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How stable and general is behavior once maximum learning is reached? To answer

this question and understand post-acquisition behavior and its related individual

differences, we propose a psychological principle that naturally extends associative

models of Pavlovian conditioning to a dynamical oscillatory model where subjects have

a greater memory capacity than usually postulated, but with greater forecast uncertainty.

This results in a greater resistance to learning in the first few sessions followed by

an over-optimal response peak and a sequence of progressively damped response

oscillations. We detected the first peak and trough of the new learning curve in our data,

but their dispersion was too large to also check the presence of oscillations with smaller

amplitude. We ran an unusually long experiment with 32 rats over 3,960 trials, where

we excluded habituation and other well-known phenomena as sources of variability in

the subjects’ performance. Using the data of this and another Pavlovian experiment by

Harris et al. (2015), as an illustration of the principle we tested the theory against the basic

associative single-cue Rescorla–Wagner (RW) model. We found evidence that the RW

model is the best non-linear regression to data only for a minority of the subjects, while

its dynamical extension can explain the almost totality of data with strong to very strong

evidence. Finally, an analysis of short-scale fluctuations of individual responses showed

that they are described by randomwhite noise, in contrast with the colored-noise findings

in human performance.

Keywords: Pavlovian conditioning, Rescorla–Wagner model, associative models, extended training, individual

differences, Bayes information criterion, 1/f noise

1. INTRODUCTION

How stable is behavior when there is nothing more to learn? Much debate has been flourished
around this basic question since the earliest studies of animal conditioning (Pavlov, 1927),
especially after the first efforts to make the discipline theoretically quantitative with a mathematical
approach (Hull, 1943). Observations point toward an instability of the response in extended
training. In the context of discrimination experiments of operant conditioning, extended training
was studied in relation with behavioral contrast and the peak-shift effect. Pigeons trained for 60
days with interspersed generalization testing showed a gradual response decrease (Terrace, 1966).
In an experiment lasting 64 sessions, Hearst (1971) did not observe this decrease from peak
responding, sometimes called overtraining effect (as a reduction in behavioral contrast), inhibition
with reinforcement, or post-peak depression (see Kimmel and Burns, 1975, for an early review and
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other references). Extending the training to 105–125 days, the
response decrease was found to be a subject-dependent and
transient effect, giving way to a greater variety of patterns
characterized by apparently random response fluctuations and, in
general, remarkable individual differences (Dukhayyil and Lyons,
1973). An attenuated conditioned responding with extended
reinforced training has been observed also in the case of
Pavlovian conditioning, where it is modulated by the context
(Overmier et al., 1979; Bouton et al., 2008; Urcelay et al., 2012).
Post-peak depression is a rather short-scale phenomenon usually
achieved within a few sessions and not too many trials. For
instance, the experiments with dogs by Overmier et al. (1979)
showed response decrease on a time scale of 300 trials. In the
experiments of Bouton et al. (2008), the groups of subjects
received about 2 weeks of training. In the case of Urcelay
et al. (2012), they were given 5–6 sessions of 5–60 trials,
for a maximum of about 360 trials. For acquisition of fear
conditioning, 100 pairings during 10 days are sufficient (Pickens
et al., 2009). However, longer-term cases are known, such as
the first documented case of inhibition with reinforcement.
Pavlov (1927, Lecture XIV) reported experiments with a dog that
spanned several years and that showed a progressive decrease
in the conditioned response when the same type of stimuli
was applied. On the other extreme of the spectrum, response
fluctuations have been registered also on the very short time scale
of trial by trial (Ayres et al., 1979).

The prototypical learning curve of Pavlovian conditioning
in the presence of a single cue was described by Hull (1943).
Estes (1950) and Bush and Mosteller (1951a) wrote down a
mathematical model (somewhat implicit in Hull’s discussion) in
terms of response probability, but for operational reasons the
latter was replaced by the association strength v by Rescorla
and Wagner (1972). Due to this complicated genesis, the
resulting single-cue model in terms of v has received several
names: Hull, Hull–Spence, Estes, Bush–Mosteller, and single-cue
Rescorla–Wagner, among others (Le Pelley, 2004; Wagner and
Vogel, 2009). For brevity, we will call it Rescorla–Wagner (RW)
model here.

Including RW, most conditioning models are about learning,
which means that their simulation of the execution or reaction
of the subject once the asymptote is reached has not been
validated extensively. A classic problem consists in that, when
one has learned everything, it is not convenient to keep giving
attention to the stimuli of the task and there is a transition
to a more automatic mode of execution. In order to explain
this transition, many Pavlovian models (e.g., the Pearce and
Hall model, 1980) distinguish between automatic and controlled
processing. Still, this difference plays a role in the first few
sessions of training and it does not address the issue of what
happens after thousand of trials. Going beyond associative
models, the opponent-processes theory (Solomon and Corbit,
1974) and the SOP model (Wagner, 1981) provide a partial, but
not entirely comprehensive, explanation of post-peak depression
and related phenomena.

These studies also highlight the parallel issue of individual
differences. Individual plots are so non-smooth and erratic that
any vestige of the clean, smooth learning curve of averaged

data may be completely lost. When averaging, information on
individuals is usually lost. This concern is not new and it was
voiced already in early days of the discipline (Merrill, 1931;
Sidman, 1952; Hayes, 1953) and retaken into consideration
in recent years (Gallistel et al., 2004; Gallistel, 2012; Glautier,
2013; Blanco and Moris, 2018; Jaksic et al., 2018; Young,
2018; see especially Smith and Little, 2018). As Sidman (1952)
pessimistically put it, “[i]ntra-organism variability may be so
great as to obscure any lawful relation.” Smooth group-learning
curves have even been stigmatized as an artifact, since step-like
sudden acquisition has been observed in several experiments
(Gallistel et al., 2004). Despite these warnings, however, averaging
the data can be a useful procedure (Estes, 1956) and is still
commonly employed in the great majority of publications, even
those where individual responses are analyzed (Mazur and
Hastie, 1978).

All this literature helps to refocus the question we proposed
in the opening and to give the term “stability” two different
meanings. One corresponds to intra-subject behavior stability:
the variability of the individual response throughout the
experiment. The other is inter-subject stability, in the sense of
the range and variety of patterns that individual differences
can take when the performance of experimental subjects is
compared. Both intra- and inter-subject stability can refer to
phenomena spanning trials (short-term stability) or sessions
(long-term stability). Short-term stability usually pertains to the
initial acquisition stage of conditioning, where the subjects are
in the process of acquiring maximal learning but have not
quite reached the asymptote of their learning curve. Long-term
stability is more related to response at the asymptote. Response
variations in the form of random fluctuations may be regarded
both as short-term effects (they occur as gradients from one
session to another) and as long-term, since they can span several
sessions (or when one detects oscillation-like features with a
long period).

To the best of our knowledge, themainstream ofmathematical
associative models starting from RWpredicts an indefinitely long
asymptotic permanence of execution in the learning process,
for each and any subject. Neither individual differences nor
response fluctuations are considered in most analytic treatments
of the theories, notwithstanding the number of exceptions to this
generalized trend, some of which we have mentioned above. An
inversion of this trend has been seen recently, when new models
have arisen that give more importance to individual differences.
The multiple-state learning model of Blanco and Moris (2018)
and theMECAmodel of Glautier (2013) are examples. Also, Estes
stimulus sampling theory (1950) is one of the earliest attempts to
quantify and explain variability in learning progress, as due to
fluctuations in environmental and internal factors. The issue at
stake here is not just whether there exist superior ad hoc fits to
averaged data than that provided by the RWmodel with one cue.
It is already known that other types of learning curves can fare
better than the exponential profile (see Equation 4 below), even at
the individual level. A power-law curve (Newell and Rosenbloom,
1981) or the accumulation model (Mazur and Hastie, 1978) are
two instances. Rather, here we are interested in the problem of
stability in the double sense specified above, and moreover, any
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new model should arise as an underlying theory rather than just
a tailor-made learning curve.

With the aim to study both very long-term stability and
individual differences, we present the results of an experiment of
Pavlovian conditioning that ran through a total of almost 4,000
trials. The first goal of this paper is to check how variable is
behavior in the long-term post-acquisition phase. We do find
fluctuations around the asymptote, both on a trial-by-trial and
a session-by-session basis, but not statistically significant. In
other words, behavior is fairly stable even when the subject
is no longer learning. This provides a validation of the RW
single-cue associative model even in the not-so-often explored
plateau region of the learning curve, far away from initial
acquisition. However, the fit of the data of individual subjects
is much more unstable and one may wonder whether there
exist a quantitative model accounting for this variability. Our
second goal is to explore several associative models extending
RW’s in amost natural way, introducing a psychological principle
that, in analogy with the same tool used in classical1 mechanics
physics, we will call of least action. This principle states that
learning processes must be described as dynamical systems,
where dynamical means that there exists a quantity (the action)
that must be minimized when the association strength is changed
during conditioning. Through a detailed statistical and spectral
analysis, we show that, despite the large fluctuations of the
subjects’ behavior, the RWmodel is still a good fit to data, except
in 4 out of 15 experimental subjects. The dynamical oscillatory
model (or DOM in short), based on the principle of least action
and predicting resistance to learning in the first sessions, provides
a better fit to the data of this 20% of the sample, according to both
Bayesian and Akaike Information Criteria. Since the DOM is an
extension of RW rather than a competitor, we conclude that it fits
successfully 100% of the data, while the RWmodel accounts only
for 80%. These results are strengthened when analyzing the data
of Experiment 2 of Harris et al. (2015), where the RWmodel can
fit successfully only 45% of the data and the DOM 95%. Although
the existence of a learning asymptote has been questioned in the
past (Gallistel et al., 2004), we find its presence to be a robust
feature of all the models. The formalism we propose can be
extended to the multi-cue and varying-salience cases and can
account for the non-normative performance of some subjects.

