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The minimal neural correlate of the conscious state, regardless of the neural activity
correlated with the ever-changing contents of experience, has still not been identified.
Different attempts have been made, mainly by comparing the normal waking state
to seemingly unconscious states, such as deep sleep or general anesthesia. A more
direct approach would be the neuroscientific investigation of conscious states that are
experienced as free of any specific phenomenal content. Here we present serendipitous
data on content-free awareness (CFA) during an EEG-fMRI assessment reported by an
extraordinarily qualified meditator with over 50,000 h of practice. We focused on two
specific cortical networks related to external and internal awareness, i.e., the dorsal
attention network (DAN) and the default mode network (DMN), to explore the neural
correlates of this experience. The combination of high-resolution EEG and ultrafast fMRI
enabled us to analyze the dynamic aspects of fMRI connectivity informed by EEG power
analysis. The neural correlates of CFA were characterized by a sharp decrease in alpha
power and an increase in theta power as well as increases in functional connectivity in
the DAN and decreases in the posterior DMN. We interpret these findings as correlates
of a top-down-initiated attentional state excluding external sensory stimuli and internal
mentation from conscious experience. We conclude that the investigation of states of
CFA could provide valuable input for new methodological and conceptual approaches
in the search for the minimal neural correlate of consciousness.

Keywords: content-free awareness (CFA), consciousness as such, neural correlate of consciousness (NCC),
disconnected consciousness, meditation, default-mode network (DMN), dorsal attention network (DAN), EEG-
fMRI

INTRODUCTION

Neuroscientific meditation research has risen sharply during the last decade, thereby initiating the
new field of contemplative neuroscience. So far the majority of studies in this field have explored
the physiological mechanisms of meditation, changes in brain structure and function associated
with meditation practice, as well as differences in cognitive abilities between meditators and
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non-meditators (Davis and Vago, 2013; Vieten et al., 2018).
Only few studies have investigated deep states of meditation
and extraordinary experiences, such as ‘enlightenment’ or
‘awakening.’ This is understandable, considering the multiplicity
of methodological obstacles and the elusive nature of such
experiences that, however, occur more frequently than expected
and are usually evaluated as extremely meaningful or even life-
changing by the meditators (Davis and Vago, 2013).

The investigation of deep states of meditation could
open a unique pathway in identifying the neural correlates
of consciousness, complementing approaches investigating
seemingly unconscious states in deep sleep, general anesthesia
or disorders of consciousness (Winter, 2013). Meditative states
of consciousness without any specific content are described
in all major contemplative traditions. Whether such states of
consciousness actually exist is the subject of current debates in
the philosophy of mind and the Neurosciences (Gennaro, 2008;
Millière et al., 2018; Winter, 2020).

A state of ‘content-free awareness’ (CFA) represents a
non-pathological, wakeful state of consciousness free of
the complexity of normal wakeful states, i.e., the bare
state of being aware or consciousness as such.1 The neural
correlate of such a minimal form of conscious experience may
represent the minimal neural system sufficient for conscious
experience (Chalmers, 2000), i.e., the minimal neural correlate of
consciousness (Winter, 2013, 2020).

We are presently investigating the neurophysiologic correlates
of meditation-induced states of awareness with reduced content
in expert and novice meditators from different traditions
by applying the latest technical developments in EEG-fMRI
technology. Here we present serendipitous data consisting of
an EEG-fMRI measurement in an extraordinarily qualified
meditator who reported having had an experience of ‘awakening’
during his meditation in the scanner. The former Buddhist monk
described his experience as a ‘clear, aware openness’ without
any thoughts, physical, or sensory perception and even without
any sense of self, time, and space – a state traditionally called
the ‘ground state of awakening.’ His experience appears to be a
case of bare CFA.

The experience of selfless and objectless awareness occurs only
in a small number of meditators and usually only after years
of practice (Wittmann, 2018). It is described as an experience
that cannot be controlled by the meditator. We were very
fortunate to have been able to record such an experience
under the extremely unfavorable external conditions of an MRI
examination. Therefore, despite the limitations of a single-case
study, we decided to publish this data in advance in a brief
research report.

