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Different individuals respond differently to emotional stimuli in their environment.
Therefore, to understand how emotions are represented mentally will ultimately
require investigations into individual-level information. Here we tasked participants
with freely arranging emotionally charged images on a computer screen according
to their subjective emotional similarity (yielding a unique affective space for each
participant) and subsequently sought external validity of the layout of the individuals’
affective spaces through the five-factor personality model (Neuroticism, Extraversion,
Openness to Experience, Agreeableness, Conscientiousness) assessed via the NEO
Five-Factor Inventory. Applying agglomerative hierarchical clustering to the group-level
affective space revealed a set of underlying affective clusters whose within-cluster
dissimilarity, per individual, was then correlated with individuals’ personality scores.
These cluster-based analyses predominantly revealed that the dispersion of the negative
cluster showed a positive relationship with Neuroticism and a negative relationship
with Conscientiousness, a finding that would be predicted by prior work. Such
results demonstrate the non-spurious structure of individualized emotion information
revealed by data-driven analyses of a behavioral task (and validated by incorporating
psychological measures of personality) and corroborate prior knowledge of the
interaction between affect and personality. Future investigations can similarly combine
hypothesis- and data-driven methods to extend such findings, potentially yielding
new perspectives on underlying cognitive processes, disease susceptibility, or even
diagnostic/prognostic markers for mental disorders involving emotion dysregulation.

Keywords: affective science, Big Five, clustering, emotions, individual differences, personality

INTRODUCTION

Emotions are an aspect of everyday life, and questions regarding their elusive nature have been of
interest for millennia. While recent discussions (Hamann, 2012; Lindquist et al., 2012; Adolphs,
2017; Barrett, 2017) and neuroscientific investigations (Grimm et al., 2006; Nielen et al., 2009;
Baucom et al., 2012; Goodkind et al., 2012; Chikazoe et al., 2014; Shinkareva et al., 2014; Kragel
et al., 2016; Saarimäki et al., 2016) have advanced the field of affective (neuro)science, there still
remains no consensus concerning the inherent features of emotions (Ekman, 2016). Alongside this
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general interest in understanding affective functionality is
the clinical interest in understanding affective dysfunctionality
(Gross and Jazaieri, 2014), as emotion dysregulation has been
associated with various mental disorders (Mennin et al., 2005;
Reimherr et al., 2005; Etkin and Wager, 2007; Amstadter,
2008; Taylor et al., 2012; Carpenter and Trull, 2013). Following
the drive for improved translational research in psychiatry
(Machado-Vieira, 2012; Knüppel et al., 2013) and personalized
medicine (Hamburg and Collins, 2010), we sought to study
individual differences in affective information representations
by combining data-driven analyses of a behavioral experiment
with psychological measures of personality traits, given the well-
established link between emotions and personality (Costa and
McCrae, 1980; Gross et al., 1998; Kokkonen and Pulkkinen, 2001;
Ng and Diener, 2009).

To this end, we employed the multi-arrangement method
(Goldstone, 1994) and inverse multidimensional scaling
(Kriegeskorte and Mur, 2012), which have recently been utilized
in the domain of cognitive neuroscience (Mur et al., 2013;
Charest et al., 2014; Bracci et al., 2016; Levine et al., 2018c), to
emotionally charged stimuli in order to discern individualized
structures (that reflect mental representations) of affective
information. Participants freely arranged the stimuli according
to their subjective emotional similarity in a continuous space,
which resulted in a label-free, unique representation of an
“affective space” for each participant. Other recent work has
investigated the organizing principles of affect/emotions using
psychological (Nummenmaa et al., 2014, 2018; Koch et al.,
2016; Cowen and Keltner, 2017; van Tilburg and Igou, 2017)
and neuroscientific (Kragel and LaBar, 2015; Skerry and Saxe,
2015; Saarimäki et al., 2018) methods; here we took an approach
that focused on how individuals differ in terms of underlying
properties of their affective spaces. Being able to distinguish
individuals based on affective information (Hamann and Canli,
2004) – and subsequently determine normal variability using a
combination of hypothesis-driven and data-driven methods –
may offer new routes for social psychology/neuroscience to
inform the clinical realm (Cacioppo et al., 2014).