The RWmodel may be regarded as antiquated today. Context
is not fully integrated into it and few learning preparations can
be viewed as single-cue because learning does not occur in a
vacuum (Miller and Matzel, 1988). Furthermore, the inability
of the Rescorla–Wagner model to account for recovery from
extinction and other phenomena is well-known (Miller et al.,
1995). Nevertheless, we believe that the novelty of the least-
action principle and the ensuing dynamical proposal can be
better understood and appreciated if compared with the simplest
representative of the standard canon. As we will see when
extending the theory to many cues, there seems to be no obstacle
to apply the principle to more realistic situations.

1To avoid an otherwise inevitable confusion, in this paper we use the term
“classical” always in the sense of physics, calling the traditional associative models
of conditioning “Pavlovian.”

One of the main features of this work is that traditional
associative models are not extended in an ad hoc way, but by
using a rigorous top-down procedure leading to a natural (in the
sense of logic-based) conclusion, closer to a theory rather than
a phenomenological model. To that aim, we need mathematics
more advanced than those available to a large portion of the
readership in psychology, but the payback offered in terms of
explanation of the data may be worthwhile. In order to keep the
presentation simple, we will introduce the model in a pedagogical
way, confining the most rigorous parts and other dynamical
models to the Supplementary Material.

The oscillations of the DOM span tens of sessions and describe
individual variations in the response at large time scales. In
order to study short-scale (session-by-session or even trial-by-
trial) variations, we need other models and analysis tools. One
such model treats short-scale fluctuations as random noise and
is capable to determine whether their origin is just experimental
uncertainty or some deeper, perhaps cognitive, mechanism.

The plan of the article is the following. We first review the
RW associative model in section 2 and clarify whether it should
be applied to individual subjects or to their average. In order
to clarify the type of phenomena we would like to explore,
in section 3.1, we present a 3,960-trial-long experiment, with
a first analysis centered on the average learning curve, while
in section 3.2 we reanalyze the original data of one of the
preparations of Harris et al. (2015). Two alternative models of
individual conditioning are discussed in sections 4 (a general
framework where we reformulate the RW model and introduce
a new model where subjects initially show resistance to learning)
and Colored Stochastic Model of Individual Behavior, where we
formulate a descriptive model of short-scale random fluctuations
of individual responses and contrast it with the data. Final
remarks are collected in section 6. The Supplementary Material

is devoted tomaterial that would disrupt the flow of themain text.

2. SINGLE-CUE RW MODEL

According to the model developed by Rescorla and Wagner,
the association between the conditioned stimulus (CS) and
the unconditioned stimulus (US) in Pavlovian training can be
measured, at the n-th trial or session, by the operational variable
vn, called association strength. Usually in the literature, this is
denoted withVn, but here we use a small letter to avoid confusion
with the potentials introduced below. The change 1vn : = vn −
vn−1 in the strength of the association at the n-th trial is

1vn = αβ(λ − vn−1), n = 1, 2, 3, . . . , (1)

where 0 6 α 6 1 is the salience of the CS, 0 6 β 6 1 is the
salience of the US, and 0 6 λ 6 1 is the magnitude of the US.
For convenience, we promote the trial sequence n = 1, 2, 3, . . .
to a continuous time process described by a continuous time
variable t. This approximation is valid as long as we consider
many trials or sessions. In this way, we can recast Equation (1)
as the first-order differential equation

v̇ = αβ(λ − v), (2)
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FIGURE 1 | Learning curve: the solution (3) v(t) (vertical axis) of RW

conditioning model (2) as a function of time t (horizontal axis), for c = λ = 1

and αβ = 1 (excitatory conditioning).

where a dot denotes a derivative with respect to time, v̇ : =

dv(t)/dt. Its general solution is

v(t) = λ − ce−αβt , (3)

where c is a constant. The initial condition at t = 0 of this
solution is v(0) = λ − c, while v(+∞) = λ. Therefore,
for excitatory conditioning c = λ > 0 (Figure 1), while for
extinction λ = 0 and c < 0, so that v = |c| exp(−αβt) decreases
in time.

In this article, we will consider only excitatory conditioning
and attempt, among other possibilities, to fit data with the
monotonic learning curve

vexcit(t) = λ
(

1− e−αβt
)

. (4)

This theoretical curve has two free parameters: λ and the product
αβ . In the experiment below, we will not be able to determine the
salience of the CS and US separately.

At the risk of stating the obvious, it should be noted that there
are two ways in which to interpret Equations (2) and (4). One
is as an associative model for individuals, in which case v(t) is
the association strength at a given time t of a given subject. If
the RW model were a reliable description of reality, all subjects
should obey the model with reasonable accuracy and differ in
their behavior only in the value of the parameters λ, α, and β

in the aforementioned equations. However, this interpretation is
too restrictive and does not allow for individual differences in
the learning process, something that any experimentalist would
recognize as inevitable. However, if the majority of subjects
obeyed the RW model, then the latter could be regarded as
valid in average, in which case we will make it explicit that the
association strength appearing in Equations (2) and (4) should
be replaced by the average 〈v〉 : =

∑N
i=1 vi/N over the subjects:

˙〈v〉 = αβ(λ − 〈v〉), 〈v〉excit(t) = λ
(

1− e−αβt
)

. (5)

As we will see in this article, the RW model is a good
description of Pavlovian learning both for individuals and in
average. However, we do find individual differences which can
be better described by an extension of the model which we
will dub “dynamical,” and which does not improve averaged
data significantly. Therefore, we will strictly keep the distinction
between models for individuals (v) and in average (〈v〉).

3. TWO EXPERIMENTS ON PAVLOVIAN
CONDITIONING

3.1. A Long Experiment on Pavlovian
Conditioning
3.1.1. Subjects and Materials
We employed 32 male Wistar Han rats, without food or water
restriction, divided into two experimental groups (Group 1 and
Group 2) and two control groups. The US was drops of saccharin
solution at 0.1% concentration for Group 1 and at 0.2% for Group
2. One experimental subject was removed due to poor health.
The US was delivered in individual conditioning boxes via a
water pump activated by an electrovalve. For full details of the
subjects and the materials, including a justification of the chosen
saccharin concentrations (see the Supplementary Material).

All care and experimental procedures were in accordance with
the Spanish Royal Decree 53/2013 regarding the protection of
experimental animals and with the European Union Council
Directive 2010/63. UNED bioethics committee approved the
experimental protocol.

3.1.2. Experimental Design
The experiment was divided into three phases. In the first phase
of pre-training, subjects were exposed to the basic functioning of
the liquid dispenser in the conditioning boxes. Drops of saccharin
solution of the concentration corresponding to the rat’s group
were delivered according to a variable-time 5 s schedule (VT-5),
implemented as a uniform random distribution between 3 and
7 s with steps of 1 s. Each lick was reinforced by the delivery of
another drop via a fixed-ratio schedule (FR-1). Each session of
pre-training lasted 10 min and was preceded by 30 s of darkness,
lasting in total 10′30′′.

The second phase (training) consisted in sessions of total
duration of 2,259 s (about 37′40′′). After 30 s of darkness, each
box was lighted and the session went through for 44 trials,
ending with 10 s of inactivity. Figure 2 is a scheme of a trial for
the experimental groups. An inter-trial interval (ITI) of variable
length averaging 40 s, realized by a uniform random distribution
between 20 and 60 s with steps of 4 s, was followed by the CS, a
tone of 85 db, 600 Hz, and a fixed 10 s duration. The intensity of
the tone was well above the average ambient noise inside each
box (65 db). During the CS, a US consisting in one drop of
saccharin solution was delivered at random intervals of 5 s (RI-5).
A random-interval schedule (Millenson, 1963) establishes a fixed
non-zero chance of US delivery every second. In particular, an
RI-5 has a 20% chance per second to deliver one drop, hence one
drop falls every 1 s/0.2 = 5 s in average, i.e., twice per CS. Thus,
an average of 88 US per session were delivered, roughly ranging
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FIGURE 2 | Structure of a trial for the experimental groups of our long

experiment as described in the text.

between 70 and 110 drops. Each session ended 10 s after the end
of the last CS.

The structure of the trials for control groups was the same
except for the schedule of delivery of the US: an RI-25 spanning
the whole duration of the trial, so that a US could equally
occur during the CS and at any other moment of the trial. This
corresponds to the delivery of the same amount of solution per
trial as for the experimental groups: one drop every 25 s in
average, 4% chance of delivery per second, average of 2 drops
per trial.

The third and last phase was extinction, the only difference
with respect to previous training sessions being the absence of
liquid in the drinking dispensers.

3.1.3. Procedure
The subjects were distributed into four groups of eight rats:
Group 1 (subjects 1-1, 1-2, . . . , 1-8) for a US consisting in one
drop of 0.1% saccharin solution, Group 2 (subjects 2-1 to 2-8) for
a US consisting in one drop of 0.2% saccharin solution and two
control groups with the same concentration (Group 1C, subjects
1C-1 to 1C-8, 0.1%; Group 2C, subjects 2C-1 to 2C-8, 0.2%) but
randomized US delivery as explained in the previous subsection.
Although the subjects were naïve in terms of Pavlovian explicit
training, their provenance from three operant experiments was
counterbalanced in each group as an extra measure of precaution
to minimize the effect of uncontrollable variables due to their
past history.

On the first day, all subjects went through the phase of
pre-training, consisting in two consecutive sessions of the pre-
training described in the previous subsection. On the same day
or the day after, session 1 of the training phase was run upon the
subjects. The total duration of the experiment was 90 sessions,
run once or twice per day with an inter-session interval ranging
from a minimum of 1 h and 30 min to about 3 h and 30 min.
The day after session 90, we moved all subjects through two
consecutive sessions of extinction.