To explore the neural correlates of this experience, we
focused on two specific cortical networks related to external
and internal awareness, i.e., the dorsal attention network (DAN)
and the default mode network (DMN), respectively. Changes in
activity and connectivity within and between these two networks
seem to play a pivotal role for the loss of consciousness in

1Similar minimal forms of consciousness may occur as experiences of lucid
dreamless sleep (Windt et al., 2016).

sleep (Sämann et al., 2011), anesthesia (Schrouff et al., 2011)
and disorders of consciousness (Boly et al., 2012), as well as
in altered states of consciousness, such as hypnosis (Demertzi
et al., 2011), meditation (Brewer et al., 2011; Josipovic et al.,
2012), and psychedelic experiences (Carhart-Harris et al.,
2014). To investigate the neural correlates of the reported
disconnection of conscious experience from external sensory
stimuli, we also analyzed the interplay of DAN with the primary
auditory cortex (PAC).

We analyzed the dynamic aspects of fMRI connectivity,
further informed by EEG spectral analysis. For this we used
EEG spectral power in the two frequency bands most commonly
associated with meditation: theta and alpha (Cahn and Polich,
2006; Lomas et al., 2015). EEG alpha power is a marker for
cognitive and attentional processes (Klimesch, 1999; Katyal
et al., 2019) and specifically associated with DMN (Jann et al.,
2009) and DAN (Hacker et al., 2017). Alpha oscillations
may play a crucial role for the attentional and cognitive
control processes involved in meditation (Marzetti et al., 2014;
Raffone and Srinivasan, 2017).

Similar to alpha power, theta power was found to be associated
with cognitive control (Başar et al., 2001; Cavanagh and Frank,
2014) and attention (Keller et al., 2017). Increases in frontal
midline theta power have been found across a variety of
meditation practices (Cahn and Polich, 2006; Lomas et al.,
2015) and especially during concentrative meditation (Baijal
and Srinivasan, 2010; Aftanas and Golocheikine, 2014). These
findings identify frontal midline theta power as “a key contributor
to meditative neural dynamics” (Cahn et al., 2010, p. 49).
Similar to alpha, specific associations with the DMN BOLD
activity were found for theta oscillations (White et al., 2013;
Hacker et al., 2017).

Based on the previous research (see above), we expected
changed and basically decreased functional connectivity within
the DMN and the DAN, decreased anticorrelation between this
two networks as well as decreased connectivity between the
DAN and the PAC during CFA. We also expected increases
in theta and alpha power and signs of deep relaxation in the
heart-rate and breathing data.

METHODS

Participant
The expert meditator (TB; 56 years old) is a former physician
and now a qualified teacher in the Tibetan Buddhist Karma
Kagyü tradition. TB has been meditating for 40 years, lived as
an ordained monk in a retreat center for 21 years, and was a
teacher there for 17 years. He meditated for up to 12 h a day
for 10 years and has spent an estimated total of over 50,000 h in
formal meditative practice. TB’s exceptional introspective skills
have already helped us to elucidate the experiential nature of
other neurophysiological signals (Schmidt et al., 2016).

Procedure
Recording took place in the Department of Radiology at the
University Medical Center in Freiburg, Germany. The recording
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was divided into five scanning runs during which the participant
was instructed to keep his eyes closed. A 5-min baseline
measure was first performed during which TB was instructed
to remain relaxed and alert without engaging in any formal
meditation practice. During the runs 2, 3, and 4 (each 3 min in
length) TB was asked to focus on external sensory perceptions
(i.e., the sound of the scanner), internal mentation (i.e., an
episodic memory exercise) and bodily sensations, respectively.
Finally, TB was instructed to engage in formal meditation
to reach a state of content-minimized awareness (30 min).
Between each run TB provided self-ratings regarding mentation,
the outer senses, bodily self-awareness, and the experience
of space and time during the previous condition using a
visual 10-step rating scale controlled by a touchpad. TB was
interviewed in detail about his experience after completion
of the recording.

Data Acquisition
Neurophysiologic data was acquired by simultaneous EEG
and fMRI recordings. The EEG was recorded using a MR-
compatible, high-resolution, 256-channel surface EEG system
(Geodesic EEG System 410, Electrical Geodesics, Eugene, OR,
United States) with a bandpass filter between 0.1 and 400 Hz
and a sampling rate of 1000 Hz. The fMRI was acquired on
a Siemens 3T Prisma scanner (Siemens Healthineers, Erlangen,
Germany) using the following parameters: magnetic resonance
encephalography (MREG) sequence (Assländer et al., 2013),
TR = 100 ms, TE = 36 ms, flip angle 25◦, 3D field of view
192 mm × 192 mm × 150 mm, and a spatial resolution
of 3 mm × 3 mm × 3 mm. The ECG and respiration
data were recorded using the physiological monitoring unit
of the MR scanner.

