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INTRODUCTION

This commentary builds upon the recent theoretical paper by Kang et al. (2019) to advance the
debate currently going on about psychology and big data. The aim is to discuss the feasibility
of extending the conceptualization proposed by the authors—i.e., Big Data of Safety Psychology
(BDSP)—to other branches of psychology going beyond the only safety domain, ultimately pointing
out a big data of whatever psychology scenario. This will lead to suggest a perspective enrichment
from a solely big data applied to psychology paradigm toward a much less advocated psychology
applied to big data.

BIG DATA OF WHATEVER PSYCHOLOGY

Big Data are generally defined as data being high in volume, velocity, and variety. That is, a
huge amount of data is produced at an inedited fast pace coming from broadly diverse sources.
Big data are characterized by varying quality (veracity issues) and are usually unstructured (raw
digital information like texts or images) vs. structured (data traditionally representable on statistical
software spreadsheets like numbers or Likert-type measurements). Big Data result from a global
datafication phenomenon that is impacting contemporary human everyday life (Chen andWojcik,
2016). Indeed, nowadays people are constantly using various types of online and offline digital
ICTs—especially social media—which generate great quantities of data.

Although not free from pitfalls, Big Data are offering benefits to many academic and industrial
sectors. This is because information can be inferred, and predictions made, based on the inductive
observation of real-world behavioral patterns displayed by unprecedently large datasets. In the
history of psychology, the official turning point in big data uptake can be traced to the 2016
PsychologicalMethods special issue entirely devoted to such topic (Harlow andOswald, 2016). From
there on, big data approaches to psychology have become increasingly popular (Jones, 2017), and
several scholars have initiated both theoretical and empirical investigation entailing the use of big
data within different sub-disciplines of psychology.

Among these, Kang et al. (2019) introduced the BDSP concept to hold how big data
adoption and utilization may positively affect workplace health and safety. They define BDSP as
“structured, semi-structured, and unstructured datasets formed by psychological index parameters
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and behavior, which provide potential and valuable psychological
knowledge and rules to solve the psychological issues related to
safety with the help of big data technology” (p. 3). Of course,
safety is an extremely interesting and practically relevant field
for big data implementation as it is aimed at managing risks and
preventing accidents. Nevertheless, the paper provides input to
wonder why we should limit our scope to the safety domain and
not including other ones into the big data of psychology discourse.
Examples of big data applications are identifiable in numerous
areas of psychology, such as organizational (Guzzo et al., 2015;
Tonidandel et al., 2016), educational (aka learning analytics;
Watson and Christensen, 2017;Maldonado-Mahauad et al., 2018;
Viberg et al., 2018; Elia et al., 2019; Shorfuzzaman et al., 2019),
marketing (Hopp and Vargo, 2017; Matz and Netzer, 2017; Erceg
et al., 2018; Ibrahim andWang, 2019), personality (Bleidorn et al.,
2017; Boyd and Pennebaker, 2017; Gerlach et al., 2018; Hinds
and Joinson, 2019), emotion (aka affective computing; D’Mello
et al., 2018; Chatterjee et al., 2019; Gruda and Hasan, 2019),
psycholinguistics (Ridgeway et al., 2017; Johns, 2019; Luo et al.,
2019), clinical (Anestis et al., 2016; Russ et al., 2018), cognitive
(Medina and Fischer-Baum, 2017; Bhatia and Walasek, 2019),
community (O’Brien, 2016), group (Guadagno et al., 2018),
music (Greenberg and Rentfrow, 2017), political (Ma-Kellams
et al., 2018), and positive psychology (Luhmann, 2017; Yaden
et al., 2018). Additionally, the representation of BDSP as being
the intersection of safety science, data science, and psychology,
seems to equally fit other psychology branches. For instance, we
might say that big data of organizational psychology constitute the
link between organization science, data science, and psychology.
As well, one may state that big data of political psychology connect
political science, data science, and psychology. Basically, it will
suffice to replace the first term of the equation. Finally, the seven
listed characteristics, along with the 15 types of BDSP, are also
easily transferable to different psychological sub-domains. This
line of reasoning leads us to conclude that we are actually in front
of a big data of whatever psychology (BDWP) landscape.

FROM “BIG DATA APPLIED TO

PSYCHOLOGY” TOWARD “PSYCHOLOGY

APPLIED TO BIG DATA”

All BDWP literature outputs show one common feature. They
all encompass big data as a tool or instrument at the disposal

of psychological disciplines. So, no more doubts are around big
data usefulness in psychology—and for sure we need further
methodological developments and researchers’ upskilling to
exploit it (Liem et al., 2018; Bleidorn and Hopwood, 2019).
Today, the question is no longer whether big data should be
used in psychological applications, or what the role of big data
in psychology could be.

Therefore, new conceptualization needs regarding the
relationship between psychology and big data are stimulated.
As a call for discipline self-reflection, we suggest that the
question is now becoming what the role of psychology might
become in a big data era. This would imply a paradigm shift
from big data applied to psychology toward psychology applied
to big data. For instance, it is recognized that big data are
associated with individual, cultural, organizational, structural,
and technological barriers hindering their acceptance. These
entail concerns about privacy and personal information
confidentiality (Fast and Jago, 2019), lack of IT infrastructure
readiness, and poor analytic skills (Alharthi et al., 2017).
These factors can determine resistance to their adoption
(Raguseo, 2018), increase people’s skepticism toward this
technology (Van Rijmenam, 2014), and thus undermine its
potential benefits.

How are psychological disciplines going to address similar
issues, for example by deploying human-technology interaction
frameworks (e.g., Technology Acceptance Model; Davis, 1989)
or organizational change management strategies (e.g., Calvard,
2016)? Are psychologists going to only use already available tools
or also develop new tailored, targeted ones? Future research can
use this kind of questions to start stepping forward within the
theoretical, empirical and practical debate about psychology and
big data.
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