The current study employed data-driven hierarchical
clustering to identify clusters of stimuli underlying the affective
space. However, to avoid blindly applying unsupervised machine
learning methods to the high-dimensional affective spaces,
we externally validated the individual differences in affective
clustering with differences in personality traits from the five-
factor model [“Big Five”: Neuroticism, Extraversion, Openness to
Experience, Agreeableness, and Conscientiousness (McCrae and
Costa, 1985)], assessed by the NEO-Five Factor Inventory [NEO-
FFI (Borkenau and Ostendorf, 2008)]. As prior neuroimaging
work has shown that the layout of a representational space
can be meaningfully altered by attentional or task-related
processes (Brouwer and Heeger, 2013; Nastase et al., 2017) and
recent psychological work has shown that clusters within an
affective space map onto certain aspects of emotion information
(Nummenmaa et al., 2018), we specifically sought to determine
whether the within-cluster distance of individuals’ affective
clusters [which can be seen as the cohesiveness of the concept(s)
underlying the pertinent cluster (Iordan et al., 2015)] was linked

to participants’ personality traits. The idea of investigating
emotions as they relate to personality follows from decades
of evidence that personality is tied to internal or attentional
biases of emotion-related processing (Richards et al., 1992;
Derryberry and Reed, 1994; Most et al., 2006; Thomsen et al.,
2014). Moreover, classic theories of personality would predict
that Neuroticism associates with negative information and
Extraversion associates with positive information (Eysenck,
1967; Costa and McCrae, 1980; Larsen and Ketelaar, 1989;
Rusting and Larsen, 1997). Exploring the relationship between
personality and emotional similarity (here, operationalized as
cluster dispersion within affective spaces) will allow researchers
to investigate how underlying cognitive processes, such as
attention or executive control, may interact with personality
traits to drive healthy and unhealthy behavior, and whether such
interactions are tied to specific brain regions/networks. The
findings we present corroborate and extend current knowledge
regarding the relationship between affect and personality,
validate the non-spurious structure of individualized affective
spaces revealed by data-driven methods, and open the door for
future research to translate such data-driven paradigms to the
clinical domain.

MATERIALS AND METHODS

Participants
One hundred one participants (36 males, 65 females; mean
(± σ) age = 24.2 (± 2.59) years) were recruited from the
local community via information posters. Participants reported
neither a current diagnosis of neurological or mental disorders
nor the intake of any psychotropic medication, provided written
informed consent before taking part in the study, and were
monetarily compensated for their time after completing the
experiment. As filling out the NEO-FFI questionnaire was
a follow-up procedure to the behavioral experiment, only
participants who had initially agreed to be contacted for future
studies were asked for their participation in completing the NEO-
FFI questionnaire. Of 77 participants contacted, 58 participants
(15 males, 43 females; mean (± σ) age = 25.4 (± 2.75)
years) ultimately completed the questionnaire, five of whom
were compensated with bookstore gift cards following a raffle.
All experimental procedures complied with the Declaration of
Helsinki and were approved by the local ethics committee at the
University of Regensburg.

Apparatus
The experiment was conducted on a 27” Apple iMac using
MATLAB R2015b (The MathWorks, Natick, MA, United States).
The MATLAB code used to run the experiment was adapted from
that described by Kriegeskorte and Mur (2012). All analyses were
carried out in MATLAB and SPSS ver. 25 (IBM Corp., Armonk,
NY, United States).

