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In teaching statistics in secondary schools and at university, two visualizations are
primarily used when situations with two dichotomous characteristics are represented:
2 x 2 tables and tree diagrams. Both visualizations can be depicted either with
probabilities or with frequencies. Visualizations with frequencies have been shown
to help students significantly more in Bayesian reasoning problems than probability
visualizations do. Because tree diagrams or double-trees (which are largely unknown
in school) are node-branch structures, these two visualizations (in contrast to the 2 x 2
table) can even simultaneously display probabilities on branches and frequencies inside
the nodes. This is a teaching advantage as it allows the frequency concept to be
used to better understand probabilities. However, 2 x 2 tables and (double-)trees
have a decisive disadvantage: While joint probabilities [e.g., P(ANB)] are represented
in 2 x 2 tables but no conditional probabilities [e.g., P(AIB)], it is exactly the other
way around with (double-)trees. Therefore, a visualization that is equally suitable for
the representation of joint probabilities and conditional probabilities is desirable. In
this article, we present a new visualization—the frequency net—in which all absolute
frequencies and all types of probabilities can be depicted. In addition to a detailed
theoretical analysis of the frequency net, we report the results of a study with 249
university students that shows that “net diagrams” can improve reasoning without
previous instruction to a similar extent as 2 x 2 tables and double-trees. Regarding
questions about conditional probabilities, frequency visualizations (2 x 2 table, double-
tree, or net diagram with absolute frequencies) are consistently superior to probability
visualizations, and the frequency net performs as well as the frequency double-tree.
Only the 2 x 2 table with frequencies—the one visualization that participants were
already familiar with—led to higher performance rates. If, on the other hand, a question
about a joint probability had to be answered, all implemented visualizations clearly
supported participants’ performance, but no uniform format effect becomes visible.
Here, participants reached the highest performance in the versions with probability
2 x 2 tables and probability net diagrams. Furthermore, after conducting a detailed
error analysis, we report interesting error shifts between the two information formats
and the different visualizations and give recommendations for teaching probability.
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INTRODUCTION

Experimental cognitive psychology research on the effects of
natural frequencies and visualizations focuses primarily on
conditional probabilities, especially on Bayesian tasks like the
famous mammography problem and similar cognitive illusions
like the Monty Hall problem (Kahneman et al., 1982; Gigerenzer
and Hoffrage, 1995; Goodie and Fantino, 1996; Hoffrage et al,,
2000; Krauss and Wang, 2003; Barbey and Sloman, 2007;
Spiegelhalter et al., 2011; Baratgin, 2015; Operskalski and Barbey,
2016; McDowell and Jacobs, 2017).

However, conditional probability tasks, and especially
Bayesian tasks are only one aspect of teaching probability at
secondary schools and university. Tasks on joint probabilities also
play an important role in stochastic education, as they contribute
significantly to the general understanding of probabilities (see,
e.g., Pfannkuch and Budgett, 2017). In this article, we seek to
broaden the field of natural frequencies and visualizations in
Bayesian reasoning to questions about joint probabilities and to
that end present a new visualization that is equally suitable for
both types of probabilities.

In the teaching of statistics at secondary school and university
level, two visualizations are primarily used when situations
with two dichotomous characteristics are represented: 2 x 2
tables and tree diagrams. Both visualizations can be depicted
with probabilities or with frequencies. Visualizations with
frequencies have been shown to help students significantly
more than probability visualizations in Bayesian reasoning
problems (Binder et al, 2015, 2018). Tree diagrams and
their extensions to double-trees can even display both
information formats simultaneously, which is an advantage
from a pedagogical point of view.

However, 2 x 2 tables and (double-)trees each have a decisive
disadvantage with respect to the probability representation:
While in 2 x 2 tables, aside from marginal probabilities, only joint
probabilities [e.g., P(ANB)] are represented but no conditional
probabilities [e.g., P(A|B)], (double-)trees present conditional
probabilities but no joint probabilities. Although it is possible
to see joint probabilities in the double-tree with frequencies by
skipping a level and reading “160 of 10,000, there is no branch
provided to display the corresponding joint probabilities directly,
which has disadvantages from an educational point of view (the
same holds true for 2 x 2 tables).

In this article we present a new visualization—the frequency
net (also a node-branch structure)—in which all frequencies
as well as all probabilities can be depicted simultaneously. In
section “The Frequency Net and Net Diagrams” a detailed
theoretical analysis of this new visualization is presented.
Furthermore, we will report results of an empirical study on this
visualization, conducted with 249 university students, in which
we systematically varied the information format (probabilities vs.
frequencies) and the visualization (no visualization, 2 x 2 table,
double-tree, or frequency net) of the task. In addition to the
typical questions for conditional probabilities, we also asked joint
probability questions. Finally, a systematic analysis of the typical
errors that occurred is presented—separately for information
format, visualization and inference type.

VISUALIZATIONS OF STATISTICAL
INFORMATION

Conditional Probabilities and Bayesian

Reasoning

Many professionals, like medical doctors and judges in
court have to make important decisions based on statistical
information. Often, Bayesian inferences are necessary
for such decision-making processes, for example when a
radiologist has to assess and communicate the statistical
meaning of, for instance, a positive mammography
screening. Many empirical studies have documented faulty
inferences and even cognitive illusions among professionals
of wvarious disciplines, like physicians (Hoffrage and
Gigerenzer, 1998; Garcia-Retamero and Hoffrage, 2013),
those in the legal profession (Hoffrage et al., 2000), and
managers (Hoffrage et al, 2015a), as well as secondary or
university students (Ellis et al, 2014; Binder et al, 2015;
Bocherer-Linder and Eichler, 2019).

Consider, for instance, the mammography problem, in
which the prevalence of the disease has to be linked with
the sensitivity and the false-positive rate for a mammogram
in order to determine the probability that a woman with a
positive mammogram actually has breast cancer (adapted from
Eddy, 1982; see also Gigerenzer and Hoffrage, 1995; Siegrist
and Keller, 2011; Micallef et al., 2012; Garcia-Retamero and
Hoffrage, 2013; the numbers given below were adjusted in such
a way that the positive predictive value corresponds to the
one from the current German mammography screening report,
Kooperationsgemeinschaft Mammographie, 2018).

Mammography Problem - Probability Format

The probability of breast cancer is 2% for a woman of a
particular age group who participates in a routine screening.
If a woman who participates in a routine screening has breast
cancet, the probability is 80% that she will have a positive
mammogram. If a woman who participates in a routine
screening does not have breast cancer, the probability is 10%
that she will have a false-positive mammogram.

What is the probability that a woman of this age group
who participates in a routine screening and has a positive
mammogram actually has breast cancer?

The correct solution can be determined using Bayes’ formula
and is about 14%. However, most people in reality estimate
such (a posteriori) probabilities to be much higher (Eddy,
1982; Hoffrage and Gigerenzer, 1998). In the last 25 year, to
help prevent that kind of dangerous misjudgment, research
has intensively examined the concept of natural frequencies in
Bayesian reasoning problems, both theoretically and empirically
(Gigerenzer and Hoffrage, 1995; Hoffrage and Gigerenzer, 1998;
McDowell and Jacobs, 2017; McDowell et al., 2018). These studies
have shown that many more people are able to answer this type
of question if all statistical information is presented using natural
frequencies rather than confusing probabilities:

Frontiers in Psychology | www.frontiersin.org

May 2020 | Volume 11 | Article 750


https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

Binder et al.

The Frequency Net

Mammography Problem - Natural Frequency Format
200 out of 10,000 women of a particular age group who
participate in a routine screening have breast cancer. 160 out
of 200 women who participate in a routine screening and have
breast cancer will have a positive mammogram. 980 out of
9,800 women who participate in a routine screening and have
no breast cancer will have a false-positive mammogram.

How many of the women of this age group who participate in a
routine screening and receive positive mammograms actually
have breast cancer?

