
METHODS
published: 20 January 2020

doi: 10.3389/fpsyg.2019.02989

Frontiers in Psychology | www.frontiersin.org 1 January 2020 | Volume 10 | Article 2989

Edited by:

Fernando Marmolejo-Ramos,

University of South Australia, Australia

Reviewed by:

Mike W.-L. Cheung,

National University of Singapore,

Singapore

Alejandro Veas,

University of Alicante, Spain

*Correspondence:

Davood Tofighi

dtofighi@unm.edu

Specialty section:

This article was submitted to

Quantitative Psychology and

Measurement,

a section of the journal

Frontiers in Psychology

Received: 09 October 2019

Accepted: 17 December 2019

Published: 20 January 2020

Citation:

Tofighi D (2020) Bootstrap

Model-Based Constrained

Optimization Tests of Indirect Effects.

Front. Psychol. 10:2989.

doi: 10.3389/fpsyg.2019.02989
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In mediation analysis, conditions necessary for commonly recommended tests, including

the confidence interval (CI)-based tests, to produce an accurate Type I error, do not

generally hold for finite sample sizes and non-normally distributed model residuals. This

is typically the case because of the complexity of testing a null hypothesis about indirect

effects. To remedy these issues, we propose two extensions of the recently developed

asymptotic Model-based Constrained Optimization (MBCO) likelihood ratio test (LRT),

a promising new model comparison method for testing a general function of indirect

effects. The proposed tests, semi-parametric and parametric bootstrap MBCO LRT are

shown to yield a more accurate Type I error rate in smaller sample sizes and under various

degrees of non-normality of the model residuals compared to the asymptotic MBCO

LRT and the CI-based methods. We provide R script in the Supplemental Materials

to perform all three MBCO LRTs.

Keywords: indirect effect, mediation analysis, confidence interval, likelihood ratio test, constrained optimization

In statistics, the goal of mediation analysis is to understand what underpins an observed
phenomenon, such as racism or gender identity, and to explain what mechanisms (mediators)
contribute to creating that phenomenon. Various models allow researchers to study how a
randomized intervention can influence an outcome through one or more mediators (e.g., Cury
et al., 2002; Deković et al., 2012; Bernier et al., 2017; Donnelly et al., 2018). For example, a researcher
might use a general sequential, two-mediator model to test hypotheses about racial profiling. As
part of such a study the researcher may hypothesize that at Time 1, perceived social dominance
orientation (SDO) increases, at Time 2 perceived sexism increases, and at Time 3 perceived threats
to gender identity increase when the covariates are controlled (Sanchez et al., 2017). Thus, under a
set of correct specifications and no-confounder assumptions, the researcher can define the indirect
effect as a product of coefficients along the mediation chain, β1β2β3 (VanderWeele, 2015). To
illustrate this design, consider the general sequential two-mediator model shown in Figure 1.

However, when researchers want to test hypotheses about indirect effects, they have problems
reporting their results statistically because the recommendedmethods have shortcomings that limit
their usefulness (MacKinnon et al., 2002). Specifically, using confidence interval (CI) methods to
test a null hypothesis about an indirect effect can produce too few or too many false-positives
(i.e., erroneously concluding that an effect exists) and, therefore, inaccurate Type I error rates in
practical cases, for example, when one of the coefficients is zero and N = 100 (MacKinnon et al.,
2002; Williams and MacKinnon, 2008; Biesanz et al., 2010; Fritz et al., 2012; Falk and Biesanz,
2015; Koopman et al., 2015). All the CI-based methods yield an empirical Type I error rate that
fluctuates across sample sizes, parameter values, and mediation models with varying complexities
(e.g., a single-mediator model verses a sequential two-mediator model). In addition, problems with
the CI-based tests of indirect effects tend to worsen in smaller sample sizes (N ≤ 100) or when the
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FIGURE 1 | A sequential two-mediator chain as a path diagram. The effect of

X (Racist Profile vs Control) and Y (threat to gender identity) is transmitted

through a sequence of mediators measured over time. Note that X should be

measured before M1 (social dominance orientation), M1 should be measured

before M2 (perceived sexism), and M2 should be measured before Y . C (liking)

is a covariate. εM1, εM2, and εY are the residual terms.

assumption of the multivariate normality of the residuals is
violated (Taylor et al., 2008; Tofighi and Kelley, 2019). These
limitations in testing methodology can lead researchers to
use methods that would yield incorrect answers to important
research questions, such as incorrectly concluding that an
indirect effect exists for the model in Figure 1 when in fact it
does not.

To address the shortcomings of the CI-based methods
of testing an indirect effect, Tofighi and Kelley (in press)
proposed a likelihood ratio test (LRT) test of general function of
indirect effects, termed the asymptotic Model-based Constrained
Optimization (MBCO) LRT, which is effective in a wide variety
of mediation models. A simulation study showed that the
asymptotic MBCO LRT yielded a more accurate Type I error rate
than the commonly used methods of testing an indirect effect in
that its empirical Type I error remained closer to the nominal
significance level α in smaller sample sizes while the asymptotic
MBCO LRT remained as powerful as the other tests. However,
the simulation studies were conducted under the ideal condition
of multivariate normality of the model residuals. As Tofighi and
Kelley stated, because the asymptotic MBCO LRT was developed
using the multivariate normal likelihood function, it is unknown
whether the asymptotic MBCO LRT would maintain its accurate
Type I error under moderate to severe degrees of multivariate
non-normality of the model residuals, especially in smaller
sample sizes. To address the issues with the asymptotic MBCO
LRT, we offer two alternative bootstrap resampling methods
based on the variants of the MBCO LRT that are theoretically
more robust to the violation of the multivariate normality of the
model residuals, and are expected to show superior statistical
properties in smaller sample sizes: 1- parametric bootstrap
MBCO and 2- semi-parametric bootstrap MBCO. We also
conduct a simulation study comparing the Type I error rate
and power of the two proposed bootstrap MBCO LRTs with the
following recommended confidence interval (CI)-based methods
in the literature (Tofighi and Kelley, 2019):