Stimuli
Images used in the experiment were obtained from the
International Affective Picture System (IAPS) database
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(Lang et al., 2008), which contains images with standardized
valence and arousal ratings that can be roughly divided into
nine categories: animals, people, nature, food, household
items, erotic images, accidents, violence, and war. We pseudo-
randomly chose six images per category for the experiment,
yielding a stimulus set comprising 54 images. If the computer
algorithm chose two images that were very visually similar (e.g.,
two pictures of a dog in a similar position, or two pictures
of knives on a table), we manually selected a replacement
image with the same (or very similar) valence and arousal
values from the corresponding category (see Supplementary
Table 1 for the corresponding image ID’s and their respective
valence and arousal ratings). Creating the stimulus set was
ultimately a trade-off between improved sampling of the emotion
space and total experiment duration, as the distance between
each pair of images must be computed; the total number
of pairwise distances in our case is given by the binomial
coefficient 54 choose 2 (i.e., 1,431), which yielded a total
experiment duration of, on average, slightly more than one hour
per participant.

Trial Protocol
The experiment followed the protocol laid out by Kriegeskorte
and Mur (2012), in which participants arrange images on a two-
dimensional circular “arena” on a computer screen according to a
particular organizing principle. We asked participants to arrange
pictures according to how they felt when they viewed each image.
That is, images evoking similar emotions should be placed closer
together while images evoking dissimilar emotions should be
placed further apart; thus the distance between images reflects
their relative emotional dissimilarity for the participant.

No more than ten images were shown during a given trial
to improve visibility of the pictures (i.e., fitting 54 pictures on
the screen at the same time would render them all so small
that their content would become unrecognizable). Additionally,
we implemented a zoom function, which allowed participants to
see the fine-grained detail of each picture. When the participant
finished organizing the images, the next trial began with another
set of images, for which there remained the least amount of
evidence regarding their relative distances to the other images
[the lift-the-weakest algorithm (Kriegeskorte and Mur, 2012)].
Thus, some of the images may have been present in two
or more successive trials, and these particular images shown
on a given trial differed between individuals, depending on
how they organized the images throughout the course of the
experiment. After distances for all 1,431 pairwise dissimilarities
were obtained, inverse multidimensional scaling transformed
the two-dimensional distances on the computer screen into
a 54 × 54 dissimilarity matrix (DSM; Figure 1A), which
represents the high-dimensional dissimilarity structure of the
item arrangements (Kriegeskorte and Mur, 2012). However,
because the DSM is symmetric across the main diagonal,
each participant can be represented by a 1,431-element vector,
obtained by vectorizing either the upper or lower triangle of the
DSM. We will hereinafter refer to the vector representation of a
DSM as a dissimilarity vector (DSV).

FIGURE 1 | (A) Having organized the 54 images on a computer screen based
on the emotional similarity of the stimuli, a representation of each participant’s
affective space was obtained via inverse multidimensional scaling, which can
be visualized as a dissimilarity matrix depicting the distance between each
pair of stimuli. (B) Computing the median (Md) of all 101 participant’s
normalized affective spaces yielded a single group-median affective space,
which (C) we reorganized based on (E) agglomerative hierarchical clustering.
The clustering was validated with (D) the Silhouette index, which revealed 2-
and 4-cluster solutions (as noted by the upticks, highlighted by the arrows).
(E) The dendrograms underlying both clustering solutions are color-coded
with warm colors reflecting the more positively valenced clusters and cool
colors reflecting the more negatively valenced clusters (see section
“Hierarchical Clustering”).

NEO-FFI
We used the German version of the NEO-FFI (Borkenau
and Ostendorf, 2008) to measure the Big Five personality
factors Neuroticism, Extraversion, Openness to Experience,
Agreeableness, and Conscientiousness. For each participant, the
sum scores for all five factors were assessed and then transferred
into a gender- and age-related T-score based on the reference
samples reported by Borkenau and Ostendorf (2008), which
expresses the manifestation of a Big Five personality factor in an
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individual with respect to the manifestation in a gender- and age-
corresponding population. For a list of the resulting NEO-FFI
scores and their descriptive statistics, see Supplementary Table 2.