This mode of representation makes it possible to imagine
concrete persons, the nested-set relations get transparent, and
thus the solution algorithm becomes simpler. Now it is easy
to see that 160 + 980 women receive positive mammograms
and only 160 out of these 1,140 women actually have breast
cancer. A recent meta-analysis by McDowell and Jacobs (2017)
summarized 35 studies that implemented natural frequencies and
found an average performance in natural frequency versions of
Bayesian reasoning problems of about 24%, compared to only 4%
in studies that used probability versions (for details see McDowell
and Jacobs, 2017).

Another strategy for improving Bayesian reasoning is using
visualizations such as 2 x 2 tables (Steckelberg et al., 2004;
Binder et al., 2015), tree diagrams (Sedlmeier and Gigerenzer,
2001; Yamagishi, 2003; Steckelberg et al., 2004; Binder et al,
2015; Budgett et al, 2016; Reani et al., 2018), double-trees
(Wassner, 2004; Khan et al., 2015; Bocherer-Linder and Eichler,
2019), Euler diagrams (Sloman et al., 2003; Micallef et al., 2012;
Sirota et al.,, 2014; Reani et al., 2018), roulette-wheel diagrams
(Yamagishi, 2003; Brase, 2014), frequency grids (Cosmides
and Tooby, 1996; Sedlmeier and Gigerenzer, 2001; Garcia-
Retamero et al, 2015), Eikosograms (sometimes also called
unit squares or mosaic plots; e.g., Oldford and Cherry, 20065
Bocherer-Linder and Eichler, 2017; Pfannkuch and Budgett,
2017; Talboy and Schneider, 2017), or icon arrays (Zikmund-
Fisher et al., 2014; Brase, 2008, 2014; Reani et al., 2018). Since
the visualization of statistical information is as successful as
the natural frequency strategy (McDowell and Jacobs, 2017),
there have also been efforts in recent times to develop new
visualizations with specific advantages, such as the dot diagram
(which is a hybrid visualization of a 2 x 2 table, an Euler
diagram, and an icon array; Wu et al., 2017) the turtleback
diagram (Yan and Davis, 2018), or interactive diagrams like
pachinkograms (Budgett and Pfannkuch, 2019; Starns et al.,
2019). For an overview of typical visualizations for situations
with two dichotomous characteristics, see Spiegelhalter et al.
(2011), or Binder et al. (2015), and for a classification of
typical visualizations used for branching, nested-set relation, or
frequency, see Khan et al. (2015).

Note that 2 x 2 tables, tree diagrams, and double-trees all
have the advantage that they can be constructed easily with
paper and pencil by teachers or students. In contrast, most
of the other diagrams mentioned above are complicated to
produce, which is especially problematic when base rates are
extreme (as in typical medical Bayesian reasoning problems).

Area-proportional Euler diagrams, for instance, are unsuitable
for teaching because drawing such illustrations is geometrically
difficult. In the Eikosogram, areas can become so small that they
can almost no longer be effectively represented in the diagram
(if the base rate is very small). Similarly, the icon array is
based on small symbols instead of geometrical areas, and thus
many symbols have to be produced in the case of small or
unmanageable proportions (such as 0.1%), entailing an enormous
amount of effort to draw, for instance, 1,000 or even in some cases
10,000 small icons. Therefore the focus of this article is on 2 x 2
tables, tree diagrams, and double-trees, which are displayed in
Figure 1.

Furthermore, these three visualizations usually display
the statistical information explicitly as numbers. In these
visualizations, the statistical information can be expressed
either as probabilities or as absolute frequencies (see, e.g.,
Figure 1) but only in (double-)trees can both formats be
displayed simultaneously.

However, from an educator’s point of view, it would be
helpful if a visualization could display both absolute frequencies
and probabilities simultaneously because this would allow one
to switch representations instantly and to see the meaning
of marginal probabilities, conditional probabilities, or joint
probabilities in terms of intuitive absolute frequencies that
could be combined to natural frequencies (e.g., “160 out of
2007). Yet only in node-branch structures like tree diagrams
and double-trees—but not in 2 x 2 tables—can absolute
frequencies and probabilities be displayed at the same time
(see, e.g., “branching” Khan et al, 2015). Note that these
visualizations are especially helpful when they contain absolute
frequencies rather than probabilities (e.g., Binder et al., 2015;
Bruckmaier et al., 2019).

From Bayesian Reasoning to Other
Statistical Judgments: Teaching
Probability in Secondary School and
University

In teaching probability and statistics at secondary school
level, Bayesian tasks are only one of a number of probability
tasks covered. In fact, there are 16 different probabilities
in a situation with two dichotomous events (A and B):
Four marginal probabilities [P(A), P(A), P(B), P(B)], four
joint probabilities [P(ANB), P(ANB), P(ANB), P(ANB)],
and eight conditional probabilities [P(A|B), P(A|B),
P(A|B), P(A|B), P(B|A), P(B|A), P(B|A), P(B|A)]. Thus
far, research on the effect of natural frequencies and
visualizations predominantly focuses on the notoriously
difficult Bayesian conditional probabilities (for exceptions,
see Bocherer-Linder and Eichler, 2017; Bruckmaier et al,
2019) due to their impact for important real-world
decisions in many domains (see, e.g., Hoffrage et al., 2000;
Operskalski and Barbey, 2016).

However, judgment errors with severe consequences can
also occur in connection with joint probabilities, for example
in association with the difficult concept of independence
of events such as occurred in the famous trial of Sally

Frontiers in Psychology | www.frontiersin.org

May 2020 | Volume 11 | Article 750


https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

The Frequency Net

Binder et al.
format o )
probabilities frequencies
visu-
alization
have breast |have no breast have breast |have no breast
cancer cancer cancer cancer
[0} receive a receive a
e positive 1.6% 9.8% 11.4% positive 160 980 1,140
i) mammogram mammogram
(;I receive a receive a
N negative 0.4% 88.2% |88.6% negative 40 8,820 8,860
mammogram mammogram
2% 98% 100% 200 9,800 10,000
10,000
women
98%
&
’5-, have breast have no breast o 2%0 ¢ h 9’808 "
& cancer ( cancer (nB) ave breas ave no breas!
5 cancer (B) cancer (nB)
0 o"/’/ \ 0% 10% / \o%
S

[B and T+] [B and T—] [nB and T+] [nB and T—J

160 40 980 8,820
B and T+ B and T— nBand T+| |nB and T—

10,000
women

have breast
cancer (B)

J |

80"/’./ \20% 10‘7/

200 9,800
have no breast ’
cancer (nB) J [ have breast ] [ have no breast J
cancer ( cancer (nB)
\30% / \ / \

[B and T+ [ B and T—] [nB and T+] nB and T-

160 980 8,820
B and T+ B and T- nBand T+| |nB and T—

double-tree

14";\

M% /;)9.5%

\ /

receive a posmv
mammogram (T+)

) {

receive a negativ 1,140 8,860
mammogram (T-) receive a positiv receive a negativ

mammogram (T+) mammogram (T-)

11.4% 88.6%

10,000
women

FIGURE 1| 2 x 2 tables, tree diagrams, and double-trees (left in probabilities, right in frequencies) for the mammography problem.

Clark (see, e.g., Schneps and Colmez, 2013; Barker, 2017;
In this trial, Sally Clark was charged with
murdering her two infant sons, who had actually died of
sudden infant death syndrome (SIDS). The court expert

Jessop, 2018).

Roy Meadow made two probabilistic judgment errors here:
(1) The court committed the typical “prosecutor’s fallacy”
(Hill, 2004), which again is based on misinterpretation of
conditional probabilities; and (2) Meadows calculation was
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based on the assumption that two SIDS within a family
are stochastically independent, which is not the case. Thus,
because of their mathematical value as well as because of their
practical relevance, the typical (Bayesian) inverted conditional
probabilities should be examined, but—importantly—also joint
probabilities, especially when it comes to the visualization of
these probabilities.

