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Computerized adaptive testing (CAT) is an efficient testing mode, which allows each

examinee to answer appropriate items according his or her latent trait level. The

implementation of CAT requires a large-scale item pool, and item pool needs to

be frequently replenished with new items to ensure test validity and security. Online

calibration is a technique to calibrate the parameters of new items in CAT, which seeds

new items in the process of answering operational items, and estimates the parameters

of new items through the response data of examinees on new items. The most popular

estimation methods include one EM cycle method (OEM) and multiple EM cycle method

(MEM) under dichotomous item response theory models. This paper extends OEM and

MEM to the graded response model (GRM), a popular model for polytomous data

with ordered categories. Two simulation studies were carried out to explore online

calibration under a variety of conditions, including calibration design, initial item parameter

calculation methods, calibration methods, calibration sample size and the number of

categories. Results show that the calibration accuracy of new items were acceptable,

and which were affected by the interaction of some factors, therefore some conclusions

were given.

Keywords: online calibration, computerized adaptive testing, graded responsemodel, squeezing averagemethod,

one EM cycle method, multiple EM cycle method

INTRODUCTION

Computerized adaptive testing (CAT), which is considered to be one of the most important
applications of item response theory (IRT; Lord, 1980), is a tailored test mode (e.g., Chang and
Zhang, 2002; Chang, 2015). The goal of CAT is to construct an optimal test for each examinee
(Meijer and Nering, 1999). Compared with the traditional paper-pencil test (PandP), CAT has
many advantages such as more flexible testing time, more diverse items, shorter test length, more
accurate ability estimation, and more timely score reporting (e.g., Weiss, 1982; Meijer and Nering,
1999; Cheng and Chang, 2009; Wang and Chang, 2011; Wang et al., 2013). Therefore, many large-
scale evaluation programs such as the Graduate Management Admission Test (GMAT) and the
Armed Services Vocational Aptitude Battery (ASVAB; Sands et al., 1997) adopted the CAT test
mode (Chang and Ying, 2009).

The implementation of CAT requires a large-scale item pool, and the maintenance and
management of item pool is critical to ensure the validity and security of CAT. After a period of
time, some operational items may be no longer suitable for use due to overexposure, obsoleteness,
or flaw, thus it is necessary to replace unsuitable items by new ones (Wainer and Mislevy,
1990; Zheng, 2014; Zheng and Chang, 2017). The new items should be precisely calibrated

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2019.03085
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2019.03085&domain=pdf&date_stamp=2020-01-23
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:002279@jxnu.edu.cn
mailto:luozs@126.com
https://doi.org/10.3389/fpsyg.2019.03085
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.03085/full
http://loop.frontiersin.org/people/800943/overview


Xiong et al. Online Calibration Under GRM

before being put into the item pool for use formally. Moreover,
the calibration accuracy of the new items has great influence
on the estimation accuracy of the examinees’ latent trait in the
ensuing CAT sessions (e.g., van der Linden andGlas, 2000; Chang
and Lu, 2010).

Wainer and Mislevy (1990) proposed two strategies for
calibrating new items based on CAT in the literature. The
first strategy is traditional offline calibration with anchor-item
design. Namely, set some anchor items between the new and
the operational items, and do equating transformation through
the collected responses to ensure the item parameters of the
new items and those of the operational items on the same scale.
Because the traditional calibration method needs to organize
P and P test in advance, there are some shortages, such as
the consumption of manpower and material resources, the easy
exposure of new items and so on. The second strategy is
online calibration, which refers to the process of assigning the
new items to examinees during the course of their adaptive
tests and then estimating the item parameters of new items
based on the collected responses. In the online calibration
framework, new items can be embedded inconspicuously within
the operational tests, and be pretested and calibrated in the same
testing environment as the operational items. Compared with the
traditional calibration, online calibration is not only time-saving
but also cost-effective. It places new items on the same scale as
the operational items without post hoc scaling.

Online calibration design and online calibration method are
two crucial aspects of online calibration (Chen and Xin, 2014).
Online calibration design refers to the way which the new items
are assigned to examinees during the CAT process, and collects
the responses of the new items. Online calibration design mainly
includes two types. One is random design, and the other is
adaptive design. Random design randomly selects a new item and
then stochastically seeds it in the current examinee’s adaptive test
(Wainer and Mislevy, 1990). Adaptive design selects the most
suitable new item according to some criterion when he or she
reaches a seeding location (He and Chen, 2019). The online
calibrationmethod uses the responses collected during the online
calibration design phase to estimate the item parameters of new
items. The most popular estimationmethods proposed for online
calibration include one EM cycle method (OEM; Wainer and
Mislevy, 1990) and multiple EM cycle method (MEM; Ban et al.,
2001).