Data Analysis
Hierarchical Clustering
Because all participants’ affective spaces clustered slightly
differently, we wanted to ensure that we were comparing clusters
across participants based on the same stimuli. To this end,
we first scaled each participant’s DSV to a range of [0–1]
by dividing each DSV by its maximum dissimilarity value.
We then computed the median of all 101 scaled DSVs and
carried out agglomerative hierarchical clustering using complete
linkage (Lance and Williams, 1967) on the group-median
DSV (Figure 1B and Supplementary Figure 1).

We validated the stability of different numbers of clusters
underlying the group-median affective space by iteratively cutting
the resulting dendrogram at different heights and calculating
the silhouette index (Rousseeuw, 1987). This index measures
how well a given data point is assigned to a particular cluster
(i.e., within-cluster distance) compared to the nearest-neighbor
cluster (i.e., between-cluster distance) on a scale from −1 to 1),
with higher values indicating a more appropriate clustering
solution (n.b., group-median clusters produced higher silhouette
values than group-mean clusters). This procedure yielded a 2-
cluster and 4-cluster solution (Figures 1C–E), which we then
mapped back onto each image pair from the participants’
individual DSVs, allowing us to calculate, for each participant,
the median (rather than mean, as the distance data tended to
be skewed) within-cluster distances (which we normalized by
the number of elements in the respective cluster). Formally, the
median within-cluster distance D for cluster c was calculated as
median(Dc)
|c| , where |c| denotes the cardinality of cluster c.

Following classical multidimensional scaling of the group-
median affective space (see Figure 2 for ease of data visualization
only, as the actual cluster distances were computed directly
from participants’ DSVs), the first dimension (variance explained
(VE) = ∼48%) corresponded to the IAPS valence values
(Pearson’s r = 0.94, p = 8.5 × 10−25), when partialing out the
arousal values; as such, we assigned the labels of “positive” and
“negative” to the resulting clusters from the 2-cluster solution. To
a far lesser degree, the second and third dimensions corresponded
to the IAPS arousal values (r = 0.38, p = 0.005, VE = ∼8%;
r = 0.50, p = 1.5× 10−4, VE =∼5%, respectively), while partialing
out the valence values. To aid in interpreting the results of the
subsequent multiple regression (see next section), we ascribed
the following descriptive labels to the four clusters based on the
general contents of the clusters: “erotic” (positive sub-cluster),
“fear/violence” (negative sub-cluster), “medical” (negative sub-
cluster), “nature/people/sports” (positive sub-cluster).

Multiple Linear Regression
For each affective cluster (in each clustering solution), we
carried out multiple regression in order to assess the degree
to which the Big Five personality factors predicted the median
dispersion of the affective clusters. To determine, in an unbiased
manner, which regressors were in the optimal model, we took

a combinatorial approach to multiple regression. Specifically,
given the five factors (Neuroticism, Extraversion, Openness,
Agreeableness, Conscientiousness), there were 25 – 1 possible

models (i.e.,
5∑

k=1

(
5
k

)
, including only the linear terms), each

containing a different combination of the five factors as
predictors. To find the optimal model, we performed the
regression analysis with each of the 31 models and selected the
model with the lowest Bayesian Information Criterion (BIC)
(Schwarz, 1978). For each model, the cluster dispersion values
and the personality scores were z-scored (using their respective
sample means and sample standard deviations) to center the
data, and a constant predictor was included. To account for
having tested 31 models, we further carried out two Monte Carlo
procedures to non-parametrically determine whether the optimal
model outperformed models applied to randomized median
cluster distances. First, we tested all 31 models on the randomized
data and stored the minimum BIC (regardless of the model that
yielded this BIC) to control for the inflated family-wise error
rate (FWER) from having tested multiple models. Repeating this
procedure 1,000 times (per affective cluster) provided us with
a null distribution of 1,000 minimum BIC values, from which
we calculated empirical p-values for the observed optimal BIC
(denoted in the results as pFWER(all): for a comparison against
all models when all models were fed random data). Second, we
also stored the BIC resulting from the observed optimal model
when this same model was applied to randomized data 1,000
times. This way, we obtained two empirically derived p-values for
our optimal model (one from a minimum-BIC null distribution
and one from a same-model-BIC null distribution [denoted in
the results as p(same): for a comparison against the same model
when fed random data]), which indicate how likely it is to find
that the optimal model produces a particular BIC under the null
hypotheses of no relationship between the Big Five personality
factors and the median cluster distances.