Data Analysis
fMRI data were pre-processed using FSL (FMRIB’s Software
Library2). Images were motion-corrected, transformed into
standard MNI space and smoothed with a 6-mm FWHM
Gaussian kernel. To localize the DMN, the DAN and the
PAC, the 5-min baseline segment was decomposed into 100
independent spatial components by probabilistic independent
component analysis (ICA) as implemented in MELODIC
Version 3.14, part of FSL (Beckmann and Smith, 2004).
The 100 resulting spatial maps were visually inspected to
identify the components corresponding to DMN and DAN
(see Figure 1) as well as the left and right PAC. For each
analyzed condition, the fMRI time series were segmented into
60-s, non-overlapping time windows. Functional connectivity
within each time window was then computed as Fisher-
transformed correlation coefficients between each pair of
nodes belonging to the previously identified independent
component maps.

EEG data were pre-processed and analyzed using in-house
MATLAB scripts and Brain Vision Analyzer (Brain Products,
Gilching, Germany). Gradient and pulse artifacts were corrected
by previously described in-house approaches (LeVan et al., 2013,

2www.fmrib.ox.ac.uk/fsl

FIGURE 1 | The maps of the two ICA components representing DMN and
DAN that have been used in the functional connectivity analysis. The maps are
shown in axial and sagittal views superimposed on a standard MNI152 T1
2 mm resolution brain template. The following areas are visible: DMN:
posterior cingulate cortex (with the adjacent regions of the precuneus), left
and right inferior parietal lobule and medial prefrontal cortex; DAN: left and
right intraparietal sulcus, left and right frontal eye field.

2016). Bandpass (0.5 to 70 Hz) and notch filters (48–52 Hz) were
applied to correct for potential line noise. The data were divided
in 60-s segments, re-referenced to average, and segmented into
2-s epochs. For each 60-s segment, at least 25 artifact-free epochs
were transformed into the frequency domain using the fast-
Fourier-transform (FFT) and averaged. The absolute spectral
power at each of the 60 electrodes of the extended 10–20 system
was computed for the theta (4–8 Hz) and alpha (8–12 Hz)
frequency bands.

ECG data were analyzed for heart rate (HR) and heart-
rate variability (HRV) using Kubios HRV Standard Software 2.0
(Kuopio, Finland). Successive R-peaks (R–R intervals) in the ECG
signal were extracted, artifact corrected, and detrended using
the smoothness-priors approach. Based on these R–R intervals
we computed the root mean square of successive differences
(RMSSD), a time-domain indicator for the HRV reported to be
largely independent of respiratory effects (Hill and Siebenbrock,
2009). Respiration data were used to trace the breathing rate (BR)
and to calculate the estimated oxygen consumption (OCe) as tidal
volume multiplied by BR.

Data Editing
Only the resting-state baseline and the meditation condition
were evaluated in this single-case study. According to TB’s
report (see below), we decided to consider the last 5 min of
the meditation condition as representative of CFA. In contrast,
we consider the first 25 min of the meditation condition as
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a content-related meditative state, which was not the focus of
our analysis. We used the 5-min segment in the middle of
these 25-min meditation epoch (i.e., min 11 to 15) as ‘content-
related meditation’ (CRM) for additional analyses. The data of the
complete 30-min meditation condition were only used to trace
the time courses of the various measurements and to calculate the
correlation between the time courses of fMRI connectivity and
EEG spectral power.

Statistical Analyses
For all measures we analyzed the values in segments of 60 s in
length for the 5-min baseline and for the 30-min meditation
condition. To identify significant differences between all three
conditions (CFA, CRM and rest) we applied a one-way ANOVA
with contrasts.

Furthermore, we investigated a possible association between
changes in fMRI connectivity and changes in the EEG spectral
power. For this purpose, we correlated the connectivity time
courses of those pairs of network nodes which showed significant
connectivity differences for the contrast CFA vs. rest, with the
time courses of EEG theta and alpha power.

To account for potentially independent EEG power changes
in different regions we computed the spectral power at those
electrodes, which showed the highest relative power differences
between CFA and rest, namely F6, F7, and Pz for the theta band
and FCz, P7, P8 for the alpha band. The correlations between
fMRI connectivity and EEG alpha power were calculated and
tested over the full 35 min of the baseline plus the meditation
condition. The statistical threshold for all tests was set at p = 0.05.
We applied FDR-correction in all analyses.

