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Empirical sciences in general and psychological science in particular are plagued
by replicability problems and biased published effect sizes. Although dissemination
bias-related phenomena such as publication bias, time-lag bias, or visibility bias are
well-known and have been intensively studied, another variant of effect distorting
mechanisms, so-called decline effects, have not. Conceptually, decline effects are
rooted in low initial (exploratory) study power due to strategic researcher behavior and
can be expected to yield overproportional effect declines. Although decline effects have
been documented in individual meta-analytic investigations, systematic evidence for
decline effects in the psychological literature remains to date unavailable. Therefore,
we present in this meta-meta-analysis a systematic investigation of the decline effect in
intelligence research. In all, data from 22 meta-analyses comprising 36 meta-analytical
and 1,391 primary effect sizes (N = 697,000+) that have been published in the
journal Intelligence were included in our analyses. Two different analytic approaches
showed consistent evidence for a higher prevalence of cross-temporal effect declines
compared to effect increases, yielding a ratio of about 2:1. Moreover, effect declines
were considerably stronger when referenced to the initial primary study within a meta-
analysis, yielding about twice the magnitude of effect increases. Effect misestimations
were more substantial when initial studies had smaller sample sizes and reported
larger effects, thus indicating suboptimal initial study power as the main driver of effect
misestimations in initial studies. Post hoc study power comparisons of initial versus
subsequent studies were consistent with this interpretation, showing substantially lower
initial study power of declining, than of increasing effects. Our findings add another
facet to the ever accumulating evidence about non-trivial effect misestimations in the
scientific literature. We therefore stress the necessity for more rigorous protocols when
it comes to designing and conducting primary research as well as reporting findings
in exploratory and replication studies. Increasing transparency in scientific processes
such as data sharing, (exploratory) study preregistration, but also self- (or independent)
replication preceding the publication of exploratory findings may be suitable approaches
to strengthen the credibility of empirical research in general and psychological science
in particular.
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INTRODUCTION

The credibility of results from empirical research in general and
psychological science in particular depends on the reproducibility
of published results. However, many, oftentimes spectacular,
effects have turned out to be surprisingly hard to replicate
(e.g., Ioannidis, 2005), raising concerns about a potential
reproducibility crisis in psychology (Baker, 2016). Although
credibility concerns may not necessarily be attributable to
the increasing adoption of questionable research practices
or publication pressure (Fanelli, 2018), the awareness and
concerns about biased effects in the literature seems to have
substantially increased since the proclamation of the most recent
replication crisis.

Leaving some disconcerting but isolated cases of fraudulent
studies and data analyses aside (e.g., the Stapel case; Levelt et al.,
2012), the reproducibility crisis seems to be rooted in more
insidious mechanisms than data fabrication and science fraud
only. Although self-admittance rates of fraudulent practices are
low (but not nil; see, Fiedler and Schwarz, 2016), other research
practices and researcher behaviors that cause effect misestimation
(i.e., systematic over- vs. underestimation) may play a more
important role: Strategic research and submission behaviors,
selective reporting, and p-hacking (see e.g., Bakker et al., 2012;
Simonsohn et al., 2014) are only some of the mechanisms that
may lead to a disproportionate number of biased effects in the
scientific literature.

Importantly, such behaviors appear to be quite common, as
self-admission rates and prevalence estimates suggest that the
majority of researchers in psychology have engaged in at least one
of these questionable research practices (e.g., John et al., 2012).
A recent review of 64 studies that addressed this topic showed
that evidence for such practices almost invariably emerged,
regardless of the investigated subdiscipline (Banks et al., 2016).

Systematic large-scale assessments indicate that only about
40% of psychological experiments replicate (Open Science
Collaboration, 2015). Importantly, replicability problems and
biased estimates do not seem to be an exclusive problem of
psychological science, but plague other empirical disciplines as
well (e.g., biology: Begley and Ellis, 2012; genetics: Siontis
et al., 2010). Such observations have led some critical
voices to assert that most effects that are reported in the
empirical literature are inflated (Ioannidis, 2008). This
is important because inflated effects can pollute a field
for a considerable amount of time, leading replicators of
inflated (or outright false) effects to base their efforts on
faulty assumptions.

Indeed, several forms of dissemination bias, such as
publication, time-lag, or visibility bias, have been linked to
effect inflation in the past (e.g., Rothstein et al., 2005). Another
proposed mechanism that may help in understanding effect
misestimations is the so-called decline effect, which describes
decreases in the strength of observed effect sizes as evidence
accumulates over time. Cross-temporal observations of the
decline effect have been frequently made on a meta-analytic level
but a systematic (i.e., meta-meta-analytic) investigation of this
phenomenon is still lacking.

Examples of declining effects that have been observed in the
psychological literature include declining correlation strengths
between IQ and in vivo brain volume (Pietschnig et al., 2015)
or shrinking beneficial effects of listening to music on spatial
task performance (i.e., the Mozart effect; Pietschnig et al., 2010).
Conceptually, the former case represents an inflated decline effect
(i.e., effect sizes that are reported are inflated, although a true,
albeit smaller, effect exists) whilst the latter case illustrates most
likely a certain type of a false positive decline effect (i.e., the
initially found positive effect represents an artifact; see Protzko
and Schooler, 2017, for an overview about the decline effect).
Both of these examples have in common, that the first reported
effect in the literature investigating this research question (i.e.,
the initial or exploratory finding) was substantially larger than
virtually all subsequent replication effects. However, evidence for
the decline effect has also been documented in other empirical
disciplines such as the medical sciences (e.g., Lau et al., 1995).