Table 1 shows four potential advantageous features of
visualizations in situations with two dichotomous events: (1)
The possibility to display all four joint probabilities directly,
(2) the possibility to display all eight conditional probabilities,
(3) the possibility to display probabilities and frequencies
simultaneously (then it is possible to understand probabilities
with the help of frequencies), and (4) the possibility for
both reading directions to be represented at the same time.
Therefore, Table 1 shows the suitability of 2 x 2 tables,
trees, and double-trees for visualizing those 16 probabilities
that can occur in situations with two dichotomous events
[besides P(Q) and P(@)]. This results in a disadvantage for
teaching mathematics: Either the students learn to always
select the appropriate visualization for each task, or they
have to accept the fact that they sometimes first have to
perform an extra calculation before the visualization can
be completed (for a detailed explanation, see Binder et al.,
under review). If, for example, only joint probabilities are
given in a task, these probabilities cannot be written directly
into the double-tree—because in double-trees, no branch is
available for depicting joint probabilities. In this case, the
joint probabilities must be converted in a previous calculation
into conditional probabilities, which can then be displayed in
the (double-)tree.

Furthermore, as mentioned above, the double-tree as a node-
branch structure has one feature that might be an advantage
for teaching—compared to the 2 x 2 table—because it can
represent probabilities as well as frequencies, including their
mutual relations at the same time. In contrast to what one sees in
“basic” tree diagrams, both reading directions are simultaneously
evident in double-trees. However, even the advantageous double-
tree has three disadvantages:

e Missing joint probabilities: There are no branches on which
the (four) joint probabilities can be directly depicted. If such
branches are added, the diagram becomes cumbersome.

e Crossing branches: Two branches overlap in the lower
part of the double-tree. This may be problematic for
learners, since it carries the risk of confusing the
conditional probabilities that are positioned on the two
crossing branches.

_ P(B|A) P(B|A)
|ANB| JAl AN B|
v, I
_ < P(AnB) PANB) .-
P(A|B) P(A) P(A|B)
_ P(B) P(B)
IBI 1l IBI
P& | B PANB). -  P@AnB A
(A|B) ( /2 P(A) \(\ ) P(A|B)
. v .
V3 o _ Y

_ P(B|A) - P(B|A) —

IANBJ |1A] |ANB|
FIGURE 2 | Schematic net diagram for two abstract events A and B and their
counter-events A and B, representing four marginal probabilities, four joint
probabilities, and eight conditional probabilities.

e Doubled node: One of the nodes of the double-tree appears
twice—namely the one that represents the total sample (e.g.,
10,000 women).

The Frequency Net and Net Diagrams

This article presents a novel visualization that enables the four
marginal probabilities, all four joint probabilities, and all eight
conditional probabilities to be taken in at a glance: the frequency
net. Figure 2 shows a schematic net diagram for two abstract
events A and B, and their respective counter-events A and
B. Moreover, in Figure 3, net diagrams (with probabilities,
absolute frequencies, and both information formats) concerning
the mammography problem are displayed. For a visualization
coming close to our frequency net, yet without including joint
probabilities (or corresponding branches), see Soto-Andrade
(2019), and for a similar schematic visualization without joint
probabilities or any numbers, see Wikipedia (without date)'.

It has to be noted that absolute frequencies and probabilities
can be displayed simultaneously in net diagrams (see Figure 3,
below). Therefore the frequency net, consisting of a node-
branch structure, is an enhancement of a double-tree. As in
the double-tree, all four marginal probabilities and all eight
conditional probabilities can be depicted. In addition and in
contrast to the double-tree, the net diagram has four branches
for the joint probabilities. Furthermore, and also in contrast to

Thttps://commons.wikimedia.org/wiki/File:Bayes%27_Theorem_2D.svg

TABLE 1 | Advantages and disadvantages of 2 x 2 tables, trees, double-trees, and net diagrams.

Advantage 2 x 2 table Tree diagram Double-tree Net diagram
Al joint probabilities can be displayed directly v v
All conditional probabilities can be displayed directly (Only 4 out of 8) v v
Probabilities and frequencies can be presented simultaneously v v v
Both “reading directions” are equally evident v v v
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90% 9,800 980
have no breast nB and T+
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FIGURE 3 | Net diagram with probabilities (top), frequencies (middle), or both information formats simultaneously for the mammography problem.
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A Net diagram with highlighted tree A

_ P(B|A P(B| A
A A

\ X
\\p(A N B) P(ANn B)/
P(A|B) .

P(A|B)

€ Net diagram with highlighted
frequency 2x2 table

P(B|A) T

-

A

P(A|B)

FIGURE 4 | Both possible tree diagrams and the 2 x 2 table are included in the net diagram. (A) Net diagram with highlighted tree A; (B) Net diagram with
highlighted tree B; (C) Net diagram with highlighted frequency 2 x 2 table; (D) Net diagram with highlighted probability 2 x 2 table.

B Net diagram with highlighted tree B

D Net diagram with highlighted
probability 2x2 table

P(A|B)

P@A) | PANB)
\x |
PB|A) [ _
» |ANnB|

P(A|B) P(ANB)
y x/ o
‘ _ _| PpBIA) _
|A Bl |« 1Al

the double-tree, no branches cross each other, and none of the
nodes appears twice.

The frequency net can also be seen as a hybrid version of a
tree diagram combined with a 2 x 2 table: On the one hand,
the frequency net consists of two tree diagrams that have been
carefully placed one on top of the other (see Figures 4A,B; the
two possible tree diagrams are also represented in a double-tree).
On the other hand, the frequency 2 x 2 table is included in
the four corner nodes (Figure 4C) of the net diagram, and the
probability 2 x 2 table is included on the four branches for the
corresponding joint probabilities (Figure 4D).

In the middle node of the net diagram (Figure 2), an
(imaginary) sample size is displayed to which all further statistical
information refers. First, the four marginal probabilities can

be found from the middle node horizontally and vertically:
P(A), P(B), P(A) and P(B). Second, the joint probabilities are
plotted diagonally from the middle node to the corner nodes:
P(ANB), P(ANB), P(ANB), P(ANB). Finally, the eight conditional
probabilities are found at the borderlines of the net diagram:
P(A|B), P(A|B), P(A|B), P(A|B), P(B|A), P(B|A), P(B|A), and
P(B|A).

Note that in the net diagram, the following four probability
rules apply, which are described separately in detail for
probabilities and frequencies in Binder et al. (under review):

e Line rule: The sum of probabilities on opposing horizontal
or vertical branches, both starting from the middle
node is always 1.
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TABLE 2 | Correct solution and typical incorrect Bayesian strategies with regard to the correct solution “F out of D” in a typical Bayesian reasoning task (according
to Gigerenzer and Hoffrage, 1995; Steckelberg et al., 2004; Zhu and Gigerenzer, 2006; Dias and Batanero, 2009; Eichler and Bécherer-Linder, 2018;

Bruckmaier et al., 2019).

Probabilities (with b, c, d, etc.)

Frequencies (with A, B, C, etc.)

Correct solution (Bayesian)
Incorrect Algorithm (Non-Bayesian)
Joint occurrence (Gigerenzer and Hoffrage, 1995)

Fisherian/Representative thinking/Transposed conditional (Gigerenzer and
Hoffrage, 1995; Zhu and Gigerenzer, 2006; Dias and Batanero, 2009)

Base rate only/Conservatism (Gigerenzer and Hoffrage, 1995; Zhu and
Gigerenzer, 2006)

Evidence only (Zhu and Gigerenzer, 2006)

Likelihood substraction (Gigerenzer and Hoffrage, 1995)

Pre-Bayes (Steckelberg et al., 2004; Zhu and Gigerenzer, 2006)

k = f/d = b-/(b] + m-c)

f=bj=dk
j=f/o

d=f+g=bj+cm
j-m=f/b-g/c
Not applicable

Fout of D = F out of (F + G)

F out of A
F out of B

B out of A

Dout of A= (F + G) out of A
(F out of B) - (G out of C)

B out of D = B out of (F + G)
Not applicable

Correct positive rate/false positive rate (Steckelberg et al., 2004) i/m
format . .
probabilities frequencies
visu-
alization
Q@
o f g F G
N
& i h I H
b . B C
)
o
)
<)
=)
o
o
=
S
>
8
kel
©
c
FIGURE 5 | Schematic representation of 2 x 2 tables, double-trees, and net diagrams (left in probabilities, right in frequencies).

o Triangle rule é multiplication rule in the tree diagram): If
you multiply the probabilities of the two “legs” in the eight
elementary right-angled triangles, you get the probability

displayed on the dashed hypotenuses.

o V-rule (é addition rule in the tree diagram): The sum
of the probabilities of two adjoining diagonal (dashed)
branches always equals the probability that is displayed on
the enclosed branch [e.g., P(ANB) + P(ANB) = P(A)].
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e X-rule: The probabilities on all four diagonal branches
added together result in 1.