RESULTS

Subjective Report
The subjective ratings during the session show very clear
differences in the amount of consciously experienced content.

For the baseline condition, TB rated the total amount of mental
content (sensory perceptions, thoughts, and mental images) at
8 on the 10-point scale. The intensity of bodily self-awareness
and the experience of time and space were rated at 8 and 9,
respectively. In contrast, for the 30-min meditation condition
as a whole, the same three items were rated at 2 (sensory
perceptions and imaginings), 2 (bodily self-awareness), and 1
(experience of time and space). In the interview after the session,
TB declared that during the meditation condition the meditative
state gradually deepened and reached the deepest level during the
last few minutes of this period. In this last phase, he reported that
he had no awareness of any mental content or any sensory event,
including the noise of the MRI scanner. Similarly, he reported
having had no experience of self, time, or space of any kind
whatsoever at this stage. He was sure he had been awake the entire
time, and the EEG data showed no sleep-related signs.

He also reported feeling deeply refreshed after this condition,
which he recognizes from earlier experience as a sign of
reaching a very deep state of ‘non-dual’ consciousness
(i.e., without subject-object perception). TB appraised this
experience – in terms of Tibetan Buddhism – as the experience
of basic mahāmudrā, i.e., absolute openness without any
activation of the senses.

ECG and Respiration
Large changes were found for all computed ECG and respiration
measures during CFA compared to the resting-state baseline as
well as compared to CRM (see Figure 2). During the meditation
condition HR gradually dropped from the baseline level and
reached the lowest values during the CFA phase. HRV (RMSSD),
BR, and OCe were well below the baseline level during most
of the CRM phase, but started to increase after about 20 min
and reached values significantly above baseline level during the
CFA phase. The differences between CFA and the resting state as
well as between CFA and CRM were significant for all measured
values. For the contrast CRM vs. rest, only the decreases in HR
and OCe were significant (see Table 1).

FIGURE 2 | ECG and breathing measures. The color bars represent the median values of the 5-min epochs of rest (blue), content-related meditation (yellow) and
content-free awareness (pink) in each case. From left to right: heart rate (HR), heart-rate variability (HRV, RMSSD = root mean square of successive differences),
breathing rate (BR), estimated oxygen consumption (OCe).
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TABLE 1 | Significance test results of the ECG and breathing parameters. Shown
are the results of a one-way ANOVA with contrasts between the three conditions
rest, content-related meditation (CRM) and content-free awareness (CFA).

ECG/breathing
parameters

CFA vs. Rest CFA vs. CRM CRM vs. Rest

HR t −15.493 −10.181 −5.311

df 12 12 12

p (FDR) < 0.001 < 0.001 < 0.001

HRV t 5.280 6.615 −1.335

df 12 12 12

p (FDR) < 0.001 < 0.001 ns (0.21)

BR t 6.573 5.919 −2.807

df 12 5.083 4.952

p (FDR) < 0.001 0.002 ns (0.051)

OCe t 2.841 6.603 −3.762

df 12 12 12

p (FDR) 0.015 < 0.001 < 0.01

HR = Heart rate, HRV = Heart rate variability, BR = Breathing rate, OCe = Estimated
oxygen consumption, p (FDR) = False discovery rate corrected p-value, ns = non-
significant.

EEG Spectral Power
The analysis of spectral power in the theta (4–8 Hz) and
alpha (8–12 Hz) frequency bands demonstrated clear differences
between the three analyzed conditions.

In Figure 3 the topographies during the resting state and
the increases and decreases during CFA compared to rest are
presented. Figure 4 shows theta and alpha power for those three
electrodes having demonstrated the highest relative difference
between CFA and rest in each case. The statistical details are

FIGURE 3 | Topographies of EEG spectral power. Upper row rest condition,
lower row difference between content-free awareness (CFA) and rest.
Increases in power are displayed in red, decreases in blue. Black dots denote
the electrodes of the extended 10–20 system.