There are many studies on online calibration based on
dichotomously scored models (e.g., You et al., 2010; Chen
et al., 2012; van der Linden and Ren, 2015; He et al., 2017,
2019). One purpose of modern item response theory research
is to exhaust all types of models to cover test data from
any “natural” form (van der Linden and Hambleton, 1997).
And compared with dichotomously scored items, polytomously
scored items have many advantages, such as measuring more
complex knowledge structure and providing higher item and
test information. Therefore, examinees’ ability can be estimated
with greater precision by the same number of items, or the same
level of precision can be obtained with fewer items. More and
more tests involving polytomously scored items have emerged.
However, online calibration of polytomously scored model is

reported rarely. Zheng (2016) extends the formula, procedure
and algorithm of online calibration under dichotomously scored
models to the generalized partial credit model (GPCM). The
extended formulas and algorithms are studied by simulation
method, and some constructive conclusions are obtained. The
graded response model (GRM; Samejima, 1969, 1996), like
GPCM, is a polytomously scored model. But they have many
differences. First, the ideas of model construction are different,
GPCM is a division model, that is, the proportion of part to
whole. In contrast, GRM is a deviation model, that is, the
difference between adjacent categories. Second, the meanings of
difficulty parameters in GRM and GPCM models are different,
GPCM emphasizes the difficulty of each step on an item, and
the difficulty value does not necessarily increase monotonously,
GRM emphasizes the difficulty of getting different scores on an
item, and the difficulty value increases monotonously. Therefore,
it is necessary to discuss online calibration based on GRM, it
is of great significance to the expansion of the item pool with
GRM items.

The structure of this article is as follows. First, the GRM, an
IRT model used in this research is introduced. Second, online
calibration method (OEM and MEM method) based on GRM is
introduced. Two methods for calculating initial item parameters
are given in detail. Third, two simulation studies are designed,
and the research results are presented. Fourth, a batch of real data
are used to verify the validity of themethod. The last part involves
conclusions, a supplementary study, discussions, and directions
for future research.

METHODOLOGY

The GRM
The GRM is an IRT model suitable for polytomous data with
ordered categories. It is an extension of two parameters logistic
model (2PLM). In GRM, an examinee’s likelihood of responding
in a particular response category is obtained by two steps. First,
category boundary response functions (CBRFs) are calculated
to determine boundary decision probabilities of t response
categories for each item. The equation for a CBRF is similar to
2PLM for dichotomous data:

p∗ijt =
1

1+ exp(−D · aj(θi − bjt))
(1)

In Equation (1), p∗ijt is the probability that an examinee with

ability level θi will respond positively at the boundary of category
t for item j where t = 1, 2, · · · fj, θi represents the ith examinee’s
ability; aj represents the item discrimination parameter or
slope for item j; bjt represents the item difficulty parameter or
category location. Importantly, the values of bjt should satisfy
monotonically increasing, that is bj1 < bj2 < · · · bjt < · · · bj,fj .

In the second step of GRM, the probability of responding
in a particular category is determined by CBRF, which
are derived by subtracting p∗ijt from the following category.

The process is illustrated in Equation (2) (adapted from
Embretson and Reise, 2000).

pijt = p∗ijt − p∗ij,t+1 (2)
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Further, make the following constraints, p∗ij0 = 1, namely, the

probability of scoring more than 0 must be 1; P∗
ij,fj+1

= 0, that

is, the probability of scoring more than the item’s full score is
naturally 0.

Extend OEM and MEM Methods to GRM
Under the dichotomous model, OEM (Wainer and Mislevy,
1990) and MEM (Ban et al., 2001) are based on the framework
of MMLE with the EM algorithm. Their main difference is the
number of EM cycles. The OEM method takes just one E step
using the posterior distribution of ability, which is estimated
based on item responses only from the operational CAT items,
and just one M step to estimate the new item parameters,
involving response data from only the new items. The MEM
method is similar mathematically to the OEM method. The first
EM cycle of the MEM method is the same as the OEM method.
The parameter estimates of new items obtained from the first
EM cycle is regarded as the initial values of the new items for
the second EM cycle. However, from the second E step, the
MEMmethod uses item responses on both the operational items
and new items to obtain the posterior distribution. For each M
step iteration, the item parameter estimates for the operational
items are fixed, whereas parameter estimates for the new items
are updated until the new item parameter estimates converge.
The principles of OEM and MEM under GRM are basically the
same as those under the dichotomous model, but there are some
differences in implementation details. The details of OEM and
MEM implementation under GRM are described below.

OEM
OEM has only one EM cycle. For each examinee i = 1, 2, · · ·Nj

who takes item j, qi denotes his/her responses to the operational
items, ηop is a vector of the known item parameters of the
operational items. The E-step of the OEM method marginalizes
the log-likelihood of new item j using qi and ηop. Based on
the common assumption that examinees are independent from
each other, the log-likelihood of item j from the Nj examinees
are summed up as the final marginalized log-likelihood of item
j to be taken to the subsequent M-step. The M-step seeks the
item parameter vector η̂j that maximizes the final marginalized
log-likelihood of item j.