(a) percentile bootstrap (Bollen and Stine, 1990; Efron and
Tibshirani, 1993; Shrout and Bolger, 2002; MacKinnon et al.,
2004),

(b) profile likelihood (Folmer, 1981; Neale and Miller, 1997;
Pawitan, 2001; Pek and Wu, 2015), and

(c) Monte Carlo (MacKinnon et al., 2004; Tofighi and
MacKinnon, 2016).

In the Supplemental Material1, we provide an R (R
Development Core Team, 2019) function that facilitates
conducting the asymptotic, parametric bootstrap, and
semi-parametric bootstrap MBCO LRTs.

ISSUES WITH CURRENTLY USED TESTS
OF INDIRECT EFFECT

Using a CI-based method might not produce the more accurate
Type I error rate test because of two interwoven challenges
(Tofighi and Kelley, 2019). First, the null hypothesis of zero
indirect effect is a composite null hypothesis. To illustrate,
consider testing the null hypothesis H0 : β1β2β3 = 0 in the
sequential two-mediator model in Figure 1. This null hypothesis
is composite because there are an infinite number of the null
sampling distributions, the sampling distributions of the product
of coefficients in which the null hypothesis of a zero indirect effect
is true, rather than only one sampling distribution for which the
null hypothesis is true. For instance, for any β1 = 0, β2 and β3

can take on any value but the null hypothesis of no indirect effect
is still true and thus it is a composite null hypothesis. Similarly,
for any β2 = 0, β1 and β3 may take on any value but the null
hypothesis of no indirect effect is still true. The main difficulty
with the composite null hypothesis is that we do not know
which null mediational process, if any, to use to estimate the null
sampling distribution. Because we do not know which parameter
is zero and what the values of non-zero βs are, we cannot estimate
the null sampling distribution. Not having determined the null
sampling distribution, we cannot build a correct critical region
and calculate a p-value.

Second, to test this composite null hypothesis, one must find a
pivot or pivotal test quantity such that the optimal properties of a
test (e.g., accuracy of the Type I error rate) holds true. A pivot is a
random variable whose sampling distribution remains the same
across different parameter values (DeGroot and Schervish, 2012).
Currently used methods of testing an indirect effect, including
CI-based tests, use the maximum likelihood estimator (MLE) of
the indirect effect, such as β̂1β̂2β̂3, that is not a pivot. As a result,
the null sampling distribution does vary as a function of the
unknown parameters and across different mediation models. As
previously indicated, this is important because the null sampling
distribution must be first estimated to build a proper critical
region and compute an accurate p-value.

BOOTSTRAP MBCO

In this section, we provide some background about the sequential
two-mediator model in Figure 1 (Sanchez et al., 2017). The

1The datasets generated and analyzed during the current study as well as the R

script and description of code to perform all three MBCO LRTs are available in the

figshare repository, https://doi.org/10.6084/m9.figshare.9642953
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following equations are used to estimate the sequential two-
mediator model:

M1 = β0,M1 + β1X + β7C + εM1 (1)

M2 = β0,M2 + β2M1 + β4X + β8C + εM2

Y = β0,Y + β3M2 + β5M1 + β6X + β9C + εY

where β1 is the effect of the independent variable (X = 0,
control, 1, racism) on social dominance orientation (SDO; M1)
controlling for covariate Liking (C); β2 is the effect of SDO on
Perceived Sexism (M2) controlling for X and C; β3 is the effect of
Perceived Sexism on Gender Stigma (Y) controlling for X, M1,
and C. β0,M1, β0,M2, β0,Y are the intercepts; β7 to β9 quantify
the effect of C on the endogenous variables; and εs are the
residuals. More succinctly, we can usematrix notation to describe
assumptions about the model. Let ǫ = (εX , εM1, εM2, εY )

T, where
the superscript “T” denotes transpose operation. We assume that
the vector of the residuals have amultivariate normal distribution
with the 4× 1 mean vector of zero and the covariance matrix6ǫ :

6ǫ = diag(σ 2
X , σ

2
M1

, σ 2
M2

, σ 2
Y ),

where diag denotes a diagonal matrix where the main diagonal
elements are the residual variance and off-diagonal elements are
zero. Later, we will use a model implied 4× 4 covariance matrix,
denoted by 6.

