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In cognitive diagnostic assessment (CDA), clustering analysis is an efficient approach
to classify examinees into attribute-homogeneous groups. Many researchers have
proposed different methods, such as the nonparametric method with Hamming
distance, K-means method, and hierarchical agglomerative cluster analysis, to achieve
the classification goal. In this paper, according to their responses, we introduce a
spectral clustering algorithm (SCA) to cluster examinees. Simulation studies are used to
compare the classification accuracy of the SCA, K-means algorithm, G-DINA model and
its related reduced cognitive diagnostic models. A real data analysis is also conducted
to evaluate the feasibility of the SCA. Some research directions are discussed in the
final section.

Keywords: cognitive diagnostic assessment, spectral clustering, K-means, G-DINA model, classification
accuracy

INTRODUCTION

In the past decades, there has been a significant increasing interest in cognitive diagnostic
assessment (CDA) that allows for the purpose of identifying the presence or absence of specific
fine-grained attributes required for solving problems on a test in educational and psychological
assessment. Researchers have proposed a variety of methods to classify examinees into several
categories by matching their attribute profiles. To sum up, there have been two major kinds of
approaches till now. One of them usually uses cognitive diagnosis models (CDMs) to estimate
the attribute profile for each examinee, which can be called parametric technique. The differences
between these CDMs are assumptions about how cognitive attributes affect examinees’ responses
in CDAs. The deterministic input; noisy “and” gate (DINA; Junker and Sijtsma, 2001), and
noisy input; deterministic “and” gate model (NIDA; Junker and Sijtsma, 2001) are the typical
conjunctive models, which require examinees must master all required attributes, thus even lacking
one required attribute will lead to a totally wrong response. Disjunctive models, such as the
deterministic input; noisy “or” gate model (DINO; Templin and Henson, 2006), suppose that if one
has mastered a subset of required attributes, even merely one, the probability of a correct response
will be sufficiently high. Other specific, interpretable CDMs include the linear logistic model (LLM;
Maris, 1999) the additive CDM (A-CDM; de la Torre, 2011) and the reduced reparameterized
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unified model (RRUM; Hartz, 2002). To subsume the above
reduced models, some general CDM frameworks has been
proposed, such as the log-linear CDM (LCDM; Henson et al.,
2009) the generalized DINA (G-DINA; de la Torre, 2011) model
and the general diagnostic model (GDM; von Davier, 2008). The
major advantage of general CDMs is that they have the largest
flexibility of fetting response data which is set under the CDM
framework, and it always should be taken into account at first
when doing parameter estimation.

The superiority of parametric models is conciseness. However,
one big issue inherently exists in the parametric technique, i.e.
sample size. Several researchers have investigated the influence
of sample size on estimation accuracy of the model parameters
and pattern/attribute correct classification rate (de la Torre et al.,
2010; Chen and de la Torre, 2013; Minchen et al., 2017). Although
the results represented that sample size had a negligible impact
on correct classification rate, most previous studies obtained this
conclusion by setting the number of examinees no less than 500.
So, there is no evidence to draw the inference that no effect
on correct classification rate when using small sample size (may
be less than 50 or 100). Virtually, the number of examinees in
one class is not large for the most part. It is doubtful whether
the performance of the parametric models is good or not when
teachers implement the cognitive diagnostic test in class with a
smaller sample size.

To address this issue, nonparametric techniques can be
treated as alternative approaches to classify examinees into
attribute-homogeneous groups, which is less restrictive and often
computationally more efficient. Better yet, many nonparametric
classification algorithms can be easily implemented in most
statistical software packages. Based on the advantages of
nonparametric techniques, many different methods have been
proposed in the CDA. For example, three different methods of
computing sum-scores (simple sum-scores, complex sum-scores,
and weighted complex sum-scores) combined with model-
based mastery sum-score cutoffs were proposed (Henson et al.,
2007). Their results indicated that the correct classification
rates of examinees’ attribute profiles from model-based sum-
scores and mastery sum-score cutoffs were able to compare
with those correct classification rates from CDM. Chiu
et al. (2009) used hierarchical agglomerative clustering and
K-means methods to group examinees into different clusters
possessing the same attribute profiles. Simulation results
demonstrated that K-means method had better performance
at the classification consistency and homogeneity of a cluster
than that of hierarchical agglomerative clustering in most
experimental conditions. Subsequently, Chiu and Douglas
(2013) proposed a nonparametric procedure that merely
relied on a given Q-matrix (Tatsuoka, 1985), and evaluated
the examinees’ attribute profiles by minimizing the distance
measures (hamming distance, weighted hamming distance, and
penalized hamming distance) between observed responses and
the expected responses of a given attribute profile. Specifically,
this procedure based on expected response patterns makes
no direct use of item parameters of any CDMs. So, it
required no parameter estimation, and can be used on a
sample size as small as 1 (recall that the sample size is

no less than 500 in CDMs based on existing studies). In
addition, the existing studies have provided plenty of evidence
that the nonparametric classification algorithms have good
performance in CDA.

The primary objective of this paper is to introduce the method
for implementing CDA using spectral clustering algorithm
(SCA), which has become one of the most prevalent modern
clustering methods in recent years. The SCA creates a graph
of objects that require classifying based on the similarity
measurement of each pair of objects (i.e. examinees in this
paper). The more similar the examinees’ attribute profiles are,
the greater probability they can interrelate with each other in
the graph. Next, the examinees’ attribute profiles can be clustered
by anatomizing the spectral graph, where the attribute profiles
within a cluster have a strong connection and different clusters
have a weak connection. Naturally, such algorithms have been
widely applied in the field of image segmentation (Shi and Malik,
2000) neural information processing (Ng et al., 2002) biology
(Zare et al., 2010) and large-scale assessment in psychology (Chen
et al., 2017). However, no study has been done to investigate the
performance of the SCA in CDA yet to our knowledge. And it
is interesting to inspect the efficiency of the SCA for clustering
examinees’ into attribute-homogeneous groups under variedly
underlying processes, such as conjunctive, disjunctive, additive,
and saturated model (de la Torre, 2011).

