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Turmoil has engulfed psychological science. Causes and consequences of the
reproducibility crisis are in dispute. With the hope of addressing some of its aspects,
Bayesian methods are gaining increasing attention in psychological science. Some of
their advantages, as opposed to the frequentist framework, are the ability to describe
parameters in probabilistic terms and explicitly incorporate prior knowledge about them
into the model. These issues are crucial in particular regarding the current debate about
statistical significance. Bayesian methods are not necessarily the only remedy against
incorrect interpretations or wrong conclusions, but there is an increasing agreement
that they are one of the keys to avoid such fallacies. Nevertheless, its flexible nature is
its power and weakness, for there is no agreement about what indices of “significance”
should be computed or reported. This lack of a consensual index or guidelines, such as
the frequentist p-value, further contributes to the unnecessary opacity that many non-
familiar readers perceive in Bayesian statistics. Thus, this study describes and compares
several Bayesian indices, provide intuitive visual representation of their “behavior” in
relationship with common sources of variance such as sample size, magnitude of
effects and also frequentist significance. The results contribute to the development of an
intuitive understanding of the values that researchers report, allowing to draw sensible
recommendations for Bayesian statistics description, critical for the standardization of
scientific reporting.

Keywords: Bayesian, significance, NHST, p-value, Bayes factors

INTRODUCTION

The Bayesian framework is quickly gaining popularity among psychologists and neuroscientists
(Andrews and Baguley, 2013), for reasons such as flexibility, better accuracy in noisy data
and small samples, less proneness to type I errors, the possibility of introducing prior
knowledge into the analysis and the intuitiveness and straightforward interpretation of results
(Kruschke, 2010; Kruschke et al., 2012; Etz and Vandekerckhove, 2016; Wagenmakers et al.,
2016, 2018; Dienes and Mclatchie, 2018). On the other hand, the frequentist approach
has been associated with the focus on p-values and null hypothesis significance testing
(NHST). The misinterpretation and misuse of p-values, so called “p-hacking” (Simmons et al.,
2011), has been shown to critically contribute to the reproducibility crisis in psychological
science (Chambers et al., 2014; Szucs and Ioannidis, 2016). The reliance on p-values

Frontiers in Psychology | www.frontiersin.org 1 December 2019 | Volume 10 | Article 2767

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2019.02767
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2019.02767
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2019.02767&domain=pdf&date_stamp=2019-12-10
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.02767/full
http://loop.frontiersin.org/people/183197/overview
http://loop.frontiersin.org/people/828405/overview
http://loop.frontiersin.org/people/30760/overview
http://loop.frontiersin.org/people/779763/overview
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-02767 December 7, 2019 Time: 11:12 # 2

Makowski et al. Bayesian Indices of Existence and Significance

has been criticized for its association with inappropriate
inference, and effects can be drastically overestimated, sometimes
even in the wrong direction, when estimation is tied to statistical
significance in highly variable data (Gelman, 2018). Power
calculations allow researchers to control the probability of
falsely rejecting the null hypothesis, but do not completely
solve this problem. For instance, the “false-alarm probability”
of even very small p-values can be much higher than expected
(Nuzzo, 2014). In response, there is an increasing belief that the
generalization and utilization of the Bayesian framework is one
way of overcoming these issues (Maxwell et al., 2015; Etz and
Vandekerckhove, 2016; Marasini et al., 2016; Wagenmakers et al.,
2017; Benjamin et al., 2018; Halsey, 2019).

The tenacity and resilience of the p-value as an index of
significance is remarkable, despite the long-lasting criticism and
discussion about its misuse and misinterpretation (Gardner and
Altman, 1986; Cohen, 1994; Anderson et al., 2000; Fidler et al.,
2004; Finch et al., 2004). This endurance might be informative
on how such indices, and the accompanying heuristics applied
to interpret them (e.g., assigning thresholds like 0.05, 0.01, and
0.001 to certain levels of significance), are useful and necessary
for researchers to gain an intuitive (although possibly simplified)
understanding of the interactions and structure of their data.
Moreover, the utility of such an index is most salient in contexts
where decisions must be made and rationalized (e.g., in medical
settings). Unfortunately, these heuristics can become severely
rigidified, and meeting significance has become a goal unto itself
rather than a tool for understanding the data (Cohen, 1994; Kirk,
1996). This is particularly problematic given that p-values can
only be used to reject the null hypothesis and not to accept
it as true, because a statistically non-significant result does not
mean that there is no difference between groups or no effect of a
treatment (Wagenmakers, 2007; Amrhein et al., 2019).

While significance testing (and its inherent categorical
interpretation heuristics) might have its place as a
complementary perspective to effect estimation, it does
not preclude the fact that improvements are needed. For
instance, one possible advance could focus on improving
the understanding of the values being used, for instance,
through a new, simpler, index. Bayesian inference allows
making intuitive probability statements of an effect, as opposed
to the less straightforward mathematical definition of the
p-value, that contributes to its common misinterpretation.
Another improvement could be found in providing an intuitive
understanding (e.g., by visual means) of the behavior of the
indices in relationship with main sources of variance, such
as sample size, noise, or effect presence. Such better overall
understanding of the indices would hopefully act as a barrier
against their mindless reporting by allowing the users to nuance
the interpretations and conclusions that they draw.

