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Humans are characterized by their ability to leverage rules for classifying and
linking stimuli to context-appropriate actions. Previous studies have shown that
when humans learn stimulus-response associations for two-dimensional stimuli, they
implicitly form and generalize hierarchical rule structures (task-sets). However, the
cognitive processes underlying structure formation are poorly understood. Across four
experiments, we manipulated how trial-unique images mapped onto responses to
bias spontaneous task-set formation and investigated structure learning through the
lens of incidental stimulus encoding. Participants performed a learning task designed
to either promote task-set formation (by “motor-clustering” possible stimulus-action
rules), or to discourage it (by using arbitrary category-response mappings). We
adjudicated between two hypotheses: Structure learning may promote attention to
task stimuli, thus resulting in better subsequent memory. Alternatively, building task-
sets might impose cognitive demands (for instance, on working memory) that divert
attention away from stimulus encoding. While the clustering manipulation affected
task-set formation, there were also substantial individual differences. Importantly,
structure learning incurred a cost: spontaneous task-set formation was associated
with diminished stimulus encoding. Thus, spontaneous hierarchical task-set formation
appears to involve cognitive demands that divert attention away from encoding of task
stimuli during structure learning.

Keywords: cognitive control, attention, memory, structure learning, cognitive flexibility

INTRODUCTION

Humans are characterized by a remarkable degree of cognitive flexibility, allowing us to respond to
an identical stimulus in a variety of ways, as a function of context. This flexibility derives from our
ability to form, apply, and update “task-sets” that define context-specific stimulus-response rules
(e.g., Monsell, 2003). The study of task-sets has, to a large extent, focused on how people maintain
and switch between explicitly instructed rules, as in classic cued task-switching studies (e.g., Allport
et al., 1994; Rogers and Monsell, 1995; reviewed in Kiesel et al., 2010; Vandierendonck et al., 2010).
By contrast, how people learn to form task-sets through trial-and-error learning has received much
less attention in the task-switching literature (but see Dreisbach et al., 2006, 2007). Moreover, while
a parallel learning literature has examined how individuals infer and identify causal structure (e.g.,
Gershman and Niv, 2010; Wilson and Niv, 2012; Schapiro et al., 2013), not much attention has

Frontiers in Psychology | www.frontiersin.org 1 December 2019 | Volume 10 | Article 2833

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2019.02833
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2019.02833
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2019.02833&domain=pdf&date_stamp=2019-12-17
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.02833/full
http://loop.frontiersin.org/people/511294/overview
http://loop.frontiersin.org/people/379/overview
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-02833 December 14, 2019 Time: 15:49 # 2

Bejjani and Egner Spontaneous Task-Set Learning Affects Memory

been paid to the process of task structure building in terms of its
immediate cognitive demands and consequences.

Connecting these distinct but related literatures, we here
ask the question: How does learning task structure affect the
processing of the stimuli that form the input of the learning
process? One potent way to answer this question is through the
lens of incidental stimulus encoding, since on-task fluctuations
in attention ramify in subsequent memory for task stimuli (e.g.,
deBettencourt et al., 2017). By measuring incidental memory
for task stimuli as a function of the structure learning process
via a surprise recognition memory test, we can infer where
participants focused their attention. This approach has proved
successful in elucidating attentional processing during cued task-
switching (Richter and Yeung, 2012; Chiu and Egner, 2016). To
our knowledge, no previous study has assessed how the process
of building and applying a hierarchical task-set impacts the
encoding of individual task stimuli. Importantly, an improved
understanding of implicit structure formation via incidental
encoding adds further insight into interactions between attention
and memory in everyday scenarios.

We therefore sought to examine structure learning through
incidental task stimulus encoding. We build on recent studies
that have shown that when humans learn stimulus-response
associations for multi-dimensional stimuli, they implicitly form
and generalize abstract, hierarchical task sets (Badre et al.,
2010; Collins and Frank, 2013, 2016a,b; Collins et al., 2014;
Collins, 2017; Bhandari and Badre, 2018), sometimes even in
the absence of inherent structure and performance advantages.
Specifically, we here leverage the design of a recent learning task
(Collins and Frank, 2016a) that manipulated how stimulus-action
rules were mapped to response keys as a means of promoting
structure learning. In this task, participants learn to map four
two-dimensional stimuli (blue/green triangle/circle) onto four
response buttons. To solve this learning problem, participants
can memorize all four stimulus-response associations (“flat
mapping”) or form a hierarchical mapping, where one higher-
level dimension (e.g., color) acts as a context that cues
the task-set and the other dimension (e.g., shape) cues the
appropriate response rule. We therefore refer to “structure”
when participants discriminate the causal relationship between
variables in their environment and organize their responses into
a hierarchical task-set.

Whether participants build hierarchical task-sets can be
inferred from switch costs (cf. Monsell, 2003): participants
are slower and more error-prone when their supraordinate
dimension (in the above example, color) switches between trials
than when their sub-ordinate dimension (i.e., shape) changes,
due to additional processing involved in reconfiguring the task-
set (Rogers and Monsell, 1995) and/or overcoming proactive
interference from the previous set (Allport et al., 1994). Switch
costs should be non-existent for participants who adopt a flat
mapping, because if they have simply memorized the four
stimulus-response associations, there are no supraordinate or
sub-ordinate stimulus dimensions. Any transition from one
stimulus to another would simply represent a change in the
specific S-R mapping retrieved, but would not constitute a
task-switch. By contrast, switch costs should be non-zero for

participants who adopt a hierarchical task-set, because a change
in the supraordinate stimulus dimension would initiate a change
in the task rule that is used to determine the correct response (e.g.,
Collins and Frank, 2013, 2016a,b; Collins et al., 2014).

Given the non-instructed nature of task-set formation
processes in this protocol, the experimenter does not have
direct control over whether participants adopt a flat mapping
or hierarchical task-set strategy in learning the task. However,
in order to promote hierarchical set formation in half of
the participants and discourage it in the other half, we
adopted a biasing technique from Collins and Frank (2016a).
Specifically, the proclivity for task-set formation can be biased
by manipulating whether stimulus-response mappings are
“motor-clustered” along a supraordinate dimension, such that
the response mappings for each task-set are either spatially
adjacent or not (Figure 1). For example, the color dimension
could cue this shape task-set: if participants observe a blue
stimulus, they use their right index finger for a triangle and
right middle finger for a circle, via a clustered mapping,
whereas for a non-clustered mapping, they use their right
index finger and right ring or pinky fingers, respectively.
This manipulation ultimately results in a greater proclivity for
hierarchical structure building (i.e., greater switch costs) for
mappings that are motor-biased (i.e., spatially adjacent) than
those that are not (Collins and Frank, 2016a), and allows us
to naturally bias the likelihood of participants engaging in
structure learning.

We here extend this prior work with some key design
modifications: we adapt the task to the item (Experiment 1) and
category level (Experiments 2–4), using trial-unique object and
face stimuli that differ along various stimulus dimensions, so
as to assess effects of spontaneous structure learning (as gaged
via switch costs) on incidental stimulus encoding in a surprise
memory phase (MP). These changes allow us to control for low-
level feature priming effects that are inevitable in the original task
due to the small stimulus set, and improve ecological validity.
Finally, our primary design change allows us to understand
structure learning in terms of its immediate cognitive demands
and consequences, that is, inferring how implicitly forming task-
sets occurs via assessing incidental encoding, which can only
be done using trial-unique stimuli. Of particular focus in the
context are the early stages of task performance, as this is when
the structure learning process would be expected to take place
(cf. Badre et al., 2010).

If building spontaneous hierarchical task-sets imposes
cognitive demands that divert attention away from stimulus
encoding, this would result in worse memory for stimuli
encountered, in particular during early structure learning. For
instance, structure learning may impose demands on working
memory through hypothesis testing of possible rule structures
(cf. Gershman and Niv, 2010; Ashby and Maddox, 2011).
Alternatively, during learning, participants may selectively
attend more to particular stimulus features or dimensions as a
means of exploiting environmental redundancy, thus resulting
in better subsequent memory for task stimuli (cf. Aly and
Turk-Browne, 2017). To adjudicate between these hypotheses,
we ran four experiments that individually manipulated the level
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FIGURE 1 | Summary of Task Manipulation. For “non-clustered” learners, response mappings were arbitrarily determined; for “clustered” learners, they were spatially
adjacent on the keyboard along a higher-level stimulus dimension. For instance, if all learners applied a hierarchical task-set where color cued the shape task-set,
clustered learners would press their right index and middle fingers for a blue square and circle, while non-clustered learners would press their right index and pinky
fingers for a blue square and circle. This clustering manipulation was primarily used to promote differences in the strength of structure learning and thus our ability to
detect differences in incidental encoding later. Object images were used in Experiment 1, organized by border color (red/blue) and shape (square/circle). Faces were
used in Experiments 2–4, organized by apparent gender identity (female/male) and age (young, i.e., less than 30 vs. old, i.e., older than 45).

of stimulus encoding, changes to category-response associations,
and instructions about the category-response associations.

