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Recent models of emotion recognition suggest that when people perceive an emotional
expression, they partially activate the respective emotion in themselves, providing a
basis for the recognition of that emotion. Much of the focus of these models and
of their evidential basis has been on sensorimotor simulation as a basis for facial
expression recognition – the idea, in short, that coming to know what another feels
involves simulating in your brain the motor plans and associated sensory representations
engaged by the other person’s brain in producing the facial expression that you
see. In this review article, we argue that simulation accounts of emotion recognition
would benefit from three key extensions. First, that fuller consideration be given to
simulation of bodily and vocal expressions, given that the body and voice are also
important expressive channels for providing cues to another’s emotional state. Second,
that simulation of other aspects of the perceived emotional state, such as changes
in the autonomic nervous system and viscera, might have a more prominent role in
underpinning emotion recognition than is typically proposed. Sensorimotor simulation
models tend to relegate such body-state simulation to a subsidiary role, despite
the plausibility of body-state simulation being able to underpin emotion recognition
in the absence of typical sensorimotor simulation. Third, that simulation models of
emotion recognition be extended to address how embodied processes and emotion
recognition abilities develop through the lifespan. It is not currently clear how this
system of sensorimotor and body-state simulation develops and in particular how this
affects the development of emotion recognition ability. We review recent findings from
the emotional body recognition literature and integrate recent evidence regarding the
development of mimicry and interoception to significantly expand simulation models of
emotion recognition.
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BACKGROUND

Emotion recognition is key to successful social interactions. To
date, much of the research into perceiving emotions in others has
been conducted using the face, which is arguably the most salient
portrayer of social signals that we possess.

We know that there are both visual (Ekman, 1992) and
contextual cues (Kayyal et al., 2015; Xu et al., 2017) to aid
accurate facial emotion recognition, but recent models also argue
for the inclusion of a sensorimotor simulation system as a
route to emotion recognition (Niedenthal, 2007; Wood et al.,
2016a,b). The central idea of these models is that when we
observe a facial expression of emotion, we can recognize the
emotion by simulating the motor plans and associated sensory
representations engaged by the other person’s brain in producing
the expression. This can occur both with mimicry (recreating the
perceived motor production of the observed facial expression),
or without (see Figure 1). As we cannot directly access another’s
experience, this sensorimotor simulation is part of, as Wood et al.
(2016b) put it, the ‘game of prediction’ that underpins emotion
recognition. These simulations are the embodied recollections
of our own experiences and we are constructing the meaning
of an observed emotion in part from our own prior bodily and
subjective experiences of it (Niedenthal et al., 2005; Hawk et al.,
2016). As such, sensorimotor simulation accounts of emotion
recognition echo but reframe the James-Lange theory of emotion
(Lange and Haupt, 1922; James, 1994), putting physiological

states and their representation in the brain at the center not only
of one’s own emotional experience but also of one’s interpretation
of the other person’s emotional expression.

The result of this sensorimotor simulation is what is referred
to in the literature as ‘emotional contagion,’ experiencing the
feeling of another through observation (Hatfield et al., 1993;
Prochazkova and Kret, 2017). However, Hatfield et al. (1993)
argue that contagion is a higher-level cognitive phenomenon that
can involve not only the synchronizations of facial expressions,
but as mentioned above, also vocalizations, postures and the
movements of another person. We already know that the body
(Atkinson et al., 2004; de Gelder et al., 2010; de Gelder and Van
den Stock, 2011) and the voice (Belin et al., 2008; Grosbras et al.,
2018) are important expressive channels for providing cues to
another’s emotional state, but to date these cues have been largely
omitted in sensorimotor simulation models.

This motor matching, however, may not be the cause of
the sensorimotor simulation, but rather the effect of it. Indeed,
individuals can show similar expressions to another person
not because they mimic the expression directly, but because
the internal simulation of these emotions causes the mimicked
expression (Hawk et al., 2012; Stel et al., 2016). This has even
been demonstrated across expressive channels: exposure to vocal
(Hawk et al., 2012) and body expressions (Magnée et al., 2007) of
emotion elicits corresponding facial expressions in the observer,
despite no facial expression being actually shown. The mimicry
shown by subjects in these cases is therefore arguably due to

FIGURE 1 | Simulation model of emotion recognition from the face. Processing of a particular facial expression triggers other components of the emotion system,
leading ultimately to emotional understanding. It should be noted that arrows in this model do not imply neural modularity and specific sequential events; rather they
emphasize the distributed and recursive nature of the emotion perception process. This is an amended version of a figure first published in Wood et al. (2016b).
Copyright (2016) reprinted with permission from Elsevier (License No. 4626470808358).
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the somatosensory simulation of congruent stimuli, rather than
direct visual mimicry. Of course, an alternative explanation is
that the act of making the expression itself generates in the
observer the corresponding emotional state, but we will argue
that the majority of evidence indicates that primarily motor
matching is the effect of simulation rather than the cause of
simulation. This line of argument is not, however, necessarily
inconsistent with the reframing of the James-Lange theory that
we noted above; indeed, it could be seen to be more consistent
with it, giving (representations of) internal bodily states (as
opposed to representations of expressive motor movements and
their sensory consequences) a more central role. Of course,
it is also possible that simulations of others’ internal bodily
states and expressive changes are both causally involved in
understanding their emotional expressions (which would also be
consistent with the reframed James-Lange theory), a possibility to
which we remain open.

This concept of emotional contagion does not even necessarily
require an observer to feel the portrayed emotion to be able to
recognize it. Recent models also include simulation that does not
involve conscious awareness (Wood et al., 2016b). It is plausible
that representation of changes in the autonomic nervous system
and viscera (which here we will refer to as body-state simulation)
is enough to underpin emotion recognition in the absence of
sensorimotor simulation. We know that not only does emotional
contagion occur when the stimulus is not consciously perceived,
but also that unseen expressions actually evoke faster facial
reactions (Tamietto et al., 2009). This unconscious body-state
simulation account of emotion perception has, to date, been
relegated to a somewhat subsidiary role in simulation models.

Furthermore, we know that the ability to recognize emotions
from the face, body and voice follow different developmental
trajectories throughout childhood and adolescence (De
Sonneville et al., 2002; Herba et al., 2006; Wade et al., 2006;
Tonks et al., 2007; Ross et al., 2012; Chronaki et al., 2015;
Grosbras et al., 2018). This doesn’t seem to be the case in
infancy, however, with evidence indicating that emotional
understanding is a unified ability that develops in concert across
various modalities at the same time (Missana and Grossmann,
2015). We also know from infant studies that mimicry behavior
appears to precede emotional understanding and empathy
development (Field et al., 1982; Meltzoff and Moore, 1983;
Anisfeld, 1996; Jones, 2006). What we currently do not know,
however, is how the current simulation models are affected by the
developmental trajectory of embodied processes. Understanding
this development could give key insights into the overall
development of emotion recognition ability and may shed some
light on the developmental differences across modalities.

In this review, we therefore propose three key extensions
to the current sensorimotor simulation models for facial
expression recognition:

(1) Fuller consideration be given to simulation of bodily and
vocal expressions.

(2) The neural representation of changes in the autonomic
nervous system and viscera (body-state simulation) might

have a more prominent role in simulation models than
currently thought.

(3) Expanding the models to address how the development
of embodied processes (interoception and proprioception)
affects the development of emotion recognition.

SENSORIMOTOR AND BODY-STATE
SIMULATION OF BODILY AND VOCAL
EXPRESSIONS OF EMOTION

Research investigating how emotional information is conveyed
by whole-body cues can be traced back to the postural
descriptions of Darwin (Darwin and Prodger, 1872/1998) and
the body posture photographs of James (James, 1932). James
noted that the subjects viewing his emotional body stimuli would
imitate the posture they were looking at, and in some cases,
noting emotional contagion by way of the observers expressing
‘the feeling or emotion which was attributed to the postural
expression’ and that this ‘resulted from the tendency of the
observer to put himself into the same situation and posture as
that of the figure’ (p. 419).

This can arguably be seen as the basis for modern embodiment
theory, in which individuals process the emotion information
of others by activating neural states associated with their own
perceptual and affective experiences (Hawk et al., 2012). In terms
of the most recent work exploring sensorimotor simulation and
the body, there are two main lines of enquiry. Firstly, there
is work investigating simulating emotional states using facial
stimuli that leads to sensorimotor simulation of the body and
mimicry of some kind. Secondly, there are studies looking at
various forms of mimicry due to sensorimotor simulation, but
solely based on observing emotional body stimuli.

Mimicry Response in the Body
Taking the first of these lines of enquiry, it should be noted
that studies investigating body mimicry rarely do so in isolation.
Instead, recent work (Wood et al., 2016b; Moody et al., 2018)
describes body mimicry as a ‘spill over’ of muscle activity from
the process of simulating emotions. So instead of there being a
direct neural connection between visual perception and motor
processes, if the emotional cue (the body for example) contains
postural changes, then one would expect this ‘muscular spill over’
to extend to areas beyond the face (such as forearms/hands, etc.).
Therefore, several of the studies which report body mimicry also
report (or set out to investigate) facial mimicry.

Early work demonstrated mimicry in the body for non-
emotional stimuli. Chartrand and Bargh (1999) showed evidence
of behavioral mimicry when observing a stranger (foot shaking,
face rubbing, etc.) while Berger and Hadley (1975) showed
participants had larger electromyogram (EMG) activity in their
arms while watching arm wrestling and in their lips when
watching an actor stutter. This unconscious body mimicry was
coined the ‘chameleon effect’ by Chartrand and Bargh (1999)
and refers to matching one’s behavior to that of others in the
environment. This may have various prosocial in-group benefits,
or as Ashton-James and Levordashka (2013) argue, can be a
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means by which one becomes ‘liked’ by others. Either way, body
mimicry appears to occur for both body and non-body stimuli
alike. However, is it a mechanism by which one can obtain
emotional information?

