (7)

=
I∑

i=1

J∑

j=1

log f (zi,0 :N |2)+ log f (yij,0 :N |zi,0 :N ,2)

(8)

=
I∑

i=1

J∑

j=1

(
log f (zi,0|θZ0 )+

N∑

n=1

log f (zi,n|zi,n−1, θZ)

+
N∑

n=1

log f (yijn|zi,n, θY )
)

(9)

and the state and measurement equations are given as in (1) and
(2) whereas the term f (zij0|θZ0 ) is the a-priori density function
for the initial state of the process. Note that the factorization (9)
is due to the Markovian properties of the model. By adopting the
Bayesian perspective, we perform inference conditional on the
observed sample of angles Y, with 2 being an unknown term.
The posterior density f (Z,2|Y) of hidden states and parameters
is as follows:

log f (Z,2|Y) ∝ log f (2|Y)+ log f (Z|Y)+ log f (2) (10)

=
I∑

i=1

J∑

j=1

log f (2|yij,0 :N)+

+
I∑

i=1

J∑

j=1

log f (zi,0 :N |yij,0 :N)+ log f (2) (11)

where f (2) is a prior density ascribed on the vector of model’s
parameters 2. Note that Equation (10) comes from the standard
conditional definition f (Z,2|Y) = f (Z,2,Y)

/
f (Y), where the

joint density f (Z,2,Y) is re-arranged by factorization using

the Markovian properties of the model (e.g., see Andrieu
et al., 2010). Since our aim is to get samples from the
posterior f (Z,2|Y), we proceed by jointly updating 2 and Z

using a marginal Metropolis-Hastings. This alternates between
proposing a candidate sample 2(t) given 2(t−1) and filtering the
sequences Z(t) conditioned on 2(t). Finally, the candidate couple(
2(t),Z(t)

)
is jointly evaluated by the Metropolis-Hasting ratio.

The evaluation of both the densities f (Z|Y) and f (2|Y)
involve computing the expression in Equation (11). To do so,
we derived the first term by means of filtering and smoothing
procedures (Jazwinski, 2007) whereas the second term was
evaluated by implementing a Metropolis-Hasting algorithm. All
the technical steps for the model identification are included in
Appendices A–C whereas all the algorithms are freely available
at https://github.com/antcalcagni/SSM_mousetracking.

3.4. Model Evaluation
The state-space model formulated can be evaluated in many ways
under the Bayesian framework of analysis (Shiffrin et al., 2008;
Gelman et al., 2014). For instance, adequacy of the algorithm can
be assessed via standard diagnostic measures, such as traceplot
of the chains, autocorrelation measures, and the Gelman-Rubin
statistics whereas the recovery of the true model structure can
be done by simulations from the priors ascribed to the model
(Gelman et al., 2014). Similarly, the adequacy of the model
to reproduce the observed data can be assessed by means of
simulation-based procedures (e.g., posterior predictive checks)
where the fitted model is used to generate new simulated datasets
that are then compared to the observed data (e.g., see Gelman
et al., 1996; Cook et al., 2006). In our context, the robustness of
the model formulation in recovering the true model structure as
well as the goodness of fit to the observed data are assessed by
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TABLE 1 | Model summary: observed and latent variables, parameters, and equations of the state-space model formulated for the analysis of mouse-tracking trajectory.

i ∈ {1, . . . , I} Set index for individuals

j ∈ {1, . . . , J} Set index for trials

n ∈ {0, . . . ,N} Set index for (discrete) time points

yij ∈ (0,π ]N Observed N× 1 array of mouse-tracking data

zi,0 :N ∈ R
N N× 1 Array of latent states to be inferred

x ∈ R
J Observed covariate of the experiment

Yijn ∼ mix-vonMises (µ1,µ2, κ1, κ2) Random variable governing the realization of yijn

Zin|Zi,n−1 ∼ N(Zi,n−1, σi ) AR(1) random process governing the realization of zin