RESULTS

To determine whether the structure of the affective spaces
was related to personality dimensions, we sought to predict
the individualized median intra-cluster distance (for different
affective clusters) from the Big Five personality factors using
multiple linear regression. Below are the results from the
best-performing regression models for the affective clusters
underlying both the 2- and the 4-cluster solutions (see also
Supplementary Table 4).

Two-Cluster Solution: Larger Negative
Cluster Dispersion Corresponds to
Higher Neuroticism
Starting with the 2-cluster solution from the hierarchical
clustering analysis, the optimal model to predict the negative
cluster’s dispersion contained the Neuroticism scores as its sole
regressor (β = 0.34, SE = 0.126, t56 = 2.73, p = 0.0084), indicating
that a higher Neuroticism score tended to predict a larger cluster
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FIGURE 2 | The 54 IAPS stimuli used in the experiment plotted in a two-dimensional space obtained from classical multidimensional scaling of the group-median
affective space. The clusters are color-coded according to the 4-cluster solution from the hierarchical clustering (see Figure 1). The 2-cluster solution simply
incorporates the cool colors into one cluster and the warm colors into the other.

dispersion. Although this model marginally failed to surpass the
statistical threshold when compared to all other models in the
Monte Carlo procedure [pFWER(all) = 0. 056], it did perform
better than chance when fed real data compared to randomized
data [p(same) = 0.01]. With respect to the positive cluster’s
dispersion, while the optimal model contained the Agreeableness
scores as its sole regressor (β = −0.22, SE = 0.130, t56 = −1.65,
p = 0.1036), this model did not perform better than chance would
predict [pFWER(all) = 0. 383, p(same) = 0.11).

Four-Cluster Solution: Opposite
Dispersion Patterns of the Fear/Violence
Cluster for Neuroticism and
Conscientiousness
With the group-level affective space split into four clusters, the
previously negative cluster further subdivided into a cluster
whose images encompassed concepts of “fear/violence” and
a cluster whose images encompassed “medical” concepts
(Figure 2). Our combinatorial multiple regression procedure
revealed that the optimal model contained Neuroticism
(β = 0.280, SE = 0.127, t55 = 2.20, p = 0.032) and
Conscientiousness (β = −0.289, SE = 0.127, t55 = −2.28,
p = 0.0266) as the two regressors to predict the fear/violence
cluster dispersion [pFWER(all) = 0.014, p(same) = 0.0009; see
Supplementary Table 3 for a list of all models that survived the
statistical threshold]. Similarly to the results from the 2-cluster
analysis, Neuroticism scores tended to increase with increasing
cluster dispersion (Pearson’s r = 0.381). Conscientiousness
scores, however, showed the opposite pattern in that they tended

to decrease as cluster dispersion increased (Pearson’s r = −0.388;
see Figure 3 for a visual depiction of this effect). Additionally,
the optimal model to predict the medical cluster’s dispersion
contained only Neuroticism as the regressor (β = 0.207,
SE = 0.131, t56 = 1.58, p = 0.12), but this model did not
perform better than chance would predict [pFWER(all) = 0. 424,
p(same) = 0.11].