3.1.4. Results
To compare data with the theoretical model, one has to be
careful about the identification of the association strength. In
our experimental design, the US is presented simultaneously with
the CS and one must account for the responses directly due to
the US. However, conditioned and unconditioned licking are not
easy to separate, since rats normally lick multiple times even for
small volumes of water. Although it is difficult to eliminate this
problem and thus to record pure conditioned responses, it is still
possible to slightly reduce it and define the following index of

learning. We can subtract the number of US (which varies from
trial to trial and from session to session), to the total number of
licks per session and we identify

v = (number of licks during CS)− (number of US) . (6)

Thus, whenever we talk about licks during the CS in session-
by-session data, we imply that the number of unconditioned
responses (responses following the delivery of an US) has been
discounted. In this way, at the beginning of training animals
responded only upon presentation of the US and the total
number of licks is of the same order of magnitude as the number
of US presented. A minor issue is that under-response generates
negative values of v, but this does not correspond to inhibition.
While under-response at the beginning of training means that
the animal does not know that the CS predicts the US, inhibition
would imply that the animal knows that the CS predicts the no-
US. Since negative v’s appear only in the very first sessions, this
feature does not influence whatsoever the focus of our research
on the rest of the data.

In trial-by-trial data, we will not subtract the number of US to
the actual response by the animal. The reason is that we will be
interested in these data when considering the noise component
of the signal (see below for details). A randomized US delivery
would produce a white noise averaging to zero and of much
smaller amplitude than any other source of noise (statistical error
or some intrinsic effect to be checked upon).

After determining the asymptote of learning for each subject,
we normalized the data by dividing the number of licks by the
estimate of λ. Normalized data have some advantage over raw
ones, as explained in the Supplementary Material. For instance,
with normalized data one can directly compare the fluctuations
in response of different individuals. The average of normalized
data is shown in Figure 3. In comparison with Figure S1, we do
not notice any qualitative change in the experimental trendline.
However, error bars are considerably smaller. Also, while the
estimated standard deviation σ of the best fit of raw data was
greater in Group 2, after normalization it is smaller: σ = 0.13 for
Group 1 and σ = 0.11 for Group 2. The plots showing the data
and the RW best fit of v/λ for the subjects in the experimental
and control groups can be found in Figures S4–S9.

Now we are in a position to comment on the results.
First of all, both the pre-CS and post-CS response in the
experimental groups were much smaller than the response
during the CS, respectively by a factor of 10 and of 2. At the
68% confidence level, none of the curves overlap. This means
that the subjects clearly discriminated between the possibility
to obtain the US during the tone and in its absence. The
higher post-CS response with respect to the pre-CS is easily
explained on the grounds of a natural inertia in licking that
extended for a few seconds after the tone was switched off. This
interpretation is confirmed by calculating Pearson’s correlation
coefficient for CS and post-CS licks (non-subtracted and non-
normalized data) of individual subjects, which is |r| > 0.45
except in two cases (1-6 and 2-7)2. The correlation between CS

2This relatively high correlation might suggest that a better indicator than (6),
stripped of micro-motivational or attentional fluctuations, could be obtained if we
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FIGURE 3 | Average of normalized data for Group 1 (top left) and 2 (top right), together with the best fit with the RW model (bottom). Sessions are on the horizontal

axis, number of licks on the vertical axis. Light gray, dark gray, and black data points (connected by lines of the same colors) are the licks in the 10 s, respectively

before, during, and after the CS. The number of US has been subtracted from the during-CS licks of each individual before taking the average, and the upper and

lower error bars at the 68% confidence level of CS and post-CS data are shown.

and pre-CS licks is smaller, |r| < 0.38. On the other hand,
the control subjects displayed about the same response level
before, during, and after the CS, indicating that there was no
discrimination and no acquisition of association between the
CS and the US3. Moreover, the average asymptotes of learning
of Groups 1 and 2 reported in the Supplementary Material

before normalizing the data are significantly different: the rats did
respond differentially to 0.1% and 0.2% concentrations. Finally,
the data of extinction show a very quick decrease in response of
experimental subjects, likely due to overtraining (Finger, 1942).
The flat response of control subjects during the CS (Figure S2)
reflects the absence of association. Also, control subjects showed
extinction to the whole “apparatus + tone + electrovalve click”

subtract the number of post-CS licks instead of the number of US. However, as we
noted before, we verified that the results of this section do not change.
3The total response of control subjects in Group 1C was flat throughout the
experiment: a linear fit of the total licks yields a slope−0.23±0.24 and a correlation
r2 = 0.01.We did register a slight positive trend inGroup 2C: a linear fit of the total
licks yields a slope 1.43 ± 0.31 and a correlation r2 = 0.20. This trend was driven
by subjects 2C-2, 2C-5, and 2C-8. Possibly, this means that subjects developed a
liking (unrelated to any CS-US associative process) for the saccharin solution at
0.2% more pronounced that for the less concentrated solution.

stimulus (light gray trendlines). Overall, these results indicate
that simultaneous conditioning was effective and they validate
the experimental design.

Let us now turn to individual response differences. Without
the pretense of being exhaustive, we registered the following two
pairs of patterns:

• Wildly fluctuating response (e.g., subjects 1-1, 1-4, 1-7, 2-1, 2-
2, 2-5, 2-6, 1C-1, 1C-3, 1C-6, 2C-1, 2C-4). For experimental
subjects, the shape of the learning curve is almost completely
lost into noise.

• Less fluctuating response (e.g., subjects 1-2, 1-3, 1-5, 1-6, 2-
3, 2-4, 2-7, 2-8, 1C-2, 1C-4, 1C-7, 1C-8, 2C-2, 2C-3), where
strong fluctuations are less frequent. Experimental subjects
follow more clearly the learning curve.

The difference between “wild” and “mild” fluctuations can be
quantified by considering the estimated standard deviation of
data with respect to the non-linear fit with the RW learning
curve (Table 1). We took as a criterion for “wild fluctuations”
variations >30% of the peak response (σ > 0.30). This criterion
is arbitrary (one could have taken, e.g., σ = 0.50 as a threshold)
but illustrates the point. Some subjects are somewhat in between
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TABLE 1 | Estimated standard deviation σ of the RW-model best fit of normalized

session-by-session data.

1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8

0.59 0.29 0.19 0.33 0.16 0.24 0.43

2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8

0.32 0.40 0.22 0.20 0.36 0.30 0.10 0.15

these two categories, since they showed a stable response during
a long time followed by wildly fluctuating periods.

For those subjects that showed a trend in their response, we
can further recognize:

• Slow increase in response (e.g., subjects 1-2, 2-7, 1C-6, 2C-2,
2C-5, 2C-8). For experimental subjects, this is simply due to a
slow learning rate, while the interpretation for control subjects
is less obvious. Perhaps the unpredictability of the US was a
factor increasing the response, as observed also by Kaye and
Pearce (1984).

• Slow decrease in response (e.g., subjects 1-1, 1-7, 1C-1, 1C-
7, 2C-7). This phenomenon is related to the presentation of
the stimuli and their mutual association. This is not short-
term habituation, which is a non-associative process occurring
relatively quickly (only a few sessions) (Thompson, 2009;
Çevik, 2014). Moreover, short-term habituation is faster for
weaker stimuli, which we did not see here. However, it is not
long-term habituation either, which also occurs in a relatively
short time span (a few sessions, although it depends on the
experiment and the subject species) before any plateau in
the response (Packer and Siddle, 1987; Ornitz and Guthrie,
1989; Plaud et al., 1997). Here one might rather talk about
a very long-term habituation, occurring because animals are
presented with the same stimulus in all trials of all sessions.

In the next sections, we will make a more in-depth analysis of the
individuals’ data.

3.1.5. Discussion
Summarizing the conclusions obtained from the above results:

• The experimental design has been validated as a viable tool
of generation and control of Pavlovian conditioning4. The

4It is inevitable that the procurement of saccharin in the present preparation
implies licking at the bottle spout, thus establishing an operant contingency
between licking and obtaining the reinforcer. Furthermore, given that the US
occurred at random times within the CS, this is an ideal condition for the
maintenance of superstitious licking. Despite this being correct (Killeen and
Pellón, 2013; Pellón and Killeen, 2015; Pellón et al., 2018), lick suppression has
been accepted as Pavlovian under an experimental paradigm similar to the current
one, when the consequence is aversive or has been devalued (e.g., Jozefowiez et al.,
2011). By analogy, lick enhancement might have those same characteristics as
the reduction of the response, not to mention that after extended training it has
been generally accepted that behavior shifts control from the consequence to the
antecedent stimulus (Dickinson and Balleine, 2002), a case in which the results that
will be modeled here might fall. Additionally, even if we accept that licking in the
present experiment has an operant contribution to its installment, which is true,

subjects discriminated between the different chances of getting
the US during the tone CS (simultaneous conditioning) with
respect to when the tone was absent. The response was much
higher during the CS than before or after. The definitory
criterion for successful discrimination is the ratio between pre-
CS and CS licking. Post-CS response, seldom discussed in the
literature, was much larger than pre-CS response due to a
natural inertia in the licking behavior but, still, it was much
smaller than the response during the CS.

• While taking the average of raw data is useful for between-
groups comparisons (absolute value of the asymptotes), error
bars are reduced when considering the average of data
with normalized asymptote of learning. Normalizing also the
learning rate of individuals does not add much information
and is a strongly model-dependent procedure.

• Although we did observe long-range (i.e, spanning several
sessions) fluctuations in the average subjects response, the
error bars due to individual differences are large enough to
conclude that these fluctuations are not significant. The RW
model (5) is a good description of the average learning curve
in Pavlovian conditioning.