{µ1,µ2} ∈ (−π ,π )2 Fixed parameters of the mixture von-Mises law (true locations of the stimuli)

{κ1, κ2} ∈ R
2 Parameters of the von-Mises law (precision)

σi ∈ R
+
0 Fixed parameter of the Gaussian law (standard deviation)

π ij,0 :N ∈ [0, 1]N N× 1 array of attraction probability (i.e., probability to activate distractor vs. target hemi-space)

β ∈ R
J J× 1 array of coefficients (intercepts) modeling the experimental design

β = Dγ + x(η +Dγ ) Linear equation governing the experimental design in terms of additive and interaction effects

D ∈ R
J×K J× K Boolean partition matrix for the experimental design

γ ∈ R
K K × 1 array of coefficients for the additive components of the experimental design

(η, δ) ∈ R
K+1 (K + 1)× 1 array of coefficients for the interaction components of the experimental design

2 = (γ , δ, η, κ1, κ2) ∈ R
2K+1 × R

+2

0 Complete array of parameters to be estimated (some of them can be set to zero, depending on the experimental design)

adopting a simulation-based approach. Technical details on this
procedure are available in Supplementary Materials.

3.5. Model Summary
Table 1 shows a summary of the components of the complete
state-space model used throughout the paper, including observed
and latent variables, parameters and their support spaces.

4. APPLICATION

In this section, we will present an application of the model to the
analysis of an already published lexical decision dataset (Barca
and Pezzulo, 2012). The state-space modeling framework will be
evaluated via three different instances of model representation
with an increasing level of complexity. Note that the application
we report here has only an illustrative purpose with the main
goal to introduce and highlight the interpretation of the model’s
parameters and the flexibility of its representation with dynamic
data. All the models were estimated using 20 (chains) × 10,000
(iterations), with a burning-in period of 2500 iterations. Starting
values θ0 for the MH algorithm were determined by maximizing
the observed likelihood of the model in Equation (2). Similarly,
the starting covariance matrix 6(0) was computed by using the
Hessian of the observed likelihood at θ0. The adaptive phase
of the MH algorithm was performed at fixed interval t + H
(with H = 25) to prevent the degeneracy of the adaptation.
For each model, the prior densities were defined as f (θ) =
N (µ = 0, 1σ 2 = 25), where the variance was sufficiently
large to cover the natural range of the model parameters. The
adequacy of the model to reproduce the data was evaluated with
a simulation-based approach, where a series of M = 5, 000 new
datasets (Y∗

1 , . . . ,Y
∗
M) were generated through the fitted model

and compared with the observed data Y (e.g., see Cook et al.,
2006). The goodness of fit was evaluated overall (i.e., the adequacy

of the model to reproduce the complete observed matrix Y) and
subject-based (i.e., the adequacy of the model to reproduce for
each subject i = 1, . . . , I the observed matrix Yi). Comparisons
were computed by means of 0–100% normalized measures,
with 0% indicating bad fit and 100% optimal fit. Technical
details as well as extended graphical results are included in
Supplementary Materials.

4.1. General Context and Motivation
Lexical decision is one of the most known and widely used task
to study visual world recognition and reading in the cognitive
psycholinguistic literature (Norris and Kinoshita, 2008; Yap et al.,
2008; Hawkins et al., 2012). Generally, this task is very simple
and versatile and provides an ideal context for applying the
state-space modeling framework when lexical decision data are
collected via the mouse tracking paradigm. In this application,
we evaluated the extent to which the parameters of the state-
space model reflect eventual differences associated with the
manipulation of a stimulus type factor composed by words
(with either high-frequency or low-frequency) and random
strings (i.e., random sequence of letters that are phonotactically
illegal in the language) in the lexical decision task. Moreover,
we will take advantage of this psycholinguistic case study to
show how our state-space model can deal with both categorical
and (pseudo)quantitative predictive variables considered either
individually or in interaction in the model. In particular, the first
model instance will illustrate the application of our modeling
framework when a simple categorical variable (stimulus type
factor) is considered to affect the observed mouse-tracking
trajectories collected using the lexical decision task. By contrast,
the second model will be based on a simple regression-type
model with a single quantitative independent variable (bigram
frequency) used to predict the attraction toward the distractor
category. Finally, the third model will integrate these two
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TABLE 2 | Application: adequacy of the model to reproduce the observed

matrices Y (overall fit) and Yi (by-subject fit).