Asymptotic Model-Based Constrained
Optimization LRT
In this section, we discuss a newly developed test of any
smooth function of indirect effect termed asymptotic MBCO
LRT (Tofighi and Kelley, in press). First, we formulate a general
hypothesis testing framework about the indirect effect. Let
MFull(2) denote a full (hypothesized) mediation model and 2
denote the model parameter space. In the structural equation
model (SEM) framework, 2 = {β ,9}, where β is a set of all
the free regression (path) coefficients and 9 is a set containing
the unique elements of the covariance matrices of residual terms.
While the elements in β may take on any real values, the
variance terms in ψ have a lower bound of zero. For example, if
MFull(2) denotes the sequential two-mediator mediation model
in Figure 1, then 2 contains all the regression coefficients (i.e.,
βs) and three residual variances for the endogenous variables.
We next define a hypothesis testing framework to test a general
function of indirect effect as follows:

H0 : θ ∈ 20 (2)

H1 : θ ∈ 21,

where θ is a vector of the mediation model parameters and 20

denotes the null parameter space, which is a subset of the full
model parameter space 2. For example, for the two-mediator
mediation model, the null parameter space contains all elements
of 2 for which the indirect effect β1β2β3 is zero. In addition,
the alternative parameter space, denoted by 21, contains all the

parameter values that are in 2 but not in 20: 21 = 2 \ 20,
where the symbol “\” denotes the set difference operation2.

As mentioned before, because the MLE of an indirect effect
is not a pivot to test zero indirect effect, determining a unique
null distribution is not feasible. There exist an infinite number of
null sampling distributions whose parameters would be within
the null parameter space in (2). To remedy this problem, we
recast the null hypothesis testing in (2) in terms of the model
comparison framework. That is, we use a model comparison
framework to test a general function of indirect effect. In the
model comparison framework, we define two models under
as follows:

H0 :M0(20) (3)

H1 :MFull(2),

where M0(20), termed null model, is estimated over the null
parameter space. Note that in the model comparison framework,
we useMFull(2), termed fullmodel, that is the mediation model
estimated without being subject to the restrictions imposed in
either the null or the alternative parameter space in (2). It turns
out that in the model comparison framework, one can use the
full parameter space2 instead of the more restricted alternative
parameter space3 (Wasserman, 2004). The model comparison
framework in (3) is more convenient for the composite
hypothesis testing because defining the alternative hypothesis
parameter space is more involved. Note that MFull(2) is
basically estimating the model without any additional restriction
beyond theory-driven ones already posited by the researcher. For
example, MFull is the two-mediator sequential mediation model
in Figure 1.

To estimate the null model, it is important to carefully define
the null parameter space. We define the null parameter space
as follows:

20 = {∀β ∈ 2 : g(β) ≥ 0}, (4)

where g(β) is a smooth, scalar function of the path coefficients
in the model and possibly a non-zero constant. Also, it should
be noted the symbol “≥” indicates that we can test a one-sided
as well as a two-sided null hypothesis, although we only discuss
a two-sided null hypothesis. For example, to test whether the
indirect effect β1β2β3 is zero, the null parameter space is defined
as20 = {∀β ∈ 2 : g(β) = β1β2β3 = 0}, where β1β2β3 = 0 is a
non-linear equality constraint.

Now, a critical question is how to estimate the null model.
Herein lies the innovation of the asymptotic MBCO LRT.
The null model is formulated as a non-linear constrained
optimization problem in which the goal is to maximize the
likelihood function L(·) subject to the non-linear constraint

2A set difference between two sets2 and20, denoted by2 \20, is set consists of

all the elements in2 that are not elements in20.
3One could also use the more restricted parameter space under the alternative

hypothesis. The two formulations would yield similar results in most practical

situations, whereas the formulation adopted in the current study is more

commonly used in practice (Wasserman, 2004).

Frontiers in Psychology | www.frontiersin.org 3 January 2020 | Volume 10 | Article 2989

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Tofighi More Accurate Test of Indirect Effects

g( β) = 0:

Maximize L(θ |y)

subject to g(β) ≥ 0 (5)

where g(β) is a smooth, scalar function of the path coefficients
in the model as in (4) and y = (X,M1,M2,Y)

T is a vector of the
observed variables. Comparing the non-linear constraint in (5)
with the null parameter space defined in (4), we can observe that
the non-linear constraint in the optimization problem essentially
ensures that the model parameter estimates lie within the null
parameter in which the general function of model parameters
satisfies the constraint.

Now, a brief overview of the conducting the asymptotic
MBCO LRT procedure follows.

TMBCO = −2 log
L(β̂0, ψ̂0|y)

L(β̂ , ψ̂ |y)
(6)

where β̂0 and ψ̂0 are the MLEs of the null model, and β̂ and ψ̂
are the MLEs of the full model. If the likelihood of the null model
over 20 is sufficiently small compared to that of the full model
over 2, the null hypothesis is rejected. Thus, the TMBCO has the
rejection region Cα = {y :TMBCO ≤ c0}, where c0 is a critical
value chosen so that the size of the TMBCO is less than or equal
to α— size of a test is the probability that the test falsely rejects
the null hypothesis. To compute the critical value c0, we need to
determine the sampling distribution of TMBCO.

We formulated TMBCO such that it is minus twice the
log function of the likelihood ratio. Because TMBCO is
a likelihood ratio test, it has an asymptotic limiting χ2

distribution (Cox and Hinkley, 2000, pp. 322–323; Wilks, 1938).
More formally, when certain regularity conditions are met (See
Silvapulle and Sen 2001, p. 146), the null hypothesis in (2) holds,
and the sample size is large,

TMBCO ∼ χ2(ν) , (7)

where ν denotes the degrees of freedom that equals the difference
in the number of the free parameters between the null and full
models, respectively. A critical result is that the limiting chi-
square distribution does not depend on the unknown model
parameters. In other words, asymptotically, the proposed MBCO
LRT is a pivot. One of the regularity conditions is that the
null parameter values in (2) may not be on the boundary of
the parameter space. Because the non-linear constraint in (4) is
defined by a smooth function of regression coefficients that may
take on any real values, the parameter values defined in (4) do not
lie on the boundary of the null parameter space.