Since we present in our results not only the performance of
participants but also an analysis of their errors, we will consider in
the next section prior research results concerning error analyses
in Bayesian reasoning.

Typical Errors in Bayesian Reasoning

and Typical Errors With 2 x 2 Tables

Typical Errors in Bayesian Reasoning

From an educational point of view, it seems obvious to examine
participants’ performance in relation to different information
formats or visualizations. Equally interesting, however, is
analyzing the reasons why participants were not able to solve
a given task. In fact, many statistics educators, and also the
psychologist McDowell and the statistician Jacobs, stress the
importance of examining erroneous cognitive algorithms in
Bayesian reasoning (McDowell and Jacobs, 2017). Weber et al.
(2018), for example, found that many people who could not solve
Bayesian reasoning tasks in the natural frequency format had first
converted the statistical information back into probabilities and
then subsequently failed in solving the task correctly. Lehner and
Reiss (2018); Reani et al. (2018), and Bruckmaier et al. (2019)
examined decision-making strategies (e.g., in contingency tables)
with the help of eye-tracking analysis and found that eye-tracking
is a useful method for investigating correct and incorrect solution
algorithms, based on certain probability visualizations.

However, the demanding effort that an eye-tracking study
involves is not always necessary. In many cases, the tasks can
be constructed in such a way that the wrong solution itself
already makes the faulty solution algorithm apparent. Along
these lines, Gigerenzer and Hoffrage (1995) classified the wrong
answers given by participants in “write-aloud protocols” and
identified typical wrong answers in pure text versions of Bayesian
tasks (see Table 2; compare also Eichler et al., under review;
Steckelberg et al., 2004; Zhu and Gigerenzer, 2006; Dias and
Batanero, 2009; Eichler and Bocherer-Linder, 2018; Bruckmaier
et al,, 2019). Table 2 summarizes the few existing classifications
of incorrect Bayesian reasoning strategies. While Gigerenzer and
Hoffrage (1995) describe the typical erroneous strategies based
on probabilities, Zhu and Gigerenzer (2006) and Eichler and
Bocherer-Linder (2018) choose an explanatory approach based
on frequencies. Bruckmaier et al. (2019), however, merge these
two types of error presentation.

It has to be noted that the research findings obtained
thus far are also consistent with the alignment hypothesis:
Some presentations of statistical information create “a better
alignment between presented and requested relationships, and
this should facilitate the comprehension of the requested
ratio beyond the represented quantities” (Tubau et al., 2019,
p. 1808; see also Johnson and Tubau, 2017). One common
error in the text-only version of Bayesian reasoning problems
is the Fisherian. In a frequency version, this error occurs
because participants are mapping presented numbers onto
the requested ratio without a proper comprehension of the
relevant relationships.

To this date, there has only been limited research on how error
patterns shift when (1) the information format is changed, and (2)
an additional visualization is shown. Such results are still lacking,
especially with regard to non-Bayesian questions such as the one
for joint probabilities. However, it has been understood since
Gigerenzer and Hoffrage (1995) that in the pure text versions of
Bayesian tasks, the errors joint occurrence and Fisherian are to be
expected in both information formats. Furthermore, Bruckmaier
et al. (2019) found evidence in an eye-tracking study that the
joint-occurrence error appears more frequently in a probability
2 x 2 table than in a frequency 2 x 2 table. All errors of
Table 2 are related to the notation that is shown in Figure 5
(uppercase letters stand for absolute frequencies while lowercase
letters represent probabilities, see also Bruckmaier et al., 2019).

Typical Errors With 2 x 2 Tables

Besides the above-mentioned studies on typical errors in Bayesian
reasoning, there are several studies on typical errors and strategies
regarding non-Bayesian judgments made with the use of a2 x 2
table, for instance depending on different developmental stages
in childhood (Batanero et al., 1994; Lehner and Reiss, 2018).
Most of these studies focus on situations in which the proportion
“F out of D” has to be compared with “I out of E” in 2 x 2
tables with frequencies (e.g., “Which one is larger?”). While
there are several correct multiplicative strategies for solving this
task (McKenzie, 1994), there are also various additive strategies
that generally do not correspond to valid modeling of the
situation and therefore can lead to misjudgments (Shaklee and
Hall, 1983; Ufer et al., 2011; Lehner and Reiss, 2018). The
present article, however, focuses on “simpler” inferences than
the one just described. Instead of those complex comparisons
of two different distributions, fewer mental steps are required
for answering the questions in the present empirical study. The
studies mentioned above are more about “read beyond the data,”
whereas the present study is more about “read between the
data” (Curcio, 1989). To the best of our knowledge, there are
no comprehensive studies concerning typical difficulties in the
simple act of choosing a number or a piece of information or even
making simple inferences from a 2 x 2 table (for a study on the
subject, albeit with only a few participants, see Bruckmaier et al.,
2019). Furthermore, there are no studies on the efficiency of the
frequency net thus far.

RESEARCH QUESTIONS

The main goal of the present study is to examine empirically
whether the net diagram can already be understood intuitively by
participants without any prior explanation. We will explore the
following research questions regarding the new visualization.
Research question 1:

Depending on the information format (probabilities vs.
frequencies), what effect do various visualizations (text only vs.
2 x 2 table vs. double-tree vs. net diagram) have on the ability of
participants to solve a

a) conditional probability task?
b) joint probability task?
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With respect to (a), we expect that all visualizations depicted
with frequencies will have a positive effect on participants’
performance. Since 2 X 2 tables are taught in secondary school (in
Germany) but double-trees and net diagrams are not, this study
cannot deliver a fair direct comparison of these visualizations.
Rather, this study is intended to test the hypothesis that the
net diagram—although structurally completely unknown—is
already as supportive to participant understanding as the other
two visualizations.

Since no previous research results are available on question
(b), it is rather explorative in nature. However, due to the frequent
confusion of conditional probabilities with joint probabilities
in typical Bayesian reasoning problems, we expect the opposite
confusion to occur regarding the question for joint probabilities
and assume that some participants will answer this question
erroneously with a conditional probability.

Research question 2:

What is the effect of all three visualizations—again depending
on information format—on specific errors that typically appear
when asking for

a) conditional probability?
b) joint probability?

Do certain visualizations prevent or provoke specific errors?
Since Bruckmaier et al. (2019) have already found, in an
eye-tracking study with 24 participants, first indications that
the 2 x 2 table with probabilities, for example, provokes
the joint-occurrence error, we would like to examine this
hypothesis in particular.

We also expect to find other erroneous strategies than those
typical mistakes reported thus far because the presentation of a
(fully completed) 2 x 2 table, a double-tree, or a net diagram
show more statistical information than a tree diagram or purely
textual Bayesian tasks, and therefore makes other typical error
patterns possible.

EMPIRICAL STUDY

Design
In a paper-and-pencil questionnaire, participants were presented
with two situations that are typical for Bayesian reasoning
problems, the mammography problem and a short version of
the economics problem (Ajzen, 1977; for problem formulations,
see Table 5). The statistical information was either given in the
structure of a typical Bayesian task (i.e., base rate, sensitivity,
and false-alarm rate), or within a visualization (without any
additional text provided with the statistical information). The
presented diagrams were completely filled with numbers (either
with frequencies or with probabilities). Therefore, in most cases,
participants simply had to choose the correct number/pair of
numbers, and no genuine inference was necessary (see Table 4).
The design of the study (see Table 3) includes two factors of
interest (visualization and format of information) and one factor
that was not of interest (context), resulting in a 4 x 2 x 2 design:

e Factor 1: Visualization: Bayesian text vs. 2 x 2 table vs.
double-tree vs. net diagram.

e Factor 2: Format of information:
frequencies.

e Factor 3: Context: mammography problem vs. economics
problem (not a factor of interest).

probabilities  vs.