Overall (%) By-subject (%)

Model 1 84 78

Model 2 73 70

Model 3 75 71

All the measures are normalized in the range 0% (bad fit)–100% (optimal fit). See

Supplementary Materials for technical details.

variables (stimulus type factor and bigram frequency) into a
unified model including the main effects of the two variables
as well as their interaction. In our context, the first two models
will be considered as simple toy examples to illustrate the main
features of the state-space model representation when applied
to real data, whereas the third model will be discussed in more
details according to a group analysis evaluation as well as an
individual analysis representation.

4.2. Model 1
4.2.1. Data Structure and Variables
In the original work by Barca and Pezzulo (2012), the lexical
decision experiment was run in Italian and based only on
one stimulus type factor with four different levels: Words of
high written frequency (HF, e.g., acqua “water”), words of low
written frequency (LF, e.g., cervo “deer”), pseudowords (PW,
e.g., “dorto”), and strings of letters that are orthographically
illegal in Italian (NW, e.g., “btfpr”). In their study, participants
saw a total of 96 stimuli, one at the time, and were required
to categorize each stimulus as either a word or a non-word by
using the mouse-tracking paradigm. Trajectories were recorded
using the Mouse Tracker software (Freeman and Ambady, 2010)
with sampling rate of ∼70 Hz (Barca and Pezzulo, 2012). As
usual, raw trajectories were normalized into N = 101 time steps
using linear interpolation with equal spaces between coordinate
samples. However, for our analysis we preferred to select only
three of the four levels of the experimental factor (that is to
say, HF,LF, and NW) for a total of 72 stimuli equally distributed
within each level4. Finally, the dependent variable Y of Model
1 consisted of the movement angles array associated with the
mouse-movement trajectory recorded for each distinct stimulus
in the stimulus set.

4.2.2. Data Analysis and Results
In this first model the term βj in the stimuli equation boils down
to the simple expression:

βj =
3∑

k=1

djkγk

4The motivation for this selection was due to some technical reasons regarding

the lack of design balance in the original dataset, as the PW level showed a large

number of errors when compared with the other three categories. In addition, the

three-level representation of the stimulus type factor simplifies the interpretation

of the results when we consider the full model with interaction.

TABLE 3 | Application: posterior means (µ), 95% posterior intervals ([q0.05,q0.975]),

and Gelman-Rubin R̂ index for the estimated parameters of Models 1–3.

γ̂ 1 γ̂ 2 γ̂ 3 η̂ δ̂1 δ̂2

Model 1

q0.05 1.224 1.234 1.211

µ 1.323 1.337 1.310

q0.975 1.443 1.457 1.432

R̂ 1.003 1.002 1.003

Model 2

q0.05 0.063

µ 0.078

q0.975 0.091

R̂ 1.001

Model 3

q0.05 0.083 1.130 1.217 0.305 −0.505 −0.437

µ 0.341 1.300 1.314 0.402 −0.385 −0.336

q0.975 0.605 1.468 1.411 0.500 −0.269 −0.235

R̂ 1.008 1.013 1.012 1.011 1.013 1.010

All the models
κ̂1 = 22.31

κ̂2 = 44.96

where the indices k = 1, 2, 3 refer to HF, LF, and NW
stimuli. The MCMC convergences of the algorithm are reported
in Supplementary Materials. The model fitted the data very
satisfactorily, with overall fit of 84% and subject-based fit of
74% (see Table 2). The posterior quantiles (5, 50, and 95%) are
reported in Table 3 whereas Figure 4A shows the probability
graph, that is to say, the probability to activate the distractor
cue for each of the three levels HF, LF, NW as a function of the
latent variable Z.