Bootstrap MBCO LRT
In computing the asymptotic MBCO LRT, we made several
distributional and large sample assumptions. First, the likelihood
function in (5) assumes that the model residuals have a
multivariate normal distribution. Second, the MBCO LRT has
a large sample chi-square distribution. When these assumptions
are not met, that is when the model residuals do have a

multivariate normal distribution, or in smaller sample sizes,
it is unclear if the asymptotic MBCO LRT has a chi-square
distribution. In these situations, bootstrapping techniques can
be appealing as they tend to rely less on the assumption of the
multivariate normality and can perform better in smaller sample
sizes (Efron and Tibshirani, 1993).

For bootstrap hypothesis testing, a major requirement is that
bootstrap samples should be drawn from the sample that is
transformed to match the null model (Beran, 1988). Resampling
from the transformed sample would then mimic drawing from
the null sampling distribution. If the bootstrap samples are not
drawn from the sample with an adjustment to conform to the
null model, the sampling distribution is likely to differ from the
null distribution. Such resampling is sometimes called “naive”
bootstrap (Bollen and Stine, 1992). Thus, a challenge for all the
bootstrapping techniques discussed below is how to conduct
resampling from the transformed sample so that the bootstrap
resampling distribution matches the null distribution. Next, we
discuss two bootstrap extensions of the MBCO LRT that would
correctly perform resampling under the null hypothesis.

Parametric Bootstrap MBCO LRT
In the parametric bootstrap, a mediation model is first fitted
to data using an estimation method such as the maximum
likelihood (ML). The implied mean vector and covariance matrix
of the fitted model are used to replace the true mean and
covariance matrix of distribution of the data. If we assume
that data has a multivariate normal distribution, then repeated
samples are drawn from the distribution with the mean vector
and covariance matrix estimated from the fitted model. Each data
set is used to estimate a mediation model and the quantities of
interest (e.g., indirect effect) resulting in a parametric bootstrap
sampling distribution for the indirect effect. It should be noted
that the parametric bootstrap procedure we just described does
not take into account the null model, and thus it is a “naive”
parametric bootstrap. As previously indicated, before using
bootstrapping for hypothesis testing, we must ensure that the
sampling distribution is drawn from the model under the null
hypothesis. That is, for the parametric bootstrap, the bootstrap
samples must be drawn from the fitted null model that satisfies
constraints imposed under the null hypothesis.

Because the asymptotic MBCO LRT uses a model comparison
framework, we can extend the test to accommodate parametric
bootstrap hypothesis testing that would satisfy the null
hypothesis. Note that in the asymptotic MBCO LRT, the null
model is estimated under the null hypothesis. We use the fitted
null model estimates to draw samples from the estimated null
distribution. That is, we sample from a multivariate normal
distribution whose parameters are estimated from the fitted null
model. We propose the following steps to compute parametric
bootstrap MBCO LRT:

1. Draw a random sample from the multivariate normal
distribution whose mean and covariance matrix are estimated
from the fitted null mediation model.

2. Estimate the null and full mediation for the sample and
compute the MBCO LRT statistic.
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3. Repeat the previous steps R times, which would result in R
bootstrap samples from the null distribution of LRTs.

4. Compute p-value as the proportion of the bootstrapped LRTs
greater than original LRT value, which is computed from the
asymptotic MBCO LRT.

Semi-parametric Bootstrap MBCO LRT
In semi-parametric bootstrap for hypothesis testing, we draw
samples from the transformed sample data to conform to the
model under the null hypothesis (Beran and Srivastava, 1985;
Beran, 1988; Bollen and Stine, 1992). As mentioned before, the
idea of resampling from a transformed sample that supports
the null hypothesis is essential in estimating the null sampling
distribution of MBCO LRT. For the semi-parametric bootstrap
MBCO LRT, this is done by first transforming the original sample
and then drawing repeated random draws with replacement from
the transformed data.

Before proceeding, we discuss a few matrix algebra results
essential in understanding the algorithm for the semi-parametric
bootstrap MBCO LRT. Below, we show how we use matrix
transformation to make the original sample data more
compatible with the data as if the data were generated under
the null hypothesis. First, we explain Cholesky transformation.
A positive-definite matrix M, such as a covariance matrix,
can be uniquely factored into a product M = UTU, where U,
called a Cholesky matrix, is an upper triangular matrix with
positive diagonal entries. To illustrate, consider the sample
covariance matrix.

S =
1

N − 1

N
∑

i=1

(yi − y)(yi − y)T,

where yi = (Xi,M1i,M2i,Yi)
T and y be the 4 × 1 vector of the

sample means for N observations. Using Cholesky factorization
on the sample covariance matrix, we have S = UT

SUS. Using the
sample covariance factorization, we factorize the inverse of the
sample covariance as follows:

S−1 =
(

UT
SUS

)−1
= U−1

S U−T
S (8)

We also use Cholesky factorization on the fitted null model
implied covariance matrix as follows:

6̂0 = UT
6̂0
U
6̂0

(9)

The algorithm for the semi-parametric bootstrap MBCO LRT is
as follows:

1. Transform data as follows: y∗ = UT
6̂0
U−T
S , where y∗ is the

transformed data and U−T
S and UT

6̂0
are computed in (8) and

(9), respectively.
2. Take sample of size N with replacement from the transformed

data y∗, fit the null and full model to resampled data, and
compute MBCO LRT.