These two steps are adapted from described in Muraki
(1990) of item parameter estimation. The difference between the
algorithms here for online calibration and Muraki’s algorithm is
in the computation of the two quantities: r̄jtk and f̄k, where r̄jtk is
the temporary expected frequency of the tth category response of
item j at the kth quadrature point; f̄k is the temporary expected
sample size at quadrature point k. In his original EM algorithm,
every examinee receives the same set of items. In the online
calibration setting, as described earlier in this article, each new
item j is administered to a different sample of examinees; and
each examinee who takes new item j takes a different set of
operational items. To adapt these variations, the formulae for r̄jtk

and f̄k in the EM algorithm are modified into as follows:

r̄jtk =
Nj
∑

i= 1

uijth(Xk) (3)

f̄k =
Nj
∑

i= 1

h(Xk) (4)

h(Xk) = Li(Xk)A(Xk)
K
∑

k= 1

Li(Xk)A(Xk)

(5)

Li(Xk) =
mi
∏

h= 1

fh
∏

t= 1

[pht(Xk)]
qiht (6)

Where i = 1, 2, · · · ,Nj denote the Nj examinees who received
new item j;Xk is the quadrature point;A(Xk) is the corresponding
weight, which is approximately the standard normal probability
density at the point Xk, assuming there are K quadrature points,
such that

∑K
k=1 A(Xk) = 1.Uijt is an indicator variable expressed

in a binary format; Uijt = 1 represents examinee i scored exactly
t on new item j; otherwise Uijt = 0.Li(Xk) is the likelihood of
examinee i’s response to all operational items given quadrature
point Xk; h denotes the hth operational items answered by
examinee i; fh is the number of categories of hth operational item,
pht(Xk) is the probability of correct response to the tth category of
item h at given quadrature point Xk, qiht is an indicator variable
too, which denotes the examinee i’s responses to operational item
h in a binary format to category t.

With the one EM cycle in the OEM method, the revised r̄jtk

and f̄k are inserted into theNewton-Raphon iteration in the single
EM cycle to get a set of parameter estimates.

MEM
The MEM method allows multiple EM cycles. The first cycle is
the same as OEM. Beginning with the second cycle, response data
from both the operational items and the new items are used to
update the posterior ability distribution in the E-step. Specifically,
the only change in computation fromOEM is that beginning with
the second cycle of MEM, Li(Xk) is replaced by:

Li(Xk) =





mi
∏

h= 1

fh
∏

t= 1

[pht(Xk)]
qiht









fj
∏

t= 1

[pjt(Xk)]
xijt



 (7)

Where xijt denotes examinee i’s response to new item j in the
binary format for category t.

The E-step and the M-step iterate until a certain convergence
criterion is met, for example themaximum absolute change in the
item parameters between two consecutive EM cycles are less than
a small threshold.

Calculate the Initial Value of OEM and MEM
OEM and MEM are both iterative algorithms, the initial
item parameters have a great influence on the calibration
accuracy. However, there are few reports on the calculation
of initial iteration values. In the dichotomous model, a
squeezing average method is given to compute the initial value
of difficulty parameter and a biserial correlation method
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is used to compute the initial value of discrimination
parameter (You et al., 2010). Under GRM, Xiong et al.
(2018) also proposed a methods for calculating the initial
item parameters, namely, deleting extremum and squeezing
average method and polyserial correlation coefficient method.
They had better calibration results under the experimental
conditions given in these literatures (You et al., 2010; Xiong
et al., 2018). Their theories and implementation details
are as follows.

Deleting Extremum and Squeezing Average Method
Under the dichotomous model, according to the characteristics
of the item response curve, the correctness of the examinee’s
response to a certain item is related with the ratio of his/her
ability to the difficulty parameter of the item. When the
ratio is more than 1, the correct response probability is high;
otherwise, the correct response probability is low. For the one-
parameter logistic model (1PLM), when the examinee’s ability
value is equal to the difficulty of one item, his/her correct
response probability on the item is 0.5. Therefore, as long
as the number of responses is sufficiently large for one item,
there must be some examinees whose abilities approach to
the difficulty parameter of the item (You et al., 2010), and
the abilities of these examinees can be used to estimate the
difficulty parameter of the item. The method is called “squeezing
average method.” Under GRM, for a certain item, the difficulty
of getting a high score is higher than that of getting a low
score, so the initial parameters of different category can be
squeezed out by the ability of the examinees who get the
adjacent scores.

The steps of the squeezing average method (You et al.,
2010) are described as follows. At first, put the ability values
of all examinees who answered correctly on item j into the
set correct(j), then sort correct(j) in ascending order; and put
the ability values of all examinees who answered incorrectly on
item j into the set wrong(j), then sort wrong(j) in descending
order. Second, use the low part of correct(j) and the high part
of wrong(j) to squeeze the difficulty of the item j. Because not
all examinees’ abilities in correct(j) or wrong(j) are used for
squeezing, it is worth exploring how many examinees’ abilities
are used to squeeze item difficulty parameter. An empirical value
of 18 is suggested by You et al. (2010).