The results of this first analysis clearly show that the dynamics
of the state-space model were unaffected by the different
categories represented in the recoded experimental factor. This
pattern finds further support in the post-hoc comparisons
between the three experimental conditions (Figure 4B). In sum,
these findings indicate that for a dynamic model represented
according to a state-space modeling framework, the three
stimulus categories (HF, LF, and NW) were all processed in a
very similar way, as the original trajectories were not sufficiently
different among the three stimulus categories. In substantive
terms, the results of the categorical model showed how the
attraction probability toward the distractor was definitively
modest in all the three experimental conditions. This is evident
from a direct inspection of Figure 4B where the probability
activation function (logistic function) is shifted toward right
(Z > 0) which in turn means that the average activation of
the distractor category was relatively poor in HF, LF, and NW
items. In this respect, the results of our simple spatial model
were partially at odds with the outcomes observed using temporal
measures (response time variables) (Barca and Pezzulo, 2012).

4.3. Model 2
4.3.1. Data Structure and Variables
Also for the second model, the dependent variable was
represented by the movement angles array Y. However, unlike
model 1, in model 2 the original independent categorical
variable (stymulus type factor) was replaced with a quantitative
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FIGURE 4 | Application (Model 1): (A) Marginal posterior densities for the model parameters and (B) Probability to activate the distractor cue as a function of the

levels (HF, LF, NW) of the categorical variable. Note that the densities in (A) are shown together for the sake of comparison.

psycholinguistic variable called bigram frequency. Bigram
frequency is defined as the frequency with which adjacent pairs
of letters (bigrams) occur in printed texts; for its characteristics,
it may be considered as a measure of orthographic typicality
(e.g., see Hauk et al., 2006). In this second application, only
bigram frequency was used as quantitative variable, since it was
the only psycholinguistic variable that could be computed for all
the 72 stimuli in the stimulus set. This second model instance
nicely provides a simple but effective example of application of
our state-space model when a continuous variable is considered
to predict the attraction toward distractor.

4.3.2. Data Analysis and Results
In model 2 the term βj simply reduces to:

βj = xjη

as the first and third terms in formula (4) cancel out. In this
case, the variable xj denotes the value of the bigram frequency for
stimulus j in the stimulus set. For the model results, the posterior
quantiles are reported in Table 3 whereas MCMC convergences
of the algorithm are reported in Supplementary Materials. Also
in this case, the model fitted the data very well, with overall
fit of 73% and subject-based fit of 70% (see Table 2). Figure 5
shows the probability graph for model 2. This graph represents
the probability to activate the distractor hemispace at three
representative levels of the variable, i.e., the lowest, the medium,
and the highest values of bigram. As evident from the graph,
bigram frequency affects the probability to activate the target,
with a higher probability for stimuli with low bigram frequency.

In substantive terms, the results of the quantitative model
supported the evidence that the attraction probability toward
the distractor was slightly affected by the specific value of the
quantitative predictor (bigram frequency). In particular, low-
level bigram frequencies were characterized by an average larger
activation probability (0.55) for the distractor, whereas medium
or large frequencies were associated with a logistic function

slightly shifted toward positive values of the latent space Z > 0,
thus reflecting a lower chance for the distractor category (average
activation probability of 0.45). Moreover, by an inspection of
the contingency table for the joint representation of bigram
frequency (as a transformed categorical variable) and stimulus
type, we noted that low bigram frequency values were mainly
characterized by string letters (NW: 94%) whereas high bigram
frequency values were predominantly associated with high
frequency words (HF: 55%) or low frequency words (LF: 44%).

4.4. Model 3
4.4.1. Data Structure and Variables
The final and more complex model included both the three-
level categorical predictor (stimulus type factor: HF, LF, STR)
and the continuous predictor (bigram frequency) as well as the
interaction term between these two variables. The dependent
variable was the movement angles array Y.