In the next section, the G-DINA model and its related reduced
models will be briefly reviewed. Subsequently, the K-means and
SCA algorithms are detailedly introduced in the third section.
This is followed by the simulation studies comparing SCA to
K-means algorithm and CDMs mentioned in the second section
are conducted in section “Simulation Studies,” and the section
“Analysis of Mixed Number Subtraction Data” concerns a real
data study to examine the performance of the SCA. Finally,
Summary and discussions are given in the final section.

COGNITIVE DIAGNOSTIC MODELS

First, some basic concepts and terms used in CDA are introduced.
Consider J binary item response variables for each of the I
examinees. Let Xij represent the response of examinee i to item j,
where i = 1, 2, . . ., I and j = 1, 2, . . ., J. Let αi = (αi1, αi2, ..., αiK)
denote the attribute profile of examinee i, where K is the number
of attributes measured by the test. A value of αik = 1 indicates
the ith examinee masters the kth attribute and αik = 0 otherwise.
Let qj = (qj1, qj2, ..., qjK) represent the jth row of the Q-matrix
that describes the relationship between items and attributes
(Tatsuoka, 1995). Q is a J × K matrix with the entry qjk = 1
indicating that item j requires attribute k, and qjk = 0 otherwise.

The G-DINA Model
The G-DINA model is able to distinguish 2K∗j latent classes, where
K∗j is the number of required attributes for jth item, and K∗j =∑K

k=1 qjk. For simplicity, the first K∗j attributes are treated as the
required attributes for jth item, and α∗lj is the reduced attribute
vector corresponding to the columns of the required attributes
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with l = 1, ..., 2K∗j . The probability of a correct response to jth
item by examinees with attribute profile α∗lj can be denoted by
P(Xj = 1|α∗lj) = P(α∗lj). Then, the item response function (IRF)
of the G-DINA model is as follow:

f
[

P(α∗lj)
]
= γj0 +

K∗j∑
k=1

γjkαlk

+

K∗j∑
k′=k+1

K∗j −1∑
k=1

γjkk′αlkαlk′ + ...+ γj12...K∗j

K∗j∏
k=1

αlk0

(1)

where f
[

P(α∗lj)
]

represents P(α∗lj), log[P(α∗lj)] and log it[P(α∗lj)]

in the identity, log and logit links, respectively. Moreover, γj0 is
the intercept for jth item, γjk is the main effect due to αk, γjkk′

is the interaction effect due to αk and αk′ , and γj12...K∗j is the
interaction effect due to α1, ..., αK∗j . For more details about the
G-DINA model, please refer to de la Torre (2011).

Related Reduced Models
It’s conspicuous that the G-DINA model is a saturated model
which can easily change into several popular reduced CDMs,
including the DINA model, the DINO model, the additive CDM
(A-CDM), etc. Note the symbol γ is used as item parameters
across all these models in this paper. So, if we set all terms in the
G-DINA model in identity link except γj0 and γj12...K∗j to zero, the
DINA model will be obtained, that is,

P(α∗lj) = γj0 + γj12...K∗j

K∗j∏
k=1

αlk (2)

If the intercept and main effect terms are remained with the
follwing constraints: γjk = −γjk′k′′ = ... = (−1)

K∗j +1
γj12...K∗j , for

k = 1, ..., K∗j , k′ = 1, ..., K∗j − 1, and k′′ > k′, ..., K∗j . The DINO
model can be given by

P(α∗lj) = γj0 + γjkαlk (3)

By setting all interactions to zero in the identity-link G-DINA
model, the A-CDM can be formulated as

P(α∗lj) = γj0 +

K∗j∑
k=1

γjkαlk (4)

Clearly, quite a few parameters of items and examinees require
estimating in the saturated model and its related reduced
CDMs. More often than not, one can use either marginalized
maximum likelihood estimation (MMLE) or Bayesian approach
with the Markov Chain Monte Carlo (MCMC) method to achieve
parameter estimation.

CLUSTERING METHODS FOR
COGNITIVE DIAGNOSIS

K-Means Method for Cognitive Diagnosis
K-means cluster analysis is widely used as the process of grouping
a set of subjects into clusters so that subjects within a cluster
have similarity in comparison to one another, but are dissimilar
to subjects in other clusters. This approach finds the k centroid,
where the coordinate of each centroid is the means of the
coordinate of the subjects in the cluster and assigns every subject
to the nearest centroid. Chiu et al. (2009) have made the best of
K-means method in CDA already, and showed its effectiveness
empirically for placing examinees in homogeneous groups. The
algorithm in CDA can be summarized as follows (Please refer to
Chiu et al.’s paper for details).

Step 1: Select M initial K-dimensional cluster centroids.
Step 2: Assign data points to clusters that have the
closest centroid.
Step 3:When all data points have been assigned, update the
positions of the M centroids.
Step 4: Repeat Steps 2 and 3 until the centroids
no longer change.

Although K-means is a more than effective method for
clustering, the starting values exercises a large impact on the
classified performance for this method. Having poor starting
values can result in converging to local optima (Steinley, 2003).
So, many methods of choosing starting values for the K-means
method have been proposed. Chiu et al. (2009) have investigated
the performance of K-means method in CDA with two different
kinds of starting values, called best and Ward’s cases, respectively,
which provided decent clustering results, and they should be
considered in this study. Additionally, the K-means with random
starting values will be deemed as the baseline to compare the
classification performance to other two starting values. The
introduction of starting values presents in section “The Selection
of Starting Values” subsequently.