Obviously, empirical research is inherently susceptible to
chance findings. Therefore, individual studies may be expected to
yield inflated effect estimates in some cases and deflated in others
(i.e., representing the well-known mechanism of regression to
the mean). On the one hand, unsystematic effect inaccuracies
due to mere error variance should lead to an about equal
number of effect increases and declines over time and do not
pose a threat to empirical research as a whole. Systematic
effect misestimations in terms of overproportional declines (or
increases), on the other hand, do. Should, however, certain
research practices and mechanisms favor one type of time-
trend over the other (i.e., cross-temporal declines vs. increases),
this type of time-trend will be overrepresented in the available
literature, regardless of the investigated research question. We
argue that due to publication-related mechanisms and strategic
researcher behaviors, effect declines should be more prevalent in
the literature than effect increases.

On the one hand, whilst dissemination biases may be expected
to be driven by questionable research practices for a large part
(i.e., in cases where the publication of results is not suppressed
altogether, but data are p-hacked, selectively reported, peeked
at, or similar; for an overview see Wicherts et al., 2016), the
decline effect is mainly rooted in low exploratory study power.
On the other hand, the trajectory of the decline subsequent to
the publication of an inflated initial result may be very well
expected to be related to various types of bias. Because inflated
initial effects anchor the expectations of replicators to a certain
effect strength, the power of replication studies may often be
insufficient to detect a reasonable estimate of the true effect (i.e.,
only observations of inflated effects become significant). Such
unsuccessful replications are in turn more likely to be either
left unpublished or p-hacked until a desirable result is obtained.
In other words, this may mean that whilst decline effects are
triggered by low power, dissemination biases and questionable
research practices may shape the subsequent decline trajectory.

Specifically, it has been well-established that limited
resources and funding in combination with publication pressure
incentivize submission and publication of significant, strong,
and surprising effects (e.g., Ioannidis, 2008). This makes primary
research, particularly exploratory research, inherently risky,
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because (exploratory) hypotheses may be wrong and therefore
yield non-significant results. Non-significant results, however,
may be costly for researchers, because publication expectancies,
especially in renowned journals (regardless of whether these
expectancies occur on journal, reviewer, or author level; see
Ferguson and Heene, 2012), are lower for null-findings and may
be therefore disadvantageous to a researcher’s career.

Therefore, researchers investigating an exploratory hypothesis
may opt to minimize their risk of obtaining non-significant and
consequently potentially career-inhibiting results by distributing
their resources into investigating multiple hypotheses, thus
maximizing the probability of obtaining a desirable (and highly
publishable) result in at least one of the investigations. Because
researcher resources are typically limited, multiple investigations
(and therefore sampling efforts) will likely lead to smaller
within-investigation sample sizes and consequently lower study
power. In fact, systematic evidence from renowned journals in
psychological science indicate median total sample sizes ranging
from 40 to 48 for bivariate tests (Wetzels et al., 2011; Anderson
et al., 2017). These strategic research behaviors therefore do not
only maximize the publication probability, but also the within-
study error variance.

In such scenarios (i.e., small sample sizes and large error
variances), observed effects need to be comparatively large
in order to become significant. This mechanism, combined
with strategic submission behavior of researchers, increases the
likelihood of the publication of inflated effects compared to
more accurate or deflated effects. In other words, sample sizes of
primary studies may be often inadequate to detect the true effect
by means of conventional null hypothesis significance testing
which leads to more frequent publication of inflated effects and
subsequent declines.

Because effect misrepresentations should be largely unrelated
to topical specifics (i.e., the research question) but may
conceptually be deemed to be a function of low study power,
we aimed at investigating a psychological subdiscipline that
possesses comparatively large average study power. The reason
for this approach was that well- (or at least not strikingly
suboptimally-) powered subdisciplines can be expected to lead
to conservative estimates of effect misestimation prevalence
and strength. If effect declines outnumber increases in a
comparatively well-powered field, this is suggestive of even
higher prevalences of effect declines in other fields that
are characterized by lower power averages. For this reason,
intelligence research appeared to be particularly suitable because
this field is characterized by large-scale studies and yields
larger average power estimates than psychology on the whole
(Pietschnig et al., 2018).

In the present meta-meta-analysis, we therefore aimed at
investigating cross-temporal changes of effect sizes in all meta-
analyses that have been published in the journal Intelligence,
which is the flagship journal in this field and can be expected
to include a meaningful cross-section of intelligence research.
This journal has been established in 1977, which almost coincides
with the publication of the earliest modern meta-analytical
application (i.e., Glass, 1976) and therefore was expected to
provide a comparatively broad range of potentially includable

meta-analyses. Based on two indicators of effect change (crude
differences between the first published effect size and the
summary effect as well as regression slopes; see section “Statistical
Analyses”), we expected to observe (i) more and (ii) stronger
declining than increasing effects, as well as (iii) stronger evidence
for publication bias in meta-analyses that are associated with
declining than those that are associated with increasing effects.
Furthermore, we examine influences of initial (exploratory) study
characteristics (sample size, effect strength, citation numbers,
journal impact factor, and publication year) and meta-analytic
summary effect strength on effect misestimations.

Strategic submission behaviors favor high-impact publications
of strong effects and unexpected results which are more likely
to be cited and may be more frequently observed in smaller
samples. However, results from data of small samples are less
accurate and may lead to considerable effect misestimations
due to large error variance. Therefore, we expected initial effect
strengths, citation numbers, and impact factors to be positively,
but sample sizes to be negatively related to effect misestimation.
Because large true effects are arguably even more prone to be
detected with an underpowered design (but will in such a case
yield inflated results), we expected positive associations between
meta-analytical summary effects and misestimations. Moreover,
because publication pressure is likely to have increased in the past
decades, we explored potential positive relations with initial study
publication years.