Under the GRM model, GRM has multiple difficulty
parameters, so multiple squeezing processes are required. For
example, for the initial difficulty parameter of the tth category
of the new item j, the ability of the examinees who scored t and
t+1 on the item are used to squeeze. Pilot studies have shown that
the result is unstable if the sample size for squeezing is still set to
18. A more flexible range of sample size for squeezing method,
named “deleting extremum and squeezing average method,” is
proposed based on the original squeezing average method (Xiong
et al., 2018). The ability of examinees who got t score in item j are
put into one set, there are fj sets for item j, and each set is sorted in
ascending order by ability value. Then the top 5% and the bottom
5% of each set are deleted. The “deleting extremum and squeezing
average method” can be formally expressed as:

bjt =









mean





c(j,t)*95%
∑

i= c(j,t)*5%

cap(t, i, j)





+mean





c(j,t+1)∗95%
∑

i= c(j,t+1)∗5%
cap(t + 1, i, j)







 /2 (8)

Where cap(t, i, j) is the ability of the ith examinee’s who got t score
on item j, c(j, t) is the number of examinees who scored t on item
j, cap(t + 1, i, j) and c(j, t + 1) have the similar meaning.

In actual life, the evaluation of a contestant is generally
based on a set of scores given by the experts. The highest
and lowest score are removed, and then the average is taken,
deleting extremum and squeezing average method takes this
idea. The practice of choosing 5% as the extreme value in
Equation (8) is derived from the way to obtain the initial
value of the guess parameter under the three-parameter logistic
model (3PLM). Pilot study also showed that the value had better
results. It’s easy to implement and guarantee the accuracy of
parameter estimation.

Polyserial Correlation Coefficient Method
The polyserial correlation coefficient method is a common
statistical method (Olsson et al., 1982), which is used to initialize
the discrimination parameter and difficulty parameter of new
items based on the examinee’s responses. This method can be
depicted by the following steps:

Step 1: For each new item, the pass rate of each category is
calculated by using the responses of the examinees to the item,
that is, P∗jt = njt/N, where N is the total number of examinees,

and njt is the number of examinees whose scores on the new
item j are not lower than t.
Step 2: Convert P∗jt to standard normal fraction Zjt ; then

calculate the corresponding normal density function value
h(Zjt). The specific calculation formula is as follows:

yj = − ln(4P∗jt(1− P∗jt)) (9)

Zjt = sign(P∗jt −
1

2
)

√

yj(2.0611786−
5.7262204

yj + 11.640595
)

(10)

h(Zjt) = 1√
2π

exp(−1

2
Z2
jt) (11)

Step 3: Calculate the standard deviation (σj) of the score on
the new item j, and the correlation coefficient (rj) between
the score of the new item j and the total score; then the
point polyserial correlation coefficient is obtained via the
following equation:

rppj = rj ∗ σj/

fj
∑

t= 1

h(Zjt) (12)
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Step 4: Transform the point polyserial correlation coefficient
into polyserial correlation coefficient, that is:

rpj = rppj ∗ σj/

fj
∑

t= 1

h(Zjt) (13)

Step 5: Calculate the initial value of the discrimination and
difficulty of the new item j; the formula is:

aj = rpj/
√

1− rp2j bjt = −Zj,t−1/rpj (14)

Two methods of calculating the initial parameters of new
items are given. The first method is called polyserial-initial
method, abbreviated as Poly-Ini method, with this method,
both a-parameter and b-parameters are calculated by polyserial
correlation coefficient; the second method is called polyserial-
squeezing-initial method, abbreviated as Poly-Sq-Ini method,
with this method, a-parameter is calculated by polyserial
correlation coefficient method and b-parameters are obtained by
deleting extremum and squeezing average method.

SIMULATION STUDY

Research Objectives
Two simulation studies were conducted using programs written
in Python 3.7. The program simulated the entire calibration
workflow including the implementation of CAT and the
calibration of the new items, and replicated 100 times in each
circumstance. The main purpose of Study 1 is to explore the
calibration results under a set of conditions fully crossed by
two online calibration design methods (random design, adaptive
design), two initial item parameter calculation methods (Poly-Ini
method, Poly-Sq-Ini method), two calibration methods (OEM,
MEM). There are 8 combinations, each combination takes 3-
categories as an example.

The main purpose of Study 2 is to explore the calibration
results under different calibration sample size and different
number of categories. Two factors were manipulated: calibration
sample size (300, 400, 500, 600, and 700) and the number
of categories of new items (2, 3, 4, and 5). There are 20
combinations. Random design, Poly-Sq-Ini method and MEM
are adopted in each combinations.

Generation of Items and Examinees
Suppose there are 1000 operational items with various
categories (2–5 categories) in the CAT item pool, item
parameters were randomly generated under GRM from the
following distributions:

aj ∼ log normal(0, 1), bjt ∼ normal(0, 1)

j = 1, 2, · · · 1000, t = 1, 2, · · · fj,fj is the number of categories.
In addition, the generated a-parameter was truncated between
0.2 and 2.5, b-parameter was truncated between −3 and 3, and
bj1 < bj2 < · · · bjt < · · · bj,fj in this paper.

A total number of 20 new items were generated in the same
manner with the operational items.

3,000 examinees’ ability values (θ) were randomly drawn from
the standard normal distribution θ ∼ normal(0,1), and θ was
truncated between−3 and 3 too.