Spectral Clustering for Cognitive
Diagnosis
As mentioned above, the SCA method was used in many research
fields. For psychological assessment study, Chen et al. (2017)
applied SCA to the context of exploratory item classification.
Through constructing a graph of items, the similar items could
be classified together and the dissimilar ones can be extracted
based on the graphical structure. Intuitively, it is straightforward
to wonder how the SCA performs on person classification
in CDA. The SCA can be available in CDA context for the
following reasons: (a) SCA creates a graph of examinees based
on the similarity measurement of each pair of examinees, where
examinees who possess the same attribute profiles tend to be
connected. (b) Cai et al. (2005) wrote that “The spectral clustering
usually clusters the data points using the top eigenvectors of
graph Laplacian, which is defined on the affinity matrix of data
points”. In order to construct the affinity matrix for binary
response data in CDA, the Gaussian kernel function can be
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applied according to Ng et al. (2002). Then, one can use SCA
to classify examinees. (c) both SCA and K-means method belong
to clustering approach, and K-means is a component of the SCA
method (Chen et al., 2017) which means both methods have the
same parts of processing data to get clustering results. Chiu et al.
(2009) had proved the feasibility of K-means in the aspect of
classifying examinees into groups with same attribute profiles. So,
the SCA should have a good chance of success in characterizing
the same structure (i.e. attribute profiles) among examinees. We
focus on the specific illustration and detail the core procedures
on how to implement the SCA in CDA [for more details about
the SCA, please refer to Von Luxburg (2007) and Chen et al.
(2017)], now that the key point of this paper is not to introduce
the SCA itself. One can easily operate this algorithm in CDA with
following steps:

Step 1: Using response data to construct similarity matrix
S, which is a I × I square matrix with element,

S(Xi, Xi′) = exp(− ‖ Xi − Xi′ ‖
2 /2σ2),

i, i′ ∈ {1, 2, ..., I} , (5)

where Xi and Xi′ are ith and i’th examinee’s response
vectors. Generally speaking, one may take σ2

= 1 as
assumption under standard normal distribution, and Eq. 5
can be considered as Gaussian Kernel. The SCA divided
examinees into diverse clusters so that examinees in the
same cluster tend to be similar, which means S(Xi, Xi′)
value tends to be large if examinees i and i’ belong to
the same cluster. Meanwhile, those who are classified into
different clusters tend to be differ from each other so as to
the values become small.
Step 2: Construct a diagonal matrix DI×I and compute the
normalized Laplacian matrix LI×I as follows:

Dii =

I∑
i′=1

Sii′ (6)

and
LI×I = I−D−

1
2 SD−

1
2 (7)

where I is a I × I unit matrix.
Step 3: Compute the first M eigenvectors u1, u2, ..., uM of
LI× I .
Step 4: Let UI×M be the matrix containing the vectors
u1, u2, ..., uM as columns.
Step 5: Derived the matrix TI×M from UI×M by
normalizing the rows to norm 1, which is set tim =

uim/(
∑

m u2
im)

1
2 .

Step 6: For i = 1,..., I, let Zi = (Zi1, Zi2, ..., ZiM) be the
vector corresponding to the ith row of TI× M .
Step 7: Cluster the points {Zi, i = 1, 2, ..., I} with the
K-means algorithm into M clusters.
Step 8: Assign the original points Xi to cluster j if and only
if the points Zi was assigned to cluster j.

According to these eight steps, examinees can be grouped
into different clusters representing different attribute profiles.

Currently, the R package “Kernlab” (Karatzoglou et al., 2004) can
implement SCA availably.

The Selection of Starting Values
K-Means With Best Starting Values
In order to group examinees into the correct attribute profiles,
Chiu et al. (2009) introduced the sum-score statistic, which was
also used in Henson et al. (2007). For the ith examinee, the sum-
score on attribute k can be defined as:

Wik =

J∑
j

Xijqjk (8)

Thus, Wi = (Wi1, Wi2, ...WiK) is the corresponding vector of K
sum-scores. The matrix WI×K is then taken as the input of cluster
analysis, with a fixed M clusters in CDA. Based on WI×K matrix,
the K-means method assigns data point Wi to the mth cluster
using Euclidean distance if

m = arg min
u∈{1,...,M}

‖Wi − ĉu ‖
2 (9)

Where ĉu is the provisional centroids of the uth cluster
during the iterative steps, and is calculated by averaging the
observations in the cluster.

A key point of using K-means method is the selection of initial
values. Let αm = (αm1, αm2, ...αmK)′ be the unique attribute
profile in the universal set of attribute profiles, where m =
1, 2, ..., M and M = 2K . For example, only four attribute profiles
exist when K = 2, and they are α1 = (0, 0), α2 = (0, 1), α3 =

(1, 0), and α4 = (1, 1), respectively. Then, the initial value matrix
(denoted as WM×K) in the ‘best’ scenario can be calculated
as follow:

WM×K = PM×JQJ×K (10)

where PM×J is the expected response matrix with entry pmj
indicating that the probability of mth attribute profile correctly
answering jth item. For instance, pmj should be calculated
according to Eq. 2 if the DINA model is selected (Chiu et al.,
2009). Note that pmj is used only as an ideal state for comparison
in simulation study. When implementing K-means in practice,
we have no idea about pmj actually, thus other starting values, i.e.
random and Ward’s, will be selected.