MATERIALS AND METHODS

Literature Search
We searched the online database ISI Web of Knowledge
for the term “meta-analy∗” (topic) in the journal Intelligence
(publication name) up to July 18, 2018. We deemed this strategy
appropriate because the journal Intelligence has been completely
indexed in this online database, which consequently enabled us to
retrieve all meta-analyses that have been published in this journal.

Inclusion Criteria
Meta-analyses were suitable for inclusion if they fulfilled the
following three criteria. First, meta-analyses had to report
traditional effect sizes (i.e., Cohen d, Hedges g, Pearson r,
Odds ratios, Log Odds ratios, or Fisher z) rather than effect
sizes that had been obtained through secondary analyses,
such as the Method of Correlated Vectors (e.g., Armstrong
et al., 2014). This was deemed appropriate because results
of such secondary analyses should not be subject to effect
biasing mechanisms. Similarly, effects from cross-temporal meta-
analyses (e.g., Pietschnig and Gittler, 2015) were not included,
because the publication of unobtrusively collected mean values
in primary studies are not expected to be confounded by
dissemination bias. In other words, cross-temporal meta-analyses
do not rely on synthesizing effect sizes but on aggregating mean
values which are not expected to be affected by decline effects.

Second, included meta-analyses should not have been
arbitrarily limited in terms of the time frame of the literature
search. Specifically, if the literature search had been confined to a
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specific number of years, a justification had to be provided which
explained the time limitation based on content-specific reasons
(e.g., introduction of a novel conceptualization or assessment
method). Third, the effect size of the initial study had to be either
reported in the meta-analysis or had to be identifiable based on
the primary paper that it had been reported in. Finally, to be
eligible for our cross-temporal calculations of regression slopes,
data of all primary studies that had been included within a given
meta-analysis had to be provided either in data tables or online
Supplementary Materials.

Coding
Full texts of all search hits were obtained and coded twice into
categories by the same experienced researcher (JP). Summary
effects as reported by the authors of a given meta-analysis,
effect size metric, number of included samples, total sample
sizes, initial study sample sizes, initial study effect size, initial
study citation numbers, and the 2017 Impact Factors of the
journals that an initial study had been published in were
recorded. Discrepancies between the first and second coding
run were resolved through discussion with another independent
researcher (MS). A flowchart of study inclusion and study
references including reasons for exclusion can be found in the
Supplementary Figure S1 and Supplementary Data Sheet S2.

Statistical Analyses
Prior to all calculations, effect sizes were transformed into Fisher
z to obtain a common effect metric. We used two analytic
approaches to quantify effect changes (i.e., declines vs. increases).
On the one hand, we calculated crude differences between the
absolute initial study effects and their corresponding meta-
analytical summary effects, in cases where signs of effect sizes
yielded an identical direction. In cases where initial and summary
effects yielded different signs (i.e., indicating a so-called proteus
phenomenon, which can be understood as an extreme case of the
decline effect; e.g., Pfeiffer et al., 2011), we summed up absolute
initial and summary effect sizes. This procedure resulted in
either positive crude differences (indicating declining effects) or
negative crude differences (indicating increasing effects). For ease
of interpretation, effect sizes were transformed into the Pearson r
metric prior to reporting.

On the other hand, we calculated single precision-weighted
(i.e., according to the inverse variances of primary studies)
mixed-effects meta-regressions of effect sizes of primary studies
on publication year to obtain the regression slope (i.e.,
representing effect declines or increases). Mixed-effects meta-
regressions correspond broadly to conventional regression
analyses but treat effect sizes as dependent variables and contain
elements of both fixed-effect (i.e., in terms of the predictor)
and random-effects models (i.e., in terms of the residual
heterogeneity; Viechtbauer et al., 2015). Of note, we could only
perform these calculations when data of primary studies that
were included in a respective meta-analysis had been reported.
The resulting regression slopes were interpreted as evidence
for effect declines if their signs did not match the sign of
the initial study effect and as evidence for increases if their
signs matched the initial effect sign. Proteus effects (i.e., cases

where initial and summary effect signs did not match) were
treated as a separate subgroup in our analyses. In subsequent
analyses, crude differences and regression slopes were used as
dependent variables.

In our meta-meta-analysis, we first calculated average crude
differences and regression slopes in terms of overall effect
deviations, as well as subgrouped according to declines, increases,
and proteus effects by means of random-effects and fixed-
effect models (weighted by number of samples minus three
within each meta-analysis). In the random-effects model, it
is assumed that observed effect sizes from individual studies
(presently: crude differences or slopes) represent estimates of
effects that originate from different effect size distributions,
thus necessitating consideration of systematic between-studies
variance for effect size calculations (i.e., weights of individual
observations are less influential and confidence intervals
increase). In fixed-effect models, all observed effect sizes are
considered to represent estimates of a single true effect (i.e.,
they are elements of a single distribution) which means that
between-studies heterogeneity is attributed to sampling error
(i.e., weights of individual observations are more influential
and confidence intervals narrow; for a detailed explanation, see
Borenstein et al., 2009).

By means of a graphical approach which broadly resembles
(recursive) cumulative meta-analytical approaches as
summarized elsewhere (Banks et al., 2012; Koricheva et al.,
2013), we meta-meta-analytically illustrated continuous effect
changes over time. In this approach, we cumulatively calculated
summary effect sizes according to primary study publication
years (if more than one study had been published in any given
year, the individual effect sizes were synthesized by means of
random-effects models prior to cumulation) and referenced
these effect changes to the initial study effect that had been
constrained to zero. The resulting lightning plot visualizes effect
developments in terms of number (i.e., increases vs. declines)
and strength of changes in the z-metric.