Simulation Details
The CAT test length is fixed 25 items, including 20 operational
items and 5 new items. During the CAT test, the maximum
Fisher information method (MFI; Lord, 1980) was chosen as
the operational item selection method for its advantage of high
accuracy. The Fisher information of an examinee i on a GRM
item j was formulated as below:

Ij(θi) = a2j

fj
∑

t= 1

pijt(1− p∗ijt − p∗ij,t+1)
2 (15)

During operational item selection, provisional θ estimates were
used to replace the θ ’s in the formulae. After each operational
item is administered, the examinee ability parameter θ̂ was
updated by expected a posteriori (EAP) method (Baker and Kim,
2004).

The number of examinees who answer each new item must
be sufficiently large to provide accurate item parameter estimates
without placing an undue burden on examinees (Wainer and
Mislevy, 1990). This paper investigates one sample size (3,000)
and assumes that each examinee answers 5 new items, thus
the number of examinees who answer each new item is
approximately 750 [(3,000×5)/20] on average as in previous
studies (e.g., Chen et al., 2012; Chen and Wang, 2016; He et al.,
2017). In Study 1, the number of examinees to each new item
is set 700. In addition, calibration accuracy may be affected by
the calibration samples per new item. In Study 2, the number of
examinees to each new item is set as 300, 400, 500, 600, 700.

In study 1, random design and adaptive design are considered.
There are some researches adopted random design to assign
the new items to the examinees during CAT due to its
convenient implementation and acceptable calibration precision
(e.g., Wainer and Mislevy, 1990; Ban et al., 2001; Chen et al.,
2012; He et al., 2017). And match-b selection method (MATB)
is selected for adaptive design in this study, which matches the
mean of b-parameters with the provisional θ̂ of examinee (Zheng,
2016). Every time an examinee reaches a seeding location, the
distance between his or her current θ̂ and themean of provisional
b-parameters was computed for each new item, and the item
with the shortest absolute distance was selected. In order to
obtain the initial parameter of new items, this study uses a
data-based method, that is, the new items are first randomly
assigned to a sub-group of examinees and are pre-estimated item
parameters, then for the remaining examinees, these new items
are selected adaptively according to their initial parameters to fit
the examinees’ current ability. The item parameters of each new
item are updated each time they receive a fixed number of new
responses (van der Linden and Ren, 2015; Zheng, 2016; He et al.,
2019), in this study, the fixed number of new responses was set
20. The proportion of the sample size used in two different phases
was specified as 1:1 in this study.
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Evaluation Criteria
The calibration accuracy of the new items was evaluated by
root mean square error (RMSE) and bias. They quantify the
recovery between the estimated and true parameter values, and
the calculation formulas based on vector are as follows (He and
Chen, 2019; He et al., 2019):

RMSEx =

√

√

√

√(

R
∑

r= 1

M
∑

j= 1

(x̂
(r)
j − x

(r)
j )

2
)/(R×M) (16)

biasx = (

R
∑

r= 1

M
∑

j= 1

(x̂
(r)
j − x

(r)
j ))/(R×M) (17)

Where x denotes the specific element in the item parameter
vector, such as a-parameter, bfj-parameters, R and M denotes
replications and the number of new items respectively.

In order to evaluate the overall recovery of b-parameters
under different categories, the average RMSE and bias of
b-parameters, named mean(b), are defined as follows:

RMSEmean(b) =

√

√

√

√

√(

R
∑

r= 1

M
∑

j= 1

fj
∑

t

(b̂
(r)
jt − b

(r)
jt )

2
)/(R×M × fj)

(18)

biasmean(b) = (

R
∑

r= 1

M
∑

j= 1

fj
∑

t

(b̂
(r)
jt − b

(r)
jt ))/(R×M × fj) (19)

Smaller RMSE indicates higher calibration precision. If bias is
close to 0, the calibration could be regarded as unbiased.

Results and Conclusion
Study 1
The results of Study 1 are shown in Tables 1, 2 and Figure 1,
using two separate criteria (RMSE and bias) to evaluate the
calibration results under different combinations. As can be seen
from Tables 1, 2 and Figure 1, (1) the RMSE values obtained
by the combination of random design, Poly-Sq-Ini method and
MEM (the combination denoted by C2) were the smallest,
and the bias obtained by C2 also had better performance,
although not always the best. Which provided the basis for the
simulation design of Study 2. (2) The calculation of initial item
parameters had a great influence on the calibration results, Poly-
Sq-Ini method had better performance under most experimental
combinations, the bias had the same trend as RMSE, which
showed that the Poly-Sq-Ini method is a feasible method. (3)
Comparing OEM and MEM, when adaptive design was adopted,
OEM and MEM generated quite comparable RMSE and bias
values, when random design was adopted, there are two aspects,
MEM was more accurate than OEM if Poly-Sq-Ini method was
adopted to compute initial item parameters, otherwise OEM
was more accurate than MEM. (4) Comparing random design
and adaptive design, the RMSE of b-parameters generated by
random design were smaller than those by adaptive design,

TABLE 1 | RMSE under different combinations.