4.4.2. Data Analysis and Results
The stimuli equation which characterizes the third model is
defined as follows:

βj =
3∑

k=1

djkγk + xj

(
η +

3∑

k=1

djkδk

)

The MCMC diagnostics together with the estimated marginal
posterior densities for the model’s parameters are reported in
Supplementary Materials. The model fit was good, with an
overall fit of 75% whereas the subject-based fit was equal to 71%
(see Table 2). The posterior quantiles are reported in Table 3.
Figure 6 shows the probability graph for model 3. This graph
represents the probability to activate the distractor hemispace
for each of the three levels HF, LF, NW of the categorical
factor as a function of the latent variable Z and three distinct
levels (high, medium, and low) for bigram frequency. The
inspection of Figure 6 shows a clear interaction between stimulus
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FIGURE 5 | Application (Model 2): probability to activate the distractor cue as a function of the continuous variable. For Note that just three representative levels (low,

middle, high) are represented for the sake of graphical interpretation.

FIGURE 6 | Application (Model 3): probability to activate the distractor cue as a function of the categorical variable (within panels) and three representative levels of the

continuous variable (between panels).

type factor and bigram frequency indicating that the impact of
stimulus category, in particular word frequency, increases with
the decrease of stimulus bigram frequency. In other words, at
high level of bigram frequency, the probability to activate the
distractor is similarly low in all conditions (0.17 ≤ p-distractor
≤ 0.2). By contrast, when bigram frequency decreases—that
is stimuli become orthographically atypical—the probability of

distractor activation increases, but only for the more lexically-
familiar stimuli, i.e., words of high frequency (e.g., p-distractor
raises from 0.17 to 0.70, in low and high bigram frequency
condition, respectively).

Finally, it is also worth mentioning the emergence of the
main effect of stimulus category which was instead missing in
model 1. By a quick inspection of Figure 7, one may clearly
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FIGURE 7 | Application (Model 3): marginal posterior densities for the model parameters. (Left) Parameters associated to the categorical variable. (Right) Parameters

associated to the continuous variable and its interaction with the categorical variable. Note that the densities are shown together for the sake of comparison.

observe that HF words differ from both LF words and letter
strings (NW), whereas LF words and letter strings do not differ
with respect to the probability of activation of the distractor
hemispace. Interestingly, the addition of the covariate bigram
frequency in the model allowed the main effect of stimulus
category to show up. Indeed, while at the medium and high levels
of bigram frequency the results are in line with those observed at a
sample level in the original study (see Figures 1, 2, 5 in the paper
Barca and Pezzulo, 2012) and in a recent re-analysis (see Table
2 in the paper Calcagnì et al., 2017), in the case of low bigram
the probability to activate the distractor increases with respect
to high frequency words (HF). This might be somewhat related
to a moderate difficulty in the orthographic processing of low
frequency bigram words (e.g., see Rastle and Davis, 2008) even
in the case of stimuli with richer lexical representation.

4.5. Profiles Analysis
To further investigate the dynamic characteristics involved in
the lexical decision task, we extend here the results of the third
model to include also a profiles analysis. Figure 8 shows the
estimated latent movement states ZI×N for all the participants
involved in the study. The profiles appear regular, as they evolve
smoothly toward the target cue (T). We grouped the dynamics
into four well-separated clusters (Figure 8, smallest panels on
the right) according to their functional similarities (Ramsay and
Silverman, 2007). Particularly, the first group is characterized
by a higher exploration of the distractor’s hemispace, especially
in the first 30% of the process. The same applies to the third
and fourth groups, although they show a gradual activation of
the distractor. Finally, the second group clearly represents those
profiles with no uncertainty in the categorization process, as they
show no activation of the distractor’s hemispace at all. Although
well-separated among them, these clusters still show some level
of inner heterogeneity (for example, see group 1 and 4). To
study this latter issue in terms of experimental manipulations, we