Second, we examined potential influences of initial study
characteristics as well as the meta-analytical summary effect on
the strength of effect changes over time (i.e., crude differences and
regression slopes). In a series of single precision-weighted mixed-
effects and fixed-effect meta-regressions as well as unweighted
fixed-effect meta-regressions, we investigated influences of (i)
initial study sample sizes, effect sizes, absolute and annual citation
numbers, 2017 impact factors of the journals that an initial
study had been published in, as well as (ii) the strength of
meta-analytical summary effects on both effect misestimations in
general and effect declines in particular.

Third, following a procedure broadly similar to that of Button
et al. (2013), we calculated the average power of primary studies
within each meta-analysis to detect the respective summary
effect. To do so, we first recalculated meta-analytical summary
effects based on the available data by means of random-effects
models. Subsequently, we used the resulting summary effect
estimate as well as the reported sample sizes of primary studies to
calculate the power of each primary study (a common alpha level
of 0.05 was assumed for two-tailed tests). This procedure allowed
us to assess how much power the primary studies within each
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meta-analysis on average had to detect the respective observed
summary effect size.

Finally, when data of primary effect sizes were available,
we applied eight different methods to assess indications of
potential dissemination bias within the individual meta-analyses.
Importantly, different types of dissemination bias detection
methods are not equally sensitive or suitable to provide
information about different types of bias. For instance, funnel
plot asymmetry-based assessments such as trim-and-fill are not
able to detect p-hacking whilst approaches that can (such as
p-uniform or p-curve) are more vulnerable to distributional
characteristics of effect sizes than regression approaches (for an
overview about different bias types and detection methods, see
Simonsohn et al., 2014). So whilst no method has remained
uncriticized so far and the application of any method in
isolation may prove suboptimal in regard to one aspect or
another, using a mix of different modern assessment methods
has been shown to be the most useful approach to reduce bias
(Carter et al., 2019).

Consequently, we used the trim-and-fill method (Duval and
Tweedie, 2000), Begg and Mazumdar’s rank correlation test (Begg
and Mazumdar, 1994), Sterne and Egger’s regression approach
(Sterne and Egger, 2005), excess significance testing (Ioannidis
and Trikalinos, 2007), p-uniform (Simonsohn et al., 2014),
p-curve (van Assen et al., 2015), a selection model approach
(Vevea and Woods, 2005), and PET-PEESE (Stanley and
Doucouliagos, 2014). In accordance with common guidelines,
individual methods were considered to be indicative of
publication bias if either (i) p was smaller than 0.05 (p-uniform)
or 0.10 (Begg and Mazumdar’s rank correlation test, Sterne and
Egger’s regression, excess significance testing), (ii) the half-curve
p-value was larger than 0.05 or both half- and full-curve p-values
were larger than 0.10 (p-curve), or (iii) the difference between
the adjusted estimate and the meta-analytic estimate was larger
than 20% of the meta-analytic estimate in any (trim-and-fill)
or a negative direction (moderate one-tailed selection of Vevea
and Woods’ selection models and PET-PEESE; see, Banks et al.,
2018). Following well-established procedures, we interpreted for
PET-PEESE the PET estimates when p-values exceeded 0.10 and
PEESE estimates in all remaining cases (Stanley, 2017).

All analyses were performed by means of the open source
software R (R Core Team, 2017), specifically the packages
metafor (Viechtbauer, 2010), puniform (van Aert, 2018), and pwr
(Champely, 2018). We interpret our results according to the
well-established classification of effect sizes by Cohen (1988).

Final Sample
In all, 22 meta-analyses met our inclusion criteria yielding k = 36
meta-analytical effect sizes (1,391 primary study effect sizes;
N = 697,639) with 24 reporting Pearson r, 10 Cohen d, and
2 Hedges g effect metrics. Moreover, primary study data were
available from 18 studies (k = 29; 991 primary study effect
sizes; N = 373,186), which allowed us to recalculate summary
effects, analyze the average primary study power, and assess
dissemination bias.

RESULTS

In all our analyses, we focus our interpretation of results
on weighted random- and mixed-effects models, but provide
additional results of unweighted and fixed-effect calculations
in our Tables 1 and 2. Our results showed, that initial study
effects misestimated observed summary effects by a small-to-
moderate effect size regardless of their direction (crude difference
in Pearson r = 0.17; see Figure 1 and Table 1 for effect
misestimations by type). Crude effect declines outnumbered
effect increases at a ratio of 2:1 and were considerably stronger
than increases (absolute crude differences in Pearson r = 0.18 vs.
0.08, respectively). Moreover, six meta-analyses showed a proteus
effect, indicating inconsistent effect signs of initial study and
meta-analytical summary effects. As expected, crude differences
were strongest for proteus effects, yielding average initial study
effect size misestimations of Pearson r = 0.26.

Analyses of absolute regression slopes indicated annual effect
changes of about r = 0.01 (i.e., indicating expectable effect
changes of r = 0.10 per decade as referenced to the initial study
effect) regardless of the trajectory sign. Consistent with the results
of crude differences, analyses of regression coefficients showed
more prevalent (roughly maintaining a 2:1 ratio) and stronger
effect declines than increases. Once more, cross-temporal effect
changes were strongest for meta-analyses that showed a proteus
effect (numerical results are detailed in Table 1). Trajectories
of cumulative declines and increases over time (relative to the
earliest published effect size) are illustrated in Figure 2.

For crude declines, examination of potential moderating
variables yielded non-trivial and hypothesis-conforming positive
associations of effect misestimations with initial effect size
strength and initial study 2017 impact factors as well as negative
associations with initial study sample sizes (η2s = 0.69, 0.12, and
0.05, respectively). The summary effect strength and – in contrast

TABLE 1 | Average deviations from the summary effect according to crude differences and regression coefficients.