Calibration

design

Method of

calculating initial

item parameters

Calibration

method

RMSE

a b1 b2 b3

Random Poly-Sq-Ini OEM 0.2047 0.2696 0.1567 0.2377

MEM 0.2022 0.1705 0.1522 0.2009

Poly-Ini OEM 0.2892 0.1789 0.1705 0.2306

MEM 0.2632 0.2142 0.1847 0.2595

Adaptive Poly-Sq-Ini OEM 0.2266 0.2651 0.2108 0.2501

MEM 0.2259 0.2700 0.2101 0.2433

Poly-Ini OEM 0.2324 0.3106 0.2005 0.3179

MEM 0.2324 0.3116 0.2070 0.3231

TABLE 2 | Bias under different combinations.

Calibration

design

Method of

calculating initial

item parameters

Calibration

method

bias

a b1 b2 b3

Random Poly-Sq-Ini OEM 0.1258 −0.1310−0.0549 0.0261

MEM 0.0483 −0.0423−0.0422−0.0398

Poly-Ini OEM 0.2380 0.0727−0.0367−0.1391

MEM 0.2163 0.1065−0.0292−0.1589

Adaptive Poly-Sq-Ini OEM 0.0286 0.0777 0.0099−0.0482

MEM 0.0296 0.0783 0.0126−0.0472

Poly-Ini OEM 0.1744 0.2182 0.0120−0.1887

MEM 0.1751 0.2159 0.0056−0.1875

although the a-parameters generated by random design were
not absolutely superior, the most accurate a-parameters still
came from random design. The result seems counter-intuitive,
one possible explanation for this result is that the simulated
examinee’s ability distribution is normal, random design leads
to an approximately normal distribution of ability for each new
item. For adaptive design, the distributions of ability received by
each new item may be skewed (Zheng, 2016). The other possible
explanation is that the proportion of the sample size used in
random phase and adaptive phase would affect the calibration
results (Chen et al., 2012).

Study 2
The results of Study 2 are shown in Tables 3, 4 and Figures 2–5.
As can be seen from Table 3 and Figure 2, under various
categories, with the increase of calibration sample size, the RMSE
of b-parameters were decreasing, but the decline extent was
decreasing also. While the calibration sample size had little effect
on the RMSE of a-parameters, even under 2-categories and 5-
categories, the RMSE increases with the increase of sample size.
In addition, it was an interesting observation, the RMSE of
b-parameters under different category of the same item were
different. In general, the RMSE of the middle category were
smaller, while the RMSE of the beginning and ending category
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FIGURE 1 | RMSE and bias of a- parameter and b-parameters under different combinations. C1 denotes the combination of Random, Poly-Sq-Ini and OEM; C2

denotes the combination of Random, Poly-Sq-Ini and MEM; C3 denotes the combination of Random, Poly-Ini and OEM; C4 denotes the combination of Random,

Poly-Ini and MEM; C5 denotes the combination of Adaptive, Poly-Sq-Ini and OEM; C6 denotes the combination of Adaptive, Poly-Sq-Ini and MEM; C7 denotes the

combination of Adaptive, Poly-Ini and OEM; C8 denotes the combination of Adaptive, Poly-Ini and MEM.

TABLE 3 | RMSE of different calibration sample size under different categories.

Categories RMSE Calibration sample size

300 400 500 600 700

f = 2 a 0.2730 0.2716 0.2683 0.2656 0.2722

b1 0.2495 0.2259 0.2216 0.2078 0.2060

b2 0.2876 0.2660 0.2602 0.2554 0.2470

Mean(b) 0.2706 0.2481 0.2427 0.2338 0.2286

f = 3 a 0.2189 0.2141 0.2119 0.2074 0.2033

b1 0.2413 0.2237 0.1954 0.1919 0.1865

b2 0.2127 0.1827 0.1723 0.1673 0.1568

b3 0.2674 0.2395 0.2270 0.2249 0.2156

Mean(b) 0.2439 0.2187 0.2014 0.1993 0.1899

f = 4 a 0.2166 0.2150 0.2138 0.2149 0.2081

b1 0.2989 0.2866 0.2599 0.2458 0.2262

b2 0.2232 0.1968 0.1760 0.1634 0.1577

b3 0.2357 0.2016 0.1908 0.1610 0.1659

b4 0.2996 0.2611 0.2564 0.2337 0.2294

Mean(b) 0.2722 0.2432 0.2345 0.2098 0.2007

f = 5 a 0.2340 0.2407 0.2353 0.2301 0.2208

b1 0.2837 0.2616 0.2604 0.2503 0.2491

b2 0.1929 0.1706 0.1662 0.1583 0.1511

b3 0.1693 0.1451 0.1419 0.1346 0.1210

b4 0.1950 0.1743 0.1633 0.1600 0.1462

b5 0.2672 0.2565 0.2368 0.2356 0.2257

Mean(b) 0.2284 0.2095 0.2044 0.1976 0.1873

were larger. The possible explanation for this result is that the b-
parameters in GRM were monotonically increasing, and most of
the examinees’ scores were concentrated on the middle category.
Thus there were relatively few examinees with the lowest score
and the highest score, and the sample size would affect the
estimation accuracy of new items.