Clustering With Ward’s Starting Values
Ward’s method is a general agglomerative hierarchical clustering
approach originally presented by Ward (1963). The criterion of
this manner is to minimize the total within-cluster variance. To
implement this method, at each step find the pair of clusters that
leads to minimum increase in total within-cluster variance after
merging. This increase is a weighted squared distance between
cluster centroids, and can be represented as the sum of square
errors (SSE) statistic. Suppose that cluster p and q are next to be
merged. Then, the SSE for the pth cluster is computed as follow:

SSEp =

Ip∑
i=1

(Ypi − Ȳp)
′(Ypi − Ȳp) (11)
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where Ip and Iq represent the number of data in clusters p and
q, respectively. Ypi is ith data point in cluster p, and Ȳp is the
centroid of cluster p. Using the Eq. 11, the SSE for the qth cluster
can be got. So, the pth and the qth clusters are merged into a new
cluster if

SSEpq − (SSEp + SSEq) =
IpIq

Ip + Iq
(Ȳp − Ȳq)

′(Ȳp − Ȳq) (12)

is the minimum among all pairs, where SSEpq is the combined
SSE for cluster p and q.

Subsequently, the initial values are determined according
to the result of Ward’s method in the ‘Ward’s starting
values’ scenario.

Clustering With Random Starting Values
The simplest method of choosing initial values is to utilize the
random procedure. That means M data points may be selected
randomly from the data set, and be treated as the M cluster
centroid. Now that there is no prior knowledge guiding the way to
choose the starting values in ‘random’ scenario, the randomness
exerts a significant influence on the performance of this method.
Then, with random starting values, the K-means and SCA can be
considered as the baseline for the study.

Note that the ‘best’ starting value is used in K-means method
but excluded in the SCA because the dimensionality of the matrix
WM×K is different from the matrix ZI×M . However, other two
starting values can be both applied for SCA and K-means. The
SCA and K-means are comparable as the following reasons: On
the one hand, Chen et al. (2017) indicated that the K-means
method is a component of the SCA algorithm. Meanwhile,
the original materials used by both SCA and K-means method
are raw response data actually. Only difference between these
two methods is the mean to tackle raw response data. For the
K-means method, in order to get the consistency theory, raw
data was reconstructed through WI×K = XI×JQJ×K , and WI×K
matrix was used as input. On the other hand, according to
the SCA, raw response data was reconstructed as ZI×M matrix
through Steps 1 to 6 described in section “Spectral Clustering
for Cognitive Diagnosis.” And then, ZI×M matrix was treated as
input in K-means method. Based on these evidences, clustering
results from SCA are comparable with those from K-means
method in essence.

SIMULATION STUDIES

The first goal of simulation studies is to investigate the
effectiveness of clustering using the SCA in CDA, and compare
SCA with K-means method in the aspect of classification
accuracy further. These two methods pertain to clustering
approach, and the last step of SCA needs to call K-means
to accomplish clustering, which means both methods have
the same parts of processing data to get clustering results.
However, hamming distance is excluded in this paper because
this method requires prior knowledge of cognitive processes to
obtain the ideal response patterns. Then, measures of distance
between observed response patterns and ideal response patterns

can be calculated. It indicates that hamming distance method
need to know the mechanism between attributes in advance
(Chiu and Douglas, 2013). The SCA and K-means methods are
unstinted in this constraint, clustering examinees according to
their responses only.

Besides, it is not clear that the performance of K-means
method is under some particular underlying processes (e.g.
additive and saturated scenarios) because there is no research
to compare K-means with the A-CDM and G-DINA model. So,
the second goal is to examine the performances of the SCA
and K-means methods in processing various response data sets
generated by different CDMs, including the G-DINA, DINA,
DINO, and A-CDM.

Simulation Design
To evaluate the performance of the SCA in clustering examinees,
five factors were manipulated: the number of examinees I
was set to 100 or 500; The number of attributes K equaled
3, 4 or 5; The item quality was defined by two parameters,
which were denoted as 1− P(1) and P(1). Items with 1−
P(1), P(1) ∈ U(0.05, 0.15) were labeled high quality, and items
with 1− P(1), P(1) ∈ U(0.25, 0.35) were low quality (Ma et al.,
2016); Generating models were G-DINA, DINA, DINO, and
A-CDM model, respectively; Test length J = 5, 10, or 20. The
generating rules of Q-matrix were as follows: (a) ensure that there
were items at least require one attribute in Q-matrix. (b) the
remaining items were selected from all 2K

− 1 items randomly
to satisfy the predetermined test length. For each condition, 100
replications were used.

The true attribute profiles α were linked to an underlying
multivariate normal distribution (Chiu et al., 2009)
θi ∼ MVN(0K , 6), where the covariance matrix 6 is 1 ρ

. . .

ρ 1


Where ρ was set to 0.5, representing medium correlation between
attributes. Let θi = (θi1, ...θiK)′ express the latent continuous
ability for examinee i, the attribute profile αi = (αi1, ..., αiK)′ was
calculated by

αik =

 1 if θik ≥ 8−1
(

k
K+1

)
,

0 otherwise.
(13)

Evaluation Criteria
To evaluate the performance of classifications in CDA,
attribute correct classification rate (ACCR) and pattern correct
classification rate (PCCR) are commonly used as the indicators.
Nevertheless, they become available when examinees are
classified into labeled sets, which is not the case with cluster
analysis, for the reason that they manifest the consistency
between the true and estimated attribute profiles. Only when
the estimates of examinees’ attribute profiles cognized can
these indices be calculated. Obviously, it is not an issue when
researchers use CDMs to analyze response data. However, the
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cluster analysis classifies examinees into attribute-homogeneous
groups, but it cannot provide information about the estimates
of examinees’ attribute profiles (i.e. labeling problem). So,
ACCR and PCCR indices cannot be calculated in this case.
Therefore, two indices which were applied in Chiu et al. (2009)
paper were also used in this study. One was an indicator of
agreement between partitions, called the Adjusted Rand Index
(ARI), and the other was denoted as ω assessing the within-
cluster homogeneity.