Crude differences Regression slopes

k N r (RE) r (FE) k N r (RE) r (FE)

Overall 36 697639 0.167∗∗∗ 0.168∗∗∗ 29 373186 0.009 0.009

Declines 20 400869 0.180∗∗∗ 0.207∗∗∗ 15 164557 0.010 0.010

Increases 10 219390 0.076 0.075 9 159222 0.007 0.007

Proteus 6 77380 0.262∗∗ 0.262∗∗ 5 49407 0.017 0.017

k, number of meta-analyses; N, number of individual participants; RE, random-effects model; FE, fixed-effect model. ∗∗p < 0.01; ∗∗∗p < 0.001.

Frontiers in Psychology | www.frontiersin.org 5 December 2019 | Volume 10 | Article 2874

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-02874
D

ecem
ber17,2019

Tim
e:17:0

#
6

P
ietschnig

etal.
D

ecline
E

ffects
in

Intelligence
R

esearch

TABLE 2 | Single meta-regressions of initial study characteristics and meta-analytic summary effects on crude differences and regression coefficients.

Overall Declines

Weighted Weighted Unweighted Weighted Weighted Unweighted

k N slope (ME) slope (FE) η2 slope (FE) η2 k N slope (ME) slope (FE) η2 slope (FE) η2

Crude differences

Initial n 34 554053 >−0.001 >−0.001 0.04 >−0.001 0.05 18 293869 >−0.001 >−0.001 0.05 >−0.001 0.01

Initial effect size 36 697639 0.316∗ 0.303 0.19 0.257 0.23 20 366618 0.779∗∗∗ 0.721∗∗∗ 0.69 0.526∗∗∗ 0.61

Initial citation numbers 34 613308 <0.001 <0.001 <0.01 <0.001 <0.01 19 330278 >−0.001 >−0.001 0.08 >−0.001 0.04

Initial annual citation numbers 34 613308 <0.001 0.001 <0.01 >−0.001 <0.01 19 330278 −0.001 −0.002 0.04 −0.001 0.03

Initial 2017 impact factor 20 356396 0.005 0.005 0.13 0.004 0.15 8 114851 0.003 0.003 0.12 0.004 0.17

Initial study publication year 36 697639 −0.008 −0.001 0.01 −0.001 0.02 20 366618 −0.003 −0.003∗ 0.30 −0.002 0.12

Summary effect 36 697639 −0.087 −0.297 0.07 0.121 0.02 20 366618 −0.186 −0.379 0.06 0.003 <0.01

Regression coefficients

Initial n 29 373186 >−0.001 >−0.001 0.02 >−0.001 0.04 15 164557 >−0.001 >−0.001 0.11 >−0.001 0.09

Initial effect size 29 373186 −0.022 −0.022 0.08 −0.005 <0.01 15 164557 0.010 0.010 0.01 0.010 0.01

Initial citation numbers 27 288855 <0.001 <0.001 0.03 >−0.001 <0.01 14 93966 >−0.001 >−0.001 0.01 >−0.001 0.01

Initial annual citation numbers 27 288855 <0.001 <0.001 0.02 >−0.001 <0.01 14 93966 >−0.001 >−0.001 0.01 >−0.001 0.02

Initial 2017 impact factor 17 195965 <0.001 <0.001 <0.01 >−0.001 <0.01 7 42561 >−0.001 >−0.001 <0.01 <0.001 <0.01

Initial study publication year 29 373186 <0.001 <0.001 0.28 <0.001∗ 0.15 15 164557 <0.001 <0.001 0.11 <0.001 0.10

Summary effect 29 373186 −0.008 −0.008 0.01 0.018 0.03 15 164557 0.056 0.056 0.10 0.06 0.14

k, number of meta-analyses; N, number of individual participants; FE, fixed-effect model; ME, mixed-effects model; all η2 values are based on fixed-effect models. ∗p < 0.05, ∗∗∗p < 0.001.
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FIGURE 1 | Absolute values of effect misestimations by type of change.

to our expectations – annual initial study citation numbers as
well as publication year were negatively associated with effect
misestimations (η2s = 0.06, 0.04, and 0.30, respectively, see top
right section of Table 2).

Moderator analyses for overall effect changes (i.e., regardless
of their direction) were largely consistent with results from
crude declines but showed on the whole weaker effects. Once
more, initial effect size strength and initial study 2017 impact
factors were positively and initial study sample sizes were
negatively associated with effect estimations (η2s = 0.19, 0.13, and
0.04, respectively). Associations of misestimations with summary
effects were negative (η2 = 0.07) and annual initial study
citation numbers showed the expected (albeit trivial) positive
sign. Once more, associations with initial study publication year
were negative (η2 = 0.01; see top left section of Table 2).

Effects of moderators on regression slopes for both overall
misestimations and declining effects were smaller than effects on
crude differences and less consistent between subgroups. Sample
size of the initial study showed a consistent non-trivial negative
association with overall effect misestimations and declines
(η2s = 0.02 and 0.11). Interestingly, initial study publication
year showed the expected non-trivial positive association with
effect misestimations for both overall and declining effects
(η2s = 0.28 and 0.11). All other predictors showed inconsistent
signs between overall and decline analyses, yielding no clearly

interpretable pattern (for details see bottom of Table 2). We
repeated all above analyses for annual citation numbers with
winsorized values (lower and upper thresholds were assumed
according to the 10th and 90th percentile) because of large
outliers, but obtained virtually identical results (numerical
values omitted).