3. Repeat Step 2 R times, which would result in the null sampling
distribution of MBCO LRT statistic.

4. Compute p-value as the proportion of the bootstrapped LRTs
greater than original LRT value, which is computed from the
asymptotic MBCO LRT.

Below, we show that the covariance matrix of the transformed
data equals the implied covariancematrix of the fitted null model.
That is, we show that the covariance matrix of the transformed
data equals the covariance matrix of the fitted null model:

var(y∗) = 6̂0.

var(y∗) = var
[(

UT
6̂0
U−T
S

)

y
]

=
(

UT
6̂0
U−T
S

)

var(y)
(

U−1
S U

6̂0

)

=
(

UT
6̂0
U−T
S

)

UT
SUS

(

U−1
S U

6̂0

)

= UT
6̂0

(

U−T
S UT

S

) (

USU
−1
S

)

U
6̂0

= UT
6̂0
U
6̂0

= 6̂0

REVIEW OF EXISTING METHODS

In this section, we briefly discuss currently recommended
CI-based methods of testing indirect effects that have been
recommended for both normality and non-normality of the
model residuals. We follow the recommendation that different
sets of methods may be used to test and to build a CI for indirect
effect as these two goals might not overlap (Tofighi and Kelley,
2019):

(a) percentile bootstrap (Bollen and Stine, 1990; Efron and
Tibshirani, 1993; Shrout and Bolger, 2002; MacKinnon et al.,
2004),

(b) profile likelihood (Folmer, 1981; Neale and Miller, 1997;
Pawitan, 2001; Pek and Wu, 2015), and

(c) Monte Carlo (MacKinnon et al., 2004; Tofighi and
MacKinnon, 2016).

We do not consider bias-corrected (BC) bootstrap as it has been
shown to yield inflated Type I error rates (Biesanz et al., 2010;
Koopman et al., 2015).

Percentile Bootstrap CI
In non-parametric bootstrap, R random samples of size N are
drawn with replacement from the original data set (Efron and
Tibshirani, 1993). Each observation has the same chance of the
being selected in each draw. A mediation model is fitted to each
sample resulting in a bootstrap sample with R estimates of model
parameters and quantities of interest such as indirect effects.
The percentile method uses α/2 and 1 − α/2 quantiles of the
bootstrap sample to compute 100(1− α)% CI for the population
indirect effect.

Profile Likelihood CI
In its simplest form, the profile-likelihood approach produces a
CI for a single parameter using the profile likelihood function
(Folmer, 1981; Neale and Miller, 1997; Pawitan, 2001; Cheung,
2007; Pek and Wu, 2015). The profile-likelihood function for
the sequential two-mediator model, L(θ |ı , y), is computed by
assuming that indirect effect, denoted by ı = β1β2β3, is a known
quantity. That is, the indirect effect is fixed at a specific value, and
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thus ı is said to be profiled out of the likelihood function. The
profile-likelihood function is treated as any likelihood function
except that the quantity of interest (i.e., indirect effect) is assumed
to be known. Thus, the profile-likelihood function depends on
the fixed, but unknown values of the quantity of interest.

Next, we compare the log of the maximized profile-likelihood
function and the maximized full model likelihood function;
we have

−2 log
L(θ̂prof |ı , y)

L(θ̂ | y)

where L(θ̂prof |ı , y) and L(θ̂ |y) are the maximum profile-

likelihood and full likelihood functions, respectively; θ̂prof and θ̂
are the profile-likelihood and full MLE of the model parameters,
respectively. Asymptotically, the difference in twice negative
maximum log-likelihood of the two functions has a chi-square
distribution with one degree of freedom (Cheung, 2007), which
is the difference in the number of the parameters between
the profile likelihood and full likelihood functions. Then, the
lower and upper limits for the 100 (1-α)% profile-likelihood
correspond to the minimum and maximum of all values of the
indirect effect that satisfy the following equality:

−2{LL(β̂prof, ψ̂prof |ı , y)− LL(β̂ , ψ̂ |y)} = χ2
α(1)

where LL denotes the log of a likelihood function and χ2
α(1)

denotes the upper α critical value of chi-square distribution with
one degree of freedom.

Monte Carlo CI
The Monte Carlo method is a general and flexible method that
estimates the sampling distribution of a function of parameters
such as indirect effects (Tofighi and MacKinnon, 2016). To
compute a Monte Carlo 100(1 − α)% CI for the indirect effect
β1β2β3, R random samples are drawn from a multivariate
normal distribution whose mean vector equals the MLEs of
the coefficients β1, β2, and β3, and whose covariance matrix
equals the covariance matrix of the MLEs. The product of the
Monte Carlo random draws for the parameters β1, β2, and
β3 yields a Monte Carlo sample of R random draws from
the sampling distribution of the indirect effect. The mean and
standard deviation of the Monte Carlo sample of the indirect
effect are the estimate of mean and standard error of the indirect
effect, respectively. TheMonte Carlo 100(1−α)% CI equals [qα/2,
q1−α/2], where qα/2, q1−α/2 are α/2 and 1 − α/2 quantiles of the
Monte Carlo sample of the indirect effect.