listed in Table 2. Noteworthy is the unusual topography of the
alpha power during the resting-state condition. While in most
people alpha activity has a clear occipital dominance, TB showed
a striking frontal dominance and little occipital activity (see
Figure 3). For the main contrast CFA vs. rest, both the increases
in theta power (at F6, F7, and Pz) as well as the decreases in
alpha power (at FCz, P7, and P8) were significant at p < 0.001.
The theta power showed a strong increase in frontopolar, lateral
prefrontal and frontocentral as well as medial parietooccipital
regions, especially during CFA compared to CRM (p = 0.001
at F6, F7, and Pz). During CRM compared to rest only the
parietal theta power increase (at Pz) was significant (p < 0.001).
In contrast, the alpha power dropped dramatically in the medial
prefrontal and frontocentral area as well as in peripheral temporal
and parietooccipital regions, already during CRM compared to
rest (p = 0.001 at FCz, P7, and P8). During CFA compared to
CRM only the frontal alpha power (at FCz) further decreased
significantly (p < 0.05).

fMRI Connectivity
The comparisons between the three analyzed conditions (rest,
CRM, CFA) revealed significant differences in BOLD functional
connectivity within the DMN and the DAN as well as between
DAN and the PAC (For details see Table 3). Figure 5 displays the
connectivity values during each of the three analyzed conditions
for the pairs of nodes that yielded the most significant differences
for the main contrast of interest (CFA vs. rest). The correlations
between the time courses of fMRI connectivity and EEG spectral
power are shown in Figure 6.

Compared to the resting state, CFA was characterized by
widespread connectivity increases in DAN as well as decreased
connectivity in posterior DMN and between DAN and left PAC.
CFA compared to CRM was marked by widespread connectivity
decreases in DMN and between DAN and bilateral PAC. During
CRM compared to the resting state connectivity increased in the
DAN and the posterior DMN.

The time courses of functional connectivity inside the right
posterior DMN as well as of the connectivity between left-
hemispheric DAN and PAC were negatively correlated with
the time course of the right-frontal theta power. Besides,
this right-frontal theta power also was positively correlated
with connectivity of one pair of nodes inside the DAN. The
connectivity in other parts of the DAN was negatively correlated
with both frontal and parietal alpha power.

DISCUSSION

Our study explored the neural correlates of a meditative state,
which, according to the retrospective report, was characterized by
clear awareness without any kind of specific experiential content
during the final phase. Consistent with the statements made in
the interview, the information provided in the ratings during
the session described a profound, strongly content-reduced
experience. As expected, we found signs of parasympathetic
activation in the ECG data, increases in EEG theta power as
well as reduced functional connectivity in the DMN and between
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FIGURE 4 | EEG spectral power during rest, content-related meditation and content-free awareness. For each frequency band, the electrodes with the most
significant differences for the main contrast (content-free awareness vs. rest) are shown (theta band: F6, F7, and Pz; alpha band: FCz, P7, and P8). The significance
values for the different contrasts are given in Table 2. The color bars represent the median values of spectral power (µV2) of the 5-min epochs of rest (blue),
content-related meditation (yellow) and content-free awareness (pink) in each case.

DAN and PAC during the CFA phase. We unexpectedly found an
acceleration in the breathing rate, sharp decreases in EEG alpha
power as well as increases in functional connectivity in the DAN
and unchanged connectivity between DAN and DMN.

The physiological data indicate profound changes during
the CFA phase compared to the resting state as well as
compared to the CRM phase. The slowing of the heart rate
and the increase in HRV (RMSSD) indicate a dominance

TABLE 2 | Significance test results of the EEG spectral power in the theta (4–8 Hz)
and alpha (8–12 Hz) frequency bands.

EEG spectral
power

CFA vs. Rest CFA vs. CRM CRM vs. Rest

Theta (F6) t 11.217 12.028 −0.811

df 12 12 12

p (FDR) 1.53E-07 2.83E-07 ns (0.43)

Theta (F7) t 10.135 8.120 2.015

df 12 12 12

p (FDR) 3.72E-07 9.68E-06 ns (0.08)

Theta (Pz) t 11.642 5.581 6.061

df 12 12 12

p (FDR) 1.35E-07 2.40E-04 8.50E-05

Alpha (FCz) t −22.480 −3.083 −20.311

df 4.382 6.461 5.092

p (FDR) 1.08E-05 0.029 9.06E-06

Alpha (P7) t −13.290 0.864 −14.154

df 12 12 12

p (FDR) 6.73E-08 ns (0.40) 2.45E-08

Alpha (P8) t −12.851 1.205 −14.056

df 12 12 12

p (FDR) 6.73E-08 ns (0.30) 2.45E-08

Shown are the results of a one-way ANOVA with contrasts between the three
conditions rest, content-related meditation (CRM) and content-free awareness
(CFA). p (FDR) = False discovery rate corrected p-value, ns = non-significant.