Each participant received one of the two problem contexts
with probabilities and the other with frequencies. In that
way, the order of context and information format was varied
systematically. Furthermore, if, for instance, in one of the two
problems a 2 x 2 table was displayed, in the other problem
either no visualization, a double-tree, or a net diagram was
presented. Note that in the versions with visualizations, the text
with the statistical information was not presented additionally,
so that participants had to use the visualization. A former
study showed no effect on participants’ performance whether
one provides the text with an additional visualization or not
(Binder et al., 2018). Because with the text version it is only
possible to formulate text with either conditional probabilities
or joint probabilities (compare standard menu vs. short menu
in Gigerenzer and Hoffrage, 1995), we decided to provide only
“Bayesian text versions” (i.e., no text with joint probabilities),
which is more in line with previous research. The amount of
information given is therefore different in each version: Each of
the Bayesian text versions consists of three pieces of information,
but note that the three pieces of information in the natural
frequency version are composed of five absolute frequencies. The
net diagram used in our study displayed all 16 probabilities in the
probability version (see Figure 3, above), or all 9 frequencies in
the frequency version (see Figure 3, middle). In the frequency
2 x 2 table, frequency double-tree, and frequency net all nine
absolute frequencies are displayed. Whereas the probability
2 x 2 table shows only joint probabilities (in addition to
marginal probabilities), the double-tree displays only conditional
probabilities (in addition to marginal probabilities). However,
with the net diagram implemented in our study, one can see all
16 probabilities at a glance.

In Table 3 the design of the study is illustrated, resulting in 16
implemented versions, and in Table 5 the corresponding problem
formulations are denoted. In each of the 16 versions, two different

TABLE 3 | Design of the 16 tested problem versions.

Context

Mammography problem Economics problem

o Bayesian text
e 2 x 2 table
e double-tree
e net diagram

e Bayesian text
e 2 x 2 table
e double-tree
e net diagram

Probabilities

e Bayesian text
e 2 x 2 table
e double-tree
e net diagram

e Bayesian text
e 2 x 2 table
o double-tree
e net diagram

Information format

Frequencies

Two questions were asked for each of the 16 versions: The first question addressed
a conditional probability and the second question addressed a joint probability.
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TABLE 4 | Mental steps that are necessary for answering each question.

Required for answering

Visualization

Question for a conditional probability/frequency

Question for a joint probability/frequency

Bayesian text
2 x 2 table
double-tree

Probabilities

net diagram

Genuine inference necessary
Genuine inference necessary
Choose a number (probability)
Choose a number (probability)

Genuine inference necessary
Choose a number (probability)
Genuine inference necessary
Choose a number (probability)

Bayesian text
i 2 x 2 table
Frequencies
double-tree

net diagram

Genuine inference necessary

Choose a pair of numbers (frequencies)
Choose a pair of numbers (frequencies)
Choose a pair of numbers (frequencies)

Genuine inference necessary

Choose a pair of numbers (frequencies)
Choose a pair of numbers (frequencies)
Choose a pair of numbers (frequencies)

questions were asked: The first question addressed a conditional
probability and the second question addressed a joint probability.

Note that in contrast to many other studies, our tasks
do not require a genuine inference and thus fewer mental
steps are required (with the exception of the Bayesian text
versions; compare Ayal and Bayth Marom, 2014). Since
the visualizations already provide a good deal of statistical
information, in many cases only the matching number(s)
has (have) to be chosen from the visualization (i.e., in the
one case the requested probability and in the other case
the two absolute frequencies that form the corresponding
natural frequency). In the following we will only speak of
something as a genuine inference if it was not enough simply
to select one or two numbers but instead was necessary
to combine further numbers, for example, with addition,
subtraction, multiplication, or division being necessary to
solve the problem.

Table 4 displays the requested cognitive strategies for
answering the implemented tasks. Since Ayal and Bayth
Marom (2014) have shown that participants perform poorly on
complicated tasks that require more mental steps, we distinguish
three different levels of complexity in Table 4. Whereas in the
Bayesian text versions a genuine inference is always necessary,
in most other versions it is sufficient to identify and choose
the correct number (in probability versions) or the correct pair
of numbers (in frequency versions), which is much easier than
making a genuine inference because it requires fewer mental
steps. However, according to Cognitive Load Theory (Sweller,
2003), it is probably not so easy to find the right number
among many numbers.

It has to be noted that whereas all university students are
already familiar with 2 x 2 tables from secondary school, most
have never seen a double-tree or a net diagram before. It should
also be noted that a question asking for natural frequencies is
unusual in German secondary education.

Please note that the main focus of the present empirical
study is the question of conditional probabilities. In the current
study, the order of questions for conditional probabilities and
joint probabilities is not varied systematically (in that case, twice
as many participants would have been required.). This could
influence the responses of the participants who have already
answered a question about conditional probabilities, for example.

There were no time constraints for completing the
questionnaire (participants required about 20 min for both
tasks). Participants were examined in small groups of about
10-20 persons. Pocket calculators were distributed, which could
be used at any time during the study.

Instrument

Each participant was presented two successive tasks that varied in
terms of (1) visualization (Bayesian text vs. 2 x 2 table vs. double-
tree vs. net diagram), (2) information format (probabilities
vs. frequencies), and (3) problem context (mammography vs.
economics problem). All versions began with a cover story (see
also Table 5); after that, one of the four different kinds of
visualizations (including no visualization) was given (see Figure 1
above and below for the 2 x 2 tables and the double-trees, and see
Figure 3 above and in the middle row for the net diagrams for the
mammography context). Finally, two questions were provided in
the same format as the information in the text: One question for
a (Bayesian) conditional probability/frequency and one question
for a joint probability/frequency (see Table 5).

Participants

Participants were N = 249 German university students in the
fields of Pharmacy (N = 117), Human Movement Sciences
(N = 33), student teacher for primary school (N = 90), and
student teacher for secondary school (N = 9). 184 students were
female, 65 male, and the mean age value was 20.6 (SD = 2.2).
From their secondary school education, all students were familiar
with 2 x 2 tables containing probabilities, 2 x 2 tables containing
frequencies, and tree diagrams containing probabilities, yet not
with tree diagrams containing absolute frequencies, double-trees,
or net diagrams.

The study was carried out in accordance with the University
Research Ethics Standards. Students were informed that their
participation was voluntary (two students refrained from
participating) and anonymity was guaranteed.

Coding

Conditional Inferences

The correct solution for the mammography problem in the
frequency version is 160 out of 1,140 and for the economics
problem 205 out of 613. The answer was coded as correct if
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TABLE 5 | Problem formulations.

Mammography problem

Economics problem

Probability version

Natural frequency version

Probability version

Natural frequency version

> Imagine you are a reporter for a women’s magazine and you want to write an article about breast Imagine you are interested in the question, of whether career-oriented students are more
% cancer. As a part of your research, you focus on mammography as an indicator of breast cancer. likely to attend an economics course. Therefore the school psychological service evaluates
5 You are especially interested in the question of what it means when a woman has a positive result the correlations between personality characteristics and choice of courses for you. The
3 (which indicates breast cancer) in such a medical test. A physician explains the situation with the following information is available:
o following information:
o Text only (no visualization): e Text only (no visualization): o Text only (no visualization): e Text only (no visualization):
The probability of breast cancer is 2% for a woman who 200 out of 10,000 women who participate in The probability that a student attends the 320 out of 1,000 students attend the
participates in routine screening. If a woman who routine screening have breast cancer. Out of economics course is 32%. If a student attends economics course. Out of 320 students
participates in routine screening has breast cancer, the 200 women who participate in routine the economics course, the probability that he is who attend the economics course, 205
_5 probability is 80% that she will have a positive test result. If screening and have breast cancer, 160 willhave  career-oriented is 64%. If a student does not are career-oriented. Out of 680
E a woman who participates in routine screening does not a positive result. Out of 9,800 women who attend the economics course, the probability students who not attend the economics
‘_:‘,’ have breast cancer, the probability is 10% that she will have participate in routine screening and have no that he is still career-oriented is 60%. course, 408 are still career-oriented.
g a positive test result. breast cancer, 980 will also have a positive

e 2 x 2 table (prob.), or
e double-tree (prob.), or
e net diagram (prob.)

result.
e 2 x 2 table (nat. freq.), or

e double-tree (nat. freq.), or
e net diagram (nat. freq.)

e 2 x 2 table (prob.), or
e double-tree (prob.), or
e net diagram (prob.)

e 2 x 2 table (nat. freq.), or
e double-tree (nat. freq.), or
e net diagram (nat. freq.)