Four-Cluster Solution: Increasing Erotic
Cluster Dispersion Predicted by
Decreasing Openness, Agreeableness,
and Conscientiousness
Just as the negative cluster from the 2-cluster solution was
further subdivided in the 4-cluster solution, so was the
positive cluster, which yielded an “erotic” cluster and a generic
positive cluster (labeled as “nature/people/sports”) containing
the remaining images that included mainly images related to
sports, people, nature, etc. Interestingly, the optimal model to
predict dispersion of the erotic cluster was a three-regressor
model comprising Openness (β =−0.280, SE = 0.120, t54 =−2.34,
p = 0.023; Pearson’s r = −0.253), Agreeableness (β = −0.291,
SE = 0.12, t54 = −2.43, p = 0.019; Pearson’s r = −0.258), and
Conscientiousness (β =−0.314, SE = 0.120, t54 =−2.61, p = 0.012;
Pearson’s r =−0.266). Although this model also marginally failed
to surpass the statistical threshold when compared to all other
models in the Monte Carlo procedure [pFWER(all) = 0.06], it did
perform better than chance would predict when fed real data
compared to randomized data [p(same) = 0.006]. Regarding the
generic positive cluster of nature/people/sports images, similar
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FIGURE 3 | Individualized affective spaces from the participants with the
lowest and highest (A) Neuroticism and (B) Conscientiousness T-scores in our
sample mapped onto two dimensions using multidimensional scaling solely to
help visualize the effect underlying the multiple regression results, in this case
those reported in section “Four-Cluster Solution: Opposite Dispersion Patterns
of the Fear/Violence Cluster for Neuroticism and Conscientiousness.”
Following the same color-scheme as in the previous figures, circles represent
the 54 stimuli, and black contours are drawn around the stimuli that are
members of the cluster whose dispersion was predicted by the multiple
regression.

to the 2-cluster solution, the optimal model contained the sole
regressor of Agreeableness (β = −0.161, SE = 0.132, t56 = −1.22,
p = 0.228), but, once again, this model did not outperform what
one would expect from randomness alone [pFWER(all) = 0.72,
p(same) = 0. 24].

DISCUSSION

In order to explore the underlying structure of individuals’
affective spaces, we conducted an experiment in which
participants organized emotionally charged images according
to their individualized emotional similarity and combined
data-driven analyses with psychological measures of personality
traits. With this combination of methods, we specifically sought
associations between personality traits of the five-factor model
(“Big Five”) and the dispersion of affective clusters [which reflect
the cohesiveness of the concept(s) underlying the pertinent
cluster (Iordan et al., 2015)] that populated individuals’ affective
spaces. Importantly, this approach demonstrated that the
clustering of individuals’ affective spaces, obtained through
unsupervised machine learning methods, is not spurious, as
portions of it can be externally validated with information from
individuals’ personality traits.

The primary result that survived our statistical controls came
from the 4-cluster solution. Multiple regression revealed that
increasing dispersion of the fear/violence cluster was linked to
increasing Neuroticism and decreasing Conscientiousness (see
also Supplementary Table 5). Such an opposite relationship
between these two personality dimensions is not entirely
unexpected, as it has been reported as a general finding
when assessing the Big Five personality factors (Costa et al.,
1991), linked to mental disorders (Trull and Sher, 1994; Kotov
et al., 2010), and tied to such domains as social media
activity (Liu et al., 2016), emotional problems in adolescents
(Smith et al., 2017), and even physiological mechanisms of
inflammation (Sutin et al., 2010). Regarding Neuroticism, it
is possible that higher Neuroticism coincides with a greater
differentiation in the processing of negative stimuli, thereby
leading to a finer-grained categorization (i.e., a more dispersed
clustering) of negative information. This notion is backed by
higher-Neuroticism individuals exhibiting increased processing
of unpleasant information (Gomez et al., 2002; Chan et al.,
2007) and tending to describe themselves as anxious (McCrae
et al., 1986), as anxious individuals selectively attend to
negative stimuli (Broadbent and Broadbent, 1988; MacLeod
and Mathews, 1988). Regarding Conscientiousness, higher-
Conscientiousness individuals have been described as rigorous
and orderly (Costa and McCrae, 1992) and have demonstrated
greater emotional control when recovering from negative
stimuli (Javaras et al., 2012). Relatedly, increased clustering
and efficiency of the frontoparietal network (Toschi et al.,
2018), which is considered a critical brain network for cognitive
control (Miller and Cohen, 2001), has been associated with
higher Conscientiousness. As such, higher-Conscientiousness
individuals may have more control over (or a greater need
for) compartmentalizing negative information and appropriately
managing their resulting behavior. Given that the layout of
information in individuals’ representational spaces can be
altered by processes such as attention (Nastase et al., 2017),
typicality judgments (Iordan et al., 2016), and aversive-learning
(Dunsmoor et al., 2014; Levine et al., 2018b), it is possible
that these personality traits interact with (or even regulate
the effectiveness of) such processes to determine how negative
information populates individuals’ representational spaces. Thus,
the correspondence between personality traits and the degree
of differentiation of negative information can be explored
as, for example, a biomarker for susceptibility to particular
disorders or a further method of classifying disorders involving
negative affect.