Results of our power analyses showed that the average
primary study had 50.24% power (Md = 48.18%; k = 29;
Figure 3) to detect the respective summary effect. The
most adequately powered studies were observed for meta-
analyses that showed cross-temporal increases (mean = 59.76%;
Md = 51.79%; k = 9), followed by declines (mean = 52.31%;
Md = 48.18%; k = 15), and proteus effects (mean = 26.90%;
Md = 10.58%; k = 5). Interestingly, although the average
power of initial studies was similar in size compared to
all other primary studies (mean = 48.46%; Md = 45.05%;
k = 29), subgrouping according to effect changes yielded
noticeable systematic differences: Specifically, the power of initial
studies that belonged to increasing effects (mean = 66.05%;
Md = 87.46%; k = 9) was markedly larger than the
power of studies belonging to declining (mean = 48.85%;
Md = 45.05%; k = 15) or proteus effects (mean = 15.65%;
Md = 12.00%; k = 5).

In terms of dissemination bias indication, bias sensitivity
varied considerably between methods (descriptive statistics of
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FIGURE 2 | Lightning plot of cumulative effect changes over time. Proteus effects are not shown; dots within trajectories indicate the effect change in reference to
the previous observed estimate (i.e., initial study effect or previous dot, respectively).

bias indication methods are provided in Table 3). However,
visual inspection of within-meta-analysis bias indication
frequencies did not suggest meaningful differences between
meta-analyses that showed effect declines and those that showed
increases (Table 4).

Sensitivity analyses showed that bias indications (i.e., meta-
analyses in which at least one method showed bias indications)
did not appear to be driven by outlier-related between-studies
heterogeneity: Neither I2 values nor maximum differences
between I2 estimates of leave-one-out analyses in the individual
meta-analyses showed significant differences between meta-
analyses with bias and those without bias indication (independent
t-tests yielded ps = 0.460 and 0.736; Cohen ds = 0.28 and
0.14, respectively). Moreover, maximum I2 differences in leave-
one-out analyses within individual meta-analyses were similar
in strength for meta-analyses with and those without bias
indications, showing maximum I2 changes of about 36%
and 30%, respectively. Influence diagnostics (Viechtbauer and
Cheung, 2010) for individual meta-analyses showed that these
sensitivity analyses were suitable for robustness assessments of
our analyses because most meta-analyses did not show any
(k = 18; 62.07%) or only one outlier (k = 7; 24.13%; k = 4 analyses
showed 2+ outliers). Detailed results of influence diagnostics are
provided in the Supplementary Data Sheet S1.

DISCUSSION

In this meta-meta-analysis, we show that effect declines over
time systematically outnumber effect increases at a ratio of
about two to one. Moreover, besides from being more prevalent,
effect declines seem to be substantially stronger than effect
increases. This observation has important implications for both
designing and reporting primary (particularly exploratory)
studies, as well as for interpreting novel (exploratory)
effects from such studies. Although we examined these
effects based on (diverse) research questions within the
framework of intelligence research, it seems reasonable
to assume that the presently discussed mechanisms may
not only apply to research questions in this field, but
rather to psychological science on the whole and empirical
science in general.

First, our results indicate that regardless of the investigated
exploratory hypothesis and the direction of a subsequent
temporal change, initial findings misestimate the true effect on
average by a small-to-moderate effect. Although the observation
that exploratory effects are not always numerically entirely
accurate representations of the true effect certainly does not
come as a surprise, the extent of this inaccuracy might do so.
In fact, median effect sizes that are usually reported in the
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FIGURE 3 | Average power of primary studies in 29 meta-analytic data sets that primary study data were available for.

TABLE 3 | Frequencies of bias indication within meta-analyses by method.

Begg and Mazumdar’s Sterne and Excess

Trim-and-fill rank correlation Egger regression significance test p-uniform p-curve Selection models PET-PEESE

Crude differences (k = 29)

Declines 1 (7%) 2 (13%) 4 (27%) 1 (7%) 1 (7%) 0 (0%) 4 (27%) 2 (13%)

Increases 1 (11%) 1 (11%) 2 (22%) 0 (0%) 2 (25%) 0 (0%) 3 (33%) 3 (33%)

Proteus 3 (60%) 0 (0%) 2 (40%) 0 (0%) 0 (0%) 0 (0%) 2 (40%) 2 (40%)

Regression coefficients (k = 24)

Declines 1 (7%) 1 (7%) 2 (13%) 1 (7%) 2 (13%) 0 (0%) 5 (33%) 2 (13%)

Increases 1 (11%) 2 (22%) 4 (44%) 0 (0%) 1 (12%) 0 (0%) 2 (22%) 3 (33%)

Cell entries indicate absolute (and relative) frequencies of bias indication; k = 29/24, excepting p-uniform (k = 27/23), and p-curve (k = 26/23). k Declines = 15, k
Increases = 9, k Proteus = 5.

individual differences research literature have been shown not
to be substantially stronger than the presently typically observed
effect misestimation: While typical effect strengths average about
r = 0.19 (see Gignac and Szodorai, 2016), we presently observed
average misestimations of about r = 0.17.

Second, crude effect declines over time are more prevalent and
stronger than effect increases. This seems even more important
when considering that we observed positive associations of effect
declines with initial effect sizes, indicating stronger declines
of stronger initial effects. These observations are consistent
with the assumption that the decline effect is ultimately rooted

in biased reporting due to suboptimally powered effects that
originate from questionable research practices and strategic
researcher behaviors. This interpretation is further supported by
the observed relationship between the meta-analytical summary
effects and the average sample sizes in the respective meta-
analysis. The average reported effect of r = 0.19 in individual
differences research (Gignac and Szodorai, 2016) requires a
sample size of more than 200 participants in order to become
significant when assuming 80% power for a two-tailed bivariate
test. In the present study we observed a mean initial study sample
size of n = 127 (Md = 116) for declining effects, but a mean
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TABLE 4 | Number of methods that were indicative of bias within meta-analyses
according to effect direction.

