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Research in psychology generates complex data and often requires unique statistical
analyses. These tasks are often very specific, so appropriate statistical models and
methods cannot be found in accessible Bayesian tools. As a result, the use of Bayesian
methods is limited to researchers and students that have the technical and statistical
fundamentals that are required for probabilistic programming. Such knowledge is not part
of the typical psychology curriculum and is a difficult obstacle for psychology students
and researchers to overcome. The goal of the bayes4psy package is to bridge this
gap and offer a collection of models and methods to be used for analysing data that
arises from psychological experiments and as a teaching tool for Bayesian statistics in
psychology. The package contains the Bayesian t-test and bootstrapping along with
models for analysing reaction times, success rates, and tasks utilizing colors as a
response. It also provides the diagnostic, analytic and visualization tools for the modern
Bayesian data analysis workflow.

Keywords: Bayesian statistics, R, psychology, reaction time, success rate, Bayesian t-test, color analysis, linear
model

1. INTRODUCTION

Bayesian data analysis with custom models offers a highly flexible, intuitive and transparent
alternative to classical statistics. Throughout much of the modern era of science Bayesian
approaches were on the sidelines of data analysis, mainly due to the fact that computations required
for Bayesian analysis are usually quite complex. But computations that were only a decade or two
ago too complex for specialized computers can now be executed on average desktop computers. In
part also due to modern Markov chain Monte Carlo (MCMC) methods that make computations
tractable for most parametric models. This, along with specialized probabilistic programming
languages for Bayesian modeling, such as St an (Carpenter et al., 2017) and JAGS (Plummer,
2003), drastically increased the accessibility and usability of Bayesian methodology for data analysis.
Indeed, Bayesian data analysis is steadily gaining momentum in the twenty-first century (Gelman
et al.,, 2014; Kruschke, 2014; McElreath, 2018), especially so in natural and technical sciences.
Unfortunately, the use of Bayesian data analysis in social sciences remains scarce, most likely due
to a steep learning curve associated with Bayesian analysis.

There are many advantages of Bayesian data analysis (Dunson, 2001; Gelman et al., 2014;
Kruschke, 2014; McElreath, 2018), such as its ability to work with missing data and incorporating
prior information about the data in a natural and principled way. Furthermore, Bayesian methods
offer high flexibility through hierarchical modeling, while calculated posterior parameter values can
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be used as easily understandable alternatives to p-values. Bayesian
methods provide very intuitive and interpretable answers, such
as “the parameter p has a probability of 0.95 of falling inside the
[—2, 2] interval.”

One of the social sciences that can substantially benefit from
Bayesian methodology is psychology. The majority of data that
are acquired in psychological experiments, such as reaction times,
success rates, and picked colors, can be analyzed in a Bayesian
manner by using a small set of probabilistic models. To a certain
degree Bayesian methodology could also alleviate the replication
crisis that is pestering the field of psychology (Schooler, 2014;
Open Science Collaboration, 2015; Stanley et al., 2018).

The ability to replicate scientific findings is of paramount
importance to scientific progress (McNutt, 2014; Baker and
Penny, 2016; Munafo et al., 2017). Unfortunately, more and more
replications fail to reproduce original results and conclusions
(Schooler, 2014; Open Science Collaboration, 2015; Amrhein
et al, 2019). This so-called replication crisis is not only
harmful to the authors of such studies but to science itself. A
recent attempt to replicate 100 studies from three prominent
psychology journals (Open Science Collaboration, 2015) showed
that only approximately a third of studies that claimed statistical
significance (p-value < 0.05) also showed statistical significance
in replication. Another recent study (Camerer et al, 2018)
tried to replicate systematically selected studies in the social
sciences published in Nature and Science between 2010 and
2015, replication attempts were successful only in 13 out of
21 cases.

The main reasons behind the replication crisis seem to be
poor quality control in journals, unclear writing and inadequate
statistical analysis (Wasserstein and Lazar, 2016; Hurlbert et al.,
2019; Wasserstein et al., 2019). One of the fundamental issues
lies in the desire to claim statistical significance through p-
values. Many manuscripts published today repeat the same
mistakes even though prominent statisticians prepared extensive
guidelines on what to do and mainly what not to do (Hubbard,
2015; Wasserstein and Lazar, 2016; Wasserstein et al., 2019;
Ziliak, 2019). Reluctance to adhere to modern statistical practices
has led scientist to believe that a more drastic shift in statistical
thinking is needed, and some believe that it might come in the
form of Bayesian statistics (Dunson, 2001; Gelman et al., 2014;
Kruschke, 2014; McElreath, 2018).

Some software tools and packages already bring Bayesian
statistics to broader audiences. JASP (Love et al, 2019) is
a graphical statistical software that also implements Bayesian
alternatives for some common statistical tests (e.g., t-test,
ANOVA, ...). JASP allows execution of statistical analyses
through its highly intuitive graphical user interface. Another
great tool for executing elementary Bayesian analyses is Rasmus
Baath’s Bayesi anFi r st Ai d (Baath, 2014). The goal of this
R package is to replace the classic elementary statistical tests
with their Bayesian counterparts. Since both JASP (Love et al.,
2019) and Bayesi anFi r st Ai d (Biath, 2014) focus on the
most elementary statistical tests, the tools they offer are often
insufficient when working with more complex data sets. The
development of a package that would cover all needs of
modern science is impossible, but as a subset of specialized

Bayesian models is sufficient to cover the majority of analyses in
psychology, we developed the bayes4psy R package.

The bayes4psy R package provides a state-of-the art
framework for Bayesian analysis of psychological data. It
incorporates a set of probabilistic models for analysing data
that arise during many types of psychological experiments. All
models are pre-compiled, meaning that we do not need any
specialized software or skills (e.g., knowledge of probabilistic
programming languages). The only requirements are the R
programming language and very basic programming skills (same
skills as needed for classical statistical analysis in R). The package
also incorporates the diagnostic, analytic and visualization tools
required for modern Bayesian data analysis. The bayes4psy
package represents a bridge into the exciting world of Bayesian
statistics for students and researches in the field of psychology.

2. METHODS AND MODELS

For statistical computation (sampling from the posterior
distributions) the bayes4psy package utilizes Stan
(Carpenter et al, 2017). Stan is a state-of-the-art platform
for statistical modeling and high-performance statistical
computation and offers full Bayesian statistical inference
with MCMC sampling. It also offers friendly interfaces with
most programming languages used for statistical analysis,
including R R(R Core Team, 2017) is one of the most powerful
and widespread programming languages for statistics and
visualization. Visualizations in the bayes4psy package are
based on the ggpl ot 2 package (Wickham, 2009).

Bayesian analysis requires three key pieces of information—
the input data, the statistical model and the priors. By far the
most complex of the three is the development of a statistical
model, which requires extensive knowledge in probabilistic
programming. To avoid this difficult step, the bayes4psy
package includes an already prepared collection of models
for analysing the most common types of data arising from
psychological research.

2.1. The Input Data

In psychology and many other scientific fields data are
typically gathered with experiments, surveys, questionnaires,
observations, and other similar data collection methods.
Gathering and preparing the data for use with the bayes4psy
package is the same as for any other statistical analysis.

2.2. The Statistical Model

The bayes4psy package contains a collection of Bayesian
models suitable for analysing common types of data that
arise during psychological experiments. The packages includes
the Bayesian t-test and bootstrap and models for analysing
reaction times, success rates, and tasks utilizing colors as a
response. Besides the models, we also prepared the diagnostic,
analytic, and visualization tools for the modern Bayesian data
analysis workflow.

Statistical models are defined through distributions and their
parameters. For example, the Bayesian ¢-test utilizes a generalized
t-distribution which has three parameters—degrees of freedom
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v, location/mean p, and scale/variance o. In the remainder
of the paper, we describe and visualize all the models in the
bayes4psy package.

2.3. Priors

In Bayesian statistics we use prior probability distributions
(priors) to express our beliefs about the model’s parameters
before any evidence (data) is taken into account. Priors represent
an elegant way of combining (pre)existing knowledge with new
facts about the domain of analysis. Prior distributions are usually
based on past research or domain expertise. If prior information
is unavailable, we usually resort to weakly informative, vague
priors. We can also leverage prior information to increase the
power of small-sample studies.

In the bayes4psy package we can express prior knowledge
with prior distributions on all of the model’s parameters. The
package supports uniform, normal, gamma and beta prior
distributions. By default flat/improper priors are used for all of
the model’s parameters. For details, see the illustrative examples
in section 3.

2.4. Outputs

The outputs of the MCMC-based Bayesian inference are samples.
These samples represent credible values for parameters of the
chosen statistical model. For example, the samples of the
Bayesian t-test model contain values for the parameters of the
underlying ¢-distribution—degrees of freedom v, mean u, and
variance o. Once we acquire these samples, typically hundreds
or thousands of them, we can use them for statistical inference.
The samples can be used in a number of ways, for example, we
can use them to compare means of two or more groups, we can
reconstruct the estimated distribution of the population, we can
describe the group by calculating summary statistics (e.g., mean,
confidence interval) of certain parameters.

2.5. A Simplified Example
Suppose we are interested in comparing the mean heights of
Europe and US primary school pupils. First, we need to define our
inputs—the input data, the statistical model and the priors. The
input data are the actual height measurements of the pupils. Next,
we have to pick an appropriate model. Since we are interested
in comparison of the means, we can use the model for the
Bayesian t-test (see the section 2.6 for a detailed explanation
of this model). This model has three parameters—degrees of
freedom v, mean p, and variance o. We can specify priors for
these parameters or use the default non-informative priors. An
example of a weakly informative or vague prior in this example
would be a uniform distribution 2/(0,200) for the y parameter.
With this prior on pu we are postulating that mean height of
primary school pupils lies strictly somewhere between 0 and 200
cm. Priors can be based on previous studies or expert knowledge.
For example, since mean height of primary school pupils is
around 120 £ 20 cm a reasonable informative prior for the u
parameter could be N(120,20). In a similar way we can define
priors for vand o.

Once we have selected the priors, we are ready to infer the
distributions underlying the chosen model (fit the model) to our

data for each of the two groups (height of pupils in Europe and
height of pupils in USA). The output of the inference process are
the generated samples of the model’s parameters. Suppose that
the generated samples are ugy = [123, 128, 121, 137,110 cm] and
nus = [118, 126, 119, 110, 122 cm]. We can compare the mean
height of these two groups by executing a pair-wise comparison
of the u samples. In this example we can claim with 80% certainty
that European pupils are higher than their US counterparts (in
four out of five samples, the p parameter of European pupils is
higher—123 > 118 cm, 128 > 126, 121 > 119 c¢m, 137 > 110
cm, 110 < 122 cm). Note that in practice we would typically have
hundreds or thousands of samples.

We can also check if means of two groups is equal. One
way of doing this is by defining the ROPE (Region Of Practical
Equivalence) interval. For example, if our measuring equipment
had a tolerance of 0.2 cm, then it would make sense to set
the ROPE interval to [—0.2, 0.2]. Samples from both groups
that differ for <0.2 cm would be interpreted as equal and we
would be able to compute the probability that the means are
(practically) equal.

2.6. Bayesian t-Test

The t-test is one of the most popular statistical tests. In
bayes4psy it is based on Kruschke’s model (Kruschke, 2013,
2014) which uses a scaled and shifted Students ¢-distribution
(Figure 1). This distribution has three parameters—degrees of
freedom (v), mean (1), and variance (o).

There are some minor differences between our
implementation and Kruschkes. Instead of pre-defined vague
priors for all parameters, we can define custom priors for the
v, i, and o. Kruschke’s implementation models two data sets
simultaneously, while in bayes4psy we can model several
data sets individually and then make pairwise comparisons or

prior distributions
t(v, u, 0)
t distribution
Yi
FIGURE 1 | The visualization of the Bayesian t-test. The model has three
parameters—degrees of freedom v, mean u, and variance o. y; denotes i-th
datum in the provided data set.
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a simultaneous cross comparison between multiple fits. We
illustrate the use of the ¢-test in section 3.3.

2.7. Model for Analysing Reaction Times
Psychological ~experiments typically have a hierarchical
structure—each subject (participant) performs the same
test for a number of times, several subjects are then grouped
together by their characteristics (e.g., by age, sex, health) and
the final statistical analysis is conducted at the group level. Such
structure is ideal for Bayesian hierarchical modeling (Kruschke,
2014).

Our subject-level reaction time model is based on the
exponentially modified normal distribution. This distribution has
proven to be a suitable interpretation for the long tailed data
that arise from reaction time measurements Lindelgv (2019).
Note here, that the exponentially modified normal distribution
is flexible and can also accommodate the cases in which data are
distributed normally. To model the data at the group level we put
hierarchical normal priors on all parameters of the subject-level
exponentially modified normal distribution.

The subject level parameters are thus u;, oj, and X, where
i is the subject index. And hierarchical normal priors on these
parameters are N (i, 0,,) for the u parameter, N (i1, 0, ) for the
o parameter and N (1, 0;) for the A parameter. See Figure 2 for
a graphical representation of the Bayesian reaction time model.
For a practical application of this model see section 3.1.

In the case of an exponentially modified normal distribution
means are calculated using the p and A parameters. By default,
bayes4psy reports means on the group level, calculated as
E=pu+1/1

2.8. Model for Analyzing Success Rates

The success rate model is based on the Bernoulli-Beta model that
can be found in most Bayesian statistics textbooks (Gelman et al.,
2014; Kruschke, 2014; McElreath, 2018). This model is used for
modeling binary data. In our case this binary output represents
whether a subject successfully solved the given task or not.

The success rates model also has a hierarchical structure. The
success rate of individual subjects is modeled using Bernoulli
distributions, where the p; is the success rate of subject i. A
reparameterized Beta distribution, Beta(pt, (1 — p)7), is used as
a hierarchical prior on subject-level parameters, where p is the
group level success rate and 7 is the scale parameter. A graphical
representation of our hierarchical success rate model can be
seen in Figure 3. For a practical application of this model see
section 3.1.

2.9. Model for Analysis of Sequential Tasks
In some psychological experiments data have a time component
or some other ordering. For example, when subjects are asked
to perform a sequence of tasks. To model how a subjects
performance changes over time, we implemented a hierarchical
linear normal model.

The sequence for a subject is modeled using a simple linear
model with subject-specific slope and intercept. To model the
data at the group level we put hierarchical normal priors on all
parameters of the subject-level linear models. The parameters

of subject i are «; for the intercept, §; for the slope and o; for
modeling errors of the fit (residuals). The hierarchical normal
priors on these parameters are N (jiy,04) for the intercept o,
N (g, o) for the slope g and NV (s, 05 ) for the residuals (o).

A graphical representation of the model is shown in Figure 4.
For a practical application of this model see section 3.2.

2.10. Model for Analysis of Tasks Utilizing

Colors as a Response

This model is designed for experiments in which subject’s
response comes in the form of a color (e.g., subjects have to pick
a color that describes their mood, subject have to remember a
color and then pick it from a color palette after a certain time
interval ...). Color stimuli and subject responses in psychological
experiments are most commonly defined through the RGB color
model. The name of the model comes from the initials of the three
additive primary colors, red, green, and blue. These colors are
also the three components of the model, where each component
has a value ranging from 0 to 255 which defines the presence of a
particular color. Since defining and analysing colors through the
RGB model is not very user friendly and intuitive, our Bayesian
model is capable of working with both the RGB and HSV
color models. HSV (hue, saturation and value) is an alternative
representation of the RGB model that is usually easier to read and
interpret for most human beings.

The Bayesian color model works in a component-wise fashion.
Six distributions (three for the RGB components and three
for the HSV components) are inferred from the data for each
component individually. For RGB components we use normal
distributions (truncated to the [0, 255] interval). In the HSV
case, we used [0, 1]-truncated normal distributions for saturation
and value components and the von Mises distribution for the
hue component. The von Mises distribution (also known as
the circular normal distribution) is a close approximation to
the normal distribution wrapped on the [0, 27] interval. A
visualization of our Bayesian model for colors can be seen in
Figure 5 and its practical application in section 3.4.

2.11. The Bayesian Bootstrap

The bootstrap is a resampling technique for computing
standard deviations, confidence intervals and other estimates for
quantifying uncertainty. It uses sampling with replacement to
approximate the sampling distribution of an estimator and is
applicable in a uniform way to a wide range of scenarios.

The Bayesian bootstrap in bayes4psy is the analog of the
classical bootstrap (Efron, 1979). It is based on Rasmus Baath’s
implementation (Baath, 2015), which in turn is based on methods
developed by Rubin (1981). The Bayesian bootstrap does not
simulate the sampling distribution of a statistic estimating a
parameter, but instead simulates the posterior distribution of
the parameter. The statistical model underlying the Bayesian
bootstrap can be characterized by drawing weights from a
uniform Dirichlet distribution with the same dimension as the
number of data points. These draws are then used for calculating
the statistic in question and weighing the data (Baith, 2015).
For more details about the implementation see Béath (2015) and
Rubin (1981).
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prior distributions
N(w,,0,) N(m,, o) N(p,, 0,)
normal distribution normal distribution normal distribution

\

emn(u']_’ 01’ A;|_)

exponentially modified

v

emn(,, o,

exponentially modified
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FIGURE 2 | The visualization of the Bayesian reaction time model. The model has a hierarchical structure. Reaction times belonging to each individual subject (t,;
depicts i-th reaction time of the subject n) are used to construct exponentially modified normal distributions at the subject level. Parameters of subject level
distributions are then connected at the group level by using normal distributions, which can then be used for group level analysis.

emn(u,, 0,
exponentially modified

normal distribution

t

n,i

2.12. Methods for Fitting and Analysing

Bayesian Fits

This section provides a quick overview of all the methods for
fitting and analysing the models described in previous sections.
For a more detailed description of each function we invite
the reader to consult the bayes4psy package documentation
and examples.

The first set of functions infers the parameters of model’s
distributions from the input data, in other words these functions
fit the model to the data. We can also use these functions
to define priors (for an example, see the second part of
section 3.1) or configure the fitting parameters. This way we
can set the number of generated samples (number of MCMC
iterations) along with several other parameters of the MCMC
algorithm. Some basic MCMC settings are described in this
manuscript and the documentation of this package, for more
advanced settings consult the official St an documentation
(Carpenter et al., 2017).

e b_ttest is used for fitting the Bayesian f-test model.
The input data comes in the form of a vector of normally
distributed real numbers.

e b_linear is used for fitting the hierarchical linear model,
suitable for analysing sequential tasks. The input data are
three vectors—x a vector containing values of the independent
variable (time, question index ...), y a vector containing values
of the dependent variable (subject’s responses) and s a vector

containing IDs of subjects, these IDs are used for denoting that
x;/y; pair belongs to a particular subject.

e b_reaction_time is used for the Bayesian reaction time
model. Its input data are two vectors—vector ¢ includes
reaction times while vector s is used for linking reaction times
with subjects.

e b_success_rat e is used for fitting the Bayesian success
rate model. Its input data are two vectors, the first vector r
contains results of an experiment with binary outcomes (e.g.,
success/fail, hit/miss ...) and the second vector s is used to link
these results to subjects.

e b_col or isused for fitting the color model. The input data to
this model is a three column matrix or a dat a. f r ame where
each column represents one of the components of the chosen
color model (RGB or HSV). If the input data are provided in
the HSV format then we also have to set the hsv parameter
to TRUE.

e b_bootstrap function can be wused for Bayesian
bootstraping. The input data can be in the form of a
vector, matrix or a dat a. f r ame. The Bayesian bootstrap
also requires the specification of the statistics function.

Before interpreting the results, we can use the following functions
to check if the model fits are a credible representation of the
input data:

e plot_trace draws the Markov chain trace plot for
main parameters of the model, providing a visual way to
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beta distribution
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Vi V2
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FIGURE 3 | The visualization of the Bayesian success rate model. The model has a hierarchical structure. Data about success of individual subjects (y,,; depicts
success on the i-th attempt of the subject n) are used for inferring Bernoulli distributions on the subject level. Parameters of subject level distributions are then

Bernoulli distribution

yni

l,

inspect sampling behavior and assess mixing across chains
and convergence.

e plot orplot_fit draws the inferred distributions against
the input data. With hierarchical models we can use the
subjects parameter to draw fits on the subject level.

e plot_hsv or plot_fit_hsv are special functions for
inspecting color model fits by using a color wheel visualization
of HSV components.

For a summary of the posterior with Monte Carlo standard
errors and confidence intervals we can use the sunmary or
pri nt /showfunctions:

e summary prints statistics of the main
model’s parameters.

e print, show prints a more detailed summary of the
model’s parameters. It includes estimated means, Monte Carlo
standard errors (Se_nean), confidence intervals, effective
sample size (n_ef f , a crude measure of effective sample size),
and the R-hat statistic for measuring auto-correlation. R-hat
measures the potential scale reduction factor on split chains
and equals 1 at convergence (Gelman and Rubin, 1992; Brooks

and Gelman, 1998).

summary

The conpar e_nmeans function can be used for comparison
of parameters that represent means of the fitted models.
To visualize these means one can use the pl ot _neans
function and for visualizing the difference between means
the pl ot _nmeans_di fference function. All comparison

functions (functions that print or visualize the difference between
fitted models) also offer the option of defining the ROPE interval
by setting the r ope parameter.

e conpare_neans prints and returns a data.frame
containing the comparison. It can be used for comparing two
or multiple models at the same time.

e plot_nmeans_difference visualizes the difference of
means between two or multiple models at the same time.

e pl ot _means plots the distribution of parameters that depict
means. It can be used on a single or multiple models at the
same time.

e pl ot _nmeans_hsv is a special function for the Bayesian
color model that plots means of HSV components by using
a color wheel visualization.

The following set of functions works in a similar fashion as the
one for comparing means, the difference is that this one compares
entire distributions and not just the means. This analysis is based
on the comparison of a large amount of samples drawn from
the distributions.

e conpare_distributions prints and returns a
dat a. frame containing the comparison results. It can
be used for comparing two or multiple models at the
same time.

e plot _distributions_difference visualizes the
difference of distributions underlying two or multiple fits at
the same time.
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prior distributions
N(u,, o) N(u,, o,) N(u,, o,)
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FIGURE 4 | The visualization of the hierarchical linear model. The model has a hierarchical structure, linear normal models are fitted on the subject level from data
belonging to each particular subject. Since the ordering is important input data come in pairs of dependent (e.qg., result or answer) and independent variables (e.g., time
or the question index). The term y,, |y, is the value of the i-th dependent variable given the value of the independent variable i for the subject n. Parameters of subject
level distributions are joined on the group level by using normal distributions. These group level distributions can then be used for group level analysis of the data.

prior distributions
N(u, o) N(u,, o,) N(u,, 0,)
normal distribution normal distribution normal distribution
VM(l,, K,) N(p, o) N(k,o0,)
r, g, b,
von Mises distribution normal distribution normal distribution
h s 1%

FIGURE 5 | The visualization of the Bayesian color model. The model is composed of six parts. Three parts are used to describe the RGB (red, green, blue) color
model components and three parts are used to describe the HSV (hue, saturation, value) color model components. All components, except hue, are modeled with
normal distributions, while hue is modeled with the von Mises distribution—a circular normal distribution.

e plot_distribution plots the distributions underlying e pl ot _di stributions_hsv is a special function for the
the fitted models, can be used on a single or multiple models Bayesian color model that plots the distribution behind HSV
at the same time. components by using a color wheel like visualization.
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We can also extract samples from the posterior for further
custom analyses:

e get _paraneters returns a data.frame of models
parameters. In hierarchical models this returns a
dat a. f r anme of group level parameters.

e get _subj ect _par anet er s can be used to extract subject
level parameters from hierarchical models.

3. ILLUSTRATIVE EXAMPLES

For the sake of brevity, we are presenting diagnostic
visualizations and outputs only the first time they appear
and omit them in later examples. The datasets used in the
examples are based on the experiments conducted by the Mind
& Brain Lab at the Faculty of Arts, University of Ljubljana. All
datasets are included in the bayes4psy package.

3.1. The Flanker Task

In the Eriksen flanker task (Eriksen and Eriksen, 1974)
participants are shown an image of an odd number of arrows
(usually five or seven). Their task is to indicate the orientation
(left or right) of the middle arrow as quickly as possible.
There are two types of stimuli: in the congruent condition (e.g.,
“<<<<<<<”) both the middle arrow and the flanking arrows
point in the same direction and in the incongruent condition
(e.g., “<<<><<<”) where the middle arrow points in the
opposite direction.

The participants have to consciously ignore and inhibit the
misleading information provided by the flanking arrows in the
incongruent condition, which leads to robustly longer reaction
times and a higher proportion of errors. The difference between
reaction times and error rates in congruent and incongruent
conditions is a measure of the subjects ability to focus and to
inhibit distracting stimuli.

In the illustration below we compare reaction times and error
rates when performing the flanker task between the control group
(healthy subjects) and the test group (subjects suffering from a
certain medical condition).

First, we load bayes4psy and dpl yr (Wickham et al.,
2018) for data wrangling. Second, we load the data and split them
into control and test groups. For reaction time analysis we use
only data where the response to the stimuli was correct:

R> |i brary(bayes4psy)
R> library(dplyr)

R> data <- flanker

R> control _rt <- data %%
filter(result == "correct" &
group == "control")

R> test_rt <- data %%
filter(result == "correct" &
group == "test")

The model requires subjects to be indexed from 1 to n. Control
group subject indexes range from 22 to 45, so we have to cast

them to an interval that ranges from 1 to 23. Note here, that
even though this way both control and test subject have some
indexes, they will be still treated as separate individuals because
the models for test and control subjects will be fitted separately.

R> control _rt$subject <- control _rt$subject - 21

Now we are ready to fit the Bayesian reaction time
model to data from both groups. The modeling function
(b_reaction_tine) requires two parameters—a vector of
reaction times ¢ and the vector of subject indexes s.
R> rt_control _fit <- b_reaction_tinme(t=control _rt$
re,

s=control _rt$
subj ect)

R>rt_test_fit <- b_reaction_tinme(t=test_rt$rt,
s=test _rt$
subj ect)

Before we interpret the results, we check MCMC diagnostics
(such as the traceplot on Figure 6, the Rhat metric and the
effective sample size) and inspect model’s fit.

R> plot_trace(rt_control _fit)
R> plot_trace(rt_test_fit)

R> print(rt_control _fit)

Inference for Stan nodel: reaction_tine.

4 chains, each with iter=2000; warnmup=1000; thin
:]_;
post -war nup draws per chai n=1000, total post-

war mup dr aws=4000.

nmean se_nean sd 2.5% 97.5% n_ef f Rhat

mu[ 1] 0.46 0.00 0.01 0.44 0.47 4789 1
mu[ 2] 0.36 0.00 0.01 0.35 0.38 4661 1
si gma[ 1] 0.04 0.00 0.01 0.03 0.05 5406 1
si gma[ 2] 0.03 0.00 0.01 0.02 0.04 5165 1
| anbdal[ 1] 14.41 0.02 1.62 1.59 17.87 4441 1
| amrbda[ 2] 11.59 0.02 1.15 9.53 14.01 5271 1
mu_m 0.51 0.00 0.01 0.48 0.54 5589 1
mu_| 6.86 0.01 0.91 5.12 8.75 5299 1
nu_s 0.07 0.00 0.01 0.06 0.08 4115 1
si gma_m 0.06 0.00 0.01 0.05 0.09 6078 1
signe_| 4.24 0.01 0.78 3.02 5.99 3940 1
sigma_s 0.02 0.00 0.00 0.01 0.03 3862 1
rt 0.66 0.00 0.02 0.61 0.71 5112 1
rt_subjects 0.53 0.00 0.01 0.51 0.54 4261 1
[1]

rt_subjects 0.45 0.00 0.01 0.44 0.47 5654 1

[2]

R> print(rt_test_fit)

The output above is truncated and shows only values for 2 of
the 24 subjects on the subject level of the hierarchical model.
The output provides further MCMC diagnostics, which again do
not give us any cause for concern. The convergence diagnostic
Rhat is practically 1 for all parameters and there is little auto-
correlation—effective sample sizes (n_ef f ) are of the order of
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FIGURE 6 | The trace plot forrt _control _fi t. The traceplot gives us no cause for concern regarding MCMC convergence and mixing. The trace plot for
rt_test_fit issimilar. Note that the first 1,000 iterations (shaded gray) are used for warmup (tuning of the MCMC algorithm) and are discarded. The next 1,000
iterations are used for sampling. Informally speaking, if trace plots after the warmup period look like “hairy caterpillars” there is no reason for concern.

samples taken and Monte Carlo standard errors (Se_mnean) are
relatively small.

What is a good-enough effective sample sizes depends on
our goal. If we are only interested in estimating the mean,
100 effective samples is in most cases enough for a practically
negligible Monte Carlo error. On the other hand if we are
interested in posterior quantities, such as extreme percentiles
for example, the effective sample sizes might have to be 10,000
or higher.

We can increase the effective sample size by increasing the
amount of MCMC iterations with the i t er parameter. In our
case we can achieve an effective sample size of 10,000 by setting
i ter to4,000. Because the MCMC diagnostics give us no cause
for concern, we can leave the war mup parameter at its default
value of 1,000.

R> rt_control _fit <-
b_reaction_tinme(t=control _rt$rt,

s=control _rt$subj ect,
i ter=4000)

R> rt_test_fit <-
b_reaction_time(t=test_rt$rt,
s=test _rt$subj ect,
it er=4000)

Because we did not explicitly define priors, default flat (improper)
priors were used. In some cases, flat priors are a statement that we
have no prior knowledge about the experiment results (in some
sense). In general, even flat priors can express a preference for
a certain region of parameter space. In practice, we will almost
always have some prior information and we should incorporate
it into the modeling process.

Next, we should check whether the model fits the data well by
using the pl ot function (see Figure 7). If we set the subj ect s
parameter to FALSE, we will get a less detailed group level fit.

R> plot(rt_control _fit)

R> plot(rt_test_fit)

Since the model fits the data well we can move on with our
analysis and use the conpar e_neans function to compare
reaction times between healthy (control) and unhealthy (test)
subjects. In the example below we use a ROPE interval of 0.01 s,
meaning that differences smaller that 0.01 of a second are treated
as equal. The conpar e_means function provides us with a
friendly output of the comparison and the results in the form of
adata. frane.

R> rt_control _test <-
conpare_neans(rt_control _fit,
fit2=rt_test_fit,

rope=0. 01)
---------- Goup 1 vs. Goup 2 ----------
Probabilities:
- Goup 1 < Goup 2: 0.98 +/- 0.00409
- Goup 1 > Goup 2: 0.01 +/- 0.00304
- Equal: 0.01 +/- 0.00239
95% HDI :
- Goup 1 - Goup 2: [-0.17, -0.01]

The conpar e_neans function outputs probabilities that one
group has shorter reaction times than the other, the probability
that both groups are equal (if ROPE interval is provided) and
the 95% HDI [highest density interval, Kruschke (2014)] for the
difference between groups. Based on the output (Group 1 <
Group 2) we can confidently claim (98% = 0.4%) that the healthy
group’s (rt _control _fit, Group 1) expected reaction times
are lower than those from the unhealthy group (rt _test _fit,

Group 2).
We can also visualize this difference with the
pl ot _nmeans_di fference function (Figure 8),

pl ot _means provides an alternative and visualizes the
parameters that define the means of each model (Figure 9).

R> pl ot _neans_difference(rt_control _fit,
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FIGURE 7 | The fit plot for the rt _cont rol _fi t. The data are visualized as a blue region while the fit is visualized with a black line. In this case the model fits the
underlying data well, similar conclusions can be reached for the test group (rt _test _fit).
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FIGURE 8 | The visualization of the difference in mean reaction times between rt _control _fit andrt_test _fit. The histogram visualizes the distribution of
the difference, vertical blue line denotes the mean, the black band at the bottom marks the 95% HDI interval and the gray band marks the ROPE interval. Since the
entire 95% HDI of difference is negative and lies outside of the ROPE interval, we can confidently conclude that healthy subjects are faster on average.

fit2=rt_test_fit, solving the flanker task than unhealthy subjects. Next, we analyse
rope=0.01) if the same applies to success rates.
The information about success of subject’s is stored as
R> plot_neans(rt_control _fit, correct/incorrect. However, the Bayesian success rate model

fit2srt_test_fit) requires binary (0-1) inputs so we first have to transform the data.

To summarize, based on our analysis we can confidently claim  Also, justlike in the reaction time example, we have to correct the
that healthy subjects have a lower mean reaction time when  indexes of control group subjects.
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FIGURE 9 | The visualization of means for rt _control _fit andrt_test_fit.Group 1 visualizes means for the healthy subjects and group 2 for the unhealthy

group

R> data <- data %%
mutate(result_nuneric=

ifelse(result == "correct", 1, 0))
R> control _sr <- data %%
filter(group == "control")
R> test_sr <- data %% filter(group == "test")

R> control _sr$subject <- control _sr$subject - 21

Since the only prior information we have about the success rate
of participants is that it is between 0 and 1, we used a beta
distribution to put a uniform prior on the [0, 1] interval (we put a
Beta(1, 1) prior on the p parameter). We fit the model by running
theb_success_r at e function with appropriate input data.
1)

R> p_prior <- b_prior(fam|y="beta", pars=c(1,

R> priors <- list(c("p", p_prior))
R> sr_control _fit <-
b_success_rate(r=control _sr $result_nuneric,
s=control _sr$subj ect,
priors=priors,
i ter=4000)

R> sr_test_fit <-
b_success_rate(r=test_sr$result_nuneric,

s=t est _sr $subj ect,

priors=priors,

i t er=4000)
The process for inspecting Bayesian fits (through pl ot _t r ace
and print functions) is the same and since the results are
similar as above we omitted them here. When visually inspecting
the quality of the fit (the pl ot function) we can set the
subj ect's parameter to FALSE, which visualizes the fit on
the group level. This offers a quicker, but less detailed method
of inspection.

pl ot _trace(sr_control _fit)
pl ot _trace(sr_test_fit)

print(sr_control _fit)
print(sr_test_fit)

plot(sr_control _fit, subjects=FALSE)
plot(sr_test_fit, subjects=FALSE)

P9 99 I7

Since diagnostic functions show no cause for concern and the fits
look good we can proceed with the actual comparison between
the two fitted models. We will again estimate the difference
between two groups with conpar e_neans.

R> sr_control _test <-

conpare_neans(sr_control _fit,
fit2=sr_test_fit)

---------- Goup 1 vs. Goup 2 ----------
Probabilities:

- Goup 1 < Goup 2: 0.53 +/- 0.01052

- Goup 1 > Goup 2: 0.47 +/- 0.01052
95% HDI :

- Goup 1 - Goup 2: [-0.02, 0.02]

As we can see the success rate between the two groups is
not that different. Since the probability that healthy group is
more successful is only 53% (£ 1%) and the 95% HDI of
the difference ([—0.02, 0.02]) includes the 0 we cannot claim
inequality (Kruschke, 2014). We can visualize this result by using
the pl ot _neans_di f f er ence function (Figure 10).

R> pl ot _neans_difference (sr_control _fit,
fit2=sr_test_fit)

3.2. Adaptation Level

In the adaptation level experiment participants had to assess
weights of the objects placed in their hands by using a verbal
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scale: very very light, very light, light, medium light, medium,
medium heavy, heavy, very heavy, and very very heavy. The task
was to assess the weight of an object that was placed on the palm
of their hand. To standardize the procedure the participants had
to place the elbow on the desk, extend the palm and assess the
weight of the object after it was placed on their palm by slight
up and down movements of their arm. During the experiment
participants were blinded by using non-transparent fabric. In
total there were 15 objects of the same shape and size but different
mass (photo film canisters filled with metallic balls). Objects were
grouped into three sets:

o the light set: 45, 55, 65, 75, 85 g (weights 1-5),
e the medium set: 95, 105, 115, 125, 135 g (weights 6-10),
e the heavy set: 145, 155, 165, 175, 185 g (weights 11-15).

The experimenter sequentially placed weights in the palm of
the participant and recorded the trial index, the weight of the
object and participant’s response. The participants were divided
into two groups, in group 1 the participants first assessed the
weights of the light set in ten rounds within which the five weights
in the set were weighted in a random order. After completing
the 10 rounds with the light set, the experimenter switched to
the medium set. The participant then weighted the medium set
across another 10 rounds of weighting the five weights in the
medium set in a random order. In group 2 the overall procedure
was the same, the only difference being that they started with
the 10 rounds of the heavy set and then performed another 10
rounds of weighting on the medium set. Importantly, the weights
within each set were given in random order and the experimenter
switched between sets seamlessly without any break or other
indication to the participant.

We will use the bayes4psy package to show that the
two groups provide different assessment of the weights in
the second part of the experiment even though both groups
are responding to weights from the same (medium) set. We
will use Bayesian analysis to test the hypothesis that in the
second part of the experiment the difference is very pronounced
at first but then fades away with subsequent assessments of
weights from the medium set. This is congruent with the
hypothesis that each group formed a different adaptation level
during the initial phase of the task, the formed adaptation
level then determined the perceptual experience of the same
set of weights at the beginning of the second part of
the task.

We will conduct the analysis by using the hierarchical
linear model. First we have to construct fits for the second
part of the experiment for each group independently. The
code below loads and prepares the data, just like in the
previous example, subject indexes have to be mapped to a
[1, n] interval. We will use the ggpl ot 2 package to fine-
tune graph axes and properly annotate graphs returned by the
bayes4psy package.

i brary(bayes4psy)
l'ibrary(dplyr)

I'i brary(ggpl ot 2)
data <- adaptation_|evel

groupl <- data %% filter(group == 1)
group2 <- data %% filter(group == 2)

nl <- |ength(uni que(groupl$subject))
n2 <- | ength(uni que(group2$subj ect))
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FIGURE 10 | The visualization of the difference between sr_control _fit andsr_test _fit. The histogram visualizes the distribution of the difference, vertical
blue line denotes the mean difference and the black band at the bottom marks the 95% HDI interval. Since the 95% HDI of difference includes O we cannot claim
inequality. If we used a ROPE interval and the whole ROPE interval lied in the 95% HDI interval we could claim equality.
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R> groupl$subj ect <-
pl yr:: mapval ues(groupl$subject,
fromeuni que( gr oupl$subj ect),
to=1:nl)

R> group2$subj ect <-
plyr:: mapval ues(groupl$subj ect,
fromeuni que( groupl$subj ect),

to=1: n2)
R> groupl_part2 <- groupl %% filter(part == 2)
R> group2_part2 <- group2 %% filter(part == 2)

Once the data is prepared we can start fitting the Bayesian
models, the input data comes in the form of three vectors, x
stores indexes of the measurements, y the subject’s responses and
s indexes of the subjects. The war mup and i t er parameters are
set in order to achieve an effective sample size of 10,000.

R> fitl <- b_linear(x=groupl_part2$sequence,
y=groupl_part 2%r esponse,
s=groupl_part 2$subj ect,

i ter=10000, war nup=500)

R> fit2 <- b_linear(x=group2_part2$sequence,
y=group2_part 2%r esponse,
s=group2_part 2$subj ect,

i ter=10000, war nup=500)

The fitting process is always followed by the quality analysis.

R> plot_trace(fitl)
R> plot_trace(fit2)

R> print(fitl)

Inference for Stan nodel: |inear

4 chains, each with iter=10000; warnup=500; thin
=1;

post-war nup draws per chai n=9500, total post-
war mup dr aws=38000

mean se_mean sd 2.5% 97.5%n_
ef f Rhat

al pha[ 1] 7.66 0.00 0.31 7.07 8.28
25452 1

al phal 2] 8.63 0.00 0.23 8.19 9.08
23074 1

bet a[ 1] -0.14 0.00 0.04 -0.24 -0.06
20097 1

bet a[ 2] -0.12 0.00 0.03 -0.19 -0.05
30442 1

si gmaf[ 1] 1.67 0.00 0.15 1.41 2.00
45998 1

si gmaf[ 2] 0.99 0.00 0.10 0.82 1.21
44379 1

nu_a 8. 05 0.00 0.18 7.68 8.41
25983 1

mu_b -0.11 0.00 0.02 -0.15 -0.07
20126 1

nmu_s 1.10 0.00 0.09 0.92 1.29
33871 1

si gma_a 0.61 0.00 0.16 0.38 0.98
24984 1

sigma_b 0. 05 0.00 0.02 0.01 0. 09
6726 1

si gma_s 0.34 0.00 0.08 0.21 0.54
30901 1

- -374.28
5372 1

I'p 0.09 6.47 -387.21 -361.12

R> print(fit2)

R> plot(fitl)

R> plot(fit2)
The trace plot showed no MCMC related issues (for an example
of trace plot see Figure 6), effective sample sizes of parameters
relevant for our analysis (ug, up, and ) are large enough.
Since the visual inspection of the fit also looks good we
can continue with our analysis. To get a quick description
of fits we can take a look at the summary statistics of the
model’s parameters.

R> summary(fitl)
intercept (al pha):

8.05 +/- 0.00266, 95% HDI: [7.69, 8.39]

sl ope (beta):
-0.11 +/- 0.00033, 95% HDI: [-0.15, -0.07]

si gna:

1.10 +/- 0.00094, 95% HDI: [0.91, 1.28]
R> summary(fit2)
intercept (al pha):

5.81 +/- 0.00461, 95% HDI: [5.20, 6.43]
sl ope (beta):

0.12 +/- 0.00036, 95% HDI: [0.08, O0.16]
si gna:

1.40 +/- 0.00165, 95% HDI: [1.13, 1.66]

Values of intercept (95% HDI intercept equals [7.69, 8.39] for the
first group and [5.20, 6.43] for the second group) suggest that
our initial hypothesis about adaptation level is true. Subject’s that
weighted lighter object in the first part of the experiment (f i t 1)
find medium objects at the beginning of experiment’s second part
heavier than subjects that weighted heavier objects in the first
part (f i t 2). We can confirm this assumption by using functions
that perform a more detailed analysis (e.g., conpar e_neans
and pl ot _neans_di ff erence, see the output below and
Figure 11).
R> conparison_results <-
conpare_neans(fitl,
I ntercept
Probabi lities:

fit2=fit2)

- Goup 1 < Goup 2: 0.00 +/- 0.00000

- Goup 1 > Goup 2: 1.00 +/- 0.00000
95% HDI :

- Goup 1 - Goup 2: [1.54, 2.91]
---------- Slope ----------
Probabilities:

- Goup 1 < Goup 2: 1.00 +/ - 0.00000

- Goup 1 > Goup 2: 0.00 +/- 0.00000
95% HDI :

- Goup 1 - Goup 2: [-0.29, -0.18]

R> pl ot _neans_difference(fitl,
fit2=fit2,
par="intercept")
The fact that we are confident in the claims that the slope for
the first group is negative (95% HDI for the first group’s slope
equals [—0.15, —0.07] and lies entirely below 0) and positive for
the second group (95% HDI for the second group’s slope equals
[0.08, 0.16] and lies entirely above 0) suggests that the adaptation
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FIGURE 11 | The difference between the intercept of the two fits. Since the entire 95% HDI is positive we are confident that the subject’s that weighted lighter object
in the first part of the experiment (f i t 1) find medium objects heavier than subjects that initially weighted heavier objects (f i t 2).
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FIGURE 12 | Comparison of distributions underlying f i t 1 and f i t 2. The hypothesis that each group formed a different adaptation level during the initial phase of
the task seems to be true. The group that switches from heavy to medium weights assesses weights as lighter than they really are, while for the group that switches
from light to medium the weights appear heavier. These adaptation levels fade with time and assessments converge to similar estimates of weights.
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level phenomenon fades away with time. We can visualize this
by plotting means and distributions underlying both fits. The
plotting functions in the bayes4psy package return regular
ggpl ot 2 plot objects, so we can use the same techniques to
annotate or change the look and feel of graphs as we would
with the usual ggpl ot 2 visualizations (see the code below and
Figure 12).

R> plot_distributions(fitl, fit2) +

labs(title="Part _II",

x="neasur ement _nunber",

y="") +
t heme(| egend. posi ti on="none") +
scal e_x_continuous(limts=c(1l, 10),

breaks=seq(1l: 10)) +

ylim(0, 10)
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3.3. The Stroop Color-Word Test
The Stroop test (Stroop, 1935) showed that when the stimuli are
incongruent—the name of a color is printed in different ink than
the one denoted by its name (for example, red)—naming the
color takes longer and is more error-prone than naming the color
of a rectangle or a set of characters that does not form a word (for
example, XXXXX).

In our version of the Stroop test participants were faced with
four types of conditions:

e Reading neutral—the name of the color was printed in black
ink, the participant had to read the color’s name.

e Naming neutral—string XXXXX was written in colored ink
(red, green or blue), the participant had to name the ink color.

e Reading incongruent—name of the color was printed in
incongruent ink, the participant had to read the written name
of the color.

e Naming incongruent—name of the color was printed in
incongruent ink, the participant had to name the ink color.

In each of the listed conditions the participants had to name or
read 100 stimuli presented on an A4 sheet of paper organized in
5 columns of 20 stimuli as quickly as possible. The specific order
of the stimuli was pseudo-random and balanced across the sheet.
We recorded the time to complete each sheet.

In our example analysis, we are primarily interested in
expected task completion times. Since our data is composed
from average times needed to complete the task we can use the
Bayesian t-test. The nature of the Stroop test requires the use
of t-test for dependent samples. This example first shows how
to execute the Bayesian t-test for dependent samples and in the
second part, for illustrative purposes only, also how to execute
the Bayesian t-test for independent samples. The example for
independent samples also shows how to use bayes4psy to
compare multiple groups simultaneously.

To execute the Bayesian t-test for dependent samples we
first have to calculate the difference between the samples and
then perform Bayesian modeling on those differences. The
example below compares reading times between neutral and
incongruent conditions.

R> |i brary(bayes4psy)
I'i brary(dplyr)

I'i brary(ggpl ot 2)

R>

R>

R> data <- stroop_sinple

R> ri_vs_rn <- data$readi ng_i ncongruent -
dat a$r eadi ng_neutral

fit_ri_vs_rn <- b_ttest(ri_vs_rn,

i ter=4000,

war mup=500)

Once we fit the Bayesian ¢-test model to the differences between
the reading neutral and reading incongruent conditions, we can
compare whether the means differ from 0.

R> conparison <- conpare_neans(fit_ri_vs_rn,
Goup 1 vs. Goup 2

Probabilities:
- Goup 1 < Goup 2: 0.00 +/- 0.00000

nmu=0)

- Goup 1 > Goup 2: 1.00 +/ - 0.00000
95% HDI :
- Goup 1 - Goup 2: [2.03, 3.94]

Since the 95% HDI of means ([2.03, 3.94]) lies above 0 we can
confidently claim that subject’s read neutral stimuli faster than
incongruent stimuli. In a similar fashion we can also execute a
comparison between other conditions.

The examples that