SIMULATION STUDY

We conducted a simulation study to assess the Type I error
and statistical power of the two proposed bootstrap extensions
of the MBCO LRT and currently recommended methods of
testing indirect effect across different sample sizes, parameter
values, and distributional assumptions of model residuals. We
used the sequential two-mediator model in Figure 1 to generate
data and test the hypothesis: H0 :β1β2β3 = 0. The simulation

was designed to answer the following questions: a) Does the
asymptotic MBCO LRT show accurate Type I error rate when
the assumption of multivariate normality of the model residuals
is violated?— this condition has not been studied before. (b)
Are the two proposed bootstrap MBCO LRTs more accurate and
powerful than the asymptotic MBCO LRT as well as the CI-based
tests? (c) Do the proposed bootstrap MBCO LRTs perform better
than the asymptotic MBCO LRT and CI-based tests in terms of
Type I error and power for the conditions of the non-normal
residuals and in smaller sample sizes?

Based on similar previous simulation studies (Williams and
MacKinnon, 2008; Falk and Biesanz, 2015; Tofighi and Kelley,
2019), we manipulated the following four factors: (a) semi-partial
R2s, (b) sample size (N), (c) methods of testing indirect effect, and
(d) multivariate distributions. For the semi-partial R2, we used
Cohen (1988)’s general guideline, R2 = 0, 0.02 (“small”), 0.13
(“medium”), and 0.26 (“large”), and computed the corresponding
model parameters: β = 0, 0.14, 0.39, and 0.59 (Thoemmes et al.,
2010). We chose the following sample sizes that were used in
previous simulation studies: 50, 100, 200, and 500. Because in
our preliminary simulation study, the sample size greater than
500 did not produce discerning differences in the performance
of the methods, we did not investigate larger sample sizes. We
considered the sample size of 50 as a lower bound for most
psychological studies. The third factor was the six methods of
testing an indirect effect:

(a) asymptotic MBCO LRT,
(b) parametric bootstrap MBCO LRT,
(c) semi-parametric bootstrap MBCO LRT,
(d) percentile non-parametric bootstrap,
(e) profile-likelihood CI, and
(f) Monte Carlo CI.

For the fourth factor, we considered three levels of multivariate
distributions for the model residuals, one multivariate normal
and two multivariate non-normal distributions (Tofighi and
Kelley, 2019). The multivariate normal distribution condition
was considered an ideal situation and was used as a benchmark
to gauge the performance of the two newly developed
bootstrap MBCO LRTs as well as the existing methods.
We considered two multivariate non-normal distributions,
“moderate” and “severe” non-normality conditions (Finch
et al., 1997). The multivariate non-normal distributions were
generated such that the marginal univariate skewness and
kurtosis of the residuals were 2 and 7 for moderate and 3
and 21 for severe conditions, respectively (Vale and Maurelli,
1983).

We used a full factorial design for each simulation study.
We generated 1,000 independent data sets for each combination
of the design factors using the simulateData function
of the lavaan package Version 6.3 (Rosseel, 2012) that
accommodates the generation of multivariate normal and non-
normal distribution. We conducted the asymptotic, parametric
bootstrap, and semi-parametric bootstrap MBCO LRT, as
well as the profile-likelihood method CI in OpenMx Version
2.13.2 with Sequential Least-Squares Quadratic Programming
(SLSQP) optimizer (Neale et al., 2016; Zahery et al., 2017).
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FIGURE 2 | Type I error for normal conditions for testing an indirect effect, β1β2β3, in a two-mediator sequential chain. Horizontal solid lines show the limits of Bradley

(1978)’s interval of 0.025 and 0.075 for α = 0.05. asymp MBCO, asymptotic MBCO LRT; param MBCO, parametric bootstrap MBCO LRT; semi MBCO,

semi-parametric bootstrap MBCO LRT; Profile, Profile-Likelihood CI; Monte Carlo, Monte Carlo CI; Percentile, Percentile non-parametric bootstrap.

We used lavaan for the percentile bootstrap CI. We used
1,000 samples for the bootstrap methods. For the Monte Carlo
CI, we first estimated the mediation model in lavaan and
then used the RMediation package Version 1.1.4 (Tofighi
and MacKinnon, 2011, 2016) to compute CIs with 100,000
random draws.

Results
The outcomes of the simulation study were the empirical
(observed) Type I error and power. The Type I error rate was
the proportion out of the 1,000 replications that a method
incorrectly rejected the null hypothesis of zero indirect effect.
The empirical power was the proportion of the 1,000 replications
that a test correctly detected a non-zero indirect effect. We
considered a test to have an accurate Type I error rate if
its empirical Type I error rate fell within Bradley (1978)’s
interval of 0.025 and 0.075. If the Type I error rate exceeded
the upper limit, the test was liberal; otherwise, the test
was conservative.

Type I Error
Figures 2, 3 show the violin plots for the Type I errors of the
six methods across different sample sizes and the distribution
of the model residuals. For the normal distribution condition,
in general, the MBCO LRTs showed more accurate Type I error

rates than did the CI-based tests. Specifically, when N = 50, the
MBCO LRTs showed conservative Type I error rates that were
more accurate (less conservative) than those of the CI-based tests.
As the sample size increased, parametric and semi-parametric
MBCO LRTs were the most accurate followed by the asymptotic
MBCO LRTs. The CI-based tests also became more accurate as
the sample size increased; however, they showed less accuracy
than the MBCO LRTs.