• The main average effects of overtraining are an extremely slow
decrease of the post-CS response and a fast extinction (see
Figure S10). Fast extinction points out that the response of
the animals during the experiment was not driven by habit,
contrary to what one might expect in long training histories
(Gür et al., 2018).

We can compare our findings with those in the literature of
post-peak depression or inhibition by reinforcement cited in the
Introduction. In general, our subjects reached the asymptote of
learning after 15–20 sessions. While gradients in response have
been registered on as short a scale as trial-by-trial or session-
by-session intervals, large-scale (i.e., spanning many sessions)
fluctuations characterized all the plateau after acquisition. In
some cases, we did see a response decrease, but much later
than acquisition. Even granting that aversive conditioning may
be faster than appetitive one, this leads us to believe that this
decrease is a long-range phenomenon different from the post-
peak depression observed in experiments employing only a
few hundred CS-US pairings, in contrast with our almost four
thousand trials each with an average of two CS-US pairings.
The latter could be a transient phenomenon corresponding to
the first fluctuation peak just after acquisition, when present.
Such interpretation is corroborated by past evidence on the non-
robustness of inhibition by reinforcement when extending the
duration of the experiment (Dukhayyil and Lyons, 1973).

In general, observations of individual differences were not
accompanied by attempts to explain them quantitatively (see
however, Urcelay et al., 2012). In the following sections we want
to do just that. It should be made absolutely clear that the
fact that the RW model is a good fit of data does not mean
that individual differences and response fluctuations are mere
statistical phenomena to be treated as unwanted errors. Different

we believe that the theoretical analysis applied in the present paper is not really
affected if an event stimulus is replaced by a response (see also section 6).
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subjects do respond very differently to stimuli and their response
does change erratically trial after trial and session after session.
The issue then is whether we can find a theoretically motivated
model (not just an ad hoc fitting curve, which is not hard to
concoct) better than the RW model in explaining the data, in
particular, the long-range response decrease observed in some
subjects (not to be confused with the post-peak depression effect
in the literature, as already said above).

3.2. Experiment 2 of Harris et al. (2015)
This experiment was described in detail in Harris et al. (2015)
under the heading “Experiment 2.” Here we will briefly review its
characteristics. Data will be analyzed in the next section.

3.2.1. Subjects and Materials
Subjects: 16 experimentally naive male HoodedWistar rats, 8–10
weeks of age at the start of the experiment. They had unrestricted
access to water and restricted daily food rations of regular dry
chow equal to 5% of the total weight of all rats in the tub, provided
30 min after the end of the daily training session.

Materials: 16 Med Associates conditioning chambers with a
food magazine endowed with an infrared LED and sensor inside,
to record entries by the rat. A dispenser delivering 45 mg food
pellets was attached to the food magazine. Four different CSs
were used: white noise (78 dB), a tone (78 dB, 2.9 kHz), a flashing
light (2 Hz, 3.0 cd/m2), and a steady light (30 cd/m2).

3.2.2. Experimental Design and Procedure
For each rat, each CS was allocated to one of the following
configurations (and counterbalanced across rats):

• CR10: continuous reinforcement (CS reinforced 100% of the
times) with random duration of 10 s mean. Thirty sessions, 6
CR10 trials per session.

• CR30: continuous reinforcement with random duration of 30
s mean. Thirty sessions, 6 CR30 trials per session.

• PR10: partial reinforcement (CS reinforced at 33% of the
times) with random duration of 10 s mean. Thirty sessions,
18 PR10 trials per session.

• PR30: partial reinforcement with random duration of 30 s
mean. Thirty sessions, 18 PR30 trials per session.

Trial by trial, the CS duration varied randomly on a uniform
distribution with a mean of either 10 s (2–18 s) or 30 s (2–58 s).
The number of reinforced trials per session per CS was the same
in all configurations and equal to 6. See Figure 4 for a scheme of
the trial structure of this experiment.

Each of the 30 sessions consisted in a delayed conditioning
where presentations of each of the four CSs were randomly
intermixed: 6 of each of the continuously reinforced CSs and
18 of each of the partially reinforced CSs, for a total of 48 trials
per session. The ITI varied randomly on a uniform distribution
with a minimum of 50 s and a mean of 120 s.

The subject response was the head entry into the magazine,
recorded during each CS and a 30-s pre-CS period through the
interruption of a photobeam at the magazine entrance.

FIGURE 4 | Structure of a trial for the four experimental groups of Experiment

2 of Harris et al. (2015), where X = 10 or 30.

3.2.3. Results
We analyzed the data considering each CS configuration as
completely independent of the others. Thus, we treated CR10,
CR30, PR10, and PR30 as four independent groups, each
undergoing 30 sessions of, respectively, 6, 6, 18, and 18 trials, for
a total of, respectively, 180, 180, 540, and 540 trials.

Sessions 26–30 had seven trials each for the CR10 and CR30
CSs, rather than seven trials. The reason of the inclusion of the
extra trial (which was without reinforcement) was to look at the
post-CS response for at least one trial of the two CR CSs that
was not contaminated by the presence of the food-pellet US.
Although their impact on the results is negligible, we removed
these five extra trials from the analysis.

Also, a word of caution on the analysis of the PR groups.
PR subjects underwent partial reinforcement, which means
that theoretical models based on continuous reinforcement (for
instance, plain excitatory Rescorla–Wagner) should be applied
with care, since they do not take into account the fact that
the US was not presented at all trials. However, when the
presentation rate is deterministic, fitting PR data entries with
models of deterministically delivered continuous reinforcement
will be perfectly consistent.

4. DYNAMICAL MODEL OF INDIVIDUAL
BEHAVIOR

4.1. Motivation: Least-Action Principle and
Fine Tuning
Thanks to its simplicity, the RW model is an ideal example
where to introduce all the main ingredients of a dynamical
reinterpretation of Pavlovian conditioning processes. By
dynamical, we mean a very precise concept, superior to any
casual use of the term in the loose sense of “evolving” or
“interacting”. Namely, we postulate that any conditioning
process can be described by a quantity called action and that the
change of the association strength during conditioning happens
in such a way that the action is minimized. Let us introduce the
rationale behind this view.

As a global, externally observable phenomenon, Pavlovian
learning has been described through models, such as Rescorla
and Wagner (1972) and others (Mackintosh, 1975; Pearce and
Hall, 1980; Wagner, 1981; Le Pelley, 2004; Wagner and Vogel,
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2009). In general, the essence underlying these models appeals
to psychological aspects, such as the surprisingness or novelty or
predictiveness of the stimuli. However, it is not unreasonable to
believe that an alternative conceptualization is possible where,
despite behavioral errors by the subject, the learning process
is a naturally efficient one and, so to speak, minimizes the
biological adaptation effort. At a biological level, learning can be
viewed as a sequence of events modifying some of the synaptic
connections of the brain. This modification does not happen in a
disordered way since, as associative models already highlighted,
there exist laws (learning curves) applicable to statistically
significant samples. Going a bit beyond the macroscopic view
of traditional associative models, but without attempting a
microscopic quantitative description of neural plasticity, we
postulate that the brain mechanics of a subject change through
learning from an initial state A to a final state B efficiently.
Operationally, a most effective way to describe this minimization
of effort is through the action. If we depict the learning process in
time t as a path from A to B in an abstract space parameterized by
the association strength v, the profile v(t) describing the evolution
in the association strengthminimizes the path from point v(tA) to
point v(tB). A similar statement could be made about the energy
spent in changing the internal state, but both are described by
the same quantity, the action. The action S[v] is a function of the
association strength v and it is minimized when its variation with
respect to v is zero5:

δS[v]

δv
= 0 . (7)

This is the principle of least action. It has been applied
successfully in physics and our aim now is to use it also in
psychology. From physics we will get guidance about what S[v]
is and this guidance will prove itself correct because it will
immediately recover the RWmodel as a special case.

The main idea is to reinterpret the learning curve of any
associative model as the trajectory of one or more small balls
(pointwise particles) rolling up and down a hill (a potential). The
way a particle moves along its potential is called dynamics. In the
case of the RWmodel, there is only one particle whose trajectory
is shown in Figure 1 and whose potential U(v) is depicted in
Figure 5 (top). The proof of this statement, the explicit form
of the action S[v] and the dynamics corresponding to multi-
cue or variable-salience conditioning models are given in the
Supplementary Material. In excitatory conditioning with just
one cue, the particle rolls down the slope from the point v = 0 to
the bottom at v = λ, where it unnaturally stops.

At this point, one appreciates the first major advantage of the
least-action principle. If the latter is true, then it is very hard to
understandwhy a particle placed on the slope of the potential well
would roll down and stop exactly at its bottom. The least-action
principle tells us that we must fine tune the initial conditions
(position and velocity) of the particle to infinite precision in order
to achieve such a behavior. If some latitude in the choice of initial
conditions is allowed (as it should in a natural biological setting),
then in general the particle will oscillate up and down the well

5At the maxima and minima of a function, its first derivative vanishes.

FIGURE 5 | (Top) The potential U(v) of the RW model for λ = 1 and αβ = 1.

Compare with the solution (3) in Figure 1. (Bottom) The potential U(v) of the

dynamical model for λ = 1 and (αβ)2 + µ2 = 1. Compare with the solution (8)

in Figure 6. In both cases, the particle rolling down the potential represents

the change in the associative strength. The direction of “motion” in excitatory

conditioning is represented by a gray arrow.

until reaching a final stop at the bottom, as shown in the bottom
plot of Figure 5.