Moody and McIntosh (2011) explored this question of
whether body mimicry is a general motor-matching mechanism,
or if it is solely related to emotional processes. They expanded
upon Berger and Hadley’s aforementioned EMG work by trying
to replicate the results but in response to both emotional and
non-emotional stimuli. Interestingly they found that mimicry in
participants’ face actions occurs regardless of emotional content,
but they did not demonstrate body mimicry to any action. They
did find, however, that emotional stimuli elicited more mimicry
than non-emotional stimuli.

This result rather muddies the water regarding the role of
the body in mimicry, but it should be noted that this study did
not include emotional body stimuli, but rather the same arm
wrestling videos used by Berger and Hadley (1975).

Moody et al. (2018) followed up their 2011 partial replication
study by trying to shed some light on the role of the body in the
simulation and mimicry of emotional facial expressions. Here as
well they used face stimuli (angry and fearful expressions), but
measured EMG data from both observers’ faces and, crucially, the
forearm flexor and extensor muscles of the arms. The hypothesis
was that for angry stimuli, a mimicry action would involve a fist
clench requiring both the flexor and extensor, whereas a raised
palm in fear would only require the extensor muscle group. They
found evidence that while showing the typical facial mimicry
to emotional faces, subjects also demonstrated corresponding
reactions over arm muscles. Importantly, this occurred despite
no other emotional information being present.

These results provide convincing evidence for a sensorimotor
simulation model of emotion recognition, and crucially, one in
which the whole body is involved. It is still not clear, however,
whether simulating the emotion at a neural level led to the
physical muscular response, or whether the response comes after
a more conceptual understanding of the emotion, leading to the
simulation posteriori. Indeed, future research should be directed
at determining the neural systems activated by these stimuli to
fully understand how these whole-body simulation and mimicry
processes interact with emotion recognition.

Furthermore, exploring body mimicry using dynamic
emotional body stimuli would be of great interest. A replication
of Moody et al. (2018) study measuring EMG activity in the face
and arms, but instead using fearful and angry body stimuli could
provide robust evidence for a sensorimotor simulation model
of emotion recognition in which the whole-body response is
simulated and not just the face. Rather than body mimicry being
a ‘spill over effect’ of facial mimicry, it may be that using body
stimuli, one finds the reverse effect.

As we have seen, motor matching in the body does occur when
presented with emotional stimuli and sensorimotor simulation
can be seen as a ‘whole-body’ simulation effect. Furthermore,
we will later argue that the body-state simulation role in these
models is not modality specific to the face. For now, however, we
will review the evidence for sensorimotor simulation from body
and voice stimuli.

Studies Using Body Stimuli
It is the case that some simulation and mimicry studies have
already used body stimuli, but only as a means to study facial
mimicry. We know that emotions are conveyed effectively from
the body (Atkinson et al., 2004; de Gelder, 2006; Ross et al.,
2012) and that facial mimicry occurs when viewing body stimuli,
arguably as a result of whole-body simulation, yet recent models
of simulation (Wood et al., 2016b) begin with a visual input from
a face stimulus. Arguably, there is no real reason that simulation
models should narrow themselves in this way, and the models
would perhaps benefit from widening the visual input to include
body stimuli (and vocal stimuli).

Using body stimuli to study sensorimotor simulation has
only entered the research agenda in the last decade, with
Magnée et al. (2007) conducting the first study to directly
compare EMG responses to both emotional faces and body
gestures. In this initial study, Magnée and colleagues found no
difference in EMG activity in the zygomaticus major (used to
smile) and the corrugator supercilii (used to frown) between
the two stimuli modalities. They conclude from these results
that there is no evidence for the theory that the observed
facial reaction is based purely on mimicry due to motor
simulation. Kret et al. (2013b) support this finding showing
that EMG activity from the corrugator muscle is similar
across facial and body expressions of emotion. In a follow-
up study, Kret et al. (2013a) also show that pupillometry
response did not differ across angry/threatening bodies, scene
or faces. Rather, the results are compatible with a model
more akin to the recent sensorimotor simulation accounts of
emotion recognition (Niedenthal, 2007; Wood et al., 2016b)
where the perception of emotion (whether through the face
or body) activates internal emotional states, which in turn
leads to recognition and some motor response (in this case
manifesting in the face).

Interestingly, the recent models of sensorimotor simulation
tend to culminate in the goal of ‘recognition’ (Niedenthal, 2007;
Wood et al., 2016b). However, these simulation and mimicry
findings also hold when there is no conscious perception of
the body stimulus (or face stimulus for that matter) at all,
and thus lead to no recognition. Using a backward masking
technique, Dimberg et al. (2000) showed that despite not
being consciously aware of happy and angry facial expressions,
participants reacted with distinct corresponding facial muscle
responses to the stimuli. Tamietto and de Gelder (2008) replicated
this result using backwardly masked body stimuli. They found
remarkably similar results to previously reported accounts of
greater zygomaticus activity in response to happy compared
to fearful bodies, and greater corrugator activity for fearful
compared to happy expressions.

This effect is also present in patients with blindsight. Using
EMG on two patients with homonymous hemianopia Tamietto
et al. (2009) found that the response of their zygomaticus and
corrugator muscles was highly similar regardless of whether
faces or bodies were presented to the blind visual field. Larger
pupil sizes, indicative of increased emotional arousal, were
also observed for fearful faces and fearful bodies relative to
happy faces and bodies in both patients in both the seen and
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unseen conditions. Tamietto and colleagues argue that these
results are more consistent with body-state simulation than
with sensorimotor simulation accounts of emotion recognition
(though they don’t use those exact terms), for three reasons.
First, as bodily and facial expressions evoked similar facial
reactions in participants, this demonstrates that patients were not
simply doing ‘motor-matching.’ If this were the case, then no
facial reactions should have been detected in response to bodily
expressions. Secondly, as unseen face and body stimuli both
triggered emotion-specific expressions in participants, motor
resonance appears less automatic than emotional processing.
Underlying emotion processing systems of old evolutionary
origin initiate appropriate responses despite the absence of
stimulus awareness. Thirdly, facial and pupillary reactions both
peaked at approximately 1,100 ms from stimulus onset. Motor-
matching theory would predict initial non-emotional mimicry
before the emotional significance of the action is ascribed.
However, Tamietto and colleagues found no indication of such
sequencing between facial and pupillary responses. Rather, these
reactions happened in parallel, making the motor-matching
theory an unlikely explanation.

This gives further compelling evidence that facial mimicry is
not simply an imitated motor response, but rather is related to
some form of body-state simulation and automatic response of
the emotion system. Furthermore, by showing that the response is
modality independent, it provides more support for the inclusion
of body stimuli into the current models of emotion recognition
by sensorimotor simulation.

As above, it would also be very interesting to see if similar
EMG responses as found in the face of these participants were
present in the body during such studies. This would yield more
evidence for a whole-body simulation model that is activated
independently of conscious awareness, emotion and stimuli
modality, and that gives rise to whole-body mimicry.

Studies Using Vocal Stimuli
Facial and bodily expressions are obviously both visual stimuli.
Thus, low-level processing of these stimuli occurs in similar
early visual areas of the brain. Processing of auditory stimuli on
the other hand, despite them containing congruent emotional
information, obviously occurs very differently. The question then
is, despite the differing sensory modalities, is there still evidence
for the sensorimotor simulation model of emotion recognition
when subjects are presented with emotional vocalizations?

In expressing emotional vocalizations, one’s facial activity will
change to accompany the expression (Provine, 1992; Krumhuber
and Scherer, 2011). Indeed, certain facial movements may be
necessary for shaping the distinguishing acoustics of particular
emotional utterances (Scherer, 2014). Perceiving positive or
negative emotional vocalizations on the other hand has also been
shown to elicit congruent facial mimicry (Verona et al., 2004;
Magnée et al., 2007).

In terms of examining whether discrete emotional
vocalizations evoke differential facial mimicry (and by extension
involve sensorimotor simulation), Hawk et al. (2012) showed that
facial responses were congruent when participants both produced
and listened to emotional vocalizations. This simulation and

consequent facial mimicry in response to vocalizations is
entirely consistent with the sensorimotor simulation accounts
of emotion recognition (Niedenthal, 2007; Wood et al., 2016b).
Furthermore, Hawk and colleagues experiment had a condition
in which participants were to reproduce the vocalization they
heard before responding and a condition where they did not.
When reproducing the vocalization themselves, participants
were more accurate in their responses. One could interpret this
finding as evidence of a more conscious and ‘active’ simulation
process being utilized to aid recognition.

Furthermore, Hawk et al. (2012) also presented evidence of
cross-channel simulation, whereby inhibiting participants’ facial
responses modulated not only their processing of emotional
vocalizations, but also their own subjective feelings of the
emotion. This suggests that facial mimicry is not simply a result of
motor activation or a by-product of sensorimotor simulation but
is instead actively involved in the simulation of emotions from
different modalities.

An interesting addition to the aural emotion recognition
literature is that of emotional music. As Paquette et al. (2013)
describe, recognition of the ‘basic emotions’ (happiness, sadness,
anger, fear, and disgust) appears to be consistent across listeners.
It is also known that emotional music can modulate brain
activity in areas known to be involved in emotional processing;
namely the amygdala, hypothalamus, and insula (Koelsch, 2014).
Recently, Paquette et al. (2018) showed evidence for a ‘shared
neural code’ for aural emotional processing across different
timbres (voice, clarinet, and violin). In other words, their results
support the notion of a universal acoustic code for auditory
emotions that crosses aural modalities (Sachs et al., 2018). If this
is the case then one potentially interesting line of enquiry could
be replicating the Hawk et al. (2012) studies using emotional
music rather than vocalizations. Given that musical expertise
enhances the recognition of emotions from vocalizations (Lima
and Castro, 2011), and the evidence of a shared neural code
for aural stimuli, it is plausible that more experienced musicians
may show greater simulation and consequent facial mimicry
in response to emotional music. To our knowledge, there are
currently no studies using music or other non-biological stimuli
to explore sensorimotor simulation.