EXPERIMENT 1

The goal of Experiment 1 was to replicate the effect of
spontaneous task-set formation but with trial-unique stimuli.
In this first experiment, we directly adopted the shape/color
dimensions employed in previous studies (e.g., Collins and
Frank, 2016a) as task-relevant stimulus features, while placing
inside the colored shapes trial-unique, task irrelevant object
images. This manipulation allowed us to examine how structure
learning affects both incidental encoding of these items as well
as source memory of the color-shape context in which an item
was encountered.

The task consisted of a trial-and-error learning phase (LP),
an instructed filler task phase, and a surprise MP (Figure 2).
In the LP, participants had to learn, via trial-and-error response
feedback, which response buttons matched superficial border
categories that were characterized by shape (square/circle) and
color (blue/red) dimensions and surrounded trial-unique object
images. For “non-clustered” learners, response mappings were

arbitrary; for “clustered” learners, they were clustered together
on the keyboard (v, b, n, m) by stimulus features along a higher-
level dimension (e.g., shape or color) (Figure 1). For instance, if
participants saw a red square and used color as their higher-level
dimension, the corresponding hierarchical task-set that clustered
learners should learn was “If red, press v for square and b for
circle” while for non-clustered learners the flat mapping, was “If
red, press v for square and m for circle.” The motor-clustering
manipulation of learner group was primarily used to promote
differences in the likelihood and/or strength of structure learning,
and this experiment remained closest to the original learning
task (cf. Collins and Frank, 2016a), but further tested incidental
memory of the task-irrelevant object images. In the filler phase
(FP), participants performed a standard instructed task-switching
paradigm with different classes of trial-unique stimuli. In the
surprise MP, participants were presented with new images and
images from the LP, and were first asked to identify whether they
had seen the images in the LP and then asked about the rule
context in which they had seen the images.

If participants are learning the latent task structure through
hypothesis testing, and this process imposes cognitive demands
(e.g., on working memory) that divert attention away from
the task stimuli, we should observe greater incidental encoding
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FIGURE 2 | Summary of Task Procedure. (A,D) In the trial-and-error learning phase (LP), participants learned the associations between response buttons and image
categories via feedback. In Experiment 1, object images were presented within borders that varied by shape (circle/square) and color (red/blue). In Experiments 2–4,
face images were presented and varied by age (young/old) and assumed gender identity (male/female). (B,E) Next, in the instructed filler phase (FP), participants
performed a standard task-switching paradigm in which the color of the border cued the task-relevant judgment, with trial-unique face images [instructed age
(young/old) and gender (female/male)] in Experiment 1 and object images [instructed animacy (man-made/natural) and physical size (smaller/larger than a shoebox)]
in Experiments 2–4. (C,F) Finally, in the incidental memory phase (MP), participants judged whether they had previously seen images in the learning phase. In
Experiment 1 alone, because object images were shown within different border colors and shapes, participants were also probed for their source memory of the
border color and shape.

for non-clustered (flat) compared to clustered (hierarchical)
learners. However, if participants selectively attend more
to particular stimulus dimensions during structure learning,
we should observe greater incidental encoding for clustered
(hierarchical) compared to non-clustered (flat) learners. For both
hypotheses, we predict that differences in memory between the

two learner groups should be observed primarily for images
that are presented early in the task, when structure learning
would be most evident. Clustered learners should take less
time than non-clustered learners to acquire category-response
mapping associations because of the inherent rule structure
(cf. Badre et al., 2010), but once these associations are learned, the
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learners should perform equally well due to similar attentional
and cognitive resources.

Materials and Methods
Participants
Our target sample size was determined based on previous
experiments that examined structure learning (Collins and
Frank, 2013, 2016a,b; Collins et al., 2014), which had final
sample sizes between twenty-two and thirty-five participants.
In particular, Collins and Frank (2016a) reported a Cohen’s
dz of 0.88 when comparing motor-clustered RT switch costs
against zero, suggesting that for a one-sample two-sided t-test
with a high power of 0.90 and error rate of 0.05, we would
only need sixteen participants to find significant switch costs.
Note that in this study, we do not compute a one-sample
t-test against zero, but instead use permutation-based analyses
(cf. Maris and Oostenveld, 2007; Groppe et al., 2011). These
analyses are typically more robust and sensitive to trial count
in addition to sample size. Moreover, because we were more
interested in examining structure building through the lens of
incidental memory than probing switch costs, we aimed to recruit
around thirty viable participants for each of the two learning
groups across our experiments, thus doubling the a priori
estimated sample size.

Eighty-one Amazon Mechanical Turk (MTurk) workers
consented to participate for a $3.85 ($0.13/min) fee in accordance
with the policies of the Duke University Institutional Review
Board. Nine participants were excluded because of poor accuracy
on the LP (<65%; see instruction paragraph below) and
nine participants were excluded because of incorrect category-
response associations on the post-test questionnaire (see post-test
section for more details), resulting in a final sample size of sixty-
three (mean age = 32.1, SD = 8.7; 31 female, 32 male; clustered
n = 31, non-clustered n = 32). This level of exclusions is consistent
with research suggesting that attrition rates among web-based
experiments varies between 3 and 37% (cf. Chandler et al., 2014).

Workers were told the approximate length of the study and
the number of the tasks that they had to complete. Workers were
asked to take no longer than 4 min for any of the breaks that
occurred during the study (e.g., between task phases). Finally,
they were also informed that they needed to get above 65%
accuracy on the LP for compensation, and that if they got above
90% accuracy, they could earn a flat $1 bonus. Nine workers
earned the bonus. Workers who participated in one experiment
were explicitly preempted from participating in the others. All
exclusion criteria remained the same across experiments.

Stimuli
We obtained object images from the Cabeza lab database1 and
Google searches of images with a license for non-commercial
reuse with modification. Pilot data suggested that participants did
not spontaneously form task-sets when asked to categorize object
images by innate properties such as animacy (man-made/natural)
and physical size (smaller/larger than a shoebox), and found
these judgments quite difficult. We therefore organized our object

1http://cabezalab.org/cabezalabobjects/

images according to superficial stimulus features: border color
(red/blue) and shape (square/circle). All object images were
cropped to 500× 300 pixels.

Experimental Procedure
The main study manipulation involved motor-clustering biases
that encouraged the formation of either a flat or hierarchically
structured task-set for shape/color border categories (Figure 1;
Collins and Frank, 2016a). This clustering manipulation allowed
us to investigate how participants form structured task-
sets, shown through switch costs incurred when switching
between feature dimension rules that were either superficial
(Experiment 1) or inherent to (Experiments 2–4) trial-unique
images from higher-level stimulus categories.

The task consisted of consecutive Learning, Filler, and MP
(Figure 2). On each trial in the LP (Figure 2A), participants
saw a fixation cross for 500 ms and an object image for
1250 ms, followed by performance feedback for 500 ms and
a blank ITI screen for 750 ms. Trial-unique object images
were shown within a border that varied in color (red/blue)
and shape (circle/square), which were the dimensions guiding
button responses. Participants were instructed to learn the
association between response buttons and border categories
(red/blue circle/square) via trial-and-error feedback about their
responses. Each response button (v, b, n, and m on a QWERTY
keyboard, mapped onto right index, right middle, right ring, and
right pinky fingers, respectively) was associated with only one
shape/color combination.

To create an encoding-retrieval interval and distract
participants from further encoding the LP images prior to the
surprise memory test, participants then underwent a 4-minute
FP (Figure 2B). The filler task consisted of a standard, cued
task-switching protocol Results of this task phase were of no
interest to our study goals and are therefore not reported.

Crucially, in the MP (Figure 2C), we then tested whether the
learner groups differed in their incidental stimulus encoding and
source memory. Participants were shown all the Old images from
the LP and ∼1/3 New images (44 due to uneven division of 128
Learning trials), each displayed for 2000 ms. They were then
asked whether the borders that had surrounded these images were
blue/red or a square/circle, with each source memory question
also shown for 2000 ms. The response mappings were always
shown on-screen (h, j, k, l mapped to Definitely Old/right index,
Probably Old/right middle, Definitely New/right ring, Probably
New/right pinky fingers, and a and s mapped to Red/Square/left
middle and Blue/Circle/left index fingers, respectively).