The ARI was modified from Rand index, and was originally
proposed by Hubert and Arabie (1985). Given a set of
I examinees S = {O1, ..., OI}, suppose that U = {u1, ..., uR}

and V = {v1, ..., vG} represent two different partitions of the
examinees in S. Supposed that U is the external criterion, i.e.
true attribute profile in CDA, and V is a clustering result. The
ARI assumes the generalized hypergeometric distribution as the
model of randomness, i.e. the U and V partitions are picked at
random such that the number of examinees in the clusters are
fixed. Let Irg be the number of examinees that are in both classes
ur and vg , where r = 1, 2,..., R, and g = 1, 2,..., G. Let Ir• and I•g be
the number of examinees in class ur and vg , respectively. Then,
the ARI can be shown as follows:

ARI =

∑
r,g C2

Irg
−
∑

r C2
Ir•

∑
g C2

I•g /C2
I

1
2

[∑
r C2

Ir•
+
∑

g C2
I•g

]
−
∑

r C2
Ir•

∑
g C2

I•g /C2
I

(14)

which is limited between 0 and 1. The larger the ARI is, the higher
agreement between partitions is. In Eq. 14, a binomial coefficient
C2

(•) is defined as 0 when the number of classified objects is 0 or 1.
In CDA, the index ω which can be used to evaluate the within-

cluster homogeneity with respect to the true attribute profiles
measures how similar examinees from the same cluster are to one
another, and sums this over the clusters (Chiu et al., 2009). The
formula for ω is given by

ω = 1−

∑I
i=2
∑i

i′=1
∑K

k=1 |αik − αi′k| I[ĉi=ĉi′ ]∑I
i=2
∑i

i′=1 K × I[ĉi = ĉi′ ]
(15)

where ĉi represents the classified result for the ith examinee,
and I[ĉi=ĉi′ ]

is the indicator function reflecting whether or not
examinees i and i’ are classified into same cluster. This index is
also bounded between 0 and 1, and it equals 1 if true attribute
profiles are the same for all pairs of examinees clustered together.

Results
Figures 1–8 totally demonstrate the means of ARI and ω for
SCA, K-means, G-DINA model and its related reduced CDMs
over 100 replications for each condition. Classification results
of the true model are definitely the best, which provides the
upper limit of comparison across all conditions. Oppositely, the
random case just provides the lower limit of comparison to
other settings, and it has indicated the worst performance among
all methods based on simulation results. Although the “best”
scenarios are treated as the best possible case for K-means to
cluster response data, it has to use CDMs to get the expected
response pmj in advance, then W can be calculated. In this sense
it is not indeed a nonparametric method. So, we mainly compare

the performances of Ward’s linkage for two clustering methods
against the ones of other fitted CDMs in the following. The results
of SCA with random, K-means with random and K-means with
best do not present here.

According to all results, the ARI and ω values are comparable
between SCA and other methods (K-means and fitted CDMs) on
the whole. In each Figure, the lines are clearly divided into two
parts on account of item quality. The top half part presents high
quality while the bottom half part presents low quality conditions.
These results fully reflect the item quality, with a significant
influence on accuracy of classification. Take Figures 1, 2 as an
example, ARI values are all above 0.3, and ω values are all
larger than 0.81 under the SCA with high quality. However, the
lowest values of ARI and ω are 0.0284 and 0.6075, respectively,
with low quality. Figures 3–8 show the same results under
different generating CDMs. It is noted that this deterioration is
not unique for the SCA, moreover, the K-means and CDMs also
have the same tendency. It demonstrates that item quality not
only has a prominent influence on the performance of CDMs,
but also has a dramatical effect on clustering methods. So, some
important attentions should be paid to item quality in order
to promote the classification accuracy in CDA regardless of the
particular classification methods. As for two clustering methods,
SCA can obtain higher ARI and ω values, representing more
accurate clustering in most conditions, which can be concluded
from that the red dot line (the legend denoted as SCA-W) is
mostly above the green dot line (the legend denoted as Kmeans-
W) in each parts.

For sample size, the impact of this factor on classification
accuracy of these approaches is almost the same when other
factors (e.g. attribute number, test length, item quality, and true
models) are fixed, which means the clustering performance of
SCA is comparable to K-means and other fitted CDMs. As can
be seen those from eight figures, the ARI and ω values, soaring
as the sample size, become large (from 100 to 500) on the whole.
Since the relative advantage of cluster analysis applicated in small
sample size, the main outcomes had been described under 100
sample size conditions (the left half part in each figure). Note that
the similar results are presented in 500 sample size condition.
When the G-DINA is the true model, the ARI and ω values
of SCA are higher than those from K-means, DINA and DINO
models (the red dot line is above) except that the ARIs in the
conditions K = 3 and item quality is high, and K = 4 and item
quality is low, respectively. This indicates SCA can be applied
to most tests where there are a saturated underlying processes
between attributes. As for A-CDM is the true model, we can
see that SCA performs better than K-means, DINA and DINO
models when item quality is high (except K = 5). Futhermore,
SCA performs similarly as others in terms of ARIs (except K = 3
and J = 5 or 10), but ω values are consistently higher than other
methods when item quality is low, which demonstrates stronger
within-cluster homogeneity. This suggests SCA can also obtain
decent classification accuracy when the cognitive mechanism is
additive between attributes. Considering the true model is DINA
model, the ARIs from SCA are almost higher than those from
K-means and DINO model. Meanwhile, the ω values from SCA
are also the highest among these three methods when item quality
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FIGURE 1 | Mean values of ARI by SCA, K-means, and fitted models; True model = G-DINA.