So far, we have only explored some of the behavioral
evidence of this account of cross-channel simulation. However,
if sensorimotor simulation of emotions from different modalities
leads to a congruent motor response in the face, is there
neuroimaging evidence to support this account?

Support From Neuroimaging for the
Inclusion of Body and Vocal Stimuli in
Simulation Models of Emotion
Recognition
There is indeed some compelling neuroimaging evidence to
support these models. Reviewing the brain regions involved
in the simulation of emotional states from face and body
stimuli, Heberlein and Atkinson (2009) suggest that the right
somatosensory cortices, amygdale, and premotor areas are
involved across both modalities. The evidence suggests that the
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brain is modeling not only what a specific body part feels like
when producing an emotional expression, but also simulating the
whole body state associated with the emotion.

We know that when perceiving others’ facial expressions,
activity in the somatosensory cortices correlates with activation
when the perceiver generates the same expression (Van der
Gaag et al., 2007). In the last decade, the role of the
sensorimotor cortices in emotion recognition has widened
to include other channels of expression. Using continuous
theta-burst transcranial magnetic stimulation (cTMS), Banissy
et al. (2010) expanded this account to include emotional
voice stimuli. They found that cTMS targeting the right
somatosensory cortex caused deficits in auditory emotional
discrimination but not identity discrimination. Using dynamic
point-light display (PLD) body stimuli and fMRI, Heberlein and
Saxe (2005) showed more right somatosensory region activity
when discriminating emotions compared with personality traits.
This evidence suggests that the right somatosensory cortices
play a role in emotion discrimination across modalities and
not just for faces. However, how does this translate to
emotion recognition?

There is also evidence of the somatosensory cortices showing
abstract representations of different emotions. Cao et al.
(2018) showed evidence of emotion-specific representation
in the left post-central gyrus (lPCG) that was independent
from the type of stimuli presented. Using multivariate
pattern analysis (MVPA) they found that happiness could
be differentiated from fear or anger in the lPCG for face,
body or whole-person stimuli. This point is interesting as
it was not the content of the stimuli itself that was causing
these patterns of activation, but rather some secondary
abstract representation of the emotion. Indeed, Peelen et al.
(2010) found emotion category-specific activity patterns
in the medial prefrontal cortex (MPFC) and left superior
temporal sulcus (STS). This activity was modality-independent
(face/body/voice) and independent of perceived emotional
intensity, suggesting the representation of emotions at a more
abstract level. We know that MPFC and STS are implicated
in mental-state attribution and theory of mind, and the
lPCG contains the somatosensory cortex and is involved
in proprioception (Kato and Izumiyama, 2015), so might it
be feasible that this emotion-specific encoding is a result of
body-state simulation?

This account finds support from Kragel and LaBar (2016)
who as well as presenting emotional facial and vocal stimuli, also
took self-report ratings of participants’ own subjective emotional
experience while perceiving the stimuli. They found distinct
patterns of activation in the somatosensory cortex containing
information sufficient to decode the perceived emotion. They
also found that these patterns of activation correlated with the
extent of experiential emotional mirroring across participants.
These results support the account that inferring others’ emotions
involves a functional role for the somatosensory cortex in
representing the changes in body state associated with the
perceived emotion (Damasio, 1996; Adolphs et al., 2000, 2002;
Niedenthal, 2007). It also supports Hawk et al. (2012) findings
of subjects’ facial responses modulating emotion recognition

and one’s own emotional feeling. In other words, information
related to one’s own body-state (in this case forcing a smile)
contributes to the decoding of others’ emotional expressions.
Given we know that emotions are associated with topographically
distinct bodily sensations (Nummenmaa et al., 2014), this
suggests that an emotional stimulus of any modality (i.e.,
face, body, voice) can lead to simulation and the resultant
activation in the post-central gyrus. This can then lead to
facial (or body) mimicry, adaptive behavioral responses and
recognition. Therefore, sensorimotor simulation models of
emotion recognition are not limited to the recognition of facial
stimuli, and future models should be expanded to include these
other modalities.

The majority of these results, however, show evidence for
sensorimotor simulation by means of facial mimicry. We argue
that there is also an important role for body-state simulation
in emotion understanding. Yet sensorimotor simulation models
tend to relegate body-state simulation to a subsidiary role,
despite the plausibility of body-state simulation being able
to underpin emotion recognition in the absence of typical
sensorimotor simulation.

Of late, body-state simulation has received much less
coverage than sensorimotor simulation, even though body-
state simulation was prominent in the early days of simulation
accounts of emotion understanding, even if not always under
that name (e.g., Adolphs et al., 2000; Adolphs, 2002; Goldman
and Sripada, 2005). Body-state simulation, as the name suggests,
is the idea that evaluating another’s emotion involves the
generation of a somatosensory representation of the body state
associated with the perceived emotion. What is the evidence
for the body-state simulation account of emotion recognition?
We here reiterate the evidence summarized in earlier reviews
(e.g., Adolphs, 2002; Gallese, 2005; Goldman and Sripada,
2005; Atkinson, 2007; Heberlein and Adolphs, 2007; Heberlein
and Atkinson, 2009), and supplement it with discussion of
additional, more recent evidence to argue for a more prominent
role of body-state simulation in current simulation models of
emotion recognition.

THE CASE FOR A MORE PROMINENT
ROLE FOR BODY-STATE SIMULATION IN
MODELS OF EMOTION RECOGNITION

As we have seen above, arguably the most important evidence for
the body-state simulation account of emotion recognition comes
from studies demonstrating a critical role for somatosensory and
insula cortices in the perception of emotions from faces, voices,
and bodies. For these are regions whose primary functions are to
represent changes in one’s own bodily states (i.e., interoception
and proprioception). This evidence comes from studies of
people with lesions to these brain areas and from studies in
which transcranial magnetic stimulation (TMS) has been used
to temporarily disrupt the functioning of these brain regions
(however, it should be noted that insula function is not amenable
to being investigated using TMS due to its location deep within
the lateral sulcus, away from the scalp).
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Lesion Evidence for the Critical
Involvement of Somatosensory Cortices
and Insula in Emotion Recognition
Adolphs et al. (2000) tested 108 patients with focal brain damage
on a face emotion-rating task, then compared the overlap of
brain lesion locations of the patients who were impaired on the
task with the overlap of brain lesion locations of unimpaired
patients. The region of maximal lesion overlap among impaired
patients was in right posterior post-central gyrus, bordering
on anterior supramarginal gyrus (SMG), that is, encompassing
the lower sector of primary somatosensory cortex (S1) and
secondary somatosensory cortex (S2). Impaired performance on
the face emotion-rating task was also associated with lesions
in the right insula cortex and left inferior frontal gyrus (IFG),
though to a lesser extent (see Figure 2A). In two additional
experiments, Adolphs and colleagues tested the same patients
on a task requiring them to choose from a list of emotion
words the label that best matched each face and a task requiring
them to sort faces into piles according to the similarity of the
emotion displayed. Impaired performance on both the emotion-
naming and emotion-sorting tasks was associated with lesions in
right somatosensory cortices (S1, S2), SMG and insula, as was
found with the emotion-rating task. Impaired performance on
the emotion-naming task was additionally associated with lesions
in bilateral IFG, especially in the right hemisphere, right superior
temporal gyrus, and left SMG (see Figure 2B).

A similar lesion-overlap study with a large group of patients
showed that impairments in emotional prosody perception were
associated with lesions to the right somatosensory cortices (S1
and S2) and insula, as well as with lesions to right IFG,
right motor and premotor cortices, the left frontal operculum,
principally in IFG, and bilateral frontal pole (Adolphs et al.,
2002) (see Figure 2C). In a third lesion-overlap study, impaired
recognition of emotions in body movements represented
in point-light stimuli was associated with lesions in right
somatosensory cortex, encompassing S2 and the lower sector
of S1, and insula, with the region of highest overlap in right
S2 (Heberlein et al., 2004) (see Figure 2D). Given that the
lesion method can reveal critical roles for structures only when
lesions are confined to those structures, it is significant that
in both these studies, a small number of single patients with
lesions restricted to right somatosensory cortex were impaired at
recognizing emotions, whereas single patients with lesions that
spared right somatosensory cortex were very unlikely to have
impaired emotion recognition.

TMS Evidence for the Critical
Involvement of Somatosensory Cortices
in Emotion Recognition
Further evidence for a critical role for right primary and
secondary somatosensory cortices in the recognition of
emotional expressions comes from studies using TMS. Our
coverage of this evidence will highlight the heterogeneity across
studies of (a) the emotion-recognition tasks used, (b) the
locations over somatosensory cortices that have been targeted

with TMS (indicated in Figure 3), and (c) the methods for
localizing them. Given these heterogeneities, a key avenue
for future research, which we discuss below, will be a more
coherent and systematic attempt to tease apart somatosensory
cortex contributions to emotion recognition via body-state and
sensorimotor simulation.