focused on group 1 and considered the low vs. high frequency
conditions (HF vs. LF). We also selected the middle phase of
the process (1 = 30 − 50%), where it is expected to observe
larger cognitive competitions in the categorization (Barca and
Pezzulo, 2012). Figure 9 shows the participants’ profiles in terms
of attraction probability π4×N for the two lexical conditions. As
expected, the profiles differ between these conditions, with LF
eliciting higher attraction probability. This is in line with the fact
that low frequency words have a weaker lexical representation
than high frequency stimuli and consequently they are more
difficult to process (Barca and Pezzulo, 2012). Interestingly,
the individual profiles also differ in the way they activate the
distractor. For instance, the participant 6 had higher probability
in both LF (p1(D) = 0.67) and HF (p1(D) = 0.54) conditions
whereas the participant 7 had a more pronounced activation just
in the LF condition (p1(D) = 0.57) than HF (p1(D) = 0.43).
Similarly, participants 6 and 7 seemed to prolong the competing
dynamics up to the 50% of the process, by contrast participants
8 and 15 seemed to resolve the lexical competition earlier as
showed by the abrupt decreasing of their curves. We complete
our analysis by evaluating how individual profiles are linked to
empirical measurements. Figure 10 represents this scenario for
two stimuli belonging to HF and LF conditions. As we can notice,
the curves present the same dynamics (due to the latent states
zi,0 :N) although they clearly differ in terms of attraction exerted
by the stimulus (due to the β component of the model). In this
case, the LF stimulus produced larger conflict than HF in the
lexical categorization. This is evident when we turn back to the
observed data: as expected, the rose diagrams of LF showed larger
directions in the distractor’s hemispace.

5. DISCUSSION

We have described a new approach to model and analyse
dynamic data coming from mouse-tracking experiments. Our
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FIGURE 8 | Application: estimated movement dynamics zi,0 :N of each participant (biggest panel, Left) and clusters of profiles in terms of their functional similarity

(smallest panels, Right). Note that averaged profiles are represented as dashed lines whereas D and T in all the panels indicate distractor and target, respectively.

Groups’ composition: participants 6, 7, 8, 15 (group 1), 1, 4, 19, 21 (group 2), 2, 3, 5, 12, 13, 16, 17, 20, 22 (group 3), 10, 11, 14, 18 (group 4).

FIGURE 9 | Application: estimated attraction probabilities π i,0 :N of participants in Group 1 for the high frequency (Left) and low frequency (Right) lexical conditions.

Note that the probability curves are computed with respect to the distractor (D), the gray area in both panels indicates a selected window of processing

(1 = 30− 50%), whereas the terms p1(D) are computed using a normalized discrete approximation of the integral of the probability curves in the selected process

window 1.

proposal took the advantages of a state-space representation, in
which the observed data Y were thought as being function of
two independent sub-models, one representing the movement

process and its properties (Z) and the second modeling the two-
choice experimental task (β) according to which the data were
collected. These sub-models were integrated by means of an
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FIGURE 10 | Application: estimated attraction probabilities π i,0 :N of participants in Group 1 and rose diagrams of observed radians for two stimuli (HF: epoca, epoch.

LF: zampa, paw). Note that D and T in all the panels indicate distractor and target, respectively.

inverse-logit function (π) that expressed how the experimental
manipulations acted on the movement processes in selecting
the final correct response against the competing one. This
formulation was flexible enough to take into account the
complexity of some dynamic behaviors showed by the reaching
trajectories. Moreover, it allowed for separately accounting for
the motor heterogeneity and experimental variability in Y.
Indeed, when β = 1β0 our state-space representation simply
reduced to a model where the experimental manipulations had
no relevant effect in reproducing the observed data. This instance
has been illustrated in section 4.3 (Model 1). In this case, as
Z = 0 was not allowed in our model formulation, all the
variability of Y can be ascribed to Z. This is relevant in view
of the fact that movement variability may reflect only individual
motor executions in absence of any experimental manipulations
(Yu et al., 2007). The movement component Zwas modeled to be
Markovian with gaussian transition density.