The Bayesian framework offers several alternative indices for
the p-value. To better understand these indices, it is important
to point out one of the core differences between Bayesian
and frequentist methods. From a frequentist perspective, the
effects are fixed (but unknown) and data are random. On the
other hand, instead of having single estimates of some “true
effect” (for instance, the “true” correlation between x and y),

Bayesian methods compute the probability of different effects
values given the observed data (and some prior expectation),
resulting in a distribution of possible values for the parameters,
called the posterior distribution. The description of the posterior
distribution (e.g., through its centrality, dispersion, etc.) allows to
draw conclusions from Bayesian analyses.

Bayesian “significance” testing indices could be roughly
grouped into three overlapping categories: Bayes factors,
posterior indices and Region of Practical Equivalence (ROPE)-
based indices. Bayes factors are a family of indices of relative
evidence of one model over another (e.g., the null vs. the
alternative hypothesis; Jeffreys, 1998; Ly et al., 2016). Aside from
having a straightforward interpretation (“given the observed
data, is the null hypothesis of an absence of an effect more, or
less likely?”), they allow to quantify the evidence in favor of the
null hypothesis (Dienes, 2014; Jarosz and Wiley, 2014). However,
its use for parameters description in complex models is still a
matter of debate (Wagenmakers et al., 2010; Heck, 2019), being
highly dependent on the specification of priors (Etz et al., 2018;
Kruschke and Liddell, 2018). On the contrary, “posterior indices”
reflect objective characteristics of the posterior distribution, for
instance the proportion of strictly positive values. They also
allow to derive legitimate statements that indicate the probability
of an effect falling in a given range similar to the misleading
conclusions related to frequentist confidence intervals. Finally,
ROPE-based indices are related to the redefinition of the null
hypothesis from the classic point-null hypothesis to a range
of values considered negligible or too small to be of any
practical relevance (the Region of Practical Equivalence – ROPE;
Kruschke, 2014; Lakens, 2017; Lakens et al., 2018), usually spread
equally around 0 (e.g., [−0.1; 0.1]). The idea behind this index is
that an effect is almost never exactly zero, but instead can be very
tiny, with no practical relevance. It is interesting to note that this
perspective unites significance testing with the focus on effect size
(involving a discrete separation between at least two categories:
negligible and non-negligible), which finds an echo in recent
statistical recommendations (Ellis and Steyn, 2003; Sullivan and
Feinn, 2012; Simonsohn et al., 2014).

Despite the richness provided by the Bayesian framework
and the availability of multiple indices, no consensus has yet
emerged on which ones to be used. Literature continues to bloom
in a raging debate, often polarized between proponents of the
Bayes factor as the supreme index and its detractors (Spanos,
2013; Robert, 2014, 2016; Wagenmakers et al., 2019), with strong
theoretical arguments being developed on both sides. Yet no
practical, empirical and direct comparison between these indices
has been done. This might be a deterrent for scientists interested
in adopting the Bayesian framework. Moreover, this gray area
can increase the difficulty of readers or reviewers unfamiliar
with the Bayesian framework to follow the assumptions and
conclusions, which could in turn generate unnecessary doubt
upon an entire study. While we think that such indices of
significance and their interpretation guidelines (in the form of
rules of thumb) are useful in practice, we also strongly believe
that they should be accompanied with the understanding of
their “behavior” in relationship with major sources of variance,
such as sample size, noise or effect presence. This knowledge is

Frontiers in Psychology | www.frontiersin.org 2 December 2019 | Volume 10 | Article 2767

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-02767 December 7, 2019 Time: 11:12 # 3

Makowski et al. Bayesian Indices of Existence and Significance

important for people to implicitly and intuitively appraise the
meaning and implication of the mathematical values they report.
Such an understanding could prevent the crystallization of the
possible heuristics and categories derived from such indices, as
has unfortunately occurred for the p-values.

Thus, based on the simulation of linear and logistic
regressions (arguably some of the most widely used models
in the psychological sciences), the present work aims at
comparing several indices of effect “significance,” provide visual
representations of the “behavior” of such indices in relationship
with sample size, noise and effect presence, as well as their
relationship to frequentist p-values (an index which, beyond its
many flaws, is well known and could be used as a reference
for Bayesian neophytes), and finally draw recommendations for
Bayesian statistics reporting.

MATERIALS AND METHODS

Data Simulation
We simulated datasets suited for linear and logistic regression
and started by simulating an independent, normally distributed x
variable (with mean 0 and SD 1) of a given sample size. Then, the
corresponding y variable was added, having a perfect correlation
(in the case of data for linear regressions) or as a binary variable
perfectly separated by x. The case of no effect was simulated by

creating a y variable that was independent of (i.e., not correlated
to) x. Finally, a Gaussian noise (the error) was added to the x
variable before its standardization, which in turn decreases the
standardized coefficient (the effect size).