Pourtois et al. (2004) used single-pulse TMS to interfere with
the cortical processing of faces during two different perceptual
discrimination decisions and found evidence for a double
dissociation between emotion and eye-gaze processing. TMS
applied over right S1 (Figure 3E) lengthened reaction times to
match successively presented faces with respect to emotional
expression, compared to TMS applied over a region of right
posterior superior temporal cortex (an effect they found with
fearful but not happy faces). Conversely, TMS applied over right
posterior superior temporal cortex slowed matching of the same
faces with respect to the direction of eye gaze, compared to TMS
applied over right S1. The TMS stimulation sites were selected on
the basis of the 10–20 International system of electrode placement
for EEG, with the right S1 site selected as the C4 scalp location.

van Rijn et al. (2005) delivered offline 1 Hz repetitive-
pulse TMS (rTMS) for 12 min to participants’ right parietal
operculum/S2. This stimulation site (approximate location
marked in Figure 3E) was localized on the basis of each
participant’s structural MRI scan and was selected because
it corresponded to the region with highest lesion-overlap
associated with impaired vocal emotion recognition in the
study by Adolphs et al. (2002) (Figure 2C). Immediately after
TMS, the participants judged the emotion of heard sentences
with respect to prosody or meaning. For the prosody task,
sentences with emotionally neutral content were spoken in
happy, sad, angry, and fearful tones of voice; for the emotion
semantics task, sentences with happy, sad, angry, or fearful
meaning were spoken in an emotionally neutral tone. Detection
of emotional prosody but not of emotional meaning was
significantly affected by the right somatosensory rTMS, relative to
sham stimulation. Specifically, detection of ‘withdrawal emotions’
(fear plus sadness) was slowed during TMS compared to sham
stimulation, whereas no effect was observed for the ‘approach
emotions’ (happiness plus anger).

Pitcher et al. (2008) found that online 10 Hz rTMS applied
over either right S1 (Figure 3E) or right occipital face area
(OFA) disrupted the ability of observers to match successively
presented faces with respect to emotional expression, as assessed
with a measure of accuracy, irrespective of the particular
emotion. These effects were evident relative to two control
TMS conditions (stimulation over a control site and sham
stimulation). The S1 stimulation site was selected to correspond
to the location of peak activation for explicit vs. incidental
processing of facially expressed emotions in Winston et al. (2003)
study (discussed below; see Figure 3F). The same TMS over
a different region of S1 (see Figure 3E), corresponding to the
location of peak activation for tactile stimulation (via air puffs)
of the fingers (Huang and Sereno, 2007), did not influence
emotion recognition performance. Such a face-specific effect
in somatosensory cortex might be considered evidence more
consistent with a sensorimotor account than with a body-state
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FIGURE 2 | Distribution of lesion overlaps for emotion recognition tasks in studies by Adolphs and colleagues. (A) Distribution of lesion overlaps from all 108
subjects in Adolphs et al. (2000) study as a function of mean recognition performance on an emotion-rating task for static facial expressions. Red regions
correspond to locations at which lesions resulted in impairment on the task more often than not, and blue regions correspond to locations at which lesions resulted
in normal performance more often than not. (B) Distribution of lesion overlaps from all 108 subjects in Adolphs et al. (2000) study as a function of mean performance
on tasks requiring either choosing the name of the facially expressed emotion or sorting the expressions into categories without requiring naming. Color coding as
for (A). (C) Distribution of lesion overlaps from Adolphs et al. (2002) study as a function of mean performance on an emotion-rating task for prosodic expressions, for
the 33 individuals with the most abnormal ratings (red) compared with the 33 with the most normal ratings (blue). (D) Distribution of lesion overlaps from Heberlein
et al. (2004) study for the subjects who were impaired at emotion recognition from the point-light walker stimuli (>2 SD below normal control mean). Figures (A,B):
Copyright 2000 Society for Neuroscience. Figure (C): Copyright 2002 American Psychological Association. Figure (D): Copyright 2004 MIT Press.

simulation account of emotion discrimination, though the face-
region implicated in Winston et al. (2003) and Pitcher et al. (2008)
studies does not entirely fit with accurate coordinates of the face
region of somatosensory cortex reported in some fMRI studies
(e.g., Huang and Sereno, 2007; Eickhoff et al., 2008; Huang
et al., 2012; Korb et al., 2015). Emotion discrimination accuracy
was impaired relative to a matched identity discrimination task
when rTMS was applied over either right OFA or right S1,
while identity discrimination accuracy itself was not impaired
relative to the control conditions, thus suggesting that neither
region has a critical role in identity discrimination. Using
double-pulse TMS delivered at different times to right OFA
and right S1, this same study also demonstrated different
critical periods for the involvement of these regions in emotion
discrimination: right OFA’s involvement was pinpointed to
a window of 60–100 ms from stimulus onset, whereas the
involvement of right S1 was pinpointed to a window of 100–
170 ms from stimulus onset.

Banissy et al. (2010) applied continuous theta-burst
TMS (cTBS) over right S1 and, separately, over right lateral
premotor cortex. cTBS is used offline (i.e., not during task
performance) and has an inhibitory effect on neural and
cognitive function for at least 15–20 min after its application

(Wischnewski and Schutter, 2015). The right somatosensory
stimulation site (Figure 3E) was localized on the basis of a
previous fMRI study that contrasted touch to own face versus
touch to neck (Blakemore et al., 2005). The right premotor
stimulation site was localized on the basis of a previous fMRI
study of non-verbal auditory emotion processing (Warren et al.,
2006). Immediately prior to and again after the TMS, participants
were required to judge whether pairs of successively presented,
short vocalizations either expressed the same or different
emotions or were voiced by the same person or different people.
The stimuli comprised nonverbal vocal expressions of emotion
(amusement, sadness, fear, or disgust) portrayed by four different
individuals, and the same stimulus set was used in the emotion
and identity discrimination tasks. Both TMS over right S1 and
TMS over right lateral premotor cortex disrupted the ability to
discriminate emotion but not identity from the vocal signals.
This was evidenced by an increase in emotion discrimination
reaction times after TMS compared to the pre-TMS baseline
for the two stimulation sites of interest but not for the control
stimulation site (vertex); identity discrimination reaction times,
by contrast, actually decreased after TMS compared to the
pre-TMS baseline for the two stimulation sites of interest but
showed no difference for the control stimulation site.
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FIGURE 3 | Somatosensory brain regions implicated in emotion judgments. (A) Renderings on a slightly inflated standard brain of post-central gyrus (orange),
parietal operculum (red, corresponding approximately to S2/OP1), and insula (chartreuse yellow) in the right hemisphere, as delineated using the Harvard-Oxford
Atlas (Desikan et al., 2006). (B) The same image as in (A) but rotated slightly to reveal more of S2/OP1 and insula. (C) The same anatomical regions rendered on a
non-inflated standard brain image, to show how particularly insula and S2 are largely hidden, located away from the outermost surface of the brain (and thus skull).
(D) Primary somatosensory cortex (S1: orange, green, yellow) and secondary somatosensory cortex (S2/OP1: red) as delineated using the probabilistic atlas from
the Jülich SPM Anatomy Toolbox (Eickhoff et al., 2005). (E) Plotted mean coordinates, from the studies discussed in the text, of target locations for transcranial
magnetic stimulation (TMS) to disrupt emotion recognition. Blue dots indicate studies that used facial expressions, red dots indicate studies that used vocal
expressions, and the green dot indicates a study that used (point-light) bodily expressions. The numbers next to the dots refer to the relevant studies, as noted in the
table below; ‘+’ indicates effect of TMS on emotion perception task performance; ‘−’ indicates no effect. (F) Plotted mean coordinates, from the studies discussed
in the text, of the fMRI activation peaks in somatosensory cortices for explicit emotion judgments compared to incidental emotion processing. The blue dot indicates
a study that used facial expressions, green dots indicate studies that used bodily expressions, and the pink dot indicates a study that used both bodily and facial
expressions [point-light displays (PLDs)]. The numbers above the dots refer to the relevant studies, as noted in the table below. (G) A group statistical non-parametric
map (SnPM) for emotion judgments > color judgments on point-light body and face stimuli; unpublished data from Atkinson et al. (2012). The SnPM is thresholded
at q < 0.05, FDR-corrected (≥10 contiguous voxels). The bottom row in (F) is the same as the top row except for a slight rotation to reveal more of the activations in
bilateral SMG/parietal operculum (including S2). For all the images in this figure, the anatomical regions, coordinate markers and fMRI activations were mapped on to
a partially inflated ICBM152 standard brain in MNI space using the BrainNet Viewer software (Xia et al., 2013).
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Paracampo et al. (2017) used online rTMS to demonstrate
critical roles for sectors of S1 and IFG in inferring authentic
amusement from dynamic smiling faces. Participants in this
study viewed short video clips of smiling faces, which evolved
from a neutral expression to an authentic or a falsely amused
smile. In one condition, the participants were asked to judge what
the person truly felt (i.e., authentic amusement or no amusement)
and in a control condition with the very same stimuli they were
asked to judge whether a small white bar appeared above or below
the person’s mouth or eyes. Paracampo and colleagues applied
12 pulses of 6 Hz rTMS, time-locked to the onset of the smile
stimulus, over right ventral S1 and right IFG (see Figure 3E),
as well as over right dorsomedial prefrontal cortex (dMPFC)
and right temporoparietal junction (TPJ) in the neighborhood
of posterior superior temporal sulcus (pSTS). The S1 site was
selected as the scalp location corresponding to the region of
post-central gyrus that represents tactile stimulation of the face,
as indicated by several fMRI studies (Huang and Sereno, 2007;
Dresel et al., 2008; Kopietz et al., 2009; Holle et al., 2013). TMS
over right ventral S1 and right IFG, but not over dMPFC or
TPJ/pSTS, disrupted the ability to infer amusement authenticity
but did not affect performance on the control task.