0 1 2 3 4

Crude differences (k = 29)

Declines 6 (40%) 5 (33%) 2 (13%) 2 (13%) 0 (0%)

Increases 2 (22%) 4 (44%) 2 (22%) 0 (0%) 1 (11%)

Proteus 1 (20%) 2 (40%) 0 (0%) 1 (20%) 1 (20%)

Regression coefficients (k = 24)

Declines 6 (40%) 6 (40%) 2 (13%) 0 (0%) 1 (7%)

Increases 2 (22%) 3 (33%) 2 (22%) 2 (22%) 0 (0%)

k Declines = 15, k Increases = 9, and k Proteus = 5. Within-row percentages refer
to absolute study number of the respective effect trajectory.

summary effect around r = 0.12. This means that the average
observed initial sample was too small to detect the average
summary effect.

In the light of the observed low average study power (here:
50.24%), it seems unsurprising that effect misestimations of
primary and particularly initial studies are substantial. The
differentiated patterns of true effect misestimations – yielding
largest crude differences for the proteus effects (which can be
interpreted as extreme cases of decline effects), substantial crude
differences for decline effects, and less severe ones for effect
increases – are consistent with low (initial) study power and
strategic researcher behavior as causes of the decline effect.
In this vein, it needs to be noted that the presently observed
suboptimal average study power does not seem to be unique
to intelligence research. In fact, the available evidence from
other subdisciplines in psychology yields even less favorable
power estimates (e.g., ∼21% in neuroscience; Button et al.,
2013; ∼35% in psychological science; Bakker et al., 2012). Based
on these findings, improving power in primary studies seems
to be desirable in any of the subdisciplines that have been
investigated so far and most likely in other disciplines that have
not yet been examined.

Third, the examination of effect size trajectories in our
regression analyses indicated annual effect size changes of about
r = 0.01. This means that compared to the initial effect, effect sizes
may be expected to shift by a small effect per decade (regardless of
the direction of the shift). Consistent with our findings for crude
differences, effect declines were more prevalent and stronger than
effect increases.

One reason for continuous effect declines in contrast to mere
misestimations of the initial study only (i.e., the so-called winner’s
curse; Zöllner and Pritchard, 2007) may be due to the anchoring
effect of initially published findings for subsequent replications:
Suppose an initial research paper reported a moderate (inflated)
bivariate effect of r = 0.30 although the true effect was r = 0.19
(i.e., representing a typical individual differences research effect
size, Gignac and Szodorai, 2016). A diligent replicator of
such an effect would conduct an a priori power analysis and
determine a necessary sample size of n = 85 to directly replicate
the reported effect, thus falling 129 participants short of the
necessary 214 participants (i.e., assuming that she used the
published effect size for her sample size calculation). With

such a number of participants, significance of a hypothesis-
conforming effect can only be reached when an extreme (inflated)
result is observed.

Therefore, early replications may once more be expected
to report inflated effects whilst non-replications (at least in
terms of null hypothesis significance testing) are file-drawered
(i.e., not published). However, replication sample sizes will
eventually increase due to various reasons (e.g., in conceptual
replications that require larger samples to detect other effects
of interest), thus increasing the probability of obtaining more
accurate effect estimates. The observed pattern of lower
average power of studies that showed proteus and decline
effects than those that showed effect increases is indicative of
this phenomenon.

Lower effect size estimates from published successful
replications then serve in turn as anchors for further
replications, meaning that study power is bound to increase
over time. This is consistent with our present findings that
the average sample size of primary studies within any given
meta-analysis was n = 612 (Md = 299) which contrasts the
low initial study n. Therefore, as studies accumulate, the
publication of larger-n studies will lead to an asymptotical
meta-analytical approaching of the true effect. In the long
term, this means that even if initial evidence is biased, the
true effect will eventually be reached, as time goes by. In
the short and medium term, however, biased initial evidence
may influence a field for years, entailing an unnecessary
strain on resources of unsuccessful replicators and – more
importantly – representing an inappropriate effect that is often
taken at face value.

We found that based on crude differences, effect inflation
in initial studies seemed to be associated with the 2017
impact factor of the journal that the study had been published
in. This finding is consistent with the idea that striking
findings (which are often difficult to replicate) may be
published in higher-profile outlets (Ioannidis, 2005). The
detrimental consequences of severe initial effect bias are
exacerbated by the observation that initial studies are cited
more often than direct or conceptual replications, thus
creating unfounded authority (Greenberg, 2009; Voracek,
2014). It seems somewhat reassuring though that annual
citation numbers of initial studies were negatively related to
effect misestimations in our meta-meta-analysis. Interestingly,
we observed no consistent association between initial study
publication years and effect misestimations. Considering the
comparatively large range of these years (i.e., initial study years
ranged from 1913 to 2005), this may mean that publication
pressure plays only a limited role in driving effect biasing
mechanisms. However, this idea warrants further systematic
investigation of larger meta-meta-analytic datasets to allow a
reliable interpretation.