The simulation aimed at modulating the following
characteristics: outcome type (linear or logistic regression),
sample size (from 20 to 100 by steps of 10), null hypothesis
(original regression coefficient from which data is drawn prior
to noise addition, 1 – presence of “true” effect, or 0 – absence of
“true” effect) and noise (Gaussian noise applied to the predictor
with SD uniformly spread between 0.666 and 6.66, with 1000
different values), which is directly related to the absolute value
of the coefficient (i.e., the effect size). We generated a dataset for
each combination of these characteristics, resulting in a total of
36,000 (2 model types × 2 presence/absence of effect × 9 sample
sizes × 1,000 noise variations) datasets. The code used for data
generation is available on GitHub1. Note that it takes usually
several days/weeks for the generation to complete.

Indices
For each of these datasets, Bayesian and frequentist regressions
were fitted to predict y from x as a single unique predictor. We
then computed the following seven indices from all simulated
models (see Figure 1), related to the effect of x.

1https://github.com/easystats/easystats/tree/master/publications/makowski_
2019_bayesian/data

FIGURE 1 | Bayesian indices of effect existence and significance. (A) The probability of Direction (pd) is defined as the proportion of the posterior distribution that is
of the median’s sign (the size of the yellow area relative to the whole distribution). (B) The MAP-based p-value is defined as the density value at 0 – the height of the
red lollipop, divided by the density at the Maximum A Posteriori (MAP) – the height of the blue lollipop. (C) The percentage in ROPE corresponds to the red area
relative to the distribution [with or without tails for ROPE (full) and ROPE (95%), respectively]. (D) The Bayes factor (vs. 0) corresponds to the point-null density of the
prior (the blue lollipop on the dotted distribution) divided by that of the posterior (the red lollipop on the yellow distribution), and the Bayes factor (vs. ROPE) is
calculated as the odds of the prior falling within vs. outside the ROPE (the blue area on the dotted distribution) divided by that of the posterior (the red area on the
yellow distribution).
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Frequentist p-Value
This was the only index computed by the frequentist version of
the regression. The p-value represents the probability that for
a given statistical model, when the null hypothesis is true, the
effect would be greater than or equal to the observed coefficient
(Wasserstein and Lazar, 2016).

Probability of Direction (pd)
The Probability of Direction (pd) varies between 50 and 100%
and can be interpreted as the probability that a parameter
(described by its posterior distribution) is strictly positive or
negative (whichever is the most probable). It is mathematically
defined as the proportion of the posterior distribution that is of
the median’s sign (Makowski et al., 2019).

MAP-Based p-Value
The MAP-based p-value is related to the odds that a parameter has
against the null hypothesis (Mills and Parent, 2014; Mills, 2017).
It is mathematically defined as the density value at 0 divided
by the density at the Maximum A Posteriori (MAP), i.e., the
equivalent of the mode for continuous distributions.

ROPE (95%)
The ROPE (95%) refers to the percentage of the 95% Highest
Density Interval (HDI) that lies within the ROPE. As suggested
by Kruschke (2014), the Region of Practical Equivalence (ROPE)
was defined as range from −0.1 to 0.1 for linear regressions
and its equivalent, −0.18 to 0.18, for logistic models (based on
the π/

√
3 formula to convert log odds ratios to standardized

differences; Cohen, 1988). Although we present the “95%
percentage” because of the history of this index and of its
widespread use, the reader should note that this value was
recently challenged due to its arbitrary nature (McElreath, 2018).

ROPE (Full)
The ROPE (full) is similar to ROPE (95%), with the exception that
it refers to the percentage of the whole posterior distribution that
lies within the ROPE.

Bayes Factor (vs. 0)
The Bayes Factor (BF) used here is based on prior and posterior
distributions of a single parameter. In this context, the Bayes
factor indicates the degree by which the mass of the posterior
distribution has shifted further away from or closer to the
null value (0), relative to the prior distribution, thus indicating
if the null hypothesis has become less or more likely given
the observed data. The BF was computed as a Savage-Dickey
density ratio, which is also an approximation of a Bayes factor
comparing the marginal likelihoods of the model against a model
in which the tested parameter has been restricted to the point-null
(Wagenmakers et al., 2010).

Bayes Factor (vs. ROPE)
The Bayes factor (vs. ROPE) is similar to the Bayes factor (vs.
0), but instead of a point-null, the null hypothesis is a range of
negligible values (defined here same as for the ROPE indices).
The BF was computed by comparing the prior and posterior
odds of the parameter falling within vs. outside the ROPE (see

Non-overlapping Hypotheses in Morey and Rouder, 2011). This
measure is closely related to the ROPE (full), as it can be formally
defined as the ratio between the ROPE (full) odds for the posterior
distribution and the ROPE (full) odds for the prior distribution:

BFROPE =
odds(ROPEfull posterior)

odds(ROPEfull prior)

Data Analysis
In order to achieve the two-fold aim of this study; (1) comparing
Bayesian indices and (2) provide visual guides for an intuitive
understanding of the numeric values in relation to a known frame
of reference (the frequentist p-value), we will start by presenting
the relationship between these indices and main sources of
variance, such as sample size, noise and null hypothesis (true if
absence of effect, false if presence of effect). We will then compare
Bayesian indices with the frequentist p-value and its commonly
used thresholds (0.05, 0.01, 0.001). Finally, we will show
the mutual relationship between three recommended Bayesian
candidates. Taken together, these results will help us outline
guides to ease the reporting and interpretation of the indices.