For the non-normal conditions, a similar trend was observed.
In general, the MBCO LRTs showed more accurate Type I error
rates compared to the CI-based tests. For both non-normality
conditions, in general, semi-parametric and parametric bootstrap
MBCO LRTs were the most accurate followed by the asymptotic
MBCO LRT. The CI-based methods were less accurate than the
MBCO LRTs. The profile-likelihood and Monte Carlo methods
showed similar accuracy that were more conservative than all the
tests. For N ≥ 100, the percentile bootstrap CI showed instances
of inflated Type I error rate beyond the upper limit of the Bradley
(1978)’s interval.

Power
Tables 1, 2 show a subset of results where β1 = β2 = β3

for the power of the six methods across different sample sizes
and the distribution of the model residuals. For the normal
condition, difference in power between the six methods did
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FIGURE 3 | Type I error for non-normality conditions for testing an indirect effect, β1β2β3, in a two-mediator sequential chain. Horizontal solid lines show the limits of

Bradley (1978)’s interval of 0.025 and 0.075 for α = 0.05. asymp MBCO, asymptotic MBCO LRT; param MBCO, parametric bootstrap MBCO LRT; semi MBCO,

semi-parametric bootstrap MBCO LRT; Profile, Profile-Likelihood CI; Monte Carlo, Monte Carlo CI; Percentile, Percentile non-parametric bootstrap.

not exceed 0.06 except in two cases between the percentile
bootstrap and profile-likelihood method: medium effect size
(β1 = β2 = β3 = 0.39) and N = 50 where the
difference was 0.11 and small effect size and N = 500 where
the difference was 0.08. In both cases, the profile-likelihood
method showed higher power. For the non-normal condition
where skewness = 2 and kurtosis = 7, the two largest power
differences (0.12 and 0.1) occurred when (a) N = 50 and
effect size was medium between the asymptotic MBCO LRT
(0.47) and Monte Carlo CI (0.35), and (b) when effect size

was small and N = 500, between semi-parametric MBCO
LRT (0.73) and Monte Carlo CI (0.63). For the non-normal
conditions where skewness= 3 and kurtosis= 21, the maximum
difference in power of 0.12 occurred in two conditions between
the percentile and Monte Carlo method: (a) when the effect
size was small and N = 500, and (b) when effect size was
medium and N = 50. Across all the distribution conditions,
when N ≥ 200 and the effect size was medium or large, and
when N = 100 and the effect size was large, all the methods had
a power of 1.
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TABLE 1 | Empirical power for six methods of testing indirect effect for normal data condition.

β1 = β2 = β3 N asymp MBCO param MBCO semi MBCO Profile Monte Carlo Percentile

0.14 50 0.01 0.01 0.01 0.01 0 0

100 0.03 0.03 0.03 0.02 0.01 0.01

200 0.13 0.15 0.15 0.16 0.1 0.12

500 0.68 0.7 0.72 0.73 0.68 0.65

0.36 50 0.46 0.43 0.43 0.49 0.41 0.38

100 0.9 0.89 0.89 0.89 0.88 0.86

200 1 1 1 1 1 1

500 1 1 1 1 1 1

0.48 50 0.89 0.88 0.88 0.88 0.86 0.85

100 1 1 1 1 1 1

200 1 1 1 1 1 1

500 1 1 1 1 1 1

The β coefficients values 0.14, 0.36, and 0.48 correspond to the R2 = 0.02 (“small”), 0.13 (“medium”), and 0.26 (“large”) according to Cohen (1988)’s general guideline, respectively.

asymp MBCO, asymptotic MBCO LRT; paramMBCO, parametric bootstrap MBCO LRT; semi MBCO, semi-parametric bootstrap MBCO LRT; Profile, Profile-Likelihood CI; Monte Carlo,

Monte Carlo CI; Percentile, Percentile non-parametric bootstrap.

TABLE 2 | Empirical power for six methods of testing indirect effect for non-normal data conditions.

β1 = β2 = β3 N asymp MBCO param MBCO semi MBCO Profile Monte Carlo Percentile

Non-normal Condition (skewness = 2, Kurtosis = 7)

0.14 50 0.01 0.01 0.01 0.01 0.01 0

100 0.03 0.03 0.03 0.03 0.01 0.01

200 0.16 0.16 0.16 0.15 0.1 0.08

500 0.7 0.7 0.73 0.66 0.63 0.65

0.36 50 0.47 0.44 0.44 0.43 0.35 0.36

100 0.9 0.89 0.9 0.85 0.86 0.87

200 1 1 1 1 1 1

500 1 1 1 1 1 1

0.48 50 0.88 0.88 0.88 0.82 0.78 0.85

100 1 1 1 0.99 1 1

200 1 1 1 1 1 1

500 1 1 1 1 1 1

Non-normal Condition (Skewness = 3, Kurtosis = 21)

0.14 50 0.01 0.01 0 0.01 0 0

100 0.02 0.03 0.03 0.03 0.02 0.02

200 0.14 0.14 0.15 0.14 0.1 0.13

500 0.7 0.69 0.7 0.64 0.61 0.73

0.36 50 0.45 0.43 0.43 0.38 0.35 0.47

100 0.91 0.9 0.89 0.83 0.83 0.91

200 1 1 1 1 1 1

500 1 1 1 1 1 1

0.48 50 0.89 0.88 0.87 0.8 0.82 0.9

100 1 1 1 0.98 0.99 1

200 1 1 1 1 1 1

500 1 1 1 1 1 1

The β coefficients values 0.14, 0.36, and 0.48 correspond to the R2 = 0.02 (“small”), 0.13 (“medium”), and 0.26 (“large”) according to Cohen (1988)’s general guideline, respectively.