For all task phases, if participants did not respond before
the image disappeared from the screen, a feedback time-out
(“respond quicker”) was provided for 1000 ms to encourage
quicker responses. In Experiment 1, this occurred on a total of
3.05% of LP trials, 5.15% of MP trials, and 4.24% and 4.06% of
source memory color and shape trials.

All images were presented in the center of the screen. All
stimulus categories and trial types were shown in random order,
with equal frequency in every task phase [LP: 128 total trials
across 1 run; FP: 120 trials across 1 run; MP: 172 trials (128 old/44
new) across 2 runs].
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To counterbalance the memory judgments and dimensions
around which clustering biases were formed, and manipulate
clustering biases, we ran eight task versions. Four versions
were essentially duplicates, but with clustered instead of
non-clustered motor mappings. We did not have a priori
hypotheses about whether participants would prefer to use border
color/shape (Experiment 1) or age/gender (Experiments 2–4) as
supraordinate dimensions, so we ran clustered mapping versions
for each dimension. We also varied whether the source memory
questions about border color were asked before or after those
on border shape.

Post-test Questionnaire
After the main experiment, participants filled out a questionnaire
that assessed their explicit knowledge of the response mapping
and image category associations. If participants could not
accurately report the border category-response associations
(e.g., whether the button “v” was associated with a “red
square” border), we assumed that they either did not learn
the associations or were not sufficiently motivated to respond
correctly, and they were therefore excluded from the study.
Participants also responded to a series of debriefing questions
inquiring about their awareness of the task structure. However,
responses to these questions largely matched the implicit
measures of learned task-switch costs and are therefore not
reported here. Finally, participants marked how difficult they
found the task on a 1–5 Likert scale, anchored by not difficult
and very difficult, and this measure is not reported here for
the same reason.

Data Analysis
Analyses were carried out on accuracy (proportion correct) and
reaction time (RT) for the LP data and Hit and False Alarm rates
for the memory data. Memory data only included trials in which
the participants registered a response that was not excessively fast
(<200 ms) before the feedback time-out. LP RT was analyzed for
correct trials that were not excessively fast (<200 ms) or slow
(feedback time-out: >1250 ms). The first trial was excluded for
RT and accuracy data for switch cost calculations.

Learning Phase Switch Costs
In the Learning Phase, we calculated hypothetical switch costs
(Monsell, 2003) to test whether participants formed task-sets
according to a higher-level dimension (Collins and Frank,
2013, 2016a,b; Collins et al., 2014). For example, participants
could adopt the following task-set structure: “If Red, press v
for square and b for circle; if Blue, press n for square and
m for circle.” Here, participants would be quicker and more
accurate to respond to a red square trial following a red circle
trial, or a blue square trial following a blue circle trial, or
vice versa (“supraordinate-repeat” trials). If, however, they were
forced to switch between the supraordinate red and blue feature
rules, they should be slower and less accurate when responding
(“supraordinate-switch” trials). Both supraordinate-repeat and
switch trials were subtracted from each other to obtain a final
switch cost. In calculating switch costs, we excluded trials where
there was a double feature switch (e.g., red square followed by

blue circle), because these could not be unambiguously attributed
to either feature rule.

If participants did not form structured task-sets and
instead memorized the associations between buttons and image
categories (flat mapping), their switch costs should empirically
be zero. Because of our assumption about supraordinate repeat
and switch trials, the sign (positive or negative values) of
these switch costs only indicated which feature dimension
was supraordinate. We therefore took the absolute (unsigned)
value of all switch costs and then tested whether participants
formed implicit task-sets with a standard permutation method
that created an empirical null distribution within each learner
group. Specifically, we shuffled the labels of each trial type
within each participant, assuming that the conditions were
empirically meaningless, and then recalculated switch costs for
each participant 10,000 times. For group-level analysis, we
compared the mean z-score switch cost obtained from our
sample, within each learner group, against the 10,000 mean
z-scores obtained from permutations, testing whether the z-score
across participants was larger than the z-scores generated by an
empirical null distribution (two-sided test: 2.5%). For individual
difference analysis, we compared the normalized switch cost (d-
prime, i.e., µS− µN√( 1

2
)
(σ2

S+ σ2
N )

) for each participant against the 10,000

switch costs generated from permutations (two-sided test: 2.5%),
testing whether an individual showed a switch cost larger than
the switch costs generated by an individual-specific empirical null
distribution. We calculated z-scores using the standard error of
the mean for the group-level analysis, treating all participants
as having similar variance, and used standard deviation for the
individual difference analysis to account for individual variance.
Note that the normalized switch cost does not indicate the
strength of structure formation.

Finally, we determined the number of participants who used
each feature dimension as a supraordinate rule by evaluating their
response mappings and the sign of the raw switch costs.

In sum, we ran permutation tests to determine (a) whether
the learner groups showed overall significant switch costs
and (b) whether individuals, irrespective of group, showed
statistically meaningful switch costs, suggesting spontaneous
structure formation. We also determined whether the clustering
manipulation was effective by investigating the use of each
supraordinate rule and the magnitude of switch costs across
groups (see Supplementary Text).

Memory
In the MP, we collapsed “Definitely Old” and “Probably Old” and
“Definitely New” and “Probably New” responses into aggregate
“Old” and “New” measures. We then calculated Hit and False
Alarm rates and assessed whether incidental encoding was above
chance by comparing Hit and False Alarm rates within each
learner group with a paired t-test. We also used an independent-
samples t-test to compare Hit Rates for the one border/image
category that had the same response mapping across learner
groups (e.g., blue square in Figure 1) as a baseline measure of
individual differences in memory capacity or motivation between
the groups that might otherwise confound our results.
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Exploratory pilot analyses, estimating the trial at which the
95% confidence intervals for performance surpassed chance
performance (Smith et al., 2004), suggested that participants took
around fifteen trials to learn the associations between response
mappings and image categories. However, these individual
differences in learning varied by experiment, and depended on
the size of the training set for the model (e.g., initial 40 trials vs.
all trials). Overall, participants were also more accurate later in
the LP, suggesting that after the first sixty or so trials, they had
learned the stimulus-response rules.

Thus, to ensure adequate power, we created three bins of
30 and a fourth bin of 38 LP trials, in order to assess learning
over the duration of the LP. To assess whether any differences
in memory occurred due to time-dependent structure learning,
we next ran a repeated-measures ANOVA on Hit rates with
LP bin (4) as a within-participants factor and learner group
(clustered/non-clustered) as a between-participants factor. In
particular, we anticipated differences in memory to be most
prominent for images that were shown earlier in the LP, because
non-clustered learners should learn the associations between
response mappings and border/image categories slightly slower
than clustered learners. Thus, we expected early differences in
learning to manifest via differences in memory between the
learner groups. Because LP bin was a critical factor in our
analysis, if participants had fewer than 10 trials in any bin due to a
lack of response, they were excluded from the ANOVA. We used
this exclusion criterion (i.e., <10 trials) for all memory analyses.

To determine whether source memory was above chance, we
compared accuracy for old images rated as new and old with a
paired t-test for each learner group. We then compared accuracy
between learner groups using a repeated-measures ANOVA, with
trial type (border color/shape) and rating (old/new) as within-
participants factors and learner group (clustered/non-clustered)
as a between-participant factor.

In sum, we determined whether participants (a) encoded
images above chance, (b) differed in baseline levels of motivation
or memory capacity, and (c) showed differences in time-
dependent learning across groups.

All data were Greenhouse–Geisser corrected where
appropriate. Effect sizes were calculated according to published
recommendations (Lakens, 2013)2. Data and experimental
code are online at https://github.com/christinabejjani/
ClusteredTSMem.

Results
Learning Phase (LP)
To test whether participants formed hierarchical task-sets at
the group-level, we compared their normalized switch costs
against an empirical null distribution. Specifically, we counted
the number of mean z-score switch costs from the empirical
null distribution that were smaller than the mean z-score
switch cost obtained from our data for both learner groups
separately. Mean z-score switch costs were not significant (i.e.,
two-sided test: greater than 97.50%) for clustered learners or non-
clustered learners when compared to their respective empirical

2https://osf.io/ixGcd/

FIGURE 3 | Observed Learning Phase RT Switch Costs. Learning phase
reaction time (RT) switch costs are shown as a function of experiment and
learner group (clustered: red; non-clustered: green). Switch costs are
displayed in milliseconds on the x-axis, with the mean of each distribution
outlined in black as a scatter plot point. Participant data are displayed as
scatter points. Note that only Experiment 2 generated significant switch costs
for the clustered learner group.

null distributions (clustered: RT = 68.41%, Accuracy = 16.54%;
non-clustered: RT = 59.98%, Accuracy = 92.98%). Thus, neither
group showed significant evidence of structure formation. See
Figures 3, 4 for RT and accuracy switch cost distributions and
Supplementary Table 1 for switch cost means and confidence
intervals across all experiments.