In order to provide an intuitive understanding of values,
data processing will focus on creating clear visual figures to
help the user grasp the patterns and variability that exists when
computing the investigated indices. Nevertheless, we decided to
also mathematically test our claims in cases where the graphical
representation begged for a deeper investigation. Thus, we fitted
two regression models to assess the impact of sample size and
noise, respectively. For these models (but not for the figures),
to ensure that any differences between the indices are not due
to differences in their scale or distribution, we converted all
indices to the same scale by normalizing the indices between 0
and 1 (note that BFs were transformed to posterior probabilities,
assuming uniform prior odds) and reversing the p-values, the
MAP-based p-values and the ROPE indices so that a higher value
corresponds to stronger “significance.”

The statistical analyses were conducted using R (R Core Team,
2019). Computations of Bayesian models were done using the
rstanarm package (Goodrich et al., 2019), a wrapper for Stan
probabilistic language (Carpenter et al., 2017). We used Markov
Chain Monte Carlo sampling (in particular, Hamiltonian Monte
Carlo; Gelman et al., 2014) with 4 chains of 2000 iterations, half
of which used for warm-up. Mildly informative priors (a normal
distribution with mean 0 and SD 1) were used for the parameter
in all models. The Bayesian indices were calculated using the
bayestestR package (Makowski et al., 2019).

RESULTS

Impact of Sample Size
Figure 2 shows the sensitivity of the indices to sample size.
The p-value, the pd and the MAP-based p-value are sensitive to
sample size only in case of the presence of a true effect (when
the null hypothesis is false). When the null hypothesis is true,
all three indices are unaffected by sample size. In other words,
these indices reflect the amount of observed evidence (the sample
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FIGURE 2 | Impact of sample size on the different indices, for linear and logistic models, and when the null hypothesis is true or false. Gray vertical lines for p-values
and Bayes factors represent commonly used thresholds.

size) for the presence of an effect (i.e., against the null hypothesis
being true), but not for the absence of an effect. The ROPE
indices, however, appear as strongly modulated by the sample
size when there is no effect, suggesting their sensitivity to the
amount of evidence for the absence of effect. Finally, the figure

suggests that BFs are sensitive to sample size for both presence
and absence of true effect.

Consistently with Figure 2 and Table 1, the model
investigating the sensitivity of sample size on the different indices
suggests that BF indices are sensitive to sample size both when
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an effect is present (null hypothesis is false) and absent (null
hypothesis is true). ROPE indices are particularly sensitive to
sample size when the null hypothesis is true, while p-value,
pd and MAP-based p-value are only sensitive to sample size
when the null hypothesis is false, in which case they are more
sensitive than ROPE indices. These findings can be related to the
concept of consistency: as the number of data points increases,
the statistic converges toward some “true” value. Here, we observe
that p-value, pd and the MAP-based p-value are consistent only
when the null hypothesis is false. In other words, as sample size
increases, they tend to reflect more strongly that the effect is
present. On the other hand, ROPE indices appear as consistent
when the effect is absent. Finally, BFs are consistent both when
the effect is absent and when it is present, and BF (vs. ROPE),
compared to BF (vs. 0), is more sensitive to sample size when the
null hypothesis is true, and ROPE (full) is overall slightly more
consistent than ROPE (95%).

Impact of Noise
Figure 3 shows the indices’ sensitivity to noise. Unlike the
patterns of sensitivity to sample size, the indices display more
similar patterns in their sensitivity to noise (or magnitude of
effect). All indices are unidirectional impacted by noise: as noise
increases, the observed coefficients decrease in magnitude, and
the indices become less “pronounced” (respectively to their
direction). However, it is interesting to note that the variability of
the indices seems differently impacted by noise. For the p-values,
the pd and the ROPE indices, the variability increases as the
noise increases. In other words, small variation in small observed
coefficients can yield very different values. On the contrary, the
variability of BFs decreases as the true effect tends toward 0. For
the MAP-based p-value, the variability appears to be the highest
for moderate amount of noise. This behavior seems consistent
across model types.

Consistently with Figure 3 and Table 2, the model
investigating the sensitivity of noise when an effect is present
(as there is only noise in the absence of effect), adjusted for
sample size, suggests that BFs (especially vs. ROPE), followed by
the MAP-based p-value and percentages in ROPE, are the most
sensitive to noise. As noise is a proxy of effect size (linearly related
to the absolute value of the coefficient of the parameter), this
result highlights the fact that these indices are sensitive to the
magnitude of the effect. For example, as noise increases, evidence
for an effect becomes weak, and data seems to support the absence
of an effect (or at the very least the presence of a negligible effect),
which is reflected in BFs being consistently smaller than 1. On
the other hand, as the p-value and the pd quantify evidence only
for the presence of an effect, as noise increases, they are become
more dependent on larger sample size to be able to detect the
presence of an effect.