asymp MBCO, asymptotic MBCO LRT; paramMBCO, parametric bootstrap MBCO LRT; semi MBCO, semi-parametric bootstrap MBCO LRT; Profile, Profile-Likelihood CI; Monte Carlo,

Monte Carlo CI; Percentile, Percentile non-parametric bootstrap.
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DISCUSSION

In this article, we proposed two extensions of the recently
developed asymptotic MBCO LRT, which is a model-comparison
approach to testing a general function of indirect effect in
mediation analysis. Although the asymptotic MBCO LRT yields
more accurate Type I error rate compared to the recommended
CI-based methods, its performance for smaller sample size and
multivariate non-normal distributions of the model residuals
had not previously been examined. Because the asymptotic
MBCO LRT relies on the normal likelihood function and has
an asymptotically chi-squared distribution, its accuracy is likely
to suffer in smaller sample sizes, for multivariate non-normal
model residuals, or both. To remedy these deficiencies, we first
proposed two extensions of the MBCO LRTs: parametric and
semi-parametric bootstrap MBCO LRT, which we showed to
produce more accurate Type I error for smaller sample sizes
as well as non-normal model residuals. Our proposed methods
are based on the bootstrap technique that tend to make fewer
distributional assumptions than does the asymptotic MBCO
LRT. Thus, theoretically the proposed tests were expected to
have better statistical properties for smaller sample sizes and
non-normal model residuals.

A simulation study was conducted to assess and compare
the Type I error and power of the two proposed tests to
the asymptotic MBCO LRT and three recommend CI-based
tests, percentile bootstrap, profile-likelihood, and Monte Carlo
method. The simulation study results showed that

(a) the MBCO LRTs all were more accurate in terms of the
empirical Type I error rate (i.e., the Type I error rate was
closely matched or was closer to the nominal significance
level of α) than the CI-based tests,

(b) semi-parametric and parametric bootstrap MBCO LRT in
general yielded more accurate Type I error rate than the
asymptotic MBCO LRT for the non-normal model residuals
and in smaller sample sizes,

(c) all the MBCO LRTs were as powerful as the best CI-based
tests, and

(d) the percentile bootstrap CI showed instances of the inflated
Type I error rate when the model residuals had multivariate
non-normal distributions.

While our simulation studies did not show a discernible

difference in the performances of the parametric and semi-

parametric MBCO LRT, the two methods differ in how they

estimate a null sampling distribution of LRTs. The parametric

and semi-parametric MBCO LRT use bootstrapping to estimate

the null sampling distribution of LRTs. In the parametric method,
we fit the null model to the data, and then use the estimated

model parameters (mean vector and covariances matrix) to
simulate R parametric bootstrap samples from a multivariate
normal distribution. We then fit the null and full model to each
bootstrap sample, and compute MBCO LRT for each bootstrap
sample that results inR samples from a null sampling distribution
of LRT. In the semi-parametric MBCO LRT, however, we do not
make a parametric assumption about the estimated parameters
of the null model. We use the null model estimates to transform
the original data and then resample from the transformed data

to compute a null sampling distribution of LRT. Thus, the semi-
parametric bootstrap MBCO LRT makes fewer assumptions.

While we recommend that researchers report a CI to illustrate
a range of plausible values and uncertainty about an indirect
effect, we do not advise that CIs be used to test an indirect
effect (Tofighi and Kelley, 2019). Instead, we recommend that
researchers employ one of the MBCO LRTs based on the
distribution of the model residuals. If multivariate normality
can be reasonably assumed, then one may use any of the
MBCO LRTs. However, if the multivariate normality assumption
is untenable, then we recommend researchers conduct both
the semi-parametric and parametric bootstrap MBCO LRT and
compare the results. If both methods agree, then one could
report either test result. If the methods do not agree, then we
recommend that researchers report the semi-parametric MBCO
LRT because it makes fewer assumptions.

When testing an indirect effect, researchers should first
examine the underlying assumptions necessary to enhance
support for a causal claim about an indirect effect. Even
in a randomized mediation model, in which participants are
randomly assigned to treatment and control groups, making
causal claims about an indirect effect requires a strong support for
the no-omitted-confounder assumption (VanderWeele, 2015).
That is, there should not be a variable omitted from the model
that would confound (influence) either the mediator or the
outcome variables, given the independent variable and covariates.
If a researcher believes that not all confounders are included in
the model, then a causal claim about the magnitude and existence
of indirect effect needs to be qualified. Because the no-omitted
confounder assumption is unstable, we recommend researchers
conduct a sensitivity analysis to investigate the potential impact
of omitted confounders on the inference about indirect effects
(VanderWeele, 2015; Tofighi et al., 2019).

Several areas remain a topic of future study. One topic is the
extension of the MBCO LRTs to the models with categorical
mediator or outcome variables. Such an extension would require
defining and estimating indirect effect in the potential outcome
framework. A second area is the extension of the MBCO LRTs to
a multilevel mediation framework. Finally, we did not consider
the missing data. More work is needed to assess the performance
of the MBCO LRTs when missing data is present.
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