To explore individual differences in structure formation, we
then compared the normalized switch cost for each participant
against their individual-specific null distribution. Thirteen
participants in the clustered group and two participants in the
non-clustered group had RT or accuracy normalized switch
costs that were at least 97.50% larger than their respective
permuted switch costs.

Signed mean RT switch costs indicated that 32 participants
categorized object images by border color and 31 by border shape
(clustered: 18 BC, 13 BS; non-clustered: 14 BC, 18 BS). This
suggests two points: (1) participants had about equal likelihood
of using either stimulus feature as a supraordinate dimension and
(2) most participants in the clustered group followed the mapping
suggested by the cluster manipulation.

Memory Phase (MP)
Both clustered [Hit vs. FA: t(30) = 6.51, p < 0.001, Cohen’s
d = 0.91, CL effect size = 88%] and non-clustered learners
[t(31) = 4.28, p < 0.001, Cohen’s d = 0.58, CL effect size = 78%]
remembered the task-irrelevant object images above chance.

However, consistent with the lack of group-level structure
formation, we observed little evidence for group differences
in incidental memory. See Supplementary Table 2 for full
behavioral data from the MP across experiments.
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FIGURE 4 | Observed Learning Phase Accuracy Switch Costs. Learning
phase accuracy switch costs are shown as a function of experiment and
learner group (clustered: red; non-clustered: green). Switch costs are
displayed as a proportion of correct responses on the x-axis, with the mean of
each distribution outlined in black as a scatter plot point. Participant data are
displayed as scatter points. Note that only Experiment 2 generated significant
switch costs for the clustered learner group.

There were no differences in incidental encoding via time-
dependent learning [Figure 5; LP bin: F(2.75,167.96) = 1.04,
p = 0.371, ηp

2 = 0.02; LP bin × group: F(2.75,167.96) = 1.27,
p = 0.288, ηp

2 = 0.02]. Nor did we observe any differences in
overall Hit Rate between learner groups [group: F(1,61) = 1.82,
p = 0.182, ηp

2 = 0.03].
Neither clustered learners nor non-clustered learners had

above chance source memory accuracy for border color or shape
trials (Clustered: Old images rated Old vs. New: ts < 0.42; Non-
clustered: ts < 0.97). There were no significant effects on source
memory (Fs < 1.68).

Discussion
The results of Experiment 1 did not replicate previous evidence
of spontaneous task-set formation (cf. Collins and Frank, 2013,
2016a,b; Collins et al., 2014). Consistent with the lack of learner
group differences in spontaneous task-set formation, we also
found no significant differences in recognition memory between
groups. In fact, overall memory performance was rather poor.

In Experiment 1, the trial-unique images were irrelevant
to task-set formation, which may have degraded stimulus
processing altogether. Prior studies employed very small sets
of task relevant stimulus features (cf. Collins and Frank, 2013,
2016a,b; Collins et al., 2014), which did not allow for tests of
recognition memory and may suggest that structure formation
is prone to large individual differences or results from feature
priming effects across trials. In order to answer our question
about how learning task structure impacts incidental stimulus
encoding, and whether spontaneous structure formation is

constrained by feature priming, we addressed this level of
encoding limitation in Experiment 2 by using task-relevant trial-
unique images.

EXPERIMENT 2

We ran Experiment 2 to address the question of how structure
learning, facilitated by motor clustering biases, affects incidental
encoding. Because the object images in Experiment 1 were
task-irrelevant, this may have masked differences in how
learning affects incidental encoding, and hurt our ability to
adjudicate between our hypotheses. Specifically, the effect of
structure learning on incidental memory may depend on the
level of stimulus encoding. We therefore sought to render
the trial-unique images directly task-relevant, which should
promote deeper encoding. Including task-relevant trial-unique
images should also control for feature priming confounds in
previous work, since each trial now shows a completely new
and unique stimulus (cf. Collins and Frank, 2013, 2016a,b;
Collins et al., 2014).

Faces are social, have inherent value (e.g., Smith et al., 2010),
can prime attentional categories (e.g., Cañadas et al., 2013),
and may be categorized by a number of features (e.g., age,
gender identity, emotion). Here, using face features as task-
relevant stimulus categories (face age/gender identity), we tested
how implicit task-set learning affects cognitive flexibility and
incidental encoding.

Materials and Methods
Participants
Eighty-four MTurk workers consented to participate for a $2.25
($0.13/min) fee. Two participants were excluded because they
were older than 60 (72 and 73); seven participants were excluded
for incorrect answers on the post-test assessing their knowledge
of the category-response associations; and nine participants were
excluded due to poor accuracy (<65%), resulting in a final sample
size of sixty-four (mean age = 34.86, SD = 8.62; 27 female, 37
male; clustered n = 33, non-clustered n = 31). Thirty participants
earned the $1 bonus.

Stimuli
We obtained face images from several databases (Ebner et al.,
2010; Bainbridge et al., 2013; http://fei.edu.br/~cet/facedatabase.
html) and Google searches for older men and women under
a non-commercial reuse with modification license. Piloting
confirmed that the modal response for gender was either
female or male and was neutral for emotion (instead of happy,
sad, angry, fearful, surprised, or disgusted). The mean and
modal response for age indicated that young faces were rated
as less than 20 years or 20–30 years old, while old faces
were rated as 45–60 years or 60+ years old. We excluded
faces that were not neutral, ambiguous in assumed gender
identity, 30–45 years old, and celebrity images. We ensured
that each stimulus category had exactly 43 white/Caucasian
faces and nine faces of other racial categories (Young female:
four South Asian, three Hispanic, one East Asian, one Black;
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FIGURE 5 | Hit Rates in the Memory Phase. Hit rates are shown as a function of experiment (top row: Experiment 1; bottom row: Experiment 4), learner group
(clustered: red line in left panel and all lines in middle panel; non-clustered: green line in left panel and all lines in right panel), and learning phase bins (four bins of
thirty images each). The line in the left panel indicates the mean Hit rate across participants within learner groups, with the 95% confidence interval shaded for each
group. The center and right panels indicate individual Hit rates, with each individual in a different color.
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Old female: four East Asian, three South Asian, two Middle-
Eastern; Young male: five Hispanic, four South Asian; Old
male: five Middle-Eastern, two South Asian, two East Asian;
race/ethnicity, age, emotion, and gender options mimicked
Bainbridge et al. (2013) for consistency). All images were cropped
into an oval frame taken from Bainbridge et al. (2013) and were
280× 350 pixels.

Once we applied these filters to minimize differences in
arousal and promote easy categorization of age and gender
identity, we had a final stimulus set of 208 face images that
differed in age (young, i.e., younger than 30 and old, i.e.,
older than 45) and gender identity (female/male) but not
emotion (all neutral), and was somewhat diverse and controlled
for race/ethnicity. This ensured that we had manipulated the
stimulus categories that might influence how participants learned
structured task-sets.

Experimental Procedure
Experiment 2 used face stimuli, but otherwise employed the
same task structure as Experiment 1 (Figures 1, 2). Participants
were now told that face images varied according to age
(young, i.e., less than 30 years old, and old, i.e., more
than 45 years old) and gender (female/male) rather than
the superficial border categories we used for object images
in Experiment 1 (Figure 2D). Here, we used 120 LP trials,
keeping a similar trial count to ensure that recognition memory
accuracy was high.

For the 160 MP trials (120 old/40 new), Definitely Old,
Probably Old, Definitely New, Probably New were mapped onto
the a, s, k, and l keys and left middle and index and right
index and middle fingers, respectively. Because this experiment
required judgments based on inherent rather than artificially
created contextual stimulus properties, there were no source
memory questions (Figure 2F).

Feedback time-outs occurred on a total of 2.91% of LP trials
and 2.92% of MP trials.

There were four task versions, counterbalanced for the
biased dimension (age/gender) and learner group (clustered/
non-clustered).

Results
Learning Phase (LP)
Mean z-score switch costs for clustered learners were significantly
larger than z-score switch costs derived from the empirical
null distribution (RT: 97.83%, Accuracy: 98.11%). For non-
clustered learners, these percentages were 75.80% and 29.02%,
suggesting that clustered learners, but not non-clustered learners,
spontaneously formed structured task-sets.

Examining individual differences in spontaneous task-set
formation, we found that two clustered learners and one non-
clustered learner showed RT or accuracy normalized switch
costs larger than their individual permuted switch costs at least
97.50% of the time.