of parasympathetic activity and deep physical relaxation.
These results correlate with the findings of several studies
on meditation and yoga (Krygier et al., 2013; Vinay et al.,
2016). However, the increase in the respiratory rate and the
oxygen consumption seems rather counterintuitive and more
indicative of sympathetic activity. Traditional Buddhist concepts
see meditation as a state of consciousness balanced between
arousal and relaxation, avoiding the excesses of restlessness
and drowsiness (Wallace, 2006). Arousal responses have been
found before in meditators from the Hindu tantric yoga
and Tibetan Buddhist traditions in particular, traditions that
emphasize the ‘awake quality’ of the mind (Benson et al., 1990;
Amihai and Kozhevnikov, 2014, 2015).

Our finding of a sharp decline in EEG alpha power deviates
from the findings of the majority of previous studies on
meditation, that yield an increase in alpha power, particularly
in frontal areas, as the most common finding (Cahn and
Polich, 2006; Lomas et al., 2015). However, in relation to
these results it needs to be considered that it is not always
useful to compare the characteristics of a specific conscious
state of one participant to aggregated findings resulting from
a meta-analysis.

Evidence exists suggesting that increases in alpha-power
during meditation may be specific to meditation beginners
and that experienced meditators may show decreases in
alpha power rather than increases (Cahn et al., 2010).
Decreased alpha-power levels were only found in studies
that examined experienced meditators (Das and Gastaut,
1957; Baijal and Srinivasan, 2010; Lehmann et al., 2012;
Hinterberger et al., 2014). As in the case of increased
sympathetic activity mentioned above, the participants in
these studies were largely from Hindu yoga and Tibetan
Buddhist traditions.

We therefore assume that the meditation tradition and the
extremely high level of experience of TB could play a role in our
respiration and alpha-power findings. The unusual topography
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TABLE 3 | Significance test results of the fMRI connectivity. Shown are the results
of a one-way ANOVA with contrasts between the three conditions rest,
content-related meditation (CRM) and content-free awareness (CFA).

Network Pair of nodes t df p(FDR)

CFA vs. Rest

DMN PCC x IPL-L −2.681 12 <0.05

PCC x IPL-R −3.983 12 <0.05

DAN IPS-L x IPS-R 6.413 12 <0.01

IPS-L x FEF-L 3.506 7.482 <0.05

IPS-L x FEF-R 2.251 12 <0.05

IPS-R x FEF-L 4.001 12 <0.01

IPS-R x FEF-R 4.944 12 <0.01

IPS-R x IFG-L 5.479 12 <0.001

DAN x PAC PAC-R x IFG-L −3.266 12 <0.01

PAC-L x IPS-L −3.371 12 <0.01

PAC-L x IPS-R −4.222 12 <0.01

PAC-L x FEF-L −2.717 12 <0.05

PAC-L x IFG-L −4.204 12 0.001

PAC-L x IFG-R −2.504 12 0.01

CFA vs. CRM

DMN PCC x MPFC −3.331 12 <0.05

PCC x IPL-L −4.057 12 <0.05

PCC x IPL-R −7.325 12 <0.001

IPL-L x IPL-R −3.104 12 <0.05

DAN x PAC PAC-R x FEF-R −4.311 12 <0.01

PAC-R x IFG-L −3.110 12 <0.05

PAC-R x IFG-R −3.836 12 <0.01

PAC-L x IPS-L −3.280 12 <0.05

PAC-L x IPS-R −3.910 12 <0.01

PAC-L x FEF-R −2.993 12 <0.05

PAC-L x IFG-L −4.782 12 <0.01

PAC-L x IFG-R −3.181 12 <0.05

CRM vs. Rest

DMN PCC x IPL-R 4.191 8 <0.05

IPL_L x IPL-R 4.476 8 <0.05

DAN IPS-R x IFG-L 4.295 8 0.021

DMN = default mode network, DAN = dorsal attention network, PAC = primary
auditory cortex, PCC = posterior cingulate cortex, IPL = inferior parietal lobule,
IPS = intraparietal sulcus, FEF = frontal eye field, IFG = inferior frontal gyrus, L = left,
R = right, p (FDR) = False discovery rate corrected p-value.

of the alpha power – with a frontal dominance – could be
interpreted as a trait effect of long-term training. It should also
be noted that the specific meditative state examined here is
an exceptionally advanced state and is hardly comparable to
the conditions studied in most meditation studies. Therefore,
changes in alpha power found in states of consciousness
disconnected from sensory stimuli (see below) may be more
informative than the findings from meditation studies with less
experienced meditators.