The application of TMS to right somatosensory cortex does
not disrupt performance on all types of emotion perception
tasks, however. Korb et al. (2015) applied cTBS over regions
of right S1 and primary motor cortex (M1), selected on the
basis of participants’ own functional MRI localizer scans: the S1
stimulation site from tactile stimulation of the lower cheeks and
the M1 stimulation site from the production of facial movement
(smiling). The average coordinates of these stimulation sites are
shown in Figure 3E. Korb et al. (2015) found that cTBS applied
over right S1, relative to cTBS over a control site (vertex), did
not affect performance either on a task requiring participants to
rate the intensity of facial expressions that evolved from neutral
to angry or happy, or on a task requiring participants to judge
the moment at which they perceived the offset of the angry or
happy expression when the dynamic faces morphed from one
expression to the other. Korb et al. (2015) did, though, find that,
in female but not in male participants, cTBS over either S1 or
M1 reduced facial mimicry of the viewed expressions and cTBS
over M1 also delayed the detection of changes from angry to
happy expressions.

Although the functional roles of S1 and S2 are still not fully
understood, it is clear that S2 is involved in higher-order, more
integrative aspects of somatosensory processing compared to S1
(Eickhoff et al., 2005, 2010). Thus, the a priori case for S2’s
involvement in the recognition of emotional expressions via
simulation (body-state or sensorimotor) is arguably greater than
that for S1. Given this and the lesion findings (discussed above)
that S2 was the location of highest lesion-overlap associated with
impaired emotion recognition for faces, voices and bodies, it is
surprising that only one study has so far applied TMS to S2
to investigate its role in emotional expression recognition (van
Rijn et al., 2005). That said, much of S2 proper (OP1 – see
Figure 3) is not on the most lateral aspects of the cortex, and
so application of TMS to the corresponding location on the
skull could affect processing in neighboring regions of parietal

and superior temporal cortex. It is thus going to be difficult
to draw strong conclusions specifically about S2’s involvement
from the use of TMS.

Convergent Neuroimaging Evidence for
the Involvement of Somatosensory
Cortices and Insula in Emotion
Recognition
An early meta-analysis of fMRI studies of emotional face
processing (Fusar-Poli et al., 2009) implicated several brain
regions in the explicit compared to implicit or incidental
processing of those faces (i.e., when the task was to make some
judgment about the emotional expression vs. a task requiring
some other perceptual judgment about the emotional faces),
including bilateral inferior frontal gyri, but not somatosensory or
insula cortices. Nonetheless, that meta-analysis did not include
Winston et al. (2003) study or subsequent studies which have
shown right somatosensory cortex activation for explicit emotion
judgments to faces, or studies examining the perception of
emotional bodies or voices, some of which have also shown
somatosensory cortex and insula involvement.

In Winston et al. (2003) fMRI study, participants attended
either to the emotional content or the gender of pairs of
morphed faces (morphed from a neutral face of one gender
to an emotional face of the other gender). When participants
attended to the emotional content (answering “Which is more
emotional?”), several brain regions, including an area of right
S1, was significantly more active than when participants viewed
the same faces but attended to gender (“Which is more male?”).
This region of S1 was the same location that Pitcher et al. (2008)
subsequently targeted with TMS (see Figures 3E,F), though as
noted above, this is not where several other studies have localized
the somatosensory face region to be.

Heberlein and Saxe (2005) found evidence for the involvement
of right S2 in emotion judgments from point-light walkers that
converged with Heberlein et al. (2004) lesion overlap study.
Participants in this fMRI study categorized either the emotion
or the personality of the same point-light walkers. Activation for
emotion judgments compared to personality judgments in right
SMG corresponding to S2 (see Figure 3F) overlapped very closely
the region of greatest lesion overlap that was associated with
impaired emotion classification of the same point-light walkers
in the 2004 study.

Other, more recent fMRI studies have reported activation in S2
and other, neighboring regions of SMG for explicit as compared
to incidental processing of emotional expressions. For example,
Pichon et al. (2012) had participants view short video clips of
bodily movements and classify either the expressed emotion
or the color of a dot that appeared briefly during the video
clip. Emotion (vs. color) judgments activated regions of SMG
bilaterally, including S2 (see Figure 3F), as well as several other
regions, including bilateral STS, IFG, lateral occipiotemporal
cortex and fusiform gyrus (see Pichon et al., 2012, Supplementary
Figure 1 and Supplementary Table 1), which together comprise
the so-called extended action observation network (Caspers et al.,
2010; Oosterhof et al., 2013; Lingnau and Downing, 2015).
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Remarkably similar results were obtained by Atkinson et al.
(2012), whose participants viewed short PLDs of emotional body
or face movements and classified either the expressed emotion or
the color of a subset of the point-lights. The activation elicited
by emotion (vs. color) judgments in this latter study is shown
in Figure 3G (unreported in the original publication). A similar
pattern of activation was also reported by Alaerts et al. (2014),
whose participants viewed successively presented pairs of PLDs
of emotional body movements and indicated either whether the
expression in the second display was happier, sadder, angrier or
than the first or not different, or the number of dots (0, 1, 2,
3) in the second display that underwent the same color change
as that of a single dot in the first display. The regions activated
by emotion (vs. color) judgments included left but not right S2
(right S2 activation was evident for emotion judgments relative
to a resting baseline, however).

It is notable that, with the exception of Winston et al. (2003),
none of these fMRI studies reported significant activation in S1
for explicit as compared to incidental processing of the emotional
expressions. (And the right S1 activation in Winston et al.
(2003) study was evident only after an analysis that was focused
specifically on the right primary somatosensory cortex, rather
than across the whole brain). On balance, the fMRI evidence
of somatosensory cortex involvement in emotion recognition
(admittedly comprising only a small number of studies) points
more toward S2 than S1, which reflects the findings of the lesion
overlap studies of Adolphs and colleagues (Figure 2).

It is also notable that none of the fMRI studies showed
activation in the insula for explicit judgments of emotion.
Nonetheless, other neuroimaging studies have implicated
insula cortex in emotion perception from faces, voices and
bodies. For example, a recent study employing intracranial
electroencephalography in patients undergoing surgery for
epilepsy found a posterior-to-anterior gradient in the insula of
selectivity to the emotional content of vocal stimuli, as well as
an enlarged separability of the emotion types along this gradient
(Zhang et al., 2019). More anterior insula, which is primarily
connected to frontal and cingulate cortices and the amygdala,
responded selectively to the emotional content of the prosodic
stimuli, whereas posterior insula, which is primarily connected
to visual, auditory, and sensorimotor cortices, responded to the
acoustic properties of vocal and non-vocal stimuli regardless of
emotional content. Other studies have implicated a particular
and critical role for anterior insula in the perception and
recognition of disgust from faces (Phillips et al., 1997, 1998;
Calder et al., 2000; Adolphs et al., 2003; von dem Hagen et al.,
2009; Sprengelmeyer et al., 2010) and voices (Calder et al., 2000;
Sprengelmeyer et al., 2010). There is also some neuroimaging
evidence for an involvement of anterior insula in the perception
of emotional, especially threatening, body expressions (Pichon
et al., 2009, 2012), though its involvement here does not appear
to be critical for the recognition of bodily expressed disgust
(Sprengelmeyer et al., 2010).

Given the findings discussed so far in this section, it is
clear that there is plenty of scope for future research. One
obvious avenue for such future research is in the provision of a
systematic investigation of the functional roles of different sectors

of somatosensory cortices and neighboring regions of parietal
operculum and SMG in emotion recognition. For instance, given
the heterogeneity of the locations over somatosensory cortex
implicated in the TMS studies and the methods for localizing
them, it is still unclear whether and how one’s own proprioceptive
machinery, interoceptive machinery, or both, are critical to
understanding others’ emotional states. Thus, for example, there
is a need for TMS studies examining the role of somatosensory
cortex in emotion understanding to localize stimulation sites on
the basis of neuroimaging responses elicited by (a) first-hand
emotional experience and (b) vicarious emotional experience,
as well as by (c) tactile stimuli to the face or other body
parts and (d) self-movements of the face or other body parts
(i.e., proprioceptive responses). Moreover, ideally the sites for
TMS should be individually localized on the basis of the
participant’s own functional neuroimaging data and left as well
as right somatosensory cortex contributions should be examined.
The testing of a greater variety of emotion perception tasks
within and across sensory modalities and modes of expression
would also be welcome. There is also a need for studies that
use connectivity methods within the context of neuroimaging
and/or TMS to study how the different components of the
somatosensory network interact with each other and with other
networks, such as the so-called action observation and theory-
of-mind networks. Finally, we note the need to examine the
contribution to emotional expression understanding of other
regions implicated in the lesion and/or neuroimaging work. For
example, the lesion studies appear to implicate area OP4 in the
right hemisphere, which is in the parietal operculum anterior
to S2/OP1 and inferior to S1, especially for intensity ratings
of prosodic emotions and the labeling of facial expressions, yet
this region does not feature in the few fMRI studies that have
contrasted emotion judgments with other judgments of the same
emotional expression stimuli. OP4 is involved in sensorimotor
integration, with connections to areas responsible for basic
sensorimotor processing and action control (Eickhoff et al., 2005,
2010) and so would seem to be a good candidate for a role in
sensorimotor simulation.

Evidence Suggesting That
Somatosensory and Insula Cortex
Involvement in Emotion Recognition
Goes Beyond a Proprioceptive Role
The critical involvement of right somatosensory cortex and parts
of the insula in emotion recognition might be in simulating
changes in the observed person’s internal bodily states, as
postulated by the body-state simulation accounts, or it might
be in representing the sensory consequences of simulated
motor movements (specifically, the simulated production of
specific facial, bodily and perhaps even vocal expressions), as
postulated by sensorimotor simulation accounts. This amounts
to a difference between a more body-part specific, proprioceptive
role and a more global, somatovisceral role for somatosensory
and insula regions in emotion recognition. In this subsection,
we review evidence that somatosensory and insula cortices

Frontiers in Psychology | www.frontiersin.org 11 March 2020 | Volume 11 | Article 309

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00309 March 2, 2020 Time: 14:57 # 12

Ross and Atkinson Expanding Simulation Models of Emotional Understanding

have a more global, somatovisceral role in emotion perception
and recognition.