Although more complex models can be used to represent
movement dynamics, simple random walks still allows a great
deal of flexibility in modeling reaching trajectories under weak
assumptions on the movement behavior (e.g., see Yu et al.,
2007; Paninski et al., 2010). In particular, in the case of mouse-
tracking tasks, they allow representations of the following three
properties: (i) Each movement is goal-oriented as individuals
have to finalize the action by clicking on one of the two categories
shown on the screen. (ii) Mouse-tracking trajectories generally
start at rest, proceed out in the movement space, and end at rest.
(iii) Hand trajectories tend to be smooth during the reaching
process, i.e., small changes in the interval [n, n + 1] are more
likely than large and abrupt changes (Brockwell et al., 2004;
Spivey et al., 2010). The stimuli component β was defined to
be a linear combination of information typically involved in a
univariate design, namely a categorical variable D containing
the levels of the experimental factor and a continuous covariate

X. This gave researchers the opportunity to additionally analyse
which component of the experimental design is relevant in
producing the effect of β on Y. The data-generation process was
defined according to a mixture of two von-Mises distributions
representing the categories of a two-choice categorization task.
Among others, we chose this distribution because it provides
a flexible representation for angular ordered data, especially
because it simplifies mathematical computations involved in the
model’s derivation (e.g., see McClintock et al., 2012; Mulder and
Klugkist, 2017).

There are other existing methods that offer alternative ways
to model mouse-tracking data. For instance, Van Der Wel
et al. (2009) proposed the use of the movement superposition
model (Henis and Flash, 1995) to model and analyse the typical
two-choice lexical decision task. In particular, they modeled
mouse-tracking trajectories by representing the complete hand
movement as a summation of sub-movements, which were
obtained by the solution of the minimum-jerk equation for
the standard reaching trajectory (i.e., a movement characterized
by a bell-shaped speed profile that minimizes the sum of the
squared rates of jerks over the movement duration). Similarly,
Friedman et al. (2013) discussed how an intermittent model
of arms movement can be used for reaching trajectories in
random-dot experiments. They used both Wiener’s diffusion
process and Flash and Hogan’s movement equation to predict
reaction times (RTs) and movement data. Their goal was to
assess the link between movement trajectories and underlying
cognitive processing. Our model differs in some respects from
these works. With regards to Van Der Wel et al. (2009), for
instance, we used a stochastic state-space approach to model
the movement trajectories instead of deterministic equations.
Instead, with respect to Friedman et al. (2013), we tailor-made
our model to a typical two-choice categorization task, making
use of few assumptions on the nature of the movement process
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[as those implied by the Gaussian AR(1) process]. By and large,
our goal was not to provide a mathematical representation of
the cognitive components underpinningmouse-trajectories since
the model does not describe the cognitive processing per se. By
contrast, we simply provided a statistical model for the analysis
of mouse-tracking data, which can offer a good compromise
between data modeling and data analysis.

5.1. Model’s Advantages and Limitations
Our non-linear state-space model has several advantages. For
instance, when comparing with the standard approaches, our
proposal provides a unified analytic framework to simultaneously
model and analyse trajectories data. By modeling movement
heterogeneity and task variability together, we can evaluate how
experimental variables directly act on the observed series of
trajectories, with no need to use any kind of summary measures.
An additional advantage of our model concerns the study of
individual differences in terms of latent dynamics. While this
is impractical in standard two-step approaches, in our proposal
researchers can assess individual variations by studying the
movement profiles Z̃ once they are estimated. For instance, they
can be analyzed in terms of similarity/dissimilarity with regards
to external individual covariates (e.g., vocabulary knowledge
and bilingualism in psycholinguistic experiments; IQ, risk-taking
propensity, or more generally clinical variables in decision-
making tasks). Still, individual dynamics can be compared each
other qualitatively in terms of chance to activate the distractor
or target cues. As the dynamics are normalized on a common
cumulative scale, researchers can assess whether the chance to
activate the distractor cue at a certain percentage of the process
and for an experimental manipulation, is particularly higher in
a sub-group of participants (this case, for example, has been
described in section 4.6).