Relationship With the Frequentist
p-Value
Figure 4 suggests that the pd has a 1:1 correspondence
with the frequentist p-value (through the formula
ptwo−sided = 2× (1− pd)). BF indices still appear as having

a severely non-linear relationship with the frequentist index,
mostly due to the fact that smaller p-values correspond to
stronger evidence in favor of the presence of an effect, but the
reverse is not true. ROPE-based percentages appear to be only
weakly related to p-values. Critically, their relationship seems to
be strongly dependent on sample size.

Figure 5 shows equivalence between p-value thresholds (0.1,
0.05, 0.01, 0.001) and the Bayesian indices. As expected, the pd has
the sharpest thresholds (95, 97.5, 99.5, and 99.95%, respectively).
For logistic models, these threshold points appear as more
conservative (i.e., Bayesian indices have to be more “pronounced”
to reach the same level of significance). This sensitivity to model
type is the strongest for BFs (which is possibly related to the
difference in the prior specification for these two types of models).

Relationship Between ROPE (Full), pd,
and BF (vs. ROPE)
Figure 6 suggests that the relationship between the ROPE (full)
and the pd might be strongly affected by the sample size, and
subject to differences across model types. This seems to echo the
relationship between ROPE (full) and p-value, the latter having
a 1:1 correspondence with pd. On the other hand, the ROPE
(full) and the BF (vs. ROPE) seem very closely related within
the same model type, reflecting their formal relationship [see
definition of BF (vs. ROPE) above]. Overall, these results help to
demonstrate ROPE (full) and BF (vs. ROPE)’s consistency both
in case of presence and absence of a true effect, whereas the pd,
being equivalent to the p-value, is only consistent when the true
effect is absent.

DISCUSSION

Based on the simulation of linear and logistic models, the
present work aimed to compare several Bayesian indices of effect
“significance” (see Table 3), providing visual representations of
the “behavior” of such indices in relationship with important
sources of variance such as sample size, noise and effect presence,
as well as comparing them with the well-known and widely used
frequentist p-value.

The results tend to suggest that the investigated indices could
be separated into two categories. The first group, including the pd
and the MAP-based p-value, presents similar properties to those
of the frequentist p-value: they are sensitive only to the amount of
evidence for the alternative hypothesis (i.e., when an effect is truly
present). In other words, these indices are not able to reflect the
amount of evidence in favor of the null hypothesis (Rouder et al.,
2009; Rouder and Morey, 2012). A high value suggests that the
effect exists, but a low value indicates uncertainty regarding its
existence (but not certainty that it is non-existent). The second
group, including ROPE and Bayes factors, seem sensitive to both
presence and absence of effect, accumulating evidence as the
sample size increases. However, ROPE seems particularly suited
to provide evidence in favor of the null hypothesis. Consistent
with this, combining Bayes factors with ROPE (BF vs. ROPE), as
compared to Bayes factors against the point-null (BF vs. 0), leads
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FIGURE 3 | Impact of noise. The noise corresponds to the standard deviation of the Gaussian noise that was added to the generated data. It is related to the
magnitude of the parameter (the more noise there is, the smaller the coefficient). Gray vertical lines for p-values and Bayes factors represent commonly used
thresholds. The scale is capped for the Bayes factors as these extend to infinity.

to a higher sensitivity to null-effects (Morey and Rouder, 2011;
Rouder and Morey, 2012).

We also showed that besides sharing similar properties, the
pd has a 1:1 correspondence with the frequentist p-value, being

its Bayesian equivalent. Bayes factors, however, appear to have
a severely non-linear relationship with the frequentist index,
which is to be expected from their mathematical definition and
their sensitivity when the null hypothesis is true. This in turn
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FIGURE 4 | Relationship with the frequentist p-value. In each plot, the p-value densities are visualized by the marginal top (absence of true effect) and bottom
(presence of true effect) markers, whereas on the left (presence of true effect) and right (absence of true effect), the markers represent the density of the index of
interest. Different point shapes, representing different sample sizes, specifically illustrate its impact on the percentages in ROPE, for which each “curve line” is
associated with one sample size (the bigger the sample size, the higher the percentage in ROPE).

can lead to surprising conclusions. For instance, Bayes factors
lower than 1, which are considered as providing evidence against
the presence of an effect, can still correspond to a “significant”

frequentist p-value (see Figures 3, 4). ROPE indices are more
closely related to the p-value, as their relationship appears
dependent on another factor: the sample size. This suggests
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FIGURE 5 | The probability of reaching different p-value based significance thresholds (0.1, 0.05, 0.01, 0.001 for solid, long-dashed, short-dashed, and dotted lines,
respectively) for different values of the corresponding Bayesian indices.

that the ROPE encapsulates additional information about the
strength of evidence.