We decided to use tools borrowed from physics because, in
the long run, they carry two major advantages. First, as said
above, they allow one to modify Pavlovian models in a natural
way that would result rather obscure in the traditional approach,
and that can be contrasted with experiments. Second, they are
the basis from which one can construct predictive theories
of individual short-scale response variability, presented in
the Supplementary Material. Ultimately, revisiting conditioning
models as dynamical models amounts to a new paradigm
of doing model-building in psychology, where qualitative
reasonings leading to quantitative formulæ are replaced by a
rigorous sequence of logical steps. As in any model building,
arbitrariness is not removed, but it will be pinpointed and put
under a higher degree of control.

4.2. Theory
The catchword is “unnatural.” The way the particle moves along
its potential in the case of the RWmodel is very special because it
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FIGURE 6 | The learning curve (8) (solid) with periodic oscillations with µ = 2

and A = 0, compared with the RW learning curve (4) (dashed). Here

λ = 1 = αβ.

reduces to the simple equation (2). When it rolls down the slope,
the particle experiences some resistance (friction) from the floor,
but not so much as to brake completely. This happens, by sheer
coincidence, exactly at the bottom of the slope. In a more general
situation, we would expect the particle to oscillate up and down
the bottom, if the friction is moderate, until it reaches a complete
stop (Figure 5, bottom). If we abandon the rigid setting of the
RW dynamics and allow for such a scenario, much more natural
from a dynamical point of view, we obtain a different trajectory,
i.e., a different learning curve (see Supplementary Material):

v(t) = λ
[

1− e−αβt(cosµt + A sinµt)
]

, (8)

where µ and A are constants. When µ = 0, there are no
oscillations and this reduces to the RW model (4) of excitatory
conditioning. When µ 6= 0, learning is subject to a friction
force with progressively damped oscillations around zero. The
parameter A is the amplitude of the sine harmonics, so that when
A = 0 oscillations have a pure cosine phase. The learning curve
is modified as in Figure 6. This profile features oscillations of
fixed frequency µ and decreasing amplitude above and below the
asymptote, which we can look for in data. In particular, it predicts
a first response peak above the subsequent asymptote.

Notice that v(t) is not positive definite at small times unless A
is sufficiently small. To avoid this problem and to remove a free
parameter from the model, we will pay special attention to the
case A = 0. Data will show that the A 6= 0 is disfavored anyway.

Reverting back to discrete time, we can recast the DOM as
a law for the association strength vn at the beginning of trial
(or session) n. The first and second-order derivatives v̇ and v̈
correspond, respectively, to the forward finite differences 1vn =

vn − vn−1 and 1vn+1 − 1vn = vn+1 − 2vn + vn−1, so that the
analog of Equation (1) is

1vn+1 − (1− 2αβ)1vn = (α2β2 + µ2)(λ − vn−1) . (9)

It is easy to show that the RWmodel is recovered whenµ = 0. In
fact, (1) implies that1vn+1 = αβ(λ−vn) = αβ(λ−21vn+1vn−
vn−1) = −2αβ1vn + αβ(λ− vn−1)+ α1vn = (1− 2αβ)1vn +
(αβ)2(λ−vn−1), which is Equation (9) in the limitµ → 0. Unless
µ = 0, it is not possible to write a simple incremental law as
RW, and the association strength at the beginning of trial n+ 1 is
predicted by that of the previous two trials n and n− 1, instead of
just the one immediately preceding as in the RWmodel (1). Both
in the RWmodel and in the DOM one can predict the value vn+1

at the next trial, but while in the RWmodel we only need to know
the present value vn, in the DOM we also need the past value
vn−1. Shifting this statement one trial in the past is equivalent
to say that the DOM can predict the value of the association
strength not only at the next trial, but also at the next-to-next
one, provided we know the present value. Conversely, shifting the
last statements two trials in the future, from the present and the
previous value of the association strength the DOM can retrodict
the value of the association strength two trials before. In this
sense, the DOM has a longer memory of past states than the
RWmodel.

Since this feature gives valuable insight in the psychological
interpretation of the DOM, let us dwell more on it. In the RW
model, the main postulate is that learning (i.e., the momentum
1vn, the difference of association strength between one trial and
the previous) is proportional to the prediction error (λ − vn−1).
This is the incremental law (1). In the RW model, the increment
1vn is always positive, the association strength increases and
the subject always “learns more” than before. However, in the
DOM the association strength of the subject can also decrease
in some trials, corresponding to the descending slope in the
learning curve after a peak. This does not mean that the subject
has “unlearned” what was previously acquired; this would be
true if learning were a positive monotonic process as in the
RW model. Rather, the association strength decreases only after
having increased to an over-optimal point. The subjects are
neither over-learning nor unlearning: they are simply trying to
reach a balance between what was learned and their capacity to
predict the environment.

This is reflected in the equation governing the DOM, which is
more complicated than the incremental law (1) and is replaced by
Equation (9). This expression relates knowledge, predictions and
retrodictions of three different trials in terms of the prediction
error. It is as if the animal had a better predictive algorithm
than in RW in terms of how many future and past trials it can
scan. In particular, Equation (9) implies that the prediction error
depends mainly on the learning at the next-to-next trial and,
to a lesser degree (because 1 − 2αβ < 1), on the learning at
the next trial. However, with respect to RW prediction errors
weigh more on learning, since the right-hand side of (9) is
augmented by a factor µ2. Hence subjects can predict what
is going to happen further in the future, but they do so with
greater uncertainty. Or, alternatively, prediction of the subject
performance at a given trial requires more information from
the past, which introduces a heavier weight of the error. This
is the origin of the overshooting of optimal response and the
subsequent readjustments through an oscillatory pattern. We
dub this justification of the DOM the errors-in-learning argument
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and it is perhaps the most compelling one from a psychological
point of view. It makes the learning process considerably more
flexible than in the RWmodel.

The description of learning with second-order differential
or finite-difference equations (momenta) has a precedent in
connectionism (Rumelhart et al., 1986), while a parallel to
frictional kinematics was also established by Qian (1999). As
far as we know, these ideas have never been applied to animal
learning. Also, our theoretical motivations are different and
strongly based on a dynamical (action-based) view of learning
and behavioral processes, rather than on a simple analogy with
kinematical equations.

4.3. Data Analysis: Comparison With the
RW Model
In order to assess the goodness of fit of the dynamical proposal
with respect to the traditional RW model, we should take
into account that the first has more free parameter than RW.
Having more parameters clearly gives an intrinsic flexibility
in data fitting that more rigid theories do not have, and
one should balance this factor against the actual capabilities
of the new models to accommodate observations. This is
the typical situation where comparative statistics, such as the
Bayesian (or Schwarz) Information Criterion (BIC) and the
Akaike Information Criterion (AIC) can be extremely useful, as
advocated by Witnauer et al. (2017).

Let σ 2
e : =

∑N
n=1[yn − f (tn)]2/N be the error variance of the

fit, the averaged sum of squared residuals (also known as residual
sum of squares or sum of squared errors), whereN is the number
of data, yn is the experimental datum at the n-th session and
f (tn) is the value predicted by the theoretical model. (The error
variance σ 2

e is not the estimated variance σ 2 of the fits discussed
above. They are related to each other by σ 2

e = Nσ 2/(N − p),
where p is the number of free parameters of the function f ). The
BIC is defined as (Schwarz, 1978)

BIC : = N ln σ 2
e + p lnN, (10)

while the AIC is (Akaike, 1974)

AIC : = N ln σ 2
e + 2p. (11)

The first term in Equations (10) and (11) quantifies the badness
of the fit (the greater the error variance, the worse the fit),
while the second term increase linearly with p. The BIC and
AIC penalize model complexity slightly differently. For each
theoretical model, one can compute the BIC and the AIC:
the model with smaller criteria is to be preferred. Calling the
difference 1 : = |(IC model 1) − (IC model 2)| for the Bayes or
Akaike IC, one finds weak evidence if 1 < 2, positive evidence
if 2 6 1 < 6, strong evidence if 6 6 1 < 10, and very strong
evidence if 1 > 10 (Jeffreys, 1961; Kass and Raftery, 1995). We
will use the term “moderate” to indicate cases where evidence is
positive in one criterion but weak in the other.

While the RW model has two free parameters (λ and αβ),
the DOM (8) has four (λ, αβ , µ, and A), which can give
more flexibility with respect to the RW model but are more

TABLE 2 | BIC and AIC (in the format “BIC, AIC” and approximated to zero

decimals) of the best fits of the session-by-session data of our long experiment

with the RW model (4) and the DOM (8).

Subject RW Oscillations

1-1 171, 163 175, 165

1-2 43, 36 48, 38

1-3 −32, −40 −28, −38

1-4 68, 60 71, 61

1-5 −62, −69 −57, −67

1-6 13, 5 18, 5

1-7 116, 108 91, 78

1-8 – –

2-1 64, 56 65, 55

2-2 103, 95 107, 97

2-3 −3, −10 −4, −14

2-4 −27, −35 −33, −43

2-5 84, 76 85, 75

2-6 49, 41 52, 42

2-7 −139, −147 −135, −145

2-8 −75, −82 −76, −86

Favored models are in boldface. Although we fitted the DOM in two ways, one with A = 0

from the start and one with A free, we report only the best between these two versions.

TABLE 3 | Percentage of subjects of our long experiment following the RW model

or the DOM, i.e., subjects with, respectively, zero and non-zero frequency

parameter µ.

Group 1 (%) Group 2 (%) Total (%)

RW 86 50 67

Oscillatory 14 50 33

penalized in the Information Criteria when fitting session-by-
session individual data.

We can divide the subjects in three groups: those for which the
RW model is clearly favored, those for which the DOM is clearly
favored, and those where the RW and dynamical oscillatory
models are about equally favored by the Information Criteria.