FIGURE 2 | Mean values of ω by SCA, K-means, and fitted models; True model = G-DINA.

is low, whereas the magnitudes of ωs are affected by test length
when item quality is high. Specifically, ω values of SCA are higher
than those from K-means, A-CDM and DINO when J = 20,
and be inverse when J = 5 or 10. The results show that the
performance of SCA is acceptable when item quality is low, or J
> 20 if the underlying process is conjunctive among attributes.
Providing that DINO is the true model, the ARIs from SCA
are almost higher than those from K-means and DINA model.
Similarly, the ω values from SCA are the highest among these
three methods, especially higher than A-CDM when K = 3 and
item quality is high. This implies SCA has a patchy performance
when disjunctive process arose between attributes.

In addition, the number of attributes also affects the
classification accuracy of SCA as same as CDMs. Generally

speaking, with attribute number K increasing, the ARI and ω

values decreases. Most results conform to this pattern as shown
in Figures 1–8. However, this trend is not consistent across all
conditions. For instance, in Figure 1, for condition (I, J) = (100,
5), ARI values change from 0.3554 to 0.3628 under SCA, while
ARI values change from 0.3446 to 0.3754 under K-means when
K grows from 3 to 4. ω values change from 0.8161 (0.8055) to
0.8378 (0.8337) under SCA (K-means). Due to the randomness
of generating Q-matrix in each replication, the K-means may
arise some reversal results in some conditions. So, it may infer
that the combination of q-vectors influences the effect of attribute
number on classification accuracy.

Last, test length is a widely considered factor in CDA. Many
studies have discussed the influence of this factor on classification
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FIGURE 3 | Mean values of ARI by SCA, K-means, and fitted models; True model = A-CDM.

FIGURE 4 | Mean values of ω by SCA, K-means, and fitted models; True model = A-CDM.

accuracy (Chen et al., 2013; Chiu et al., 2009). From the results of
these simulations, as J increases, the classification abilities of all
methods tend to improve. Considering the shortest test length
condition (J = 5), most ω values are no less than 0.8 when
item quality is high, while most ω values are no less than 0.6

when item quality is low under the SCA procedure. Definitely,
the longer the test length is, the more information about the
examinees it provides, and more accurate classification will be
obtained. This indicates the SCA can be affected by test length
just like other methods.
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FIGURE 5 | Mean values of ARI by SCA, K-means, and fitted models; True model = DINA.

ANALYSIS OF MIXED NUMBER
SUBTRACTION DATA

Data Description
The data consist of 536 examinees’ responses to 11 items taken
from the mixed number fraction subtraction. The Q-matrix was
modified from five attributes to three attributes, and they were
previously used by Henson et al. (2009). The attributes defined for
this study are (1) borrowing from a whole number, (2) separating
a whole number from a fraction and (3) determining a common
denominator. Table 1 shows the 11 items and their required
attributes. It should be pointed out that the data and the Q-matrix
were got from R package ‘CDM’, and the item 12 was excluded
from the original table as shown in Henson et al.’s paper. So, there
were just 11 items in this study. Then, the SCA and K-means
algorithm with Ward’s linkage, and four CDMs were applied to
classify examinees into different clusters.

Two major criteria evaluating the classified quality were used
as those in Chiu et al. (2009) study, denoted as within-cluster
mean of W (see Eq. 10 for the definition), and square root of
mean squared residual (MSR) of W. Specifically, the mean of W
reflects how well-separated cluster means are, which can provide
good identification of examinees’ overall patterns. And MSR of
W shows that how homogeneous a cluster is. The MSR of W for
cluster m is given by

MSR(m) =

∑Im
i ‖W(m)

i − W̄(m)
‖

2

Im
(16)

where Im is the number of examinees grouped into cluster m. The
smaller the MSR is, the more homogeneous a cluster is.

Meanwhile, we also report the cluster size and mean of sum-
score as the auxiliary indicators. The classification results from
SCA, K-means, and CDMs were sorted by means of sum-score,
which can be used to infer attribute profiles in practice (Chiu
et al., 2009). The rationale is that one may get higher sum-score if
(s)he masters more attribute in a test usually.

Analysis and Results
The data were analyzed by all methods through the statistic
W. We only select the Ward’s starting values due to their
good performance in simulation studies. Note that the attribute
profiles’ labels were not available for clustering analysis, and
the results from the SCA and K-means were sorted along with
the means of sum-scores in the same cluster, illustrating how
one can infer the examinees’ attribute profiles. It means that
the mean of sum-scores in certain cluster representing α =

(0, 0, 0) is definitely the smallest among eight attribute profiles,
while the mean of sum-scores is the largest for profile α =

(1, 1, 1). Because of the acquirement of specific attribute profiles
by using the CDMs, results are listed according to the size of
attribute vectors.

When using multiple models to fit the same data, the
Akaike’s information criterion (AIC; Akaike, 1974) and the
Bayesian information criterion (BIC; Schwarzer, 1976) were
usually adopted to determine which model can provide a better
fit result. For each of these two statistics, the fitted model with a
the smaller value is selected among the set of competing models.
Table 2 shows the AIC and BIC for four CDMs fitting the fraction
subtraction data. The AIC is the smallest under the G-DINA
model, but the BIC is the smallest under A-CDM. According to
previous study, if AIC and BIC contradict each other, the BIC
may provide a better result for selecting model because BIC takes
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FIGURE 6 | Mean values of ω by SCA, K-means, and fitted models; True model = DINA.