As for any modeling approach, also the current proposal
can potentially suffer from some limitations. A first limitation
concerns the only-intercept model π(Z,β) used to integrate
individual dynamics and experimental information. Although
this was enough to represent whether or not certain stimuli
can increase the probability to select the distractor cue, we may
want to known whether some experimental manipulations can
modify the individual dynamics as well. However, this would
particularly pronounce the computational costs required for the
model identification (especially with regards to filtering), as we
need to appropriately generalize Equation (3) to include more
parameters. Lastly, in the current study we used univariate non-
linear state-space models to represent individual dynamics for
the sake of parsimony. However, more complicated situations
may require models including further movement characteristics
like step-length, velocity, acceleration, and jerk (Kulkarni and
Paninski, 2008), which may be modeled as statistical constraints
of themodel (Ciavolino and Calcagnì, 2014; Calcagnì et al., 2017).

5.2. Further Extensions
Our non-linear state-space model can be improved in many
aspects. For instance, the stimuli equation (4) can be generalized
to cope with more complex experimental designs, like those

involving multiple factors and covariates together with high-
order interaction terms. Likewise, the current model restrictions
can be relaxed to allow changes in slopes of π(Z,β) as a
function of the experimental stimuli. Further, the development of
a hierarchical representation of the model, with a random-effect
component in the state Equation (3), would offer a way to model
the inter-individual variations as resulting from an underlying
common population. Still, the development of a multivariate
state-space model to include other movement components will
surely be considered a future extension of the present work.
Further studies may lead to generalize the AR(1) process used
for the movement dynamics to include former knowledge on the
deterministic constraints of the hand movement as those used,
for instance, by Van Der Wel et al. (2009) and Friedman et al.
(2013). Moreover, further studies may also lead to generalize
the AR(1) process used for the movement dynamics to include
former knowledge on the deterministic constraints of the hand
movement as those used, for instance, by Van Der Wel et al.
(2009) and Friedman et al. (2013). Finally, an open issue which
deserves greater consideration in future investigations is the
need for a formal comparative framework with which we may
eventually contrast and compare spatial modeling perspectives
(like the one presented in this contribution) and currently used
methods for analyzing mouse tracking data based on descriptive
statistics (e.g., see Freeman, 2017).

6. CONCLUSIONS

In this paper we presented a novel and comprehensive analytic
framework formodeling and analysemouse-tracking trajectories.
In particular, a non-linear state-space approach was used
to model the observed trajectories as a function of both
individual movement dynamics and experimental variables.
Model identification was performed under the umbrella of
Bayesian methods, in which a Metropolis-Hastings algorithm
was coupled with a recursive gaussian approximation filter to
get posterior distributions of model parameters. For the sake
of illustration, we applied our new approach to a real mouse-
tracking dataset concerning a two-choice lexical categorization
task. The results indicated how our proposal can provide valuable
insights to assess the dynamics involved in the decision task and
identify how the experimental variables significantly contributed
to the observed movement heterogeneity. Moreover, the analysis
of individual profiles allowed for comprehensive and reliable
identification of individual and group-based differences in the
dynamics of decision making.

In conclusion, we think that this work yielded interesting
findings in the development of computational models able to
capture the unfolding high-level cognitive processes as reflected
by motor executions which are typically involved in mouse-
tracking tasks. To our knowledge, this is the first time that
mouse-tracking data are fully modeled and analyzed within a
process-oriented approach. We believe our contribution will
offer a novel strategy that may help cognitive researchers to
understand the roles of cognition and action in mouse-tracking
based experiments.
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