4.3.1. Our Experiment
The results for our long experiment are summarized in
Tables 2, 3.

• As one can see from the table, the RW best fit is favored
for subjects 1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 2-2, 2-6, and 2-7
(weak to positive evidence, 1 6 1 6 5). However, here
we are not comparing two independent models but a model
and its extension by one (µ) or two (µ,A) extra parameters.
Therefore, we have to interpret with care the meaning of
the cases where RW is favored. We can divide them in
three groups:

– Five cases (subjects 1-1, 1-2, 1-4, 1-5, 2-2, and 2-7) where
also the DOM with mu close to zero fits the data. It means
that for these subjects the RW model and the DOM are
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indistinguishable. For subjects 1-1, 1-2, 1-5, 2-2, and 2-7,
the estimated µ in the oscillatory best fit is compatible with
zero (1-1:µ = −0.13±0.17; 1-2:µ = 10−11±107, 1-5:µ =

6±105; 2-2:µ = 10−6±104; 2-7:µ = 10−4±6). Therefore,
there is no statistically significant smooth oscillation of the
type (8) in their response. For subject 1-4 (weak evidence in
favor of RW according to the AIC, 1 = 1), µ is non-zero
at the 68% confidence level but zero at the 99% confidence
level (µ = 0.45± 0.21).

– Two cases (subjects 1-3 and 1-6) where the DOM fails to
fit data unless one imposes µ = 0 by hand. Leaving this
parameter free, here µ is significantly non-zero at the 99%
confidence level but is very high (1-3:µ = 12.61±0.04; 1-6:
µ = 6.23± 0.02), meaning that data are fitted with densely
packed oscillations. We regard this as an artifact and thus
discard these oscillatory fits as unviable.

– One case (subject 2-6) where the RW model is, so to speak,
superior by brute force. Here µ is significantly non-zero at
the 99% confidence level and is not high (µ = 0.04± 0.01),
but the BIC and AIC are larger than for the RWmodel.

From this discussion, we conclude that, of these nine cases,
only one (subjects 1-3, 1-6 and 2-6) directly discards the DOM
with µ 6= 0, although with only weak to positive evidence.
While in all the other cases Hull’s primacy does not exclude
the fact that, for these subjects, the DOM with µ close to zero
is also allowed.

• The data of subjects 1-7, 2-3, 2-4, and 2-8 favor the A = 0
DOM with, respectively, very strong, moderate, strong, and
moderate evidence. Restoring A as a free parameters, we get
an even better fit for subject 1-7. The p-value for µ in all these
cases is very small, which means that the probability to have
µ 6= 0 by statistical chance is negligible.

• The case of subjects 2-1 and 2-5 is less clear-cut and we have to
look at the decimals: the A = 0 DOM (2-1: µ = 0.17 ± 0.03;
2-5: 0.56 ± 0.04) is slightly more favored than the RW model
in the AIC for subject 2-5, and vice versa, so that we attribute
one each. Since the difference is about 1% of the value of the
criteria and evidence in favor or against is weak (1 = 1), this
attribution is only for the sake of the final counting.

The best-fit parameter values of subjects 1-7, 2-3, 2-4, and 2-8
for the two models are given in Table 4 and the best-fit curves
are shown in Figure 7. Since the favored best fits with A 6= 0 are
not particularly strong (the parameter A is always zero at the 95%
confidence level), we can conclude that the model with A = 0
is sufficient to fit successfully the data of these subjects deviating
from the RW behavioral trend.

4.3.2. Harris et al. (2015) Experiment 2
The BIC and AIC of the RW model and the DOM are shown in
Tables 5, 6 together with the difference 1HO = ICRW − ICoscil.
Favored models are in boldface; when two models are favored in
different IC, the one with strongest evidence “wins.” Oscillatory
fits yielding bigger IC and those that fail to produce a non-trivial
model (i.e., if µ and/or A vanish) are discarded. Trivial RW fits
with vanishing αβ are reported except when also the other fits fail,
in which case all cells are left blank. An example of fit is shown in

TABLE 4 | Best-fit values of the parameters of the RW model (4) and the DOM (8)

for those subjects whose data of our long experiment (normalized with respect to

the RW asymptote) favor the DOM for both the BIC and the AIC (hence subject

2-5 is not shown).

Subject Parameters RW Oscillations p

1-7

λ 1 0.78± 0.13

αβ 0.21± 0.09 0.04± 0.01

µ 0 0.05± 0.02 < 0.05

A 0 −2.46± 1.94

σ 0.43 0.36

2-3

λ 1 0.99± 0.02

αβ 0.27± 0.07 0.15± 0.05

µ 0 0.19± 0.04 < 0.001

A 0 0

σ 0.22 0.22

2-4

λ 1 0.98± 0.02

αβ 0.30± 0.07 0.14± 0.03

µ 0 0.22± 0.03 < 0.001

A 0 0

σ 0.20 0.18

2-8

λ 1 0.98± 0.02

αβ 0.23± 0.03 0.13± 0.02

µ 0 0.15± 0.02 < 0.001

A 0 0

σ 0.15 0.15

σ is the estimated standard error. The p-value for µ, the key parameter to distinguish the

RW model from the DOM, is shown. The most favored model is in boldface.

Figure 8 and a summary of RW and oscillatory favored models is
given in Table 7.

A group comparison using Tables 5–7 shows that:

• When the RW model is favored, it is so with weak to positive
evidence in CR groups and positive to strong evidence in PR
groups. This increase in evidence in favor (but not in the
number of favored cases) is probably due to the larger number
of data points (three times as many in PR groups with respect
to CR groups).

• On the other hand, the great majority of favored DOMs have
very strong evidence in favor. Thus, when subjects display
oscillations in their learning curve the effect is usually strong,
not just tiny perturbations of the monotonic RW curve.

• Within the same type of reinforcement (continuous or partial),
when extending the trial duration this percentage switches
in favor of the other model, but in the opposite way of the
groups with the other type of reinforcement (CR10 and PR30:
majority is oscillatory; CR30 and PR10: majority is RW). This
puzzling pattern may have an explanation, which we support
by the data in section 2.4 of the Supplementary Material. The
bottom line is that longer trials stabilize the behavior, but a
partial reinforcement schedule destabilizes it, where increasing
stability means fewer erratic patterns and/or more RW
patterns, without being accompanied by smaller oscillations in
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FIGURE 7 | Best-fit of normalized data of our long experiment with the RW model (4) (dashed curve) and the DOM (8) with A = 0 with the parameter values of

Table 4. Sessions are on the horizontal axis and normalized response is on the vertical axis.

oscillatory patterns. We will confirm this finding in Calcagni
et al. (under review).

4.4. Discussion
In our long experiment, the RW model is favored (but only
moderately) with the respect to the µ 6= 0 DOM for only one
out of the 15 experimental subjects; the DOM with A = 0 and
µ 6= 0 is strongly favored in two subjects and moderately favored
in two more; the DOM with A = 0 and µ = 0 coincides with the
RW model and is a good fit of eight more subjects; and there is
no preference for either the RWmodel or the DOM in two more
subjects. The fact that the RW model is favored (and moderately
so) only in 7% of the experimental subjects with the respect to the
µ 6= 0 DOM justifies the present and future interest in theA = 0,
µ 6= 0 DOM (8).

Since RW is a subcase of the DOM, if RW is favored for a
subject, then the DOMwith frequency∼0 may also be a good fit,
while if one of the DOMs is favored, it means that the frequency
cannot be set to zero and RW is not a good fit. Since the goal
is to fit as many subjects as possible with the same model, then

the conclusion from our experiment (Table 3) is that, if we insist
in considering the RW model as the correct description of the
learning curves, then we can explain at most 67% of the data
(6 + 4 = 10 subjects out of 15), while if we postulate the least-
action principle we obtain a model that includes RW as a special
case and can fit successfully 100% of the data. Also the results
from Experiment 2 of Harris et al. (2015) (Table 7) leads us to
conclude that the DOM provides a more powerful explanation of
the data than RW, since it can account for 95% of the data against
the 45% by RW. Therefore, this extension of the RW model is
both natural and viable.

5. STOCHASTIC MODEL OF INDIVIDUAL
BEHAVIOR

5.1. Motivation and Spectral Analysis
The DOM describes long-range modulations in the subjects’
responses, where an oscillation period (a peak followed by a
trough) spans tens of sessions. However, even the most cursory
look at the data reveals that response variates somewhat wildly at
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TABLE 5 | BIC and AIC (in the format “BIC, AIC” and approximated to zero

decimals) of the best fits of the trial-by-trial data of CR10 and CR30 groups in

Experiment 2 of Harris et al. (2015) with the RW model (4) and the DOM (8).

CR10 RW Oscillations 1HO p (µ)

1 130, 120 55, 43 74, 78 < 0.001

2 177, 168 182, 170 −5, −2

3 141, 131 146, 133 −5, −2

4 119, 109 124, 111 −5, −2

5 99, 90 80, 64* 19, 26

6 32, 23 21, 9 11, 14 < 0.001

7 −58, −68 −76, −88 17, 21 < 0.001

8 141, 132 142, 130 −1, 2 < 0.001

9 140, 130 143, 130 −3, 0

10 8, −1 13, 1 −5, −2

11 161, 152 153, 137 8, 15 < 0.001

12 102, 92 107, 94 −5, −2

13 82, 72 87, 74 −5, −2

14 50, 40 49, 36 1, 4 < 0.001

15 202, 193 193, 177 9, 16 < 0.001

16 144, 134 143, 130 1, 5 < 0.001

CR30 RW Oscillations 1HO p (µ)

1 149, 139 141, 128 8, 11 < 0.001

2 207, 197 211, 198 −4, −1

3 23, 13 28, 15 −5, −2

4 119, 109 117, 104 2, 5 < 0.001

5 115, 106 42, 26* 74, 80

6

7 −101, −111 −120, −133 19, 23 < 0.001

8 163, 154 168, 156 −5, −2

9 57, 48 63, 50 −5, −2

10 −83, −92 −78, −91 −4, −1

11 103, 94 87, 74 17, 20 < 0.001

12 92, 82 71, 58 21, 24 < 0.001

13 −36, −46 −31, −44 −5, −2

14 −87, −96 −94, −107 8, 11 < 0.001

15 96, 86 102, 86 −6, 0

16 150, 141 156, 143 −5, −2

The p-value for µ, the key parameter to distinguish the RW model from the DOM, is

shown when oscillations are favored. Favored models are in boldface. Although we fitted

the DOM in two ways, one with A = 0 from the start and one with A free, we report only

the best between these two versions. Asterisks mark possible false positives, for which

p ≈ 1 for µ.

a much shorter scale, from session to session or even from trial
to trial. In this section, we will study these short-scale variations
quantitatively using a spectral analysis and we will connect
our results with an interesting open question in the cognitive
literature: Should these fluctuations be treated as experimental
error or do they have an origin in the cognitive modules of the
subject? While the answer seems to be No–Yes when subjects
are human, little or no attention has been drawn to the case of
animals. According to our results, the answer is Yes–No: response
fluctuations occurring at short time scales are indistinguishable
from experimental error.