FIGURE 7 | Mean values of ARI by SCA, K-means, and fitted models; True model = DINO.

into account both the sample size and the number of parameters
of the model (Chen et al., 2013). Based on this point, the A-CDM
provides the best fit among these four CDMs.

Due to the space limitation, only the results obtained by the
best fit model, A-CDM, are shown in the table. As can be seen
in Table 3, the A-CDM intensively grouped most examinees

Frontiers in Psychology | www.frontiersin.org 10 May 2020 | Volume 11 | Article 944

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00944 June 15, 2021 Time: 11:0 # 11

Guo et al. Spectral Clustering Algorithm for CDA

FIGURE 8 | Mean values of ω by SCA, K-means, and fitted models; True model = DINO.

into three main clusters, and the remaining clusters only have
a few examinees. In addition, the differences among W1 to W3
are comparative large under the A-CDM, so it is benificial to
identify attribute profiles of examinees. However, large MSRs are
got by using this model, which means this empirical data are not
clustered closely based on examinees’ profiles, then apart cluster
means may result in heterogeneous clustering.

In contrast, Table 4 shows that the SCA classified most data
to the profiles which stand for mastering only one attribute
(denoted as α(1)), the number of examinees is 137. The second
largest cluster size is 75, and this cluster represents the profile
α = (1, 1, 1). Similarly, the K-means method also classified most
data to the same profiles, with the clusters α(1) and α = (1, 1, 1)
are both containing 100 examinees. The distances between the
pairs of clusters in the SCA are larger than those in K-means
method according to the values of W, which means that SCA can
give well-separated clusters. In addition, the values of MSR under
these two clustering methods are smaller than those under the

TABLE 1 | Mixed number fraction subtraction and corresponding q-matrix.

Item number Item Q-matrix Item number Item Q-matrix

1 3 1
2 − 2 3

2 1 1 0 8 2− 1
3 1 0 1

2 3− 2 1
5 1 0 1 9 4 5

7 − 1 7
4 1 1 1

3 3 7
8 − 2 1 0 1 10 7 3

5 −
4
5 1 0 0

4 4 4
12 − 2 7

12 1 0 0 11 4 1
10 − 2 8

10 1 0 0

5 4 1
3 − 2 4

3 1 1 0 13 4 1
3 − 1 5

3 1 1 0

6 11
8 −

1
8 1 1 0

A-CDM. Further, MSR under SCA are smaller than those under
K-means, except one cluster (see the bold value on the second
row). This is in accord with the results from simulation study that
the SCA tends to form close and homogeneous clusters.

Finally, taking the A-CDM as the standard, Table 5 presents
the classification agreement of each two methods, including SCA,
K-means, and A-CDM. The agreement between the A-CDM
and SCA is slight higher than the other pairs with an ARI of
0.468 compared to an ARI of 0.443 for the agreement between
the A-CDM and K-means. It indicates that SCA outperformed
K-means for this data set.

SUMMARY AND DISCUSSION

The contribution of this study is to introduce the SCA into
cognitive diagnosis and compare it with the K-means method and
different CDMs in terms of classification accuracy. The clustering
methods are computationally efficient and effctive for data with

TABLE 2 | AIC and BIC for four CDMs fitting fraction subtraction data.

Models AIC BIC

G-DINA 5341.06 5550.98

DINA 5534.39 5658.63

DINO 5517.80 5642.04

A-CDM 5363.15 5525.94

Bold values mean the best models that we need to select to fit the data.
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TABLE 3 | Classification by A-CDM.

Profile Size Mean W
√

MSR(m) Mean Sum-score

W1 W2 W3

(0 0 0) 127 0.93 0.51 0.66 1.35 1.07

(0 1 0) 109 1.55 1.94 1.37 1.34 2.83

(0 0 1) 6 3.41 1.33 3.00 0.75 4.00

(1 0 0) 9 4.70 3.56 1.22 1.19 6.11

(1 1 0) 40 3.62 4.55 1.45 1.35 7.33

(1 0 1) 6 2.59 2.83 3.50 1.03 8.00

(0 1 1) 44 4.37 2.14 2.93 1.60 4.80

(1 1 1) 195 7.09 4.63 3.62 1.37 9.88

TABLE 4 | Classification by SCA-Ward’s and K-means-Ward’s algorithm.

Size Mean W
√

MSR(m) Mean
sum-score

W1 W2 W3

59 (79) 0.03 (0.04) 0.41 (0.70) 0.07 (0.09) 0.67 (0.79) 0.61 (0.73)

62 (40) 0.13 (0.00) 0.24 (0.00) 1.26 (1.00) 0.75 (0.00) 1.63 (1.00)

71 (100) 0.18 (0.05) 1.10 (1.04) 1.82 (1.61) 0.67 (0.74) 3.10 (2.70)

137 (71) 0.88 (0.87) 1.98 (1.24) 2.28 (2.82) 1.09 (1.18) 5.14 (4.93)

58 (52) 2.24 (2.06) 3.36 (3.35) 1.60 (1.35) 1.18 (1.30) 7.21 (6.75)

32 (52) 2.78 (2.62) 3.66 (2.87) 2.94 (3.60) 0.76 (0.77) 9.38 (9.08)

42 (42) 2.40 (2.57) 3.33 (4.00) 3.86 (2.81) 0.70 (0.93) 9.60 (9.38)

75 (100) 3.00 (2.67) 4.00 (3.97) 3.96 (4.00) 0.25 (0.55) 10.93 (10.67)

Results of K-means-Ward’s present in parentheses.