What is the probability that a woman who participates in
routine screening and receives a positive test result has
breast cancer?

Answer: out of

How many of the women who participate in
routine screening and receive a positive test
result have breast cancer?

Answer:

What is the probability that a student attends
the economics course if he is career-oriented?

Answer: ___ out of

How many of the students who are
career-oriented attend the economics
course?

Answer:

Question 2 - joint prob. | Question 1 - cond. prob.

What is the probability that a woman who participates in
routine screening receives a negative test result and has
breast cancer?

Answer:

How many of the women who participate in
routine screening receive a negative test result
and have breast cancer?

Answer: out of

What is the probability that a student attends
the economics course and is not
career-oriented?

Answer:

How many of the students are not
career-oriented and attend the
economics course?

Answer: out of

‘e 10 Jepuig
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both correct absolute numbers were provided. In the probability
versions of the tasks, the answer was classified as correct if the
exact probability was provided (14.03% in the mammography
problem and 33.4% in the economics problem). In addition, the
answers were also coded as correct if the solution was rounded up
or down to the next full percentage point (e.g., in the economics
problem the correct solution is 33.4%, and therefore answers
between 33 and 34% were classified as a correct solution; see
also Gigerenzer and Hoffrage, 1995). To be conservative, we
also coded the answer as correct if the solution algorithm was
correctly specified but no final result was calculated.

Joint Inferences

The correct solution for the mammography problem in the
frequency version is 40 out of 10,000 and for the economics
problem 115 out of 1,000. Again, the answer was only coded
as correct if both correct absolute numbers were provided in
the frequency version. In the probability versions of the tasks,
the correct answer of the mammography problem is 0.4%, and
every answer between 0.4% and 0.5% (but exclusive of 0.5%
because 0.5% was one of the expected wrong solutions) was
coded as correct. In the economics problem, the correct solution
was 11.5%, and every answer between 11% and 12% was coded

as correct. We have also classified the answer 0.1 as correct
for two participants because it was clearly recognizable that
the solution algorithm was correct and the result was only
incorrectly rounded. In these two cases it was a Bayesian text
version with probabilities and a version with a probability net.
The classification of these two answers as correct was therefore
conservative against our research question.

RESULTS

Participants’ Performance With Respect

to Conditional Inferences

Figure 6 shows participants’ performance on the question for
conditional probabilities across contexts (because context was
no factor of interest in our study). Supplementary Figure S1,
however, shows participants’ performance on the question for
conditional probabilities, separately for the two different contexts
(mammography problem vs. economics problem).

With regard to the question for conditional probability,
two relevant results can be observed. First, students performed
better when statistical information was presented in frequencies
(58% correct inferences across context and visualization)

100 %
Information format
% 78% Probabilities
S 80 % —
. . Frequencies
©
c
L 60% 61%
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FIGURE 6 | Percentages of correct inferences in the question for a conditional probability, separated for information format and visualization type (across both
contexts).
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than in probabilities (23% correct inferences across context
and visualization). This finding holds true for both contexts
and for all three visualizations. Second, the presentation
of a visualization leads to higher performance rates (48%
correct inferences) compared to a Bayesian text problem
(19% correct inferences; again holding true across all versions
and conditions).

As expected, the highest performance was achieved in
problems using the only visualization participants knew from
secondary school lessons: the 2 x 2 table with frequencies
(78% correct inferences). However, participants also performed
very well with the frequency double-tree and the frequency
net (60 and 61% correct solutions), which students had not
encountered in their secondary education. The more mental
steps required for answering the question correctly, the lower the
performance rate.

In order to statistically compare the effects of information
format and types of visualization, we estimated a generalized
linear mixed model with a logit link function to predict
performance regarding the question for a conditional
probability. In this model, we specified the probability version
without any visualization (Bayesian text in probabilities) as the
reference category and included the possible explanatory factors
“frequencies;,” “2 x 2 table)” “double-tree,” and “net diagram”
via dummy coding.

The (unstandardized) regression coefficient for frequencies
was significant (b; = 1.88, SE = 0.27, z = 6,97, p < 0.001), and
presenting a corresponding 2 x 2 table (b, = 1.81, SE = 0.36,
z = 499, p < 0.001), double-tree (b3 = 1.76, SE = 0.37,
z = 4.78, p < 0.001), or net diagram (by = 1.77, SE = 0.36,
z=4.91, p <0.001) also led to a significant regression coefficient
(bp = —2.83, SE = 0.38, z = —7.39, p < 0.001). Thus with regard
to conditional inferences, frequencies and all visualizations were
helpful for solving the task.

Furthermore, the actual level of education (“Semesterzahl”),
grade point average (German “Abiturnote” from high school),
and field of study were collected from all participants. These
variables (and also the context of the task: mammography
problem vs. economics problem) were then implemented
as potential predictors in the generalized linear mixed
model. It turned out that the context, the grade point
average, and studying to be a secondary school teacher
significantly predicted the probability of solving a conditional
inference correctly. However, implementing these factors
in the generalized linear mixed models did not change the
results substantially. Furthermore, there were no significant
order effects. However, there was a slight tendency for the
second task (joint probability/frequency) to be correctly
completed less frequently than the first task (conditional
probability/frequency), as has been shown in earlier studies
(Binder et al., 2018).

Although this article does not do any in-depth comparison of
the different visualizations (because one visualization was known
for the participants, the others two were not), it can be noted
that performance on tasks using double-tree and net diagram
are remarkably high given the fact that neither of these two
visualizations has been explained in advance.

Participants’ Performance With Respect

to Joint Inferences

Figure 7 shows participants’ performance with respect to
joint probabilities and frequencies across context (because
context was no factor of interest in our study). Supplementary
Figure S2, however, shows participants’ performance with respect
to joint inferences, separately for the two different contexts
(mammography problem vs. economics problem).

The study shows three interesting results: (1) If the frequency
versions only are considered, each visualization of the situation
was similarly helpful for the participants—no matter which of
the visualizations (2 x 2 table, double-tree, or net diagram)
was used. (2) In contrast to conditional inferences in typical
Bayesian reasoning problems, the question of joint probabilities
does not reveal a format effect (probabilities vs. frequencies).
Tasks with frequencies were not processed better than tasks with
probabilities. Possible reasons for this differential format effect
are outlined in the discussion. (3) The highest performance
was reached with probability 2 x 2 tables (which is in line
with Bruckmaier et al., 2019; Binder et al., under review)
and probability nets. Note that in these versions, the number
of mental steps required is also the fewest. In both cases
only one number has to be read from the diagram, while in
the double-tree a genuine inference is required (compare also
Table 4).

Note again that the main focus of the present empirical study
was conditional inferences. The order of questions for conditional
probabilities and joint probabilities was not varied systematically.
This could have influenced the responses of participants who
had already answered a question about conditional probabilities
before the question on joint probabilities.

Again, in order to statistically compare the effects of
information format and type of visualization, we estimated a
generalized linear mixed model with a logit link function to
predict performance in a joint probability question.