Our findings also have implications for social and affective
neuroscience studies. Recent functional magnetic resonance
imaging investigations have employed multivariate pattern
analysis (Haxby et al., 2001) in an effort to understand how brain
regions or networks represent information related to emotion
processing (Bush et al., 2018; Kryklywy et al., 2018; Levine
et al., 2018c; Saarimäki et al., 2018). Findings like those we
present here can inform such studies by underscoring how
the heterogeneity of personality information can influence the
distribution of information in affective spaces. As a result, this
non-homogeneous affective information across individuals may
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impact sensitivity in neuroimaging studies of affect, especially
those based on longitudinal or pre-post designs, which need
to take affective variability into account (Dauvier et al., 2019).
This notion is only emphasized by the recent studies that have
utilized data from the Human Connectome Project (Van Essen
et al., 2013) to link individuals’ personality data to resting-state
functional networks (Dubois et al., 2018; Mulders et al., 2018;
Nostro et al., 2018; Toschi et al., 2018; Passamonti et al., 2019),
as certain aspects of the functions underlying these networks
may also vary with differences in personality. In some cases,
such heterogeneity (in both healthy and clinical populations) may
be exactly the variable of interest when translating findings and
methods from cognitive neuroscience to (precision) psychiatry
(Feczko et al., 2019).

In terms of limitations, it is possible that specific facets of the
personality dimensions underlie our results. However, we cannot
accurately relate facet-level information to particular aspects of
individuals’ affective spaces because we administered the NEO-
FFI rather than the NEO-PI-R (Costa and McCrae, 1992), which
is a longer five-factor model personality questionnaire allowing
researchers to investigate the six distinct facets of each of the
personality factors. Our approach is therefore less sensitive
to exploring facet-level information, which could be a critical
component in further specifying the value of such findings. Thus,
future investigations following this direction could make use of
more detailed questionnaires. An additional, generic drawback
is that the regression analyses reported here come from only
58 participants (∼57% of the total sample), as we did not
have questionnaire data from all participants. This reduction
in the sample size consequently reduced the statistical power
of our analyses (cf. Supplementary Figure 2).

CONCLUSION

In conclusion, we carried out a behavioral experiment based
on label-free, subjective, emotional similarity judgments
and combined data-driven analyses with the classical Big
Five personality traits to investigate cluster dispersion in
individualized affective spaces. Our combination of methods
revealed, primarily, a relationship between how individuals
tended to judge the emotional distance of negatively charged
stimuli and the personality dimensions of Neuroticism and
Conscientiousness. These findings demonstrate that there is
non-spurious structure underlying affective spaces revealed with
unsupervised machine learning methods. Such assumption-
free techniques may help bridge affective sciences with the
clinical domain by providing objective measures of normal
affective variability across individuals and characterizing how
such variability may interact with personality traits and relate
to mental conditions. Future investigations can scrutinize such

findings, for example, for their longitudinal value in identifying
subtypes of particular patient populations. Such directions offer
clinical psychology and psychiatry the opportunity to adapt
psychological and neuroscientific methods to develop new
markers for critical issues such as disease susceptibility and
treatment response.
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