Reaction time switch costs suggested that 31 participants
employed gender and 33 employed age as the supraordinate
dimension (clustered: 17 gender, 16 age; non-clustered: 14
gender, 17 age).

Memory Phase (MP)
Both clustered [Hit vs. FA: t(32) = 6.75, p < 0.001, Cohen’s
d = 1.44, CL effect size = 88%] and non-clustered learners
[t(30) = 5.78, p < 0.001, Cohen’s d = 0.96, CL effect size = 85%]
remembered the face images above chance. As with Experiment
1, Hit rates for images that had the same response mapping
across learner groups did not differ between the learner
groups (t < 0.04).

In line with time-dependent learning, both learner groups
encoded face images presented earlier in the LP better than
those presented later [LP bin: F(2.26,135.52) = 10.46, p < 0.001,
ηp

2 = 0.15]. However, consistent with our hypothesis that
differences in memory would emerge early in the task, when
structure learning was most prominent, non-clustered learners
had larger Hit rates than clustered learners for earlier images [LP
bin × group: F(2.26,135.52) = 3.14, p = 0.040, ηp

2 = 0.05], but
not larger Hit rates overall [group: F(1,60) = 1.31, p = 0.257,
ηp

2 = 0.02]. A follow-up t-test indicated that non-clustered
learners showed a marginal trend toward better memory than
clustered learners for the first 30 LP trials (t(60) = 1.96,
p = 0.055, Cohen’s d = 0.51, CL effect size = 64%; clustered:
M = 0.57, 95% CI [0.51, 0.62]; non-clustered: M = 0.65, 95%
CI [0.58, 0.72]).

Are any differences in memory related to individual variability
in spontaneous task-set formation? We added individual RT
and accuracy switch costs as covariates in an exploratory
repeated-measures ANOVA, reanalyzing the memory data while
accounting for a continuous measure of how individuals’
structure formation affects time-dependent learning. Results
were largely in line with the ANOVA at the group-level [LP bin:
F(2.22,128.64) = 2.26, p = 0.103, ηp

2 = 0.04; LP bin × group:
F(2.22,128.64) = 2.84, p = 0.056, ηp

2 = 0.05; all other Fs < 1.22].
Altogether these results suggest that structure learning may
slightly degrade early incidental encoding for task-relevant, trial-
unique images.

Discussion
The results of Experiment 2 provide evidence that humans
generate hierarchical task-sets for grouping trial-unique stimuli
into categories. Although the stimuli were completely new and
unique on every trial, controlling for feature priming confounds
(cf. Collins and Frank, 2013, 2016a,b; Collins et al., 2014),
we found that most clustered, but not non-clustered, learners
formed implicit task-sets. To our knowledge, this is the first
demonstration of people spontaneously forming hierarchical task
sets at the category level, and it qualifies previous conclusions
about the nature of spontaneous structure formation (cf. Collins
and Frank, 2013, 2016a,b; Collins et al., 2014). When stimuli
allow for easy categorization (via motor clustering) and are task-
relevant, participants spontaneously build task-sets; otherwise,
this tendency toward structure formation may be less common
in larger, less superficial stimulus sets.

Consistent with the hypothesis that differences in memory
would occur earlier as a function of structure learning, we found
(weak) evidence that the tendency toward spontaneous task-
set formation resulted in a cost to memory: the early phase
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of spontaneous hierarchical task-set formation was associated
with slightly diminished task stimulus encoding. However,
although we found a significant interaction between the time
when images were shown in the LP and the clustering
manipulation, the evidence regarding differences in memory
requires replication, given the small effect size. Therefore, in
Experiment 3, we sought to replicate the differences in memory
we observed and address more specifically the effect of structure
learning on memory.

EXPERIMENT 3

We hypothesize that the differences in memory we observed
in Experiment 2 stem primarily from differences in early
structure formation. To test this prediction, we next sought to
manipulate our task design such that participants would have
to learn new category-response associations, but not infer new
latent causes or branches for their task-sets. Specifically, this
would require remapping the learned associations, but not the
latent task structure.

Inspired by the Wisconsin Card Sorting Task (Grant and
Berg, 1948), we aimed to investigate whether an implicit switch
in S-R rules would alter incidental memory. Specifically, if
the response mappings were disrupted, would this lead to
differences in later memory between the learners? To this
end, in Experiment 3, halfway through the LP, unbeknownst
to participants, the supraordinate dimension guiding response
mappings was flipped, which forced participants to learn new
category-response associations. Because the implicit rule switch
occurred halfway through the LP, we anticipated replicating the
association between early task-set formation and diminished
stimulus encoding.

If differences in memory were caused by differences in
attention for particular stimulus-response associations, we
should observe differences in later incidental encoding between
the groups after the implicit rule switch, especially for the stimuli
with response mappings that changed. However, if differences in
memory were caused by differences in early structure learning, we
should observe no differences in later incidental encoding, even
while participants adapt to the implicit rule switch (as that switch
did not involve a new task structure).

Materials and Methods
Participants
Eighty-three MTurk workers consented to participate for a $2.25
($0.13/min) fee. Fourteen participants were excluded because
of incorrect post-test identification of the category-response
associations, and eleven participants were excluded because of
poor accuracy (<65%), resulting in a final sample size of fifty-
eight (mean age = 33.24, SD = 8.37; 30 female, 27 male, 1 no reply;
clustered n = 28 and non-clustered n = 30). Nine participants
earned the $1 bonus.

Experimental Procedure
Experiment 3 used the same stimuli and task structure as
Experiment 2, but included an implicit rule switch in the LP.

This implicit response mapping switch was foreshadowed in the
task instructions. Specifically, the instructions said:

“Please note that the correct response button for each face
image category may, in fact, change during the task.”

This is in contrast to:

“The correct response button for each image category will
not change during this task.” (Experiment 1)
“Please note that the correct response button for each
face image category will not change during the task.”
(Experiment 2, Experiment 4)

Halfway into the LP, the response mappings changed. For
clustered learners, this was a flip of the motor-clustered
supraordinate dimension: response mappings became clustered
around the other stimulus feature. Non-clustered learners
meanwhile had to relearn a new pair of associations. For both
learner groups, this dimensional flip meant that two of the
stimulus categories had the same button mapping throughout the
task (“positive transfer”), while two changed (“negative transfer”).
Although the pre-task instructions hinted at the rule switch,
there was no indication while participants performed the task
that the mappings had changed beyond the trial-by-trial feedback
that they received.

Feedback time-outs occurred on a total of 2.35% of LP trials
and 2.27% of MP trials.

First, to assess whether participants were able to adapt to
the rule change, despite potentially detrimental transfer costs
in accuracy, we compared switch costs for before and after the
implicit rule switch, using a repeated-measures ANOVA with
time (pre/post rule switch) as the within-subjects factor and
learner group (clustered/non-clustered) as the between-subjects
factor. Next, to assess whether the rule switch was effective and
resulted in transfer costs in accuracy, we ran a repeated-measures
ANOVA on the post-switch accuracy data, using transfer
(positive/negative) and time bin (61–90, 91–120 trial count) as
within-participants factors and learner group (clustered/non-
clustered) as the between-participants factor. We predicted that
participants would show worse accuracy for negative vs. positive
transfer trials, because structure would facilitate performance for
positive, but not negative, transfer trials, and that these transfer
costs should diminish over time as participants relearned the
category-response associations. Analyses otherwise remained the
same as in Experiment 2.

Results
Learning Phase (LP)
Mean z-score switch costs for clustered learners did not differ
significantly from the empirical null distribution (RT: 31.20%,
Accuracy: 54.42%). These percentages were similar for non-
clustered learners (RT: 74.75%, Accuracy: 63.59%). Results were
non-significant when z-scored switch costs were calculated using
only the sixty trials before the rule switch (clustered RT: 54.43%,
Accuracy: 88.65%; non-clustered RT: 55.24%, Accuracy: 88.27%).

When examining individual differences in spontaneous task-
set formation, two clustered and five non-clustered learners

Frontiers in Psychology | www.frontiersin.org 11 December 2019 | Volume 10 | Article 2833

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-02833 December 14, 2019 Time: 15:49 # 12

Bejjani and Egner Spontaneous Task-Set Learning Affects Memory

showed significant RT or accuracy switch costs. When only
considering the first sixty trials, this estimate changes to four and
three learners, respectively, suggesting that fewer trials for switch
cost estimation affected the variance within participants for the
overall analysis.

Reaction time switch costs suggest that 31 participants
employed gender and 27 employed age as the supraordinate
dimension (clustered: 15 gender, 13 age; non-clustered: 16
gender, 14 age).