What is the point of comparing Bayesian indices with the
frequentist p-value, especially after having pointed out its many
flaws? While this comparison may seem counter-intuitive (as
Bayesian thinking is intrinsically different from the frequentist
framework), we believe that this juxtaposition is interesting
for didactic reasons. The frequentist p-value “speaks” to many
and can thus be seen as a reference and a way to facilitate
the shift toward the Bayesian framework. Thus, pragmatically
documenting such bridges can only foster the understanding
of the methodological issues that our field is facing, and in
turn act against dogmatic adherence to a framework. This does
not preclude, however, that a change in the general paradigm
of significance seeking and “p-hacking” is necessary, and that
Bayesian indices are fundamentally different from the frequentist
p-value, rather than mere approximations or equivalents.

Critically, while the purpose of these indices was solely
referred to as significance until now, we would like to emphasize
the nuanced perspective of existence-significance testing as a
dual-framework for parameter description and interpretation.
The idea supported here is that there is a conceptual and practical
distinction, and possible dissociation to be made, between an
effect’s existence and its significance. In this context, existence is

simply defined as the consistency of an effect in one particular
direction (i.e., positive or negative), without any assumptions or
conclusions as to its size, importance, relevance or meaning. It is
an objective feature of an estimate (tied to its uncertainty). On
the other hand, significance would be here re-framed following
its original literally definition such as “being worthy of attention”
or “importance.” An effect can be considered significant if its
magnitude is higher than some given threshold. This aspect
can be explored, to a certain extent, in an objective way with
the concept of practical equivalence (Kruschke, 2014; Lakens,
2017; Lakens et al., 2018), which suggests the use of a range
of values assimilated to the absence of an effect (ROPE). If the
effect falls within this range, it is considered to be non-significant
for practical reasons: the magnitude of the effect is likely to be
too small to be of high importance in real-world scenarios or
applications. Nevertheless, significance also withholds a more
subjective aspect, corresponding to its contextual meaningfulness
and relevance. This, however, is usually dependent on the
literature, priors, novelty, context or field, and thus cannot be
objectively or neutrally assessed using a statistical index alone.

While indices of existence and significance can be numerically
related (as shown in our results), the former is conceptually
independent from the latter. For example, an effect for which
the whole posterior distribution is concentrated within the
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FIGURE 6 | Relationship between three Bayesian indices: the probability of direction (pd), the percentage of the full posterior distribution in the ROPE, and the Bayes
factor (vs. ROPE).

TABLE 1 | Sensitivity to sample size.

Index Linear models/presence
of effect

Linear models/absence
of effect

Logistic models/presence
of effect

Logistic models/absence
of effect

p-value 0.166 0.008 0.157 0.020

p-direction 0.171 0.013 0.154 0.024

p-MAP 0.239 0.002 0.238 0.032

ROPE (95%) 0.033 0.359 0.008 0.310

ROPE (full) 0.025 0.363 0.016 0.315

Bayes factor (vs. 0) 0.198 0.116 0.116 0.141

Bayes factor (vs. ROPE) 0.152 0.136 0.078 0.180

This table shows the standardized coefficient between the sample size and the value of each index, adjusted for error, and stratified by model type and presence of true
effect. The stronger the coefficient is, the stronger the relationship with sample size.

[0.0001, 0.0002] range would be considered to be positive with
a high level of certainty (and thus, existing in that direction),
but also not significant (i.e., too small to be of any practical
relevance). Acknowledging the distinction and complementary

nature of these two aspects can in turn enrich the information
and usefulness of the results reported in psychological science
(for practical reasons, the implementation of this dual-framework
of existence-significance testing is made straightforward through
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TABLE 2 | Sensitivity to noise.

Index Linear models/presence
of effect

Logistic models/presence
of effect

p-value 0.35 0.40

p-direction 0.36 0.40

p-MAP 0.55 0.60

ROPE (95%) 0.45 0.45

ROPE (full) 0.46 0.45

Bayes factor (vs. 0) 0.79 0.65

Bayes factor (vs. ROPE) 0.81 0.67

This table shows the standardized coefficient between noise and the value of each
index when the true effect is present, adjusted for sample size and stratified by
model type. The stronger the coefficient is, the stronger the relationship with noise.

the bayestestR open-source package for R; Makowski et al., 2019).
In this context, the pd and the MAP-based p-value appear
as indices of effect existence, mostly sensitive to the certainty
related to the direction of the effect. ROPE-based indices and
Bayes factors are indices of effect significance, related to the
magnitude and the amount of evidence in favor of it (see also a
similar discussion of statistical significance vs. effect size in the
frequentist framework; e.g., Cohen, 1994).