Certainly, there is evidence implicating S1, S2 and insula in
emotional experience, which goes beyond or does not obviously
involve the representation and integration of proprioceptive
and tactile information. For example, using Positron emission
tomography (PET), Damasio et al. (2000) found changes in
activation of S2 and insula, as well as in other regions that
receive signals from the body, including cingulate cortex,
brainstem nuclei and hypothalamus, during the experience of
sadness, happiness, anger and fear relative to emotionally neutral
experience (induced via the recall of emotionally powerful or
emotionally neutral personal episodes). Interestingly, activity
increased (relative to neutral) in S2 when the participants
reflected on happy situations, whereas it decreased when they
reflected on sad situations. In an fMRI study, somatosensory
cortex and ventral posterior insula activation correlated with the
intensity but not the pleasantness of warm and cold thermal
stimuli delivered to the hand (Rolls et al., 2008). Another fMRI
study reported that the magnitude of subjectively experienced
disgust correlated with anterior insula activity (Harrison et al.,
2010). This latter finding converges with prior work with
intracranial recordings and stimulation (Krolak-Salmon et al.,
2003) and with a lesion patient (Calder et al., 2000), that anterior
insula, perhaps in concert with basal ganglia structures, plays a
critical role in the experience as well as – as we noted above –
in the perception of disgust. In another lesion study, Johnsen
et al. (2009) found that damage to right somatosensory cortex
impaired the ability to experience emotions from music, as
measured by self-rated feelings, but left autonomic arousal to that
music, as measured by skin-conductance response, unaffected.
The lesions likely included both S1 and S2, though this was not
reported. The ability of the patients with right somatosensory
cortex lesions to recognize the intended emotion in music was not
significantly impaired, however, showing only a slight reduction
compared to a non-brain damaged control group.

In an fMRI study, Straube and Miltner (2011) presented
neurologically healthy participants with aversive and neutral
pictures in each of four conditions intended to parametrically
vary the participant’s attention to their own emotional
involvement. The results showed a parametric increase of
activation specifically in the right posterior insula and right S1
and S2 with increasing personal emotional involvement – from
little or no engagement with the content of the pictures, through
a focus on the pictures but not explicitly on their emotional
content, a focus on the emotional significance of the picture
but not explicitly on their own emotional response, to a focus
on their own emotional experience (whether they experienced
the picture as unpleasant or not unpleasant). “These findings,”
Straube and Miltner claim, “are in accordance with theories
suggesting a crucial role of the perception of bodily states for
emotional experiences” (p. 2534).

In another fMRI study, Sel et al. (2014) found that emotional
(happy or fearful) compared to neutral faces enhanced early
somatosensory activity (145–185 ms after face onset), as
measured with EEG, when participants were attending to the
face’s emotional expression (probed on 20% of trials to judge

whether the face was fearful or happy), but not when they were
attending to the face’s gender (probed on 20% of trials to judge
whether the face was female or male). Importantly, Sel et al.
(2014) showed that this effect manifested as somatosensory-
evoked activity, distinct from visual-evoked activity, during the
critical period for somatosensory cortex involvement in facial
emotion recognition identified by Pitcher et al. (2008). They did
this by presenting tactile stimulation both to the participant’s face
(left cheek) and to their (left) finger during some trials at 105 ms
from face image onset, and then subtracting for each participant
the relevant evoked potentials for a visual-only face condition
from the evoked potentials for the same participant for each of the
visual-tactile face conditions. Moreover, these effects (occurring
40–80 ms from tactile stimuli onset) were source localized within
S1, S2, and associative somatosensory cortex (Brodmann area 5,
which is immediately posterior to post-central gyrus in superior
parietal cortex). (Note that it is more difficult to reliably and
accurately source localize EEG signals from deeper structures
such as the insula). These findings suggest that somatosensory
cortex involvement in facial emotion perception reflects the
engagement of processes that include more widespread, non-
facial as well as facial somatosensory states associated with the
viewed emotion, one of which includes changes in facial muscle
activity (but is much less likely to include finger muscle activity).
These results are thus more in-line with the body-state simulation
accounts than with the sensorimotor simulation accounts of
emotion recognition. Nonetheless, it is possible that processes
implementing sensorimotor simulation are engaged particularly
when the task is to identify or categorize the perceived expression,
but that such processes were engaged little or not at all by Sel et al.
(2014) paradigm because participants were required to categorize
the expressed emotion on only 20% of trials.

As we briefly discussed in section “Sensorimotor and
Body-State Simulation of Bodily and Vocal Expressions of
Emotion,” Kragel and LaBar (2016) used fMRI with MVPA
to reveal activation patterns in right post-central gyrus (S1)
and bilateral insula, as well as in inferior frontal gyrus,
medial orbitofrontal cortex and fusiform gyrus, that contained
information sufficient to decode emotions conveyed in facial
and vocal expressions (anger, fear, happiness, sadness, surprise,
and emotionally neutral). Notably, Kragel and LaBar also
showed that the emotion-specific patterns of fMRI activity
(collapsed over stimulus modality) within right post-central
gyrus, but not within any of their other regions of interest,
correlated with participant self-reports of subjective experience
generated by the facial and vocal expressions. Furthermore,
these activation patterns (collapsed over stimulus modality)
exhibited somatotopic organization, to the extent that greater
activation in inferior regions of the post-central gyrus predicted
perception of emotions whose facial expressions contain more
distinguishing information in the lower portions of the face
(happiness and surprise), whereas greater activation in superior
regions of the post-central gyrus predicted perception of
emotions whose facial expressions contain more distinguishing
information in upper portions of the face (anger and fear). It is
also notable that, although activity patterns in right precentral
gyrus (primary motor cortex) predicted the emotional content
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of the stimuli, these activity patterns did not correlate with
participant self-reports of subjective experience generated by
those stimuli; moreover, activity patterns in left precentral gyrus
neither predicted the emotional content of the stimuli nor
were correlated with self-reports of subjective experience. This
suggests that sensorimotor simulation is not likely responsible
for primary somatosensory cortex’s role in linking perception of
emotional expressions with subjective emotional experience, at
least in the context of a task requiring self-reports of emotional
feeling elicited by those emotional expressions. But as Kragel
and LaBar acknowledge, “future work more precisely monitoring
facial muscle activity will be necessary to definitively resolve this
issue” (p. 10). And it leaves open the possibility that explicit
identification or categorisation of the expressed emotion does (at
least sometimes) engage processes of sensorimotor simulation.

So far in this subsection we have seen that somatosensory
cortex, particularly S2 but perhaps also S1, and insula are
engaged by a range of affective experience and to different
extents depending on the intensity and/or degree of personal
significance – an involvement that, particularly for S2 and insula,
might include but likely goes beyond the representation and
integration of proprioceptive and tactile information related to
that experience. Single-case lesion evidence suggests that the
insula does not directly contribute to the conscious experience
of emotions, however. Damasio et al. (2013) report the case
of a patient with entire destruction of the insulae bilaterally
who showed intact and wide-ranging experience of emotional
and bodily states, including happiness, sadness, apprehension,
irritation, caring, compassion, pain, pleasure, itch, tickle, hunger,
and thirst. He also behaved in ways consonant with these states
when experiencing them. The authors suggest that subcortical
structures are the primary neural substrate of emotional and
bodily feelings, with those basic feeling states being remapped
and integrated in cortical structures such as the insula. The
function of the insula in emotional experience would thus be,
they suggest, in underpinning higher-level processes that relate
basic feeling states to cognitive processes (e.g., decision making,
episodic memory, language). In another case study, Feinstein
et al. (2016) studied a patient with extensive bilateral lesions
to the insula, anterior cingulate and amygdala, which are key
structures activated when subjects experience pain, and found
he had preserved emotional awareness of pain. Feinstein et al.
(2016) suggest that these regions may be more important for
the regulation of pain than for directly underpinning conscious
experience of pain.

The central claim of the body-state simulation proposal is
that brain regions such as the somatosensory cortices and insula
are also engaged by (and represent) other people’s emotional
experience, and in particular that they represent the changes in
body state associated with the perceived emotion. A key part of
the evidence for this claim comes from studies demonstrating
common neural substrates for perceiving an emotion in another
and experiencing that same emotion for oneself. For example,
there is evidence that parts of anterior insula and adjacent frontal
operculum are activated both by the perception of someone
else’s facially expressed disgust and by the feeling of disgust
for oneself (Wicker et al., 2003). Such activation overlap in

the insula and adjacent frontal operculum for first-hand and
vicarious experience is not limited to disgust, however; it has also
been demonstrated for gustatory-related pleasant experience, for
example (Jabbi et al., 2007) and, along with a small number of
other regions, particularly anterior cingulate cortex, pain (e.g.,
Singer et al., 2004; Jackson et al., 2005; Lamm et al., 2011;
Krishnan et al., 2016).

Does this common activation for felt and perceived pain
or disgust (or other emotions) indicate a common neural
representation? More recent research provides evidence
that, although there may be weak shared multivoxel pattern
information across a small number of brain regions, including
anterior insula and anterior cingulate (Corradi-Dell’Acqua et al.,
2011, 2016), local patterns of activation in these regions do
not accurately predict either vicarious or first-hand experience
of pain (Krishnan et al., 2016) – a finding that has yet to be
tested for disgust or other emotions. Instead, Krishnan et al.
(2016) findings indicate that first-hand (somatic) pain and
vicarious pain are represented across distinct brain networks,
with first-hand (somatic) pain encoded largely within anterior
insula, dorsal posterior insula, anterior cingulate and S2, and
vicarious pain largely within portions of the dMPFC, amygdala,
posterior cingulate, and TPJ.