This time, the (unstandardized) regression coefficient for
frequencies was not significant (b; = —0.05, SE = 0.19, z = —0.26,
p = 0.80), but presenting a 2 x 2 table (by = 2.04, SE = 0.31,
z = 6.53, p < 0.001), double-tree (b3 = 0.69, SE = 0.30,
z = 228, p = 0.02), or net diagram (by = 1.53, SE = 0.30,
z = 5.09, p < 0.001) led to a significant regression coeflicient
(bp = —141, SE = 026, z = —546, p < 0.001). Thus
regarding joint inferences, 2 x 2 tables and net diagrams
were most helpful. Also, double-trees led to a significantly
higher performance rate compared to a Bayesian textual
version of the task. However, there is no frequency effect in
joint inferences.

Again, the level of education, grade point average, and field
of study of the participant, as well as the context and the order
of the task, were implemented as potential predictors in the
generalized linear mixed model. We found that only the grade
point average significantly predicted the probability of a joint
inference being correct. However, implementing these factors in
the generalized linear mixed models did not change the results.
Furthermore, there were no significant effects of order, context,
level of education, or field of study.
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FIGURE 7 | Percentages of correct inferences in the question for a joint probability, separated for information format and visualization type (across both contexts).

Typical Errors and Error Shifts Regarding

Conditional Inferences

Figure 8 shows—separated by version—the respective errors that
occurred regarding conditional inferences. Note that only errors
that occurred in at least 5% of the cases in one of the examined
versions are mapped in Figure 8. This means in concrete terms
that if one error occurred in one version (e.g., in the Bayesian
text version with probabilities) in 5% of the cases or more (e.g.,
the error “base rate only”), this error is also displayed for all
other versions (even if this error only occurs in 2% of the cases
in the probability net). Other errors that can be clearly classified
but which were committed by only one or two participants
per version are thus assigned to the category, “Other uniquely
classifiable errors.”

Essentially, participants made two main mistakes regarding
conditional inferences: (1) joint occurrence, which is the
confusion of the conditional information P(A|B) with the
joint information P(ANB) [e.g., indicating the proportion of
women with a positive mammogram and breast cancer P(T+NB)
instead of the correct conditional information P(B|T+)], and
(2) Fisherian, which means that participants confused P(A|B)
with P(B|A) [e.g., indicating the sensitivity of the mammography
P(T +|B) as the correct solution instead of the positive predictive

value P(B|T+)]. Furthermore, in some cases the base rate only
error occurs, which means providing only the base rate of,
for example, breast cancer P(B) as an answer. This error most
often appeared in the Bayesian text version in probabilities. It
is noticeable that most of the wrong solution strategies could
be clearly classified. The errors evidence only (see, e.g., Zhu and
Gigerenzer, 2006) and Pre-Bayes (see, e.g., Steckelberg et al., 2004;
Zhu and Gigerenzer, 2006) only occurred very rarely. In contrast
to Gigerenzer and Hoffrage (1995), who sometimes observed the
error likelihood-substraction (especially in probability versions),
that error did not occur in our study. In the Bayesian text version
with probabilities, there was (as one would expect) the highest
proportion of participants who could not give a solution (11%).
The analysis of the error pattern in Figure 8 shows three
main results: First, an interesting result (according to our
hypothesis) is obtained by comparing the probability 2 x 2
table with the frequency 2 x 2 table. Bruckmaier et al. (2019)
have already provided evidence that the probability 2 x 2 table
provokes the joint-occurrence error, which we replicated (56%
of the participants). The error rate, on the other hand, drops
considerably if the information is presented in frequencies (only
11% of the participants made this error when the information was
presented in this way). It seems as if it is not at all clear to many

Frontiers in Psychology | www.frontiersin.org

15 May 2020 | Volume 11 | Article 750


https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

Binder et al.

The Frequency Net

Conditional inferences

Probabilities

Bayesian text 2x2 table double-tree net diagram
--- *—8—8
E=] <ass R
- [

Fisherian

Joint
occurrence

Base
rate only

Other
uniquely
classifiable

2%

78%

Natural frequencies

the two errors Fisherian and joint-occurrence could be observed.

3% 26%

0,
4] e— 1%

60%

FIGURE 8 | Typical errors on the question for a conditional probability, separated for information format and visualization type (across both contexts). In particular,

errors

Error
0,

3% unknown

No answer

given

9%

Correct

/R O8N

61%

participants that the joint probability in the probability 2 x 2
table must be associated with another number. With frequencies,
however, this necessity does seem to be clear to participants.

Second, if one compares all probability visualizations, it
becomes clear that the joint-occurrence error appears primarily in
versions in which the joint probability is directly represented—
most frequently in the 2 x 2 table and second most frequently
in the net diagram—because the correct solution is also shown
there. As expected, the joint-occurrence error appears most rarely
in the version with the probability double-tree. The reason why
that error is comparatively rare in this version is that the joint
probability first has to be calculated using the multiplication rule
in the double-tree.

Third, if one compares all frequency visualizations, a shift of
Fisherian and joint-occurrence errors can be observed. While
Fisherian and joint-occurrence errors appear about as frequently
in the 2 x 2 table, Fisherian errors in the frequency double-tree
and in the frequency net hardly occur at all. A confusion of the
“reading direction” is therefore less frequent in the frequency
double-tree and the frequency net. In these two visualizations,
however, joint occurrence appears more frequently. It seems less
clear to participants that the total number should not be chosen
as the reference set. It should be a focus of future research to

investigate the extent to which the error patterns change after a
training with the different visualizations.

Typical Errors and Error Shifts Regarding

Joint Inferences

While typical error patterns for conditional inferences are already
recognized because of earlier research, we now systematically
consider the error patterns regarding joint inferences. Figure 9
shows—separated by version—the respective errors. When
naming these errors, we refer to the expressions from Figure 5
[e.g., the expression “p-error” means that the participant
erroneously answered the question with P(B|T-) instead of
P(BNT-)]. Again, only errors that occurred in at least 5% of the
cases in one of the examined versions are mapped in Figure 9.
This means in concrete terms that if one error occurs in one
version (e.g., in the Bayesian text version with probabilities) in
5% of the cases or more (e.g., the “m-error”), this error is also
displayed for all other versions (even if this error only occurs
in 3% of the cases in the probability net). Errors that can be
clearly classified but which were committed by only one or two
participants are again grouped in the category “Other uniquely
classifiable errors.”
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Figure 9 shows three results: First, if we look at the frequency
versions, we can see at a glance that the error patterns are
less diverse than they are in the probability versions. In the
frequency versions two errors occur often: the confusion of
the joint probability [e.g., P(T-NB)] with one of the two
corresponding conditional probabilities [i.e., P(T-|B) = : g-error
and P(B|T-) =: p-error; these errors are structurally equivalent to
the joint-occurrence error]. Actually, it should be assumed that
the p-error occurs as frequently as the q-error because there is no
reason why P(ANB) should be confused with P(A|B) rather than
P(B|A). However, it is understandable that the g-error occurs
more frequently in the Bayesian text version, because this error is
algorithmically easier to calculate in this version. But in the three
versions with a visualization, this argument is no longer valid.
Both conditional probabilities, p-error and q-error, can now be
read from the diagrams with equal ease. Here we have defined a

clear reading direction for the visualizations by the nature of our
question. We asked for the probability of “negative mammogram
and breast cancer” and not for the probability “breast cancer
and negative mammogram” (which is of course mathematically
equivalent). The participants now seemed to examine the three
visualizations along the lines of the question, which more often
provokes the p-error. It would be interesting in a new study
to vary the order of events in the question and, for example,
to examine in an eye-tracking study whether our hypothesis is
correct that the error patterns p-error and g-error are provoked
by the order of events.

Second, it is noticeable that in the probability versions various
error patterns appear—for example in the Bayesian text version
with probabilities. In addition to a few errors that we could not
classify, there are many error patterns that can be clearly classified
but which occur only very rarely. However, two confusions
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occurred more frequently (both in the responses of 5 out of 61
persons): the confusion of the required joint probability with
the conditional probabilities m-error [i.e., P(T+|nB)] and n-error
[i.e., P(T-|nB)]. In these cases, participants obviously misread the
negations in the question.