TABLE 5 | ARI table for ACDM, SCA and K-means.

A-CDM SCA-Ward’s K-means-Ward’s

A-CDM – 0.468 0.443

SCA-Ward’s – 0.427

K-means-Ward’s –

any sample size. It’s easy and convenient to implement, and
researchers only need to know the number of required attributes
and their hierarchical structures. The previous study had shown
that K-means has favorable performance in clustering examinees
who possess the same attribute profiles (Chiu et al., 2009). In this
study, we introduced the SCA for grouping examinees’ attribute
profiles into specific clusters in CDA. Then, the performance of
SCA on classification accuracy was investigated under different
factors, and some interesting findings were made based on
simulation studies.

The most important factor affecting the classification accuracy
of both clustering analysis and CDMs was item quality. Generally,
the higher the item quality was, the higher the classification
accuracy was. This is because the randomness (i.e. guessing
and slipping behaviors) in the responses will decrease with high
quality leading to a more aggregated cluster for the same attribute
profile of examinees. Thus, it is not difficult to distinguish the
differences between clusters.

With the number of attribute increasing, the ARI and ω

values decrease for all methods. We know that the total number

of attribute profiles in CDA is exponential in the number of
attributes, i.e. 2K which is also the magnitude of clusters to
be identified. Obviously, the difficulty of accurately identifying
attribute profiles from a large space is considerable. Besides, as
test length increases, the classification abilities of all methods
tend to improve. This results are consistent with previous studies.
We chose short test length in simulation studies because, a)
if giving students an “embedded assessment” at the end of an
instruction period, we must prefer short tests to save lecture time
(Wang, 2013). In addition, teachers also want to get the attribute
profiles of students quickly with short test. b) some diagnostic
tests that are commonly used in CDA do not have too many
items, especially when the number of attributes is small. Based
on our simulations, the SCA can yield considerable classification
accuracy when test length is 20.

Simulation results presented here showed that the true CDM is
always the best one to fit data. However, the underlying processes
among attributes are various in real data actually, and it is hard to
define the exact relationship between them. So, the simplicity of
cluster analysis is an attractive selection without regard to specify
the underlying processes in advance. As mentioned in section
“Spectral Clustering for Cognitive Diagnosis,” the SCA could
simply implemented via the R package called ‘Kernlab’, which
means it is very easy to master by teachers and practitioners.
In this study, we investigated the performance of SCA under
four specifical processes (saturated, additive, conjunctive and
disjunctive) and compared it with other approaches. Overall,
the SCA performed comparably to fitted CDMs, and it was
basically superior to K-means method. Particularly, the ω values
from SCA were highest when the true model was A-CDM
(excluded the true model). The strength of cluster analysis was
the application in small sample size, so we mainly focused on
this point in this study. When the sample size was small, the
effectiveness of SCA varied depending on the mechanism of
attributes according to simulation results. So, integrating the role
of generating CDMs and sample size, our usage recommendation
is that the SCA is suitable for analyzing data in regard to
saturated and additive underlying processes while it has slightly
worse efficiency in conjunctive and disjunctive scenarios. With
the sample size increased, it should be pointed out that the
classification accuracy became better for all these approaches
and the differences in classification accuracy between clustering
analysis and CDMs were shrinked.

The ARIs are generally low for some conditions in this paper.
These three setting factors (i.e. item quality, test length, and
generating model) in this research are different from Chiu et al.
(2009) study. As for reason, we can see that these three factors
have significant effects on classification accuracy based on our
simulation studies. So, it is not strange that the ARIs are lower
than those of conclusions in Chiu et al.’s study. In point of fact,
the ARIs are not very low when item quality is high in this study.

Just like K-means, the SCA also suffers from the labeling
problem, and has difficulty in matching each cluster to a certain
attribute profile. This is a major issue of clustering analysis
for CDA. However, perhaps one can draw on the teachers’
experience to help to determine the students’ attribute profiles in
the classroom. This issue will be one of our future directions.
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Several directions for research can be identified. First, the
hierarchy of attributes refers to structurally independent in
this research, which means there is no prerequisite in every
required attributes. So, the correlation exists between attributes
is plausible in this case. However, there are other different
structures among the attributes, such as linear, convergent,
divergent, and unstructured hierarchical structures (Leighton
et al., 2004). The hierarchy generally defines the educational
and psychological ordering among the attributes required to
solve a test problem, so it is reasonable to infer the attribute
structures often exists in the test (Kim, 2001). Although the
performance of SCA in one of the structures has been examined
in this study, it can not directly generalize to other cases without
investigation. So, the effect of different attributes structures need
further studies.

Second, the fully connected graph, Gaussian Kernel (Eq. 5),
was used to construct similarity matrix S in this study.
However, there are different similarity graphs in the SCA,
such as the epsilon-neighborhood graph and k-nearest neighbor
graphs. Besides, two major methods, the unnormalized and the
normalized spectral clustering, can be used to calculate Laplacian
matrix. The current paper focused only on the normalized case.
In the future, other similarity graphs and unnormalized spectral
clustering method should be considered in the SCA to investigate
the classification ability for the CDA.

Third, as an initial research to propose the SCA into CDA,
the current study only investigated the SCA’s performance for the
dichotomous item responses. However, recent study proposed
a general polytomous cognitive diagnosis model for a special
type of graded responses to deal with non-dichotomous item

responses (Ma and de la Torre, 2016). So, it is necessary
to develop the clustering analysis to cope with the cognitive
diagnostic test with both dichotomous and polytomous items.
Thus, it may be reasonable to measure the similarity by methods
based on rank correlation, such as in Chen et al. (2017). It is
interesting to investigate how well the SCA performs for the
graded responses.
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