The inherent subjectivity related to the assessment of
significance is one of the practical limitations of ROPE-based
indices (despite being, conceptually, an asset, allowing for
contextual nuance in the interpretation), as they require an
explicit definition of the non-significant range (the ROPE).
Although default values have been reported in the literature
(for instance, half of a “negligible” effect size reference value;
Kruschke, 2014), it is critical to reproducibility and transparency
that the researcher’s choice is explicitly stated (and, if possible,
justified). Beyond being arbitrary, this range also has hard limits
(for instance, contrary to a value of 0.0499, a value of 0.0501
would be considered non-negligible if the range ends at 0.05).
This reinforces a categorical and clustered perspective of what
is by essence a continuous space of possibilities. Importantly, as
this range is fixed to the scale of the response (it is expressed
in the unit of the response), ROPE indices are sensitive to
changes in the scale of the predictors. For instance, negligible
results may change into non-negligible results when predictors
are scaled up (e.g., reaction times expressed in seconds instead
of milliseconds), which one inattentive or malicious researcher
could misleadingly present as “significant” (note that indices of
existence, such as the pd, would not be affected by this). Finally,
the ROPE definition is also dependent on the model type, and
selecting a consistent or homogeneous range for all the families
of models is not straightforward. This can make comparisons
between model types difficult, and an additional burden when
interpreting ROPE-based indices. In summary, while a well-
defined ROPE can be a powerful tool to give a different and
new perspective, it also requires extra caution on the paets of
authors and readers.

As for the difference between ROPE (95%) and ROPE
(full), we suggest reporting the latter (i.e., the percentage of
the whole posterior distribution that falls within the ROPE
instead of a given proportion of CI). This bypasses the use of

another arbitrary range (95%) and appears to be more sensitive
to delineate highly significant effects). Critically, rather than
using the percentage in ROPE as a dichotomous, all-or-nothing
decision criterion, such as suggested by the original equivalence
test (Kruschke, 2014), we recommend using the percentage as a
continuous index of significance (with explicitly specified cut-off
points if categorization is needed, for instance 5% for significance
and 95% for non-significance).

Our results underline the Bayes factor as an interesting index,
able to provide evidence in favor or against the presence of an
effect. Moreover, its easy interpretation in terms of odds in favor
or against one hypothesis or another makes it a compelling index
for communication. Nevertheless, one of the main critiques of
Bayes factors is its sensitivity to priors (shown in our results here
through its sensitivity to model types, as priors’ odds for logistic
and linear models are different). Moreover, while the BF appears
even better when compared with a ROPE than when compared
with a point-null, it also carries all the limitations related to
ROPE specification mentioned above. Thus, we recommend
using Bayes factors (preferentially vs. a ROPE) if the user has
explicitly specified (and has a rationale for) informative priors
(often called “subjective” priors; Wagenmakers, 2007). In the
end, there is a relative proximity between Bayes factors (vs.
ROPE) and the percentage in ROPE (full), consistent with their
mathematical relationship.

Being quite different from the Bayes factor and ROPE indices,
the Probability of Direction (pd) is an index of effect existence
representing the certainty with which an effect goes in a particular
direction (i.e., is positive or negative). Beyond its simplicity of
interpretation, understanding and computation, this index also
presents other interesting properties. It is independent from the
model, i.e., it is solely based on the posterior distributions and
does not require any additional information from the data or the
model. Contrary to ROPE-based indices, it is robust to the scale of
both the response variable and the predictors. Nevertheless, this
index also presents some limitations. Most importantly, the pd is
not relevant for assessing the size or importance of an effect and
is not able to provide information in favor of the null hypothesis.
In other words, a high pd suggests the presence of an effect but a
small pd does not give us any information about how plausible the
null hypothesis is, suggesting that this index can only be used to
eventually reject the null hypothesis (which is consistent with the
interpretation of the frequentist p-value). In contrast, BFs (and to
some extent the percentage in ROPE) increase or decrease as the
evidence becomes stronger (more data points), in both directions.

Much of the strengths of the pd also apply to the MAP-based
p-value. Although possibly showing some superiority in terms
of sensitivity as compared to it, it also presents an important
limitation. Indeed, the MAP is mathematically dependent on the
density at 0 and at the mode. However, the density estimation
of a continuous distribution is a statistical problem on its own
and many different methods exist. It is possible that changing
the density estimation may impact the MAP-based p-value, with
unknown results. The pd, however, has a linear relationship with
the frequentist p-value, which is in our opinion an asset.

After all the criticism regarding the frequentist p-value,
it may appear contradictory to suggest the usage of its
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TABLE 3 | Summary of Bayesian indices of effect existence and significance.

Index Interpretation Definition Strengths Limitations

Probability of
Direction (pd)

Probability that an effect is of
the same sign as the median’s

Proportion of the
posterior distribution of
the same sign than the
median’s

Straightforward computation and
interpretation. Objective property of
the posterior distribution. 1:1
correspondence with the frequentist
p-value

Limited information favoring the null
hypothesis

MAP-based
p-value

Relative odds of the presence
of an effect against 0

Density value at 0 divided
by the density value at
the mode of the posterior
distribution

Straightforward computation.
Objective property of the posterior
distribution

Limited information favoring the null
hypothesis. Relates on density
approximation. Indirect relationship
between mathematical definition and
interpretation

ROPE (95%) Probability that the credible
effect values are not negligible

Proportion of the 95% CI
inside of a range of values
defined as the ROPE

Provides information related to the
practical relevance of the effects

A ROPE range needs to be arbitrarily
defined. Sensitive to the scale (the unit)
of the predictors. Not sensitive to highly
significant effects

ROPE (full) Probability that the effect
possible values are not
negligible

Proportion of the
posterior distribution
inside of a range of values
defined as the ROPE