Third, specific errors can also be observed in the probability
double-tree. This was to be expected, since in the probability
versions more mental steps are necessary for solving the task
with the double-tree, while the required joint probability can
be read directly from the probability 2 x 2 table or from the
probability net. The two double-tree confusions are particularly
interesting here. We provoked these two confusions inadvertently
by writing the two conditional probabilities I and p on the
branches in such a way that it was difficult to see which of
the two pieces of information belonged to which branch (as in
Figure 1). We assume that both university and school students
also often follow that path when drawing a double-tree and
that these mistakes are therefore ecologically valid. However,
we could have prevented this error by designing the double-
tree as shown in Figure 5, so that confusion between the two
branches [ and p would be less likely. Double-tree confusion I
consists of the fact that many of the participants confused the
joint probability with the conditional probability p (like many
other participants) and additionally confused the branches p and
I. If we had designed the double-tree in such a way that the
conditional probabilities p and I could be better distinguished,
these participants would presumably have committed the p-error.
Double-tree confusion II, on the other hand, would have led to the
correct answer, because here the participants correctly calculated
the joint probability using the multiplication rule. However, they
confused the branches and thus the probabilities p and [ and
came to a wrong result. If we had made the lower branches in
the double-tree clearer, these participants would probably have
calculated the joint probability correctly.

In addition to these three main findings, the occurrence of
the independence error is also interesting—here the participants
calculated the joint probabilities by multiplying the associated
marginal probabilities. The students probably remembered the
formula P(ANB) = P(A) - P(B) and did not consider that this
formula only applies if the events are independent. Furthermore,
some participants committed the double joint probability error,
which means that they tried to calculate the joint probability from
both above in the double-tree and below with the multiplication
rule. Each of these calculations would lead to the right solution on
its own. However, the participants then added these two results
and came to a solution of exactly twice the probability they
were looking for.

DISCUSSION

In this article the frequency net is presented as a new tool
for simultaneously visualizing probabilities and frequencies,
a capability that is not possible with the use of existing
visualizations such as the 2 x 2 table, the tree diagram, and the
double-tree. Whereas 2 x 2 tables only display joint probabilities
but no conditional probabilities, tree diagrams and double-trees

only display conditional probabilities but no joint probabilities.
Before the frequency net, no visualization had the capacity to
represent all 16 probabilities that can occur in a situation with
two dichotomous characteristics (i.e., four marginal probabilities,
four joint probabilities, and eight conditional probabilities) and
all frequencies simultaneously. The fact that the frequency net
can enable visualization of (1) probabilities and frequencies
and (2) joint probabilities and conditional probabilities is a
didactic advantage because performing demanding additional
calculations based on a net diagram is no longer necessary.

In an empirical study conducted with university students,
the net diagram was already as intuitively understandable (to a
comparable degree) as the 2 x 2 table and the double-tree, even
without prior explanations. In a similar way, Binder et al. (under
review) could show that secondary school students (grade 10)
were also able to use this tool intuitively without prior instruction,
and that the net diagram even supported the students in this study
in solving probability problems better than a tree diagram or a
double-tree did.

An analysis of typical error patterns shows—regarding
conditional inferences—a remarkable error shift from probability
2 x 2 tables to frequency 2 x 2 tables. Whereas many participants
committed the joint-occurrence error with probability 2 x 2
tables, this error disappeared almost completely with the
frequency 2 x 2 table. The analysis of errors regarding joint
inferences—on which there have been only a few previous
studies—reveals that the formulation of the question [P(ANB)
vs. P(BNA)] seems to provoke either a g-error or a p-error (see
also section Future Research). Furthermore, many different error
patterns occurred in the Bayesian text version with probabilities.
Especially interesting, however, were the errors specific to the
double-tree, some of which were provoked by our having written
the labels 86 and 0.5% in unfavorable positions on the crossing
branches (so that these numbers could not unambiguously be
assigned to the appropriate branches). It is very likely that
these mistakes would also occur if participants were asked
to create their own double-tree (because these positions in
the double-tree seem like a good place to write these two
conditional probabilities). Also interesting is the occurrence of
the independence error and the double-joint probability error,
which occur predominantly in the probability double-tree.

Limitations
The present article and Binder et al. (under review) can of course
only provide first indications of the efficacy of the net diagram
in teaching probabilities—even though these first indications are
very promising. In the teaching context, for example, learners
have to be instructed that branches in the net can now also display
joint probabilities (whereas the widely used tree diagrams only
carry marginal probabilities and conditional probabilities).
Furthermore, it could also be argued that the presentation of
the information in a frequency net does not make the sequential
character of the situation as transparent as it is in a tree diagram.
However, the error analysis does not indicate that the reading
direction (Fisherian error) becomes confused more frequently
with the net diagram than it does with the double-tree or even
the 2 x 2 table (a bit more rare).
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The main limitation of the net diagram is that it cannot be
extended as flexibly as the tree diagram. Tree diagrams can be
adapted to 2-test cases, 3-test cases, etc. (Hoffrage et al., 2015b;
Binder et al., 2018). However, it should be noted that even the
double-tree cannot be expanded flexibly to 2-test cases, 3-test
cases, and other complex Bayesian reasoning tasks. In any case,
these kinds of tasks are rarely the focus of teaching stochastics at
the secondary-school level.

Future Research

The missing format effect regarding joint inferences is at the
same time interesting and unusual. One reason for its being
missing, however, could be the formulation of the question and
especially the required answer structure (“ outof __”)
in the frequency format, which is unusual to students. In the
teaching of stochastics at secondary-school level, two different
types of questions are used: (1) Questions about a probability
or a proportion, which students are expected to answer in
percentages, fractions, or decimal fractions, or (2) in lower-
level classes, questions like “How many are X and Y?” which
students are expected to answer with an absolute frequency (e.g.,
“200”) but not with a pair of absolute frequencies, namely natural
frequencies (e.g., “200 out of 10,000”). Therefore, it would be
quite possible that the participants were confused by the unusual
answer format (“ out of ”). Hence, for future research
it would be interesting to examine whether there is actually a
format effect if, for example, one asks for a probability or a
proportion in the frequency version of the task.

Furthermore, in future research a systematic variation of
the order of the questions (conditional probabilities vs. joint
probabilities) should be implemented in order to identify any
possible sequence effect. In the present study, the question for
a conditional probability was always asked as the first question
and the question for a joint probability as the second question.
This could have influenced participants’ performance and also
the errors that occurred in second-question responses, due
to, for example, an Einstellung effect or a mental set effect
(Luchins, 1942).

Future research should focus more on error analysis than
just measuring the performance of participants in Bayesian
reasoning. Furthermore, not just the typical Bayesian tasks
should be examined but also other probability tasks that are
focused on stochastic teaching in schools (see also Bocherer-
Linder and Eichler, 2017; Bruckmaier et al., 2019). Moreover,
in future research on the net diagram, it would be desirable
to include additional control variables because various other
factors are known to have an impact on performance in
Bayesian reasoning tasks. For example, individual differences of
participants, particularly cognitive abilities such as numeracy,
graphicacy, and spatial abilities, have an impact on performance
rates in Bayesian reasoning problems (e.g., Chapman and Liu,
2009; Micallef et al., 2012; Johnson and Tubau, 2013; Ayal
and Bayth Marom, 2014). In addition, the length of the text
(Johnson and Tubau, 2013) and the specific numerical values for
population size, base rate, sensitivity, and false-alarm rate can
influence accuracies (Schapira et al., 2001).

Since one advantage of the net diagram is that it can display
both probabilities and frequencies, it would be interesting to
implement in further studies a net diagram that displays both
types of representation simultaneously (see Figure 3, below). It
would also be important to examine net diagrams that only show
the statistical information, which is needed for solving the task at
hand (because that is the way it would be done at school).

In further investigations, training studies might be
implemented, which are fairer in terms of existing prior
knowledge of certain visualizations from school. With training
studies is it possible to examine whether students are able
to create frequency nets on their own by first explaining the
structure of the frequency net to students and then have them
drawing their own frequency nets for subsequent tasks.
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