As can be seen from Table 3 and Figure 3, the RMSEs of
a-parameter under 3-categories and 4-categories did not show

TABLE 4 | Bias of different calibration sample size under different categories.

Categories Bias Calibration sample size

300 400 500 600 700

f = 2 a 0.1517 0.1561 0.1488 0.1564 0.1611

b1 −0.0231 −0.0193 −0.0289 −0.0253 −0.0336

b2 −0.0976 −0.0912 −0.0979 −0.0945 −0.1047

Mean(b) −0.0603 −0.0553 −0.0634 −0.0599 −0.0692

f = 3 a 0.0479 0.0415 0.0546 0.0500 0.0398

b1 −0.0451 −0.0479 −0.0424 −0.0457 −0.0589

b2 −0.046 −0.0365 −0.0395 −0.0403 −0.0502

b3 −0.0398 −0.0385 −0.0502 −0.0435 −0.0478

Mean(b) −0.0365 −0.0409 −0.0440 −0.0432 −0.0523

f = 4 a −0.0491 −0.0445 −0.0602 −0.0477 −0.0449

b1 −0.086 −0.0829 −0.089 −0.1059 −0.0957

b2 −0.0491 −0.0354 −0.0444 −0.0544 −0.0451

b3 −0.0298 −0.0186 −0.0227 −0.0238 −0.0115

b4 0.0032 0.0132 0.0239 0.0204 0.0347

Mean(b) −0.0404 −0.0309 −0.0330 −0.0409 −0.0294

f = 5 a −0.1217 −0.1305 −0.1289 −0.1232 −0.1199

b1 −0.1567 −0.1473 −0.1699 −0.1519 −0.1568

b2 −0.0752 −0.0662 −0.0789 −0.0665 −0.0737

b3 −0.0238 −0.0155 −0.0239 −0.0126 −0.0211

b4 0.0192 0.0273 0.0294 0.0390 0.0315

b5 0.0817 0.0990 0.1018 0.1168 0.1031

Mean(b) −0.0309 −0.0205 −0.0283 −0.0150 −0.0233

noticeable difference under the same calibration sample size,
and they were noticeably smaller than those under 2-categories
and 5-categories, while the mean(b) of b-parameters under 3-
categories and 5-categories had similar RMSE values under the
same calibration sample size, and they were smaller than those
under 2-categories and 4-categories.

It can be seen from Table 4 and Figures 4, 5, the bias
of new items had the same trend as the RMSE, The
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FIGURE 2 | RMSE of a- parameter and b-parameters under different categories.

FIGURE 3 | RMSE of different calibration sample size under different categories. 2-C, 2-categories; 3-C, 3-categories; 4-C, 4-categories; 5-C, 5-categories. Figure 5

also has the same definition.

smaller the value of RMSE, the closer the value of bias
was to 0.

EMPIRICAL STUDY

In this paper, an online calibration method based on GRM
is proposed, which has a good performance in simulation
study. What is the performance on real data? Because the
construction of the real CAT item pool is expensive, it
is difficult to organize and arrange large-scale CAT tests
also. This study used the response data of 500 examinees
on 10 polytomous items (3-categories) in HSK4 (Chinese
proficiency test) to conduct an empirical study. Detailed steps are
as follows.

Step 1: 500 examinees were randomly divided into two parts.
One was the training set, including the response data of 300
examinees. The other was the testing set, including the response
data of 200 examinees.

Step 2: The ability parameters of examinees and item
parameters are estimated through the training set, then the
estimated item parameters are taken as the true parameters.

Step 3: For the testing set, the K-fold cross validation method
(Tan et al., 2014) is used to simulate and generate the operational
items and new items in CAT. In this study, leave-one-out
approach was used, that is, each test chose one as new item, and
the remaining nine items were as operation items.

Step 4: According to the responses of 200 examinees on 9
operational items and the true values of the corresponding
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FIGURE 4 | Bias of a- parameter and b-parameters under different categories.

FIGURE 5 | Bias of different calibration sample size under different categories.

item parameters, the ability values of 200 examinees
were estimated.

Step 5: According to the examinee’s ability values obtained in
step 4 and their responses to the new item, the parameters of
the new item were estimated by the new method proposed in
this study.

Step 6: Each time a different item was selected as the new
item, and then the work in step 3∼5 was repeated so that
the estimated parameters of each new item could be obtained.
Then the RMSE between the estimated parameters and the true
parameters were calculated.

Because of the limited real data, this study only analyzed
the calibrated sample of 200. The results of the analysis were
as follows:RMSEa = 0.4067, RMSEb1 = 0.4778, RMSEb2 =
0.3218, RMSEb3 = 0.3029.