Provides information related to the
practical relevance of the effects

A ROPE range needs to be arbitrarily
defined. Sensitive to the scale (the unit)
of the predictors

Bayes factor (vs. 0) The degree by which the
probability mass has shifted
away from or toward the null
value, after observing the data

Ratio of the density of the
null value between the
posterior and the prior
distributions

An unbounded continuous measure
of relative evidence. Allows
statistically supporting the null
hypothesis

Sensitive to selection of prior
distribution shape, location and scale

Bayes factor (vs.
ROPE)

The degree by which the
probability mass has into or
outside of the null interval
(ROPE), after observing the
data

Ratio of the odds of the
posterior vs. the prior
distribution falling inside
of the range of values
defined as the ROPE

An unbounded continuous measure
of relative evidence. Allows
statistically supporting the null
hypothesis. Compared to the BF (vs.
0), evidence is accumulated faster
for the null when the null is true

Sensitive to selection of prior
distribution shape, location and scale.
Additionally, a ROPE range needs to be
arbitrarily defined, which is sensitive to
the scale (the unit) of the predictors

Bayesian empirical equivalent. The subtler perspective that we
support is that the p-value is not an intrinsically bad, or
wrong, index. Instead, it is its misuse, misunderstanding and
misinterpretation that fuels the decay of the situation into
the crisis. Interestingly, the proximity between the pd and the
p-value follows the original definition of the latter (Fisher, 1925)
as an index of effect existence rather than significance (as in
“worth of interest”; Cohen, 1994). Addressing this confusion, the
Bayesian equivalent has an intuitive meaning and interpretation,
contributing to making more obvious the fact that all thresholds
and heuristics are arbitrary. In summary, the mathematical and
interpretative transparency of the pd, and its conceptualization
as an index of effect existence, offer valuable insight into the
characterization of Bayesian results, and its practical proximity
with the frequentist p-value makes it a perfect metric to ease
the transition of psychological research into the adoption of the
Bayesian framework.

Our study has some limitations. First, our simulations were
based on simple linear and logistic regression models. Although
these models are widespread, the behavior of the presented
indices for other model families or types, such as count models
or mixed effects models, still needs to be explored. Furthermore,
we only tested continuous predictors. The indices may behave
differently when varying the type of predictor (binary, ordinal)
as well. Finally, we limited our simulations to small sample sizes,
for the reason that data is particularly noisy in small samples, and
experiments in psychology often include only a limited number
of subjects. However, it is possible that the indices converge (or

diverge) for larger samples. Importantly, before being able to
draw a definitive conclusion about the qualities of these indices,
further studies should investigate the robustness of these indices
to sampling characteristics (e.g., sampling algorithm, number of
iterations, chains, warm-up) and the impact of prior specification
(Kass and Raftery, 1995; Vanpaemel, 2010; Kruschke, 2011), all of
which are important parameters of Bayesian statistics.

REPORTING GUIDELINES

How can the current observations be used to improve statistical
good practices in psychological science? Based on the present
comparison, we can start outlining the following guidelines. As
existence and significance are complementary perspectives, we
suggest using at minimum one index of each category. As an
objective index of effect existence, the pd should be reported,
for its simplicity of interpretation, its robustness and its numeric
proximity to the well-known frequentist p-value; As an index of
significance either the BF (vs. ROPE) or the ROPE (full) should
be reported, for their ability to discriminate between presence
and absence of effect (De Santis, 2007) and the information they
provide related to evidence of the size of the effect. Selection
between the BF (vs. ROPE) or the ROPE (full) should depend
on the informativeness of the priors used – when uninformative
priors are used, and there is little prior knowledge regarding the
expected size of the effect, the ROPE (full) should be reported as it
reflects only the posterior distribution and is not sensitive to the
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width of a wide-range of prior scales (Rouder et al., 2018). On the
other hand, in cases where informed priors are used, reflecting
prior knowledge regarding the expected size of the effect, BF (vs.
ROPE) should be used.

Defining appropriate heuristics to aid in interpretation is
beyond the scope of this paper, as it would require testing them
on more natural datasets. Nevertheless, if we take the frequentist
framework and the existing literature as a reference point, it
seems that 95, 97, and 99% may be relevant reference points (i.e.,
easy-to-remember values) for the pd. A concise, standardized,
reference template sentence to describe the parameter of a model
including an index of point-estimate, uncertainty, existence,
significance and effect size (Cohen, 1988) could be, in the case
of pd and BF:

“There is moderate evidence (BFROPE = 3.44) [BF (vs. ROPE)]
in favor of the presence of effect of X, which has a
probability of 98.14% [pd] of being negative (Median = −5.04,
89%CI[−8.31, 0.12]), and can be considered to be small
(Std. Median=−0.29) [standardized coefficient].”

And if the user decides to use the percentage in ROPE instead
of the BF:

“The effect of X has a probability of 98.14% [pd] of being negative
(Median=−5.04, 89%CI[−8.31, 0.12]), and can be considered
to be small (Std.Median=−0.29) [standardized coefficient] and
significant (0.82% in ROPE) [ROPE (full)].”
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