In general, higher alpha power has been found to be
associated with an inhibition of the neural activity in the
corresponding regions (Jensen and Mazaheri, 2010; Haegens
et al., 2011). Changes in alpha power have been reported in
fundamental top-down-modulated attentional processes such as
spatial selection and distractor suppression (Kelly et al., 2006;

Banerjee et al., 2011; Foxe and Snyder, 2011), as well as in
working memory tasks (Palva et al., 2010; van Dijk et al., 2010).
Reduced alpha power has also been found to be associated with
higher attentiveness (Macdonald et al., 2011) and reduced mind-
wandering (Baldwin et al., 2017).

Thus, our finding of reduced alpha power at frontal midline
electrodes may correspond to a disinhibition and an increase
in neural activity in structures related to cognitive control
and attention. Decreases in alpha power have also been
linked to states of diminished vigilance in drowsiness and
sleep (Klimesch, 1999). However, our participant was awake
during the whole session, and the EEG data show no sleep-
related signs. Latest findings from research in REM sleep and
ketamine anesthesia suggest that a decrease in alpha power
may be a marker for a disconnection of consciousness from
sensory stimuli (Sanders et al., 2012; Darracq et al., 2018;
Comsa et al., 2019). Increases in theta power have been found
to be associated with cognitive control and stable attention
(Cavanagh and Frank, 2014; Keller et al., 2017) as well as
with decreased activity in the DMN (White et al., 2013;
Hacker et al., 2017), which is related to self-processing and
mind-wandering.

We interpret our findings of a dramatically decreased
alpha power and an increased theta power during content-
reduced meditation (CRM) and CFA in two ways: on
the one hand, it points to a considerably reduced self-
referential mental activity. On the other hand, reduced
alpha power may be an indication of a top-down-
modulated disconnection of consciousness from sensory
stimuli which closely resembles that initiated by bottom-up
mechanisms in sleep and anesthesia. This interpretation is
supported by the anti-correlation between the DAN and
the PAC observed in the CFA phase, which may indicate
auditory disconnection.

However, the substantially increased theta power too is
probably of decisive importance here: while the alpha power
decrease already takes place largely in the CRM and remains
stable in the transition to CFA, the actual difference between
CRM and CFA is reflected in the strong increase in theta
power. In addition, the reduction of connectivity between
the DAN and the PAC is negatively correlated with the
frontal theta power increase. Therefore, the frontal theta
power increase, as an expression of stable sustained attention
and cognitive control, could simultaneously be involved in
auditory disconnection.

The increases we found in functional connectivity between the
nodes of the DAN further support the view of an attentional top-
down-modulation. The origins of this modulation are probably
located in frontal areas (Wang et al., 2016). This would go
well with a possible disinhibition of frontal regions (see above)
and the correlations of frontal theta and alpha power with the
connectivity between frontal (FEF and IFG) and parietal (IPS)
nodes of the DAN.

Regarding the DMN, we found connectivity decreases in
the posterior part between the medial region of the posterior
cingulate cortex (PCC, with adjacent areas of precuneus) and the
lateral areas of the left and right inferior parietal lobule (IPL).
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FIGURE 5 | fMRI connectivity during rest, content-related meditation and content-free awareness. For each network, only the pairs of nodes with the most
significant differences for the main contrast (content-free awareness vs. rest) are shown. A complete list of all significant differences is given in Table 3. The color
bars represent the median values of Fisher-transformed correlation coefficients of the 5-min epochs of rest (blue), content-related meditation (yellow) and
content-free awareness (pink) in each case. DMN = default mode network, DAN = dorsal attention network, PAC = primary auditory cortex, PCC = posterior
cingulate cortex, IPL = inferior parietal lobule, IPS = intraparietal sulcus, FEF = frontal eye field, IFG = inferior frontal gyrus, L = left, R = right.