The interpretation of decline effects as functions of low
(initial) study power and precision are largely supported
by our moderator analyses: Negative associations of initial
study sample sizes with effect misestimations in both crude
and regression slope-based analyses yielded larger effect
sizes for declines than for overall time trends. Moreover,
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the average power of primary studies was considerably
larger for studies belonging to increasing than for those
belonging to declining or proteus effects. These differences
in study power were even more pronounced when only
initial studies were included. Summary effect strengths were
predominantly negatively associated with overall and declining
effect sizes. This result is consistent with our finding of lower
initial study power (i.e., representing smaller sample sizes
and study precision) being associated with stronger effect
declines because larger true effects can be more accurately
(i.e., less biased) detected in designs with smaller sample
sizes. Consequently, underpowered studies that only reach
significance when observing inflated effects seem to drive
effect misestimations. Our findings, that moderating effects of
initial study properties and the strength of the meta-analytical
summary effects yielded typically stronger effects on declines
than on effect changes on the whole supports the idea that
these moderators are potent drivers of declines, but not of all
cross-temporal changes.

The findings of our meta-meta-analysis have important
implications for science policy and stress the necessity
of adopting more rigorous approaches when it comes to
designing, conducting, reporting, and eventually interpreting the
findings of exploratory and replication studies. Preregistering
(exploratory) studies in time-stamped online resources
such as the Open Science Framework1 and publishing the
primary data may be a good start (for a discussion, see
Nuijten et al., 2018). However, it seems worthwhile to
encourage exploratory authors to replicate their findings
prior to publication (i.e., by themselves or by facilitating
pre-publication independent direct replication; see, Tierney
et al., 2018). Although direct self-replication may, due
to practical reasons, not be possible in all cases and will
most likely not be able to prevent all occurrences of bias,
discovery-replication sampling approaches have proved
their worth in neuroscience (e.g., Kang et al., 2015) and are
likely to be just as useful for exploratory research in other
empirical disciplines.

Pre-publication direct self- and independent replications
may help in making initial effect estimates more reliable
and subsequent studies more adequately powered. Without
(self-)replication the face-value interpretation of exploratory
effects remains dubious. Therefore, potential replicators of
exploratory studies may wish to use concepts such as safeguard
power (i.e., anchoring their power analysis on the lower
threshold of the confidence interval instead of on the effect
estimate; see Perugini et al., 2014) to design direct or
conceptual replications.

Limitations
First, it needs to be acknowledged, that contrary to our
expectations, our dissemination bias analyses showed about
equal (or even numerically smaller) numbers of publication
bias indications in meta-analyses that were associated with
effect declines and those associated with increases. However,

1www.osf.io

publication bias is typically assumed to be mainly driven
by mere significance of results and bias susceptibility may
therefore not depend on phenomena that are related to cross-
temporal declines or increases. Of note, in our publication
bias analyses all primary studies that had been included
within the meta-analyses have been treated as if they had
been published which necessarily leads to an underestimation
of the publication bias prevalence. Therefore, our estimate
must be seen as a lower threshold of actual publication
bias occurrence.

Second, signs of predictors in our moderator analyses were not
unequivocally consistent across different calculation methods.
Although we focused on interpreting the most sophisticated
estimate throughout our paper (i.e., weighted mixed-effects
estimations), we provided fixed-effect and unweighted estimates
in our Table 2 to allow readers to evaluate our results based on
different methods of effect estimation.

In this vein, it should be noted that moderator analyses
appeared to have stronger and more consistent effects in
analyses of crude differences than of regression coefficients. This
is unsurprising, because less potential confounding variables
(e.g., number of primary studies within meta-analyses; within
study-year variance of data points) are involved in the
calculation of crude differences. Moreover, future researchers
may wish to investigate how primary study characteristics within
individual meta-analyses such as certain design features relate to
the decline effect.

Third, using the first published study effect as a reference
point in our crude analyses may have introduced some noise in
our data in those cases where identical exploratory hypotheses
within individual meta-analyses were coincidentally investigated
and published in two independent studies around the same
time (i.e., yielding initial and subsequent publication(s) that
are only a few months apart). However, this should have only
played a minor role in our analyses, because initial studies had
unique publication years in all meta-analyses excepting two (in
one further individual case, the initial effect size was calculated
as a weighted average of two independent effects, because the
publication order within the first publication year could not
be established).

Fourth, we used 2017 instead of initial study publication
year impact factors in our analyses because most initial study
publication years predate the introduction of this metric
in 1997. However, using current impact factors may be
considered to be reasonable proxies for the relative reputation
of the journals that initial studies have been published in,
although for these calculations some additional noise may be
expected in our data.

Finally, we acknowledge that our data were limited to meta-
analyses from a specialized journal in a specific academic
subfield and may therefore not be generalizable to the entire
psychological literature. However, the observed power of the
primary studies that the included meta-analyses comprised
exceeded estimates from other psychological subdisciplines
considerably (e.g., median power in neuroscience ∼ 8% to 31%;
Button et al., 2013; mean power in psychology ∼ 35%; Bakker
et al., 2012) averaging around (still suboptimal) 48% to 50%.
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Because low study power must be considered to represent a
major driver of decline effects, it seems likely that the present
observations are not confined to papers that have been published
in Intelligence and may be observed in a conceivably even more
pronounced fashion in other subdisciplines.

Final Words
We show in the present meta-meta-analysis evidence for
overproportional (at a ratio of 2:1) and stronger effect declines
than increases in the published intelligence literature. Effect
misestimations are most likely due to low initial study power
and strategic research and submission behaviors of exploratory
researchers and replicators alike. These misestimations are non-
trivial in nature and correspond to a change of a small effect
size per decade (r∼0.10) in either direction compared to
the initial effect.

Considering the diversity of research questions within
the included meta-analyses and the comparatively high
power of primary studies, it seems likely that the present
results may not be confined to intelligence research, but
may be expected to generalize to psychological science
and perhaps empirical sciences in general. Extensive
implementations of study preregistration, publication of
primary data, discovery-(direct)replication sampling approaches,
and the use of safeguard power in replications may
help in alleviating problems that are associated with
effect misestimation.
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