The implicit rule switch successfully affected performance,
as shown by (1) smaller switch costs and (2) worse accuracy
when learned associations changed (transfer costs). Absolute
mean switch costs were smaller after the rule switch across
groups [RT time: F(1,56) = 4.32, p = 0.042, ηp

2 = 0.07; accuracy:
F(1,56) = 5.02, p = 0.029, ηp

2 = 0.08; all other effects: F < 1.74].
The main effects of transfer [F(1,56) = 89.16, p < 0.001,
ηp

2 = 0.61] and LP bin [F(1,56) = 58.70, p < 0.001, ηp
2 = 0.51]

on accuracy were qualified by an interaction (F(1,56) = 94.77,
p < 0.001, ηp

2 = 0.63). Thus, participants had transfer costs that
degraded over time as they learned the new associations (all other
effects: F < 0.48).

Memory Phase (MP)
Both clustered [Hit vs. FA: t(27) = 6.55, p < 0.001, Cohen’s
d = 1.66, CL effect size = 89%] and non-clustered learners
[t(29) = 6.81, p < 0.001, Cohen’s d = 1.10, CL effect
size = 89%] remembered the face images at above chance. As
with Experiments 1 and 2, Hit rates for images that had the same
response mapping across learner groups (t < 0.89) did not differ
between the learner groups.

All participants encoded face images presented earlier
in the LP better than those presented later [LP bin:
F(2.41,134.74) = 15.02, p < 0.001, ηp

2 = 0.21]. This effect
did not vary by learner group over the course of the experiment
[LP bin × group: F(2.41,134.74) = 1.53, p = 0.216, ηp

2 = 0.03;
group: F(1,56) = 1.91, p = 0.172, ηp

2 = 0.03]. When we account
for the individual RT and accuracy pre-rule-switch switch
costs, the results of the ANOVA remain largely similar [LP
bin: F(2.42,128.46) = 4.49, p = 0.009, ηp

2 = 0.08; RT switch
cost: F(1,53) = 2.81, p = 0.100, ηp

2 = 0.05; all other Fs < 1.45].
However, replicating Experiment 2, non-clustered learners
showed better memory than clustered learners for the first
30 LP images (t(56) = 2.48, p = 0.016, Cohen’s d = 0.66, CL
effect size = 68%; clustered: M = 0.61, 95% CI [0.56, 0.65];
non-clustered: M = 0.69, 95% CI [0.64, 0.74]).

Discussion
In Experiment 3, unlike in Experiment 2, we did not observe
significant group-level switch costs for either learner group, in
part because the implicit rule switch successfully disrupted task-
set formation for all participants. However, as in Experiment
2, we were able to identify individual participants who showed
significant switch costs.

One unanswered question is whether participants kept the
same hierarchical task structure or changed their supraordinate
rules to adapt to the change in response mappings. Switch
costs differed before and after the rule switch, suggesting

that most participants kept applying the same task-sets they
had originally learned, even though the button mappings had
changed. However, the permutation analysis suggested that only
some participants formed hierarchical task-sets in the first place.
This question could be answered by increasing analytic sensitivity
via a larger trial count prior to the implicit rule switch or with
an fMRI experiment, probing whether representations of the
stimulus categories, perhaps in the prefrontal cortex (Badre et al.,
2010), vary as a function of learning and the implicit rule switch
(cf. Kriegeskorte and Kievit, 2013).

Finally, we also replicated the association between diminished
incidental encoding and early task-set formation. We found
that non-clustered learners encoded images presented earlier
in the LP better than clustered learners. Because this occurred
for Experiments 2 and 3, but not Experiment 1, we infer that
this effect is only present when images are encoded relatively
deeply – here, in the context of classifying faces by gender
or age (or both) – as compared to the completely incidental
processing in Experiment 1. Experiment 3 also suggests that
this effect is driven by differences in early structure learning:
after an implicit rule switch that disrupted category-response
associations, but kept the same latent task structure, we did not
observe any differences in memory between the learner groups.
However, in order to definitively test whether these differences in
incidental encoding are truly driven by structure learning rather
than differences in attention for particular S-R associations,
implicit, trial-by-error task-set learning should be contrasted
against the instructed implementation of task-sets. We therefore
chose to run an instructed mappings version of Experiment 2
in Experiment 4.

EXPERIMENT 4

To further examine whether differences in trial-and-error
task-set learning drove the memory differences between the
learner groups, we ran a version of Experiment 2 that pitted
implicit task-set learning against the simple implementation of
explicitly instructed response mappings (flat or hierarchical). If
we observed differences in memory even when the response
mappings were explicit and participants no longer needed to
learn the association between response buttons and face image
categories through trial-and-error, this would indicate that the
implementation of structure alone could change incidental
encoding. If, however, we observed tempered or no differences
in memory between hierarchical vs. flat instructed mappings, this
would suggest that interactions between early structure building
and associative learning subsequently shape incidental memory.

Materials and Methods
Participants
Eighty-eight MTurk workers consented to participate for a
$2.25 ($0.13/min) fee. Seven participants were excluded because
of incorrect post-test identification of the category-response
associations, and sixteen participants were excluded because of
poor accuracy (<65%), resulting in a final sample size of sixty-
five (mean age = 33.25, SD = 9.37; 33 female, 32 male; clustered
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n = 31 and non-clustered n = 34). Thirty-six participants
earned the $1 bonus.

Experimental Procedure
Experiment 4 differed from Experiment 2 only in that it explicitly
informed participants of the response mappings. For example,
instead of reading,

“You will have to figure out, through trial-and-error via
feedback about your responses, which button response is
correct for each category. You will use the v/V, b/B, n/N,
and m/M keys to respond.”

Participants read:

Clustered: “If the face image is YOUNG, press v/V for
female and b/B for male. If the face image is OLD, press
n/N for female and m/M for male.”
Non-clustered: “If the face image is YOUNG, press v/V for
female and m/M for male. If the face image is OLD, press
n/N for female and b/B for male.”

Feedback time-outs occurred on a total of 3.38% of LP trials
and 2.99% of MP trials.

Results
Learning Phase (LP)
Unlike Experiments 1–3, while mean z-score switch costs
were not significant for clustered learners when compared to
an empirical null distribution (RT: 81.19%; accuracy: 9.09%),
accuracy switch costs for non-clustered learners were significant
(RT: 0.29%, accuracy: 98.60%). With instructed rather than
implicitly learned response mappings, perhaps participants had
more difficulty with implementing the task-set rules when they
were not intuitively structured, i.e., adjacent on the keyboard.

When examining individual differences, however, ten
clustered and one non-clustered learners showed significant
RT or accuracy switch costs at least 97.50% of the time,
suggesting that differences in structure formation observed at the
group-level are subject to much individual variation.

Reaction time switch costs suggested that 34 participants
employed gender and 31 employed age as the supraordinate
dimension (clustered: 18 gender, 13 age; non-clustered: 16
gender, 18 age).

Memory Phase (MP)
Both clustered [Hit vs. FA: t(30) = 8.68, p < 0.001, Cohen’s
d = 2.04, CL effect size = 94%] and non-clustered learners
[t(32) = 7.20, p < 0.001, Cohen’s d = 1.93, CL effect size = 90%]
remembered the face images at above chance level. Unlike
Experiments 1–3, Hit rates for images that had the same response
mapping across learner groups were slightly higher for clustered
learners, suggesting the existence of some individual differences
in memory capacity or motivation [t(62) = 1.78, p = 0.081,
Cohen’s d = 0.45, CL effect size = 62%].

As with Experiments 2 and 3, both learner groups encoded
face images presented earlier in the LP better than those presented
later [LP bin: F(3,183) = 5.67, p < 0.001, ηp

2 = 0.09]. Now that
the task-sets were instructed, however, this memory difference

did not vary by group [LP bin × group: F < 0.47; group:
F(1,61) = 2.04, p = 0.158, ηp

2 = 0.03]. Indeed, in contrast to
Experiments 2 and 3, the learners had similar Hit rates for the
first 30 LP images (t < 0.72; clustered: M = 0.61, 95% CI [0.56,
0.66]; non-clustered: M = 0.64, 95% CI [0.58, 0.69]).

When we accounted for individual differences in switch
costs, results from the ANOVA were largely similar [LP bin:
F(3,177) = 2.22, p = 0.088, ηp

2 = 0.04; group: F(1,59) = 2.53,
p = 0.117, ηp

2 = 0.04; Accuracy switch cost: F(1,59) = 2.12,
p = 0.151, ηp

2 = 0.04; LP bin × group: F(3,177) = 1.88,
p = 0.133, ηp

2 = 0.03; RT switch cost F < 0.15], although
there was a significant interaction between individual accuracy
switch cost and LP bin [F(3,177) = 2.69, p = 0.048, ηp

2 = 0.04]
and an interaction between individual RT switch cost and bin
[F(3,177) = 3.57, p = 0.015, ηp

2 = 0.06]. Individuals with smaller
RT and accuracy switch costs had primacy and recency effects
in memory, while individuals with larger switch costs showed a
strong primacy effect, with average Hit rates largely decreasing in
each subsequent bin.