DISCUSSION AND FUTURE DIRECTIONS

This research extended OEM and MEM to GRM for online
calibration, detailed description of algorithms were given in
the article. While online calibration is a complex process,
there are many factors affecting the calibration accuracy. In
order to make online calibration efficient and practicable
under GRM, various factors should be explored clearly. Two

simulation studies were conducted to investigate the calibration
results under various conditions. The results showed: (1)

both OEM and MEM were able to generate reasonably new

item parameters with 700 examinees per item, and each
has its own merits. (2) The Poly-Sq-Ini method had better

performance than Poly-Ini method under most experimental
conditions. (3) Compared to the random calibration design,
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the adaptive calibration design do not improve the calibration
accuracy in most conditions. (4) The calibration sample
size had an effect on the calibration accuracy. In most
conditions, the calibration accuracy increases with the increase
of sample size. (5) The number of categories of new items
also affected the calibration results, the calibration accuracy
of 3-categories items was higher than that of 2-categories,
and so on.

In addition, a supplementary study was conducted to
investigate the calibration accuracy of GRM online calibration
under different CAT scenarios. Eight CAT scenarios, which were
fully crossed by sample sizes (2,000 and 3,000) and test lengths
(variable-length, fixed-length with 10, 20, and 30 respectively),
were investigated. The ability estimation results of CAT and the
calibration results of new items under various CAT scenarios
were listed in Tables A1–A3. As can be seen from Table A1, for
the fixed-length CAT, the estimation accuracy of ability increased
with the increase of test length under the same sample size.
The RMSE value of variable-length CAT was close to that of
test length 10 in fixed-length CAT, which indicated that the test
length was about 10 under specified cumulative information. All
ability bias values in all CAT scenarios were very close to 0.
It showed that the simulated CAT can provide accurate ability
estimates for the examinees. As can be seen from Tables A2,
A3, (1) the calibration accuracy was acceptable in various CAT
scenarios, which showed the robustness of online calibration
method under GRM. (2) The estimation accuracy of ability had
an effect on the calibration accuracy, but the effect was not
monotonous, and there was fluctuation. (3) Under two different
sample sizes, the calibration accuracy is higher when the test
length is 20.

Several future directions for research can be identified.
First, in this paper, the b-parameters are randomly selected
from the normal distribution and then sort in ascending.
The true values of b-parameters of new items are random,
the following scenarios are possible, such as the b-parameters
under all categories of an item are less than 0, or are
greater than 0, and the difference between adjacent categories
is very large or so small. Different scenarios may lead
to different calibration results, online calibration based on
deliberately designed true parameters of new items is the next
research content.

Second, in this paper, only the match-b method is considered
in the adaptive design, other adaptive design methods are

not discussed. There are some adaptive calibration design
that practicable and perform well under dichotomously scored
models (He and Chen, 2019; He et al., 2019). How to extend
these adaptive designs to GRM, and whether it will get the same
conclusion as dichotomously scored models are the directions of
future research.

Third, the number of categories discussed in this paper was
up to 5, which means that the new items can be 2, 3, 4, and
5 categories. If there are more than 5-categories items, whether
the new online calibration method is still valid is worthy of
further study.

Fourth, there is an interesting phenomenon in the bias
of the 5-categories condition. The lower b-parameters (b1,
b2) have negative bias, and the higher b-parameters (b4,
b5) have positive bias. Does it have anything to do with
the calibration methods. Other calibration methods will be
extended to GRM in further studies, and observe whether similar
phenomenon will also occur. So as to investigate whether the
phenomenon It is related to the calibration method, whether
it is related to the number of categories of new items, or
other factors.
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APPENDIX

Table A1 | Estimation accuracy of ability under different CAT scenarios.

Sample size Test length RMSE Bias

2,000 Variable-length 0.1904 0.0007

10 0.1924 −0.0004

20 0.1340 −0.0008

30 0.1105 −0.0012

3,000 Variable-length 0.1882 0.0033

10 0.2012 −0.0001

20 0.1286 −0.0024

30 0.1057 0.0050

For variable-length CAT, the cumulative information was set to 25.

Table A2 | RMSE of new item parameters under different CAT scenarios.

Sample size Test length RMSE

a b1 b2 b3

2,000 Variable-length 0.2483 0.2109 0.1802 0.2294

10 0.2345 0.2224 0.1557 0.2182

20 0.2169 0.1954 0.1545 0.2242

30 0.2232 0.2060 0.1685 0.2357

3,000 Variable-length 0.2337 0.1921 0.1620 0.2203

10 0.2302 0.2571 0.1668 0.2143

20 0.2121 0.2102 0.1640 0.2078

30 0.2069 0.2012 0.1664 0.2235

Table A3 | Bias of new item parameters under different CAT scenarios.

Sample size Test length Bias

a b1 b2 b3

2,000 Variable-length 0.0998 −0.0005 −0.0330 −0.0685

10 −0.0719 −0.0889 −0.0088 0.0615

20 −0.0001 −0.0464 −0.0011 0.0272

30 0.0589 −0.0168 −0.0211 −0.0269

3,000 Variable-length 0.0939 −0.0117 −0.0239 −0.0458

10 −0.0650 −0.1364 −0.0486 0.0287

20 −0.0228 −0.0187 −0.0106 0.0011

30 0.0613 −0.0152 −0.0232 −0.0486

Taking 3-categories items as example and the calibration sample size is set to 500.
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