TABLE 6 | BIC and AIC (in the format “BIC, AIC” and approximated to zero

decimals) of the best fits of the trial-by-trial data of PR10 and PR30 groups in

Experiment 2 of Harris et al. (2015) with the RW model (4) and the DOM (8).

PR10 RW Oscillations 1HO p (µ)

1 533, 520 450, 433 83, 87 < 0.001

2 458, 445 460, 443 −2, 2

3 513, 500 519, 502 −6, −2

4 514, 501 482, 465 31, 36 < 0.001

5 416, 403 184, 163* 231, 240

6

7 160, 147 166, 149 −6, −2

8 483, 470 488, 471 −5, −1

9 215, 203 222, 205 −6, −2

10 −75, −88 −71, −88 −5, 0

11

12 391, 378 368, 351 23, 28 < 0.001

13 344, 331 350, 333 −6, −2

14 25, 12 19, 2 6, 10 < 0.001

15 439, 426 445, 428 −6, −2

16 581, 568 587, 570 −6, −2

PR30 RW Oscillations 1HO p (µ)

1 301, 288 309, 287 −8, 1

2 555, 542 533, 516 22, 26 < 0.001

3 334, 322 341, 324 −6, −2

4 316, 303 310, 293 6, 10 < 0.001

5 129, 116 136, 118 −6, −2

6 −343, −356 −350, −367 7, 11 < 0.001

7 −199, −212 −217, −234 18, 22 < 0.001

8 244, 231 230, 208 14, 22 < 0.001

9 109, 96 115, 98 −6, −2

10 −190, −202 −184, −206 −5, 3

11 211, 198 62, 40 150, 158 < 0.001

12 208, 196 202, 185 7, 11 < 0.001

13 28, 15 26, 9 2, 6 < 0.001

14 −174, −187 −201, −223 27, 36 < 0.001

15 311, 298 296, 275 15, 24 < 0.001

16 724, 711 724, 707 0, 4 < 0.001

The p-value for µ, the key parameter to distinguish the RW model from the DOM, is

shown when oscillations are favored. Favored models are in boldface. Although we fitted

the DOM in two ways, one with A = 0 from the start and one with A free, we report only

the best between these two versions. Asterisks mark possible false positives, for which

p ≈ 1 for µ.

The generalized presence of large short-scale fluctuations
in the response translates into an unstable inter-trial and
inter-session associative strength. These fluctuations are
present in Harris et al. (2015) experiments as well as
in ours, even in those very few subjects with relatively
small inter-session variability. Since there seems to be no
qualitative change with the time scale (see Figure S18),
fluctuations might be assumed to plague the performance
of the subjects at any scale. This means that it is quite
natural to regard these data as a time series described
by a nowhere-differentiable pattern instead of a smooth
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FIGURE 8 | Trial-by-trial data of subject CR10-1 fitted with the DOM (8). Trials

are on the horizontal axis and response is on the vertical axis.

TABLE 7 | Percentage of subjects of Experiment 2 of Harris et al. (2015) following

the RW model or the DOM, i.e., subjects with, respectively, zero and non-zero

frequency parameter µ.

CR10 (%) CR30 (%) PR10 (%) PR30 (%) Total (%)

RW 44 50 56 31 45

Oscillatory 56 44 31 69 50

No fit 6 13 5

The learning curve of subjects CR30-6, PR10-6, and PR10-11 did not follow any of

the models.

learning curve. This is the motivation to replace (1) with an
evolution equation for the associative strength encoding a
stochastic component6.

A spectral analysis is an analysis of the frequency modes
constituting the noise in data. Technically, it amounts to take
the Fourier transform of the data. Intuitively, it means to count
how many times a response fluctuation of a given amplitude
occurs for a subject during the experiment. If data predominantly
oscillate on a long time scale, then the noise dominates the small
frequencies of the spectrum. On the other hand, if oscillations

6The mathematics of stochastic processes is not a new tool in learning theories. In
fact, the earliest conditioning models had an inherent element of randomness in
their predictions. The classic 1950s models were cast in the language of probability
theory and one considered the probability p of a given conditioned response (CR)
as a function of the trial number n; see e.g., the works by Estes (1950), Estes and
Burke (1953), Bush and Mosteller (1951a,b, 1953), and the reviews by Mosteller
(1958) and Bower (1994). Later on, the strength of association v was regarded as a
better operational variable than the probability p (Rescorla andWagner, 1972) and
the focus was shifted to ideally deterministic predictions. More recently, stochastic
processes played a role in the context of neural networks and their application
to robotics and artificial intelligence. In particular, a path integral can describe
a learning process of a neural network as a finite-temperature stochastic process
(Balakrishnan, 2000). Path integrals have also been applied to control theory and
reinforcement learning (Kappen, 2007; van den Broek et al., 2008; Theodorou et al.,
2010a,b, 2011; Braun et al., 2011; Theodorou, 2011; Farshidian and Buchli, 2013;
Pan et al., 2014a,b). In all these cases, the problem is to minimize the cost of a
learning process or of an action by an agent. Despite some remote similarities,
these approaches differ from ours.

mainly occur on a very short time scale, then the spectrum
is more noisy at large frequencies. The noise in learning data
corresponds to the second case.

In essence, the variability of the response of a subject is
encoded in the frequencies ω, distributed in the so-called power
spectral density S(ω), obtained from the response. If the response
is perfectly stable from trial to trial, then all frequencies are
equally represented in S(ω) and the power spectral density is
constant. If the response varies gradually as in the ideal learning
curve of the RW model, then S(ω) is a smooth function. If,
however, the response varies erratically from trial to trial, as in
actual data, then S(ω) becomes very ragged and this raggedness is
what we call noise. The basics of spectral analysis and theoretical
shape of the power spectral density for the RW model without
and with noise are presented in the Supplementary Material.
Here we only note that noise alone is usually represented by the
power spectral density

Sa(ω) =
1

ωa
, (12)

where a is a constant. When a = 0, noise is said to bewhite, while
it is colored if a 6= 0.

The nature of the noise source in data can be discriminated
by the large-frequency region of the power spectral density. If
all noise comes from statistical error, then this region is flat in
the log-log plane. However, if this region is not flat and exhibits
a positive or negative average slope, then it is possible that
some other random noise-generating mechanism, of cognitive-
behavioral origin, is in action.

5.2. Theory
The RW model with colored noise admits a straightforward
mathematical treatment as a stochastic process, where vn is
promoted to a random variable Vn = vn + ξn, where vn and
ξn are, respectively, the deterministic and stochastic parts (see
Supplementary Material).

To give ξn a psychological interpretation, we can draw
inspiration from the “1/f noise” cognitive literature, where the
variability in human response in memory tasks, reaction tasks,
mental rotation, word naming, and so on, is characterized by
a colored noise (Gilden et al., 1995; Gilden, 2001; Eke et al.,
2002; Van Orden et al., 2003, 2005; Wagenmakers et al., 2004,
2005, 2012; Holden, 2005, 2013; Thornton and Gilden, 2005;
Farrell et al., 2006; Kello et al., 2007, 2008; Holden et al., 2009,
2011; Stephen et al., 2009a,b; Dixon et al., 2010, 2012; Ihlen
and Vereijken, 2010, 2013; Likens et al., 2015; see Kello et al.,
2010; Riley and Holden, 2012, for reviews). There are three
interpretations of this phenomenon. In the idiosyncratic view,
this noise is regarded as the intrinsic uncertainty, possibly due
to an internal estimation error, in the formation of mental
representations, such as the reproduction of spatial or temporal
intervals in human memory (Gilden et al., 1995). Different
cognitive systems combine to accidentally generate an overall
noise term (Wagenmakers et al., 2004, 2005, 2012; Farrell et al.,
2006). In the nomothetic view, the stochastic component is a
more fundamental mechanism where cognition emerges as a
self-organizing complex dynamical system (Gilden et al., 1995;
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Gilden, 2001; Van Orden et al., 2003; Stephen et al., 2009a,b;
Dixon et al., 2010, 2012; Ihlen and Vereijken, 2010; Riley and
Holden, 2012; Holden, 2013). In particular, the colored noise
is the collective expression of the metastable coordination of
different cognitive and motor systems in the performance of a
task (Kello et al., 2007). A third view intermediate between the
idiosyncratic and the nomothetic was also considered (Likens
et al., 2015).

Translating these considerations to the realm of non-human
animal behavior, we can entertain the possibility (Calcagni,
2018) that, if non-white noise were detected in experiments of
Pavlovian or operant conditioning, one would be observing a
signal coming form the coordination of motor systems with the
internal functioning of the subject’s mind (either as an averaging
of multiple cognitive subsystems or as an emergent collective
manifestation of such coordination). We will come back to this
cognitive perspective after analyzing the data.