Compiling Data Across Experiments
In Experiments 2 and 3, the first sixty trials were identical
across the task design, Experiments 2–4 all used face stimuli,
and Experiments 2 and 4 differed only in whether participants
had to implicitly learn or had instructed task-sets. We therefore
performed post hoc comparisons across MP data in order to
increase our statistical power.

To examine the effect of early task-set formation on Hit Rates,
we ran a repeated-measures ANOVA with LP bin (1–30, 31–60)
as a within-participants factor and Experiment (2/3) and learner
group (clustered/non-clustered) as between-participants factors.
Hit rates were higher for the first 30 vs. second 30 images from
the LP [bin: F(1,116) = 33.47, p < 0.001, ηp

2 = 0.22], and this did
not vary by experiment [bin x group: F(1,116) = 1.34, p = 0.249,
ηp

2 = 0.01; experiment: F(1,116) = 1.84, p = 0.178, ηp
2 = 0.02; all

other effects, F < 0.78]. However, Hit rates for the first 60 LP trials
were significantly larger for non-clustered than clustered learners
(group: F(1,116) = 8.32, p = 0.005, ηp

2 = 0.07; first 30 images:
t(118) = 3.10, p = 0.003, Cohen’s d = 0.57, CL effect size = 66%;
clustered M = 0.59, 95% CI [0.55, 0.62]; non-clustered M = 0.67,
95% CI [0.63, 0.71]). Results were similar when we added in the
individual RT and accuracy switch costs [group: F(1,113) = 6.36,
p = 0.013, ηp

2 = 0.05; bin: F(1,113) = 10.44, p = 0.002, ηp
2 = 0.09;

Experiment: F(1,113) = 3.14, p = 0.079, ηp
2 = 0.03; RT switch

costs: F(1,113) = 2.52, p = 0.115, ηp
2 = 0.02; all other Fs < 1.72].

To compare the effects of instructed vs. implicit task-set
learning on incidental encoding, we ran a repeated-measures
ANOVA on Hit Rates for the first sixty trials from Experiments
2–4, using LP bin (1–30, 31–60) as a within-participants
factor and learning type (trial-and-error/instructed) and cluster
group (cluster/non-clustered) as between-participants factors.
We found, again, that participants encoded the first 30 vs.
second 30 LP images better (bin: F(1,179) = 35.91, p < 0.001,
ηp

2 = 0.17), and that this did not vary by experiment (all
other effects, F < 1.13). However, as expected, non-clustered
learners encoded the first sixty LP images better than clustered
learners (group: F(1,179) = 6.98, p = 0.009, ηp

2 = 0.04; first
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30 images: t(181) = 2.93, p = 0.004, Cohen’s d = 0.44, CL
effect size = 62%, clustered M = 0.59, 95% CI [0.57, 0.62],
non-clustered M = 0.66, 95% CI [0.63, 0.69]), suggesting that
structure learning, facilitated by motor-clustering biases, plays a
larger role in differences observed for early incidental encoding
than any difference between learning implicit vs. instructed task-
sets. Results were similar when we added in the individual RT
and accuracy switch costs [group: F(1,176) = 3.88, p = 0.050,
ηp

2 = 0.02; bin: F(1,176) = 13.54, p < 0.001, ηp
2 = 0.07;

RT switch cost: F(1,176) = 3.12, p = 0.079, ηp
2 = 0.02; all

other Fs < 1.29].

Discussion
In our everyday lives, adaptive behavior is facilitated by our ability
to discover and leverage rules for grouping stimuli and linking
them to appropriate actions. While previous literature has shown
that humans can spontaneously form and generalize abstract
rule structures for two-dimensional stimuli, relatively little work
has investigated how such structure learning is achieved or how
it impacts concurrent stimulus processing and encoding. Here,
we leveraged the human tendency to exploit redundancy within
complex environments by manipulating response mappings from
factorially crossed stimulus categories to bias spontaneous task-
set formation.

We first examined switch costs and found that people
generate clustered task-sets for grouping trial-unique stimuli
into categories when stimulus-response mappings encourage
dimensional grouping, but that this tendency toward structure
formation may, in fact, be more of an individual difference
than a general effect. Specifically, only in Experiment 2 did
clustered learners show strong switch costs consistent with
spontaneous task-set formation, although there were individuals
from both learner groups in all experiments who showed
significant switch costs. Because we found significant switch costs
within individuals of each group across all experiments, but only
found significant switch costs within the clustered learners for
Experiment 2, we thus infer that people spontaneously form
task-sets, but that the boundary conditions are quite narrow.
Specifically, spontaneous task-set formation may be more likely
only when there are feature repetitions and a small stimulus set
(cf. Collins and Frank, 2013, 2016a,b; Collins et al., 2014).

Second, we found that experimentally clustering the category-
response associations increased switch costs, but may not have
directly related to biasing spontaneous task-set formation. When
the category-response associations were instructed (Experiment
4) rather than implicitly discovered (Experiments 2, 3), and
the stimulus dimensions were superficial (Experiment 1) rather
than semantic stimulus properties (Experiments 2, 3), clustered
learners had larger switch costs than non-clustered learners
(see Supplementary Text). Aggregating the data into a larger
model across the three experiments that used task-relevant
stimulus categories (Experiments 2–4), results suggested that the
motor-clustering manipulation increased switch costs more when
task-sets were acquired via explicit instructions than through
experience. While we mostly do not replicate the main findings of
Collins and Frank (2016a), only observing spontaneous task-set
formation at the group level when category-response associations

were implicitly learned over many trials, we do replicate the
“clustering bonus,” or increase in the mean switch cost, associated
with the experimental manipulation.

Third, and most importantly, this tendency to build structured
task-sets resulted in a cost to memory: the early phase of
spontaneous task-set formation was associated with diminished
task stimulus encoding. When trial-unique images were task-
relevant and deeply encoded (Experiments 2, 3), Hit rates were
higher for images presented earlier in the LP for non-clustered
vs. clustered learners. Combining data with that of Experiment
4, where the task-sets were explicitly instructed, these memory
differences still held. Across four experiments, we found little
evidence that individual differences in memory capacity or
motivation, measured by Hit rates for the category-response
association that was held constant across learner groups, affected
our results. In short, because we found an association between
worse memory for early incidental encoding of the images and
spontaneous task-set formation, we conclude that participants
learned the task structure through hypothesis testing, which
imposed cognitive demands that diverted attention away from
the task stimuli.

An alternative explanation of these findings could be that
learning the category-response mappings sapped attention away
from the individual images, leading to differences in memory
between the learner groups. For instance, although both groups
were engaged in learning the category-response associations,
clustered learners may have learned the associations quicker and
used short cuts once they learned the basic task structure (e.g.,
“long white hair” means “old female”) rather than process the
images holistically. We directly tested this possibility by switching
the stimulus dimension around which response mappings were
organized (Experiment 3), which disrupted category-response
associations without changing the basic causal task structure. We
found no differences in memory post-switch between the learner
groups and replicated the differences in incidental encoding
between the learner groups for images presented earlier in the
LP. Although memory was overall poorer post-switch than pre-
switch, we also found that across Experiments 2–4, memory was
better for both learner groups for task-relevant images presented
earlier than later in the LP. These results thus provide evidence
that the differences in incidental encoding we observed were
caused specifically by differences in early structure learning.

In sum, while learning the category-response associations and
building structured task-sets, all participants are likely testing
hypotheses about how to best exploit the redundancy in the
task environment (cf. Kemp and Tenenbaum, 2009; Gershman
and Niv, 2010), including the motor-clustering manipulation.
When structure learning is facilitated by motor-clustering biases,
it diminishes incidental stimulus encoding. Future research
could explicitly test the working memory demands imposed
by such implicit task-set formation with the manipulation in
Experiment 2, but with occasional working memory probes in
the LP instead of the full-fledged three-phase task design used
here. If structure learning imposes additional working memory
demands, participants should do worse at immediately matching
the trial-unique images they were recently categorizing when
in the cluster than non-clustered group. The level of specificity
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within working memory could also be manipulated by probing
whether participants still have the particular category template vs.
specific image in mind and testing how these working memory
probes impact switch costs across groups.