FIGURE 6 | Correlations between the time courses of fMRI connectivity and
EEG power. Shown are all Pearson’s correlation coefficients of time courses
with significant differences for the main contrast (content-free awareness vs.
rest). Blue cells display negative correlations red cells display positive ones.
Significant correlations (p < 0.05, FDR-corrected) are printed in bold.

The DMN as a whole has been associated with functions of
self-processing and internal mentation, comprising processes like
autobiographical and episodic memory, self-projection into the
past and the future, and mind-wandering in general (Northoff
et al., 2006; Andrews-Hanna, 2011). The PCC/precuneus
complex is a main hub in the structural and functional
organization of the brain (Hagmann et al., 2008; Tomasi and
Volkow, 2011). This region is a main projection area for the
subcortical arousal systems and strongly interconnected with

DMN and DAN. Therefore, this hub probably plays a key role in
the generation and maintenance of the conscious state (Cavanna
and Trimble, 2006). The DMN node comprising the IPL has
been implicated in a variety of different functions, among them
multisensory integration, bodily self-consciousness, episodic
autobiographic memory, and temporal attention (Agosta et al.,
2017; Bréchet et al., 2018). The interplay between the medial and
lateral parietal nodes of the DMN has been found to be associated
with meditative experiences of non-dual awareness (Josipovic,
2014), selflessness (Dor-Ziderman et al., 2013), spacelessness and
timelessness (Berkovich-Ohana et al., 2013).

Likewise, findings on psychedelic experiences, which are
associated with the dissolution of internal mental activity as
well as space, time and self-experience, point to a profound
reduction in the activity and connectivity of the posterior DMN
(Palhano-Fontes et al., 2015; Smigielski et al., 2019).

Taken together, the disconnections inside the posterior part of
the DMN, which we found to be negatively correlated with the
increase in frontal theta power may be the main neural correlate
of the cessation of internal mentation, as well as the dissolution
of self-consciousness, and may also contribute to the experienced
state of space- and timelessness. Together, these elements give rise
to the phenomenology of CFA (Winter, 2013, 2020).

Limitations and Conclusion
Our report has certain limitations. (1) It is a single-case study,
and from an epistemological point of view, results of single-
case studies are always related to the specific person and do
not permit generalization. (2) Moreover, the participant studied
(TB) possesses unique skills making replication of our results in
other participants difficult. (3) The definition of the experimental
condition of CFA is not based on an objective physiological
marker, but solely based on TB’s report. (4) In this short report
the analysis of the EEG is restrained to a limited set of parameters.
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The presented spectral analysis covers only the most frequently
examined frequency bands, theta and alpha. Likewise, analysis of
further parameters such as phase synchronization and coherence
were not provided.

The single trial reported cannot make specific claims or
proof oriented statements. Exploratory single-case studies can,
however, complement hypothesis-based confirmatory research
and advance science. They can be important sources of new
hypotheses and have often disclosed new, hitherto unrecognized
phenomena (Bao et al., 2017; Cubelli and Della Sala, 2017).
Think for example how much neuroscience has learned
from neurological cases such as H.M. or Phineas Gage. Our
report may thus contribute to the efforts to narrow down
the neural correlates of the conscious state by exploring
a rarely experienced state. Future studies should investigate
content-reduced and content-free states of consciousness in a
more hypothesis-based manner and in more sophisticated and
controlled group designs.

Bearing in mind the limitations, we conclude as follows.
We report for the first time that the subjectively reported
experience of CFA may be associated with a sharp decrease in
EEG alpha power as well as a decoupling between the DAN and
sensory cortex. This result correlates well with recent findings
of decreased alpha power as a marker of sensory disconnection
in REM sleep and ketamine anesthesia. We speculate that
the extraordinary state of CFA can be classified as a state of
disconnected consciousness.

In contrast to REM sleep and ketamine anesthesia, states of
CFA lack internal mentation. The reduced connectivity within
the posterior DMN may together with the decreased alpha power
be a marker of interrupted internal mentation and interrupted
self-related processes.

We consider the increase in connectivity within the DAN
along with the increase in theta power as a possible signature of
a stable attentional state that disconnects the neural correlates of
both sensory processes and processes of mental simulation from
the neural correlate of consciousness as such.

Our findings appear plausible with respect to the reported
subjective experience and consistent with a number of previous
findings from meditation and consciousness research. Although
the results of a single case study are limited, our findings provide
a fascinating glimpse at the physiological and neuronal correlates
of an extraordinary state which may represent a minimal form
of consciousness.
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