Thus, although common activation is observed in anterior
insula and anterior cingulate for first-hand and vicarious pain,
this does not appear to be related to shared pain experience.
Indeed, Corradi-Dell’Acqua et al. (2016) found similarities in
activity patterns in left anterior insula and mid-anterior cingulate
between pain, disgust, and fairness as well as between first-hand
and vicarious experiences of those states (Activity patterns in
right anterior insula, on the other hand, were specific to the
modality and the subject of the experience).

Given the findings and interpretations discussed in this
section, it is evident that there are still many outstanding
questions for future research to answer. For example: what
aspects of another’s expressed emotion is represented or
simulated in somatosensory cortices and insula? What are
the processes underpinning body-state and sensorimotor
simulation? We believe that a promising theoretical approach in
which to address these questions is provided by the predictive
coding framework, which has recently been applied to the related
questions of how we come to understand others’ actions and
mental states and how we come to share their bodily sensations
(Kilner et al., 2007; Zentgraf et al., 2011; Gu et al., 2013; Koster-
Hale and Saxe, 2013; Barrett and Simmons, 2015; Ishida et al.,
2015; Ondobaka et al., 2017).

THE DEVELOPMENT OF SIMULATION
MODELS OF EMOTION RECOGNITON

We have so far argued for the inclusion of body and
vocal stimuli in these simulation models and that body-state
simulation may have a more prominent role than currently
thought. In the last section of this review, we will look
at sensorimotor and body-state simulation models from a
developmental point of view. Specifically, given the differences
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in the developmental trajectories of emotion recognition across
modalities, what does current work on the development of
emotion recognition and embodied processes in infants and
children tell us about the nature of sensorimotor and body-
state simulation? As we have argued previously, research
into emotion recognition from vocal and body cues has
received substantially less attention than work examining faces.
Here, then, we must also consider these modalities from a
developmental point of view.

The Origin of Emotional Understanding
From very early on, infants are highly attentive to social stimuli.
The information that they can detect from these stimuli, however,
changes with the perceptual system. For example, an infant’s
visual acuity improves over the first 6 months of life from a
position of only discerning blurry features in the first few months,
to detecting relational information (smiling/raised eyebrows) by
6 months of age (Gwiazda et al., 1989). Indeed, by 5 months
infants can form categories of happy facial expressions, with
a broader range of categorical expression detection becoming
apparent by 7 months of age (Grossmann, 2010). Crucially, by the
end of their first year, infants also use facial expressions of others
to guide their behaviors in uncertain situations, as evidenced by
the classic ‘visual cliff ’ paradigm (Sorce et al., 1985). This implies
some more complex understanding of the emotion, or at least
of the context in which one might display such an emotion.
Alternatively, might this be evidence of early simulation, whereby
the mother’s happy emotion elicits the same feeling in the infant,
causing the feeling of safety in the context of the visual cliff task?

Emotion recognition also has a complex developmental
trajectory, with studies suggesting that recognition of facial
emotion is not adult-like until approximately 11 years of age
(Tonks et al., 2007; Gao and Maurer, 2010; Chronaki et al.,
2015), bodily emotions at approximately 8 years of age (Boone
and Cunningham, 1998; Lagerlof and Djerf, 2009; Ross et al.,
2012) and vocal emotion recognition ability still developing
into adolescence (Chronaki et al., 2015; Grosbras et al., 2018).
Might these differing trajectories be a product of differential
development in simulation abilities?

Alternatively, could these differences be attributed to a lack
of articulation ability? Pre-school (approximately 3 years old)
children have been shown to accurately identify happy and angry
facial expressions, with sad, disgusted and fearful faces proving
harder for them to label (Kujawa et al., 2014). This of course
could be a product of limited language capabilities and task
difficulty, but if ‘emotion recognition’ is to be the end-point for
sensorimotor simulation models, then this is problematic for the
inclusion of young children who may recognize the emotion,
but not have the capability to conceptualize it or to articulate
an appropriate response. Furthermore, there is a distinction
between emotion discrimination [as one might find in infant
event-related potential (ERP) studies] and emotion recognition
(arguably what intermodal matching tasks are examining).
Indeed, emotion recognition is also arguably synonymous with
emotional labeling, so perhaps a distinction could be made
explicit in future simulation models by referring instead to
emotional understanding. This would allow for the inclusion

of infants and children into the models and would encompass
discrimination, recognition and labeling.

In terms of neural processes at a young age, the focus of
emotion perception (or understanding) research in infancy has
been facial expressions (review in Leppänen and Nelson, 2009).
The main findings of this work have shown that infants can
discriminate between positive and negative facial emotions by
7 months of age (Nelson et al., 1979) and that the neural processes
associated with the perceptual encoding of faces are modulated
by emotional facial expressions (Nelson and De Haan, 1996;
Leppänen et al., 2007). However, recent ERP evidence has shown
that 8-month-olds discriminate between facial expressions of fear
and happiness, but only when presented in the context of a
congruent body (Rajhans et al., 2016). This work indicates the
speed with which emotional understanding abilities come online,
and also the importance of other emotional modalities in the
development of emotional understanding.

The development of the behavioral responses and neural
correlates of emotion recognition ability from the body is
work that has gained traction only in the last 5 years. In
the first study to explore the development of the ability to
respond to emotional information carried in body motion,
Zieber et al. (2014a) used full-light videos of emotional
body expressions to show that 6.5-month-old infants showed
a visual preference for happy over neutral bodies. Infants
could also match emotional information from these dynamic
body movements with emotional vocalizations, looking longer
at congruent body-voice emotional pairings compared with
incongruent information. The authors replicated these results
using static bodies in a body-vocalization matching task, again
finding that 6.5-month-olds could match the stimuli but the
3.5-month-olds could not (Zieber et al., 2014b).

Investigating the neural processes underpinning the
development of emotion recognition from the body, Missana
et al. (2014a) presented 4 and 8-month-olds with upright
and inverted happy and fearful dynamic PLDs while taking
ERP measures. They found that, similar to work using facial
and vocal emotional expressions (Nelson and De Haan, 1996;
Grossmann et al., 2005), by 8 months of age infants showed
a neural discrimination between fearful and happy body
movements that wasn’t apparent at 4 months. Missana et al.
(2014b) further replicated this result using static body stimuli
with 8-month-old infants.

The development of emotional prosody also follows a similar
trajectory in the first years of life. A new-born prefers their own
mother’s voice over that of a stranger’s (DeCasper and Fifer,
1980), but by 4 months can make fine discriminations among
different human speech sounds and characteristics (Caron et al.,
1988). In terms of emotional understanding, ERP data suggests
that 7-month-old infants allocate more attention to angry rather
than happy or neutral voices (Grossmann et al., 2005). An EEG
study with 8-month-old infants showed that hearing another
infant laugh produced enhanced positivity around 300 ms while
hearing them cry produced increased negativity around 200 ms
(Missana et al., 2017).

Similar to the visual cliff example in face research, by 12
months of age, children were also found to modulate their
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exploratory behavior based on linguistic cues (Mumme and
Fernald, 2003). After observing an actor responding positively
to an object, infants touched the object more than a distractor
object, and avoided the object if the actor reacted negatively.
Furthermore, infants showed more facial expressions of negative
affect during the negative-emotion trials, suggesting emotional
contagion, whereby the actor’s negative reactions had an effect
on the infants’ emotional state. This then could have influenced
their response to the object, by means of simulating how the
actor felt toward it.

This evidence suggests that in the first year of life, emotional
understanding appears to be a unified ability that develops
in parallel across various modalities (face, bodies, and voice)
(Missana and Grossmann, 2015). However, is there evidence of
parallel development of simulation by way of motor response in
line with adult studies?

Evidence of Motor Matching in Children
Imitation to behavioral stimuli appears to develop throughout
most of the second year of life (Jones, 2007). Furthermore,
mimicry of behavioral cues is only one form of imitation, and
as Thelen and Smith (1996) argue, its drawn out developmental
trajectory suggests that it is the product of a large number of
component kinds of motor, cognitive, and social knowledge that
each has its own developmental course.

There is evidence of very early emotional contagion in infants
that would suggest some form of affect sharing in the first
year of life. Infants have been shown to be able to differentiate
between their own cry and that of another whether awake or
asleep (Dondi et al., 1999) and Geangu et al. (2010) showed that
playing another infant’s cry caused increased vocal and facial
expressions of distress in infants as young as 1-month old. These
type of reactions have also been shown to be accompanied by
physiological body-state changes such as changes in sucking and
heart rates (Field et al., 2007). Interestingly, this mirrors the
work in adults showing that facial expressions of emotion were
triggered by auditory stimuli (Magnée et al., 2007). Could this
not then be deemed emotion recognition? Obviously, there is
no labeling to communicate the meaning of the emotion, but
the physiological response hints at an emotion processing system
that is creating both sensorimotor and body-state simulation,
nonetheless. Therefore, one might argue that if it is not
emotion recognition per se, it is certainly evidence of emotional
understanding.

Further evidence of this simulation in children comes
from EMG studies measuring rapid facial responses (RFRs) to
emotional stimuli. Using infants, Kaiser et al. (2017) found that
there was no evidence of facial EMG response to emotional faces
in 4-month-olds, but for 7-month-olds, there was evidence of
selective activations in the relevant regions for happy and fearful
faces. Datyner et al. (2017) showed similar results in 7-month-
olds viewing happy and angry facial expressions. Interestingly,
Isomura and Nakano (2016) showed that infants aged 4–5
months showed increased corrugator EMG response to audio-
visual crying and increased zygomaticus EMG response to audio-
visual laughing, but no clear increase in response to unimodal
emotional stimuli (faces or vocalizations individually). There is

evidence that at this age, infants can discriminate happy, sad
and angry emotions from bimodal audio-visual stimuli, but that
sensitivity to unimodal auditory stimuli emerges at 5 months, and
visual stimuli at 7 months (Flom and Bahrick, 2007).