5.3. Data Analysis: Comparison With the
RW Model
Session-by-session data are a coarse-grained version of the full
data set of trial points. Inevitably, this coarse graining can hide or
distort stochastic signals present at all time scales. For this reason,
we consider trial-by-trial data. It is not difficult to check that a
similar analysis done with session-by-session data yield the same
results, but with a much greater error in the fits.

Note that the fits of the oscillatory and RW models were
made with session data (90 points) for our long experiment,
while those for the data of Harris et al. (2015) were made with
trial data (180 or 540 points). Trial data of our experiment
have larger dispersion than Harris et al. (2015) trial data, while
their dispersion is comparable when the former data are binned
into sessions.

5.3.1. Our Experiment
The Supplementary Material includes the parameters of the RW
model fitting trial-by-trial data and the power spectral density
of the signal of the experimental subjects, calculated from each
individual set of trial data points.

We look for a fit of the type of (12) (times a constant
which plays no role here) of the region of the spectral densities
dominated by the stochastic noise, typically for ω > 0.1. Fitting
the power spectra from ω = 0.1 to ω = 30, we get that the
parameter a is zero within the experimental uncertainty at the
1σ -level for all subjects except 1-1, 1-3, and 2-3, where a vanishes
at the 2σ -level. In all cases, the best-fit value of a is very close to
zero, at least in one part over one hundred. Therefore, all subjects
of both groups display white noise.

Note that the spectral analysis of the noise signal occurs in a
frequency region unaffected by whether the background model is
RW or the oscillatory one (Equations 4 and 8).

5.3.2. Harris et al. (2015) Experiment 2
Also for this experimental set the spectral noise function fit was
done from a minimal to a maximal frequency, with a given
sampling rate. The maximal frequency was chosen to be 60 Hz
because the time resolution of recorded data in Harris et al.

(2015) was of 16.6ms. As a lower frequency, we took 1Hz because
at frequencies lower than that the spectrum is dominated by
the learning curve (i.e., the spectrum becomes a deterministic
smooth curve at about ω < 0.5− 1 Hz for all subjects). Including
smaller frequencies would introduce artifacts. Also, trial lengths
do not extend beyond a certain value (18 s for the PR CSs and 58
s for the CR CSs), which puts a limit on how low the frequency
can be. A sampling rate of ω = 1/58 = 0.02 Hz for the trials
of up to 58s and ω = 1/18 = 0.05 Hz for trials up to 18s
was used.

The values of a of the noise best fits are all very small (see
Supplementary Material) and the conclusion is that noise is
white for all subjects at the 2 − 3σ -level. All groups show the
same noise in average.

5.4. Discussion
Having checked the presence of white noise in individual
subjects, we turn to the psychological interpretation of these
results. From a strictly behaviorist point of view, the question
of whether this noise comes from a naive sum over different
cognitive systems or arises as an emergent phenomenon is
immaterial. These data cannot tell us anything about either
alternative. However, we observe the same noise in all subjects
and this noise is white. The simplest explanation is that its
origin is statistical and implies no fundamental property of
the “rat mind.” If there were an underlying motor-cognitive
mechanism (naive interference or emergent phenomenon)
depending on the individual, on the task, and on the relevance
of the stimuli for the subject and its learning history, one
would see these differences in the noise trend. Although we
cannot exclude this possibility, our data do not yield support
to it. In particular, they exclude the cognitive function of
attention as the main responsible for colored noise. In fact,
the main processes involved in this Pavlovian experiment are
motor and attentional, and the only source of a colored
signal could come from attention alone (or its interference
with motor processes; idiosyncratic view) or as an emergent
phenomenon from the combination of attention and motor
processes (nomothetic view). The conclusion is that higher-
order cognitive functions, absent in this experiment but present
in those of human response, may be the main source of
colored noise.

Talking about response variability in the learning curve,
Gallistel et al. (2004) conjectured that data of conditioning
experiments might bear a trace of a colored noise. We do
not confirm this conjecture here and, on the other hand,
we also insist on the existence, at a significant confidence
level, of a learning asymptote, which was questioned by the
same authors.

We also stress that the cognitive-noise hypothesis is
descriptive but not predictive. To the best of our knowledge,
no explicit model of the “internal working of the mind”
predicting the observed diversity of noise spectra has been
proposed. In the Supplementary Material, we advance a
quantitative theory based on quantummechanics giving this type
of prediction.
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6. CONCLUSIONS

By assuming minimization of the action as a guiding principle,
we have constructed a new framework of models of Pavlovian
conditioning. The simplest of these models is a natural extension
of Rescorla–Wagner model with one cue (RW model in short).
Looking at data of two experiments, we saw that the oscillatory
classical model (8) with µ 6= 0 is favored over RW in 42% of
the experimental cases. The estimated dispersion of the session-
by-session individual data with respect to the theoretical curve is
about the same for the RW and DOMs in all the cases where the
latter is clearly favored. In all the other cases, the parameter µ

is close to zero and the RW model and its extension coincide.
Almost all (98%) data can be fitted successfully by the DOM,
which is an extension of the RW model, while RW alone can
account only for 56%. Onemaywonder whether this encouraging
outcome was due to the presence of oscillations per se rather than
for an intrinsic virtue of the newmodel. This is not the case, as we
checked in a separate publication (Calcagni et al., under review).

At a biological level, the explanation of why µ takes different
values in different subjects (for some, as we have seen, µ

is close to zero) might reside in individual differences in
brain configuration. Different dynamical adaptations of synaptic
connections during learning would give rise to a different
damping rate of the oscillations. Regardless of whether this
microscopic interpretation has a basis in reality or not, the least-
action principle states that learning is a naturally effective process
that minimizes the internal changes in the subject. These changes
are observable and can be quantified through the behavioral laws
stated here.

In parallel, using individual trial-by-trial data we have checked
for the presence of colored noise in the frequency spectrum of
the subjects’ response. We found no evidence of color and all
subjects showed a flat (white) noise spectrum. It is important
to stress the difference between the molecular and molar levels
of analysis we considered in this paper: the spectral analysis
probes response fluctuations at a much shorter time scale than
learning models, such as the RW model and the DOM. While
the first analysis relies on a purely stochastic pattern, the latter
works on a continuum or quasi-continuum. This means, in
practice, that short-scale deviations from the asymptote are pure
noise, while long-range deviations have, according to evidence,
an associative oscillatory nature. The DOM is not just a spurious
fit to the noisea.

The origin of this white noise can be simply statistical, but we
also considered two quantitative models accounting for it. One
is a descriptive model implementing stochastic fluctuations in
the subject’s individual response; speculations about the origin of
this noise may find inspiration in the “1/f α” cognitive literature,
albeit in that case there is established evidence of a colored
spectrum. The other model (see Supplementary Material) is
not only descriptive, but also predictive, and interprets response
variability as a manifestation of a process obeying the laws of
quantum mechanics. We tested the predictions of the theory
with data and we found agreement, although the error bars on
the estimates of the “Planck” constant h̄ are too conspicuous to
conclude that the model is correct.

Although data show that individual responses are far from
following the textbook smooth learning curve, they do not
show an “abrupt acquisition” phenomenon either, as sometimes
claimed in the literature (see Gür et al., 2018, and references
therein). Some subjects do show something that could be
described as an abrupt acquisition, but response variability is
too large throughout the experiment to make this conclusion
meaningful when, to put it simply, a sharp initial rise in
response is yet another random fluctuation around the ideal
average curve (see Figures S4, S6). Precisely for the same reason,
although it is true that traditional associative models do not
predict abrupt chances in behavior, our findings do not support
representational or model-based models either (Gür et al., 2018).
Response variability is so fine grained that its random, nowhere-
differentiable nature is, in our opinion, unquestionable. We have
offered two interpretations about these behavioral fluctuations,
stochastic (from cognitive noise component in the underlying
model) or quantum (from a model affected by quantum
uncertainties). Both cases go beyond standard associationism,
but are based on it nevertheless: associative learning still is an
adequate description of averaged data.

Regarding replicability and applicability, since all the models
we have presented in the main text of this paper are foundational
extensions of the simplest conditioning process involving simple
associations between stimuli and responses, it may not be
necessary to conduct ad hoc experiments to test their validity.
The long-range oscillations of the dynamical model, the spectral
properties of response variations, and all the main features the
quantummodel can be checked in any experiment, past or future,
that had a sufficient number of sessions (in the case of the
dynamical model) or trials (in the case of the stochastic noise
and of the quantum model) and whose design induced a simple
conditioning process. In general, the condition of having many
sessions is much more restrictive than that of having many trials,
but it is not necessary to take or make experiments as lengthy as
ours. Eventually, what one is looking for is cumulative evidence,
and that is achievable with enough experiments of moderate
length. We made the point in this paper by reanalyzing the
data of an experiment first presented by Harris et al. (2015).
Moreover, our models may obtain confirmation or be ruled out
by extant or future data not only about Pavlovian conditioning,
but also from the operant conditioning literature. In the second
case, one invokes the possibility that associative models can also
describe operant behavior (Killeen and Nevin, 2018). In the
first case, the generality of the construction of learning models
as dynamical models and the psychological interpretation put
forward in section 4.2 make us believe that they can both be
extended to other Pavlovian conditioning paradigms, such as
eyeblink conditioning, where the average learning pattern may
differ from the RW curve. The main point is not only that
recasting a learning model as a dynamical model should always
be possible, but that in doing so one can discover interesting
modifications dictated by the naturalness argument (absence of
fine tuning), such as the introduction of a new parameter µ in
the DOMcase. An oscillatory behaviormay ormay not arise from
this construction, but this is something to be checked a posteriori,
not imposed by hand.
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