One notable limitation in these experiments, however, is that
the spatial distances on the keyboard differ as a function of the
clustering manipulation (Figure 1). For the clustered learners,
the distances between buttons are on average 1.5 keyboard units
(1, 1, 2, 2), while for the non-clustered learners, the distances
are on average 2.3 (2, 2, 4, 1). Nonetheless, it is highly unlikely
that any differences in recognition memory result as a function
of these differences in button distance: participants showed no
significant differences in memory for the one category of images
that had the same button mapping across learner groups (see
Supplementary Table 2). Moreover, not all participants showed
evidence of structure formation and the results suggested that
memory differences were specific to individuals who showed
significant switch costs.

Finally, although we were able to aggregate data across
Experiments 2–4, we could not include Experiment 1. This is
a notable design limitation: an alternate version of Experiment
1 could have involved face images within superficial borders,
manipulating which dimensions were task relevant as a factor
across Experiments 1 and 2 (i.e., borders vs. gender/age). That
manipulation would have avoided the confound of particular
stimulus details and the difficulty we faced in having participants
categorize object images.

Similarly, another design limitation is our inability to
determine whether spontaneous task-set formation caused, or
was associated with, diminished task stimulus encoding. The
non-instructed nature of the task-set formation process meant
that participants within both learner groups were able to
spontaneously learn the latent task structure and that we did
not have control over any strategy they used. We therefore
do not know what the exact reasons are for a participant
adopting hierarchical representations. To facilitate comparison
with Collins and Frank (2016a), we also created empirical null
distributions for switch costs within cluster groups; for a more
generalizable analysis, we could have shuffled the group label to
compare switch costs for a random sample of participants.

To understand how this work fits within existing literature, we
will now consider three related fields: category learning, control
learning, and reinforcement learning (RL).

Relationship to Category Learning
Within the category learning literature, two memory systems
are described as competing for influence when humans
decide on optimal decision rules (Ashby and Maddox, 2005,
2011; for debate on multiple memory systems, see e.g.,
Poldrack and Foerde, 2008). The verbal system learns explicit,
consciously controlled rules through hypothesis testing, while the
implicit system uses procedural learning to maximize accuracy
on a categorization task by integrating information across
stimulus dimensions.

Although the verbal system closely resembles the structured
task-set learning outlined in this study, with rules instantiated
through reinforcement history until they are no longer useful,

we do not view our work through the lens of category learning,
for several reasons. First, a key component of the verbal system
is that rules are explicit and verbalizable, and our study was not
designed to disentangle the effects of conscious awareness. The
facial stimulus dimensions were also not separable, and when
humans have more difficulty selectively attending to a single
stimulus dimension, it is typically assumed that the implicit
system wins the competition with the verbal system (Ashby
et al., 1998). Finally, in many category-learning tasks, the goal
is to acquire abstract knowledge via new categories. Our task
explicitly relies on highly learned categories like faces, and
increasing levels of expertise with a category (cf. Gauthier et al.,
2000) can change stimulus processing, suggesting that our study
involves category representations that inform spontaneous task-
set formation rather than explicit categorization or category
learning per se.

However, future research could isolate the similarities and
differences between category and task-set learning. For example,
it is assumed that there is a bias toward the verbal system, with
humans biased to spontaneously form task-sets. Switch costs
may reflect the cognitively demanding process of reconfiguring
between task-sets (Koch et al., 2018), while category learning
also assumes that switching between the categorization systems
is subject to interference (Crossley et al., 2018). At what point do
these systems differ? Longman et al. (2018) recently found that
instructions can bias stimulus-response learning over category-
response learning and stimulus-classification learning, suggesting
that one point of differentiation may stem from how the
learning goal is framed.

Relationship to Control-Learning
Task-set learning comprises a subdomain of the control-
learning literature. In the most related branch of that literature,
participants learn to associate the process of task-switching
with predictive contextual cues or task statistics (Dreisbach
and Haider, 2006; Leboe et al., 2008; Crump and Logan, 2010;
Chiu and Egner, 2017). This type of control-learning differs
from most other studies on task-switching, where participants
are given explicit cues to recruit control and prepare for
an upcoming switch, or a feature of the task stimulus itself
cues switching between tasks (Monsell, 2003). However, both
research domains have focused on how task-set learning or
preparation reflects increased cognitive flexibility (Koch et al.,
2018), ignoring how structure learning can bias control-learning
(cf. Bejjani et al., 2018).

Recently, Bhandari and Badre (2018) have illustrated how
learning abstract task knowledge can facilitate control processing:
they found that participants can learn and transfer control
policies that support flexible behavior based on the task structure.
Such policy abstraction (cf. Collins and Frank, 2013, 2016a,b;
Collins et al., 2014) is consistent with how our participants
implicitly built task-sets, even when there was no inherent
benefit to doing so. This increased flexibility can, unfortunately,
result in costs to memory. Both children and adults who
perform a learning task in which pairs of objects are associated
with particular response rules suffer an accuracy cost when
the response rule shifts for the first time for a particular
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object pair, but readily adapt on subsequent shifts (Darby
et al., 2018). Such conflict between long-term encoding of
pair-response contingencies and the response rule currently in
working memory suggests that there may be a cost to memory
incurred with the cognitive flexibility provided by structure
building. One question that arises from these data is whether
this cost to memory is observed only for the type of structure
building assessed in our study or generalizes to scenarios
when selective attention more readily biases control processing
(e.g., Addleman et al., 2018).

Relationship to Reinforcement Learning
The control-learning, category learning, and structure learning
literatures are often described in terms of RL. A basic RL problem
involves a set of environmental states, a set of actions taken at
these states, a transition function that maps how actions will
cause the transition to another state, and a reward function that
indicates the amount of reward available at each state (Sutton
and Barto, 1998). The typical assumption is that agents learn
a set of actions, or a policy, that maximizes overall reward.
However, with larger task domains, the number of actions
and states that the agent must track also increases, taxing
the system such that basic RL models do not scale well with
increasing task complexity (Botvinick et al., 2009). Simple RL
models thus cannot handle working memory constraints well
(Collins and Frank, 2012). Furthermore, typical RL algorithms
assume that agents are explicitly aware of states and actions (cf.
Gershman and Niv, 2010).

One recently proposed solution to both how humans infer
states and actions from observation and reduce computational
demands assumes that humans are constantly updating their
beliefs about the latent causes of reinforcement in their
environment (Gershman and Niv, 2010). Once structure has
been inferred, the agent can then redefine a new set of
states to maximize reward. This work fits well with the
current study, where humans spontaneously form task-sets
comprised of category-response associations, perhaps as a result
of inferring structure from the environment (cf. Wilson and
Niv, 2012; Rothe et al., 2018). Moreover, this proposal has
been expanded to account for differences in memory (cf.
Gershman and Daw, 2017; Gershman et al., 2017). Here,
associative and structure learning interact such that agents
learn conditioned associations between stimuli and responses,
but these associations are also informed by the agent’s beliefs
about the environment. Whenever an agent learns a new latent
cause for a surprising event, a new memory is created, in
order to update expectations about the environment; if the
surprising event is the result of an old latent cause, memories
are updated with additional expectations. In this scenario,
while participants were learning about the structure of their
environment, new memories are created, but once participants
had formed task-sets, old memories were updated even when
participants made a surprising error applying their task-sets. This
could account for the lack of differences in memory between our
learner groups later in the task while explaining early variance
in memory due to learning. One open question is whether
structure learning has similar effects on memory regardless of

what structure (e.g., a task-set, control policy, control state)
is being learned.

Application Outside the Laboratory
One of the most pervasive demands on modern public
health is multi-tasking. Koch et al. (2018) proposed the
intriguing notion that task-switching and dual tasking both
test common cognitive mechanisms that underlie human
multitasking. These mechanisms include processing bottlenecks
(structural deficiencies), cognitive flexibility, and cognitive
plasticity. Although this experiment was not designed to test
multitasking specifically, it may offer an insight into the
mechanisms underlying poorer behavioral outcomes while multi-
tasking (e.g., Cain et al., 2016; Uncapher et al., 2016). For
instance, in the classroom, when students engage in the initial
acquisition of new complex rules, teachers cannot and should not
expect their students to remember the particulars of the study
material rather than just the learned rules. This application of
our work outside the laboratory, however, remains an untested
speculation to be addressed in the future.

CONCLUSION

Adaptive human behavior is characterized by remarkable
cognitive flexibility, such that we can adapt to changing demands
across environments. One mechanism that facilitates cognitive
flexibility is structure learning, whereby we exploit redundancy
within our environment to respond more efficiently in line
with internal goals. Here, we provide evidence that humans
spontaneously form category-response rules, or task-sets, but that
this tendency toward structure learning also results in a cost
to incidental memory. This is one possible mechanism through
which multi-tasking leads to poorer behavioral outcomes.
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