There is the suggestion, however, that these RFRs are merely
infants showing appropriate emotion responses to the stimuli
rather than mimicking the facial expression observed. In slightly
older infants (9–10 month olds), Hashiya et al. (2019) showed
that infants’ facial responses increased with repeated observation
of dynamic morphed faces. This suggests that infants of that age
at least are not performing this task based on a purely mimicking
mechanism of action matching, but rather may support a more
complex affect recognition system (Hess and Fischer, 2014).

In pre-school children (3 year olds), Geangu et al. (2016)
looked at EMG response to emotional bodies and faces. Similarly,
they found increased activation of the zygomaticus major and
decreased activation in the frontalis medialis in response to happy
faces and the opposite effect for angry faces. This very much
mirrors the results we have previously discussed in adults. They
did not, however, replicate the cross-modality effect of Magnée
et al. (2007) and Tamietto and de Gelder (2008) when presenting
the emotional bodies. One explanation the authors give for this
is the relative inability of children to link body expressions with
the event most likely to cause such an affect. If this were the case
then there would likely not be sensorimotor simulation of the
body affect, as the child would have no contextual reference for
such an experience.

An alternative explanation could simply be the use of static
bodies. As the emotion of a body can be closely linked with
the action it is performing (Atkinson et al., 2004; de Gelder,
2006, 2009), dynamic rather than static body expressions might
be more likely to elicit facial EMG responses that distinguish
between emotions. Indeed, one recent study provides evidence
that facial EMG responses can distinguish between emotions
expressed in body movements even in 11-month old infants.
Addabbo et al. (2019) presented infants with video clips of adult
upper bodies, from the neck to the waist, with the depicted
person moving objects across a table into a box with either
an angry or happy movement. They reported increased EMG
responses over the zygomaticus (smiling) muscle and decreased
EMG responses over the corrugator (frowning) muscle when
the infants observed happy arm movements and the converse –
i.e., decreased EMG responses over the zygomaticus muscle and
increased EMG responses over the corrugator muscle – when the
infants observed angry arm movements.

In older children (6–7 years old), Deschamps et al. (2015)
showed similar facial EMG responses as previously described
to emotional faces. Interestingly, they also found no significant
difference in facial EMG between healthy controls and patients
with ASD. Previous studies have shown evidence of similar
voluntary mimicry of happy and angry faces between these
groups, but also report a lack of automatic mimicry in ASD
participants (McIntosh et al., 2006).

In many of these studies, children are not yet ‘adult-like’ in
their emotion recognition ability: recent fMRI evidence showed
that when presented with dynamic emotional bodies, the size and
strength of activity in the body-selective areas of the brain were
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still developing through childhood and adolescence. However,
the emotion modulation of these areas was already adult-like in
children as young as 6 years of age (Ross et al., 2019). This would
suggest that the ability to discern different movement profiles and
action intentions continues to develop through experience, but
mirroring the EMG work, the emotional content of these stimuli
is processed no differently in children than in adults. Therefore,
differences in recognition may be either due to an immature
ability to accurately articulate the presented emotion, or a lack
of experience, thus indicating a lack of appropriate sensorimotor
and body-state simulation. One potential cause of this lack of
appropriate simulation ability may be immature interoceptive
and proprioceptive abilities.

The Development of Embodied
Processes
In the following section we will use ‘embodied processes’ to
mean interoception and proprioception unless we are referring
to one or the other explicitly. We will, however, largely focus
on the development of interoception, as it is a key part of
body-state simulation. The development of proprioception is
of course important, especially in relation to the sensorimotor
simulation proposal, but there are, to our knowledge, currently
no studies that have looked at a link between the development of
proprioception and emotional understanding.

A sense of embodiment (the feeling of inhabiting a body) is
crucial for self-experience and self-recognition (Carruthers, 2008;
Kilteni et al., 2012). Craig (2009) argues that interoception is
fundamental to our subjective feeling states while proprioception
is crucial for the neural control of movement and sense of self
(Aman et al., 2015). However, as these abilities develop, how
does this affect emotional understanding through the simulation
model? Is there a causal relationship between embodied processes
and emotional understanding by simulation? Or, in other
words, does one need suitably developed interoception and
proprioception in oneself before one can simulate the emotions
of others? We leave these as open questions but review the recent
literature picture to date.

Studies investigating interoception have mostly quantified
interceptive sensitivity by measuring a persons’ ability to perceive
their own heartbeat (Schandry, 1981; Ainley et al., 2012). Here
a subject is asked to silently count their heartbeats while their
actual heartbeats are recorded, allowing a sensitivity score to be
generated. This is arguably a measure of conscious body-state
awareness; indeed, there is an issue of how one would measure
unconscious body-state awareness that will be explored later.
Greater cardiac awareness (heartbeat sensitivity) has been linked
with better sympathetic reactivity during mental stress and more
subjective arousal during emotional picture viewing (Herbert
et al., 2010). Heartbeat detection has been shown to be associated
with the intensity of emotional experience (Wiens et al., 2000)
as well as predicting performance on emotional memory tasks
(Pollatos and Schandry, 2008).

There is also evidence of interoceptive facilitation of the
judgment of emotional faces (Gray et al., 2012; Garfinkel et al.,
2014) while in a study using individuals with Autism Spectrum

Conditions (ASC), Mulcahy et al. (2019) linked the deficit in
the recognition of affective prosody in this group with reduced
interoceptive awareness.

Perhaps unsurprisingly, in heartbeat tasks using children,
miscounting or cognitive overload means that error rates
tend to be much higher than adult studies. In one study,
for example, 12% of children were unable to detect any
heartbeat at all, while only 9% were classified as having
good heartbeat perception (Eley et al., 2004). A more
recent large scale study (∼1300 6–12 year old children)
measuring cardiac awareness and interpersonal emotional
intelligence found a positive relationship between the
two measures, suggesting that bodily sensitivity and
interoceptive development may have a relationship with
emotional understanding (Koch and Pollatos, 2014).
Additionally, by shortening the intervals for heartbeat
tracking, they were able to obtain similar cardiac awareness
measures in children as in adults (only 5% were unable to
detect any heartbeat).

A recent study by Schaan et al. (2019) examined the
relationship between cardiac awareness and emotion recognition
in even younger children (4–6 year olds) using the ‘Jumping
Jack Paradigm’ (JJP). In this task, children were asked to do
jumping jacks for 10 s and then indicate, by means of different
sized circles, how fast their heart was beating prior to and
following the exercise. This alleviates the issue of arithmetic
ability hindering the measure of cardiac awareness. However,
they found that interoceptive accuracy did not account for the
variance in emotion recognition accuracy scores when labeling
emotional faces. This could be due to the method of measuring
cardiac awareness being too vague, or, due to the age of the
children, emotion recognition labeling may just be quite poor
given they included more complex and ambiguous emotions
such as surprise and disgust. This research raises an interesting
question for the literature; how does one accurately measure
interoceptive ability in young children?

Using 5-month-old infants, Maister et al. (2017) used a
paradigm in which an animated character moved either in
synchrony or asynchrony to the infant’s heartbeat. They found
that infants spent longer looking at the asynchronous character,
indicating an awareness of their own interoceptive signals. This
study also utilized a type of ERP measured by EEG, termed the
‘heartbeat-evoked potential’ (HEP). This potential is derived by
averaging EEG signal that is time-locked to the subject’s heartbeat
and is considered to reflect unconscious cortical processing
of cardiac activity. Previous work has shown the HEP to be
correlated with self-rated empathy scores in adults (Fukushima
et al., 2011) as well as being modulated by the perception
of sad faces (Kim et al., 2019). This evidence suggests that
unconscious cardiac monitoring in the brain is involved in
processing the emotional states of others. Maister et al. (2017)
found that HEP response increased in those infants that showed a
strong preference for the asynchronous character in the heartbeat
task. Furthermore, HEP response increased when infants viewed
fearful or angry face video clips, suggesting that infants’ brains
are monitoring their hearts more closely when confronted with
negative emotions.
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This technique may be the answer to measuring interoception
in young children. If it could be combined with the motor
matching EMG studies already reviewed, or the emotion
recognition and discrimination tasks in infancy and childhood,
it could provide intriguing new evidence detailing how these
systems develop. It would allow the direct comparison of
the development of emotional understanding ability and
simulation by means of unconscious interoceptive processes,
greatly improving our understanding of the development
of sensorimotor and body-state simulation as a basis for
emotion recognition.

CONCLUDING REMARKS

In conclusion, the current review argues for three key extensions
to the simulation models of emotional understanding. Firstly,
by including body and vocal stimuli in the model as potential
visual and auditory inputs, respectively, and body mimicry
as a product of simulation, the models will better reflect the
multimodal world in which we live. Furthermore, it will allow

for a more complex theory of modality interactivity and a
fuller understanding of simulation as a means of emotional
understanding. Secondly, we argue that given the converging
neuroimaging, brain stimulation and lesion evidence for the role
of somatosensory and insula cortices in emotion recognition,
body-state simulation should be given more prominence in
simulation models. Yet there is still more work to be done to
elucidate exactly what and how distinct regions of somatosensory
and insula cortices contribute to emotion understanding via
body-state simulation, sensorimotor simulation, or both. Finally,
by expanding simulation models to include the development
of interoception and proprioception in parallel with the
development of emotional understanding, we will be able
to explore the origins of simulation, and in turn learn
more about the cognitive processes underlying this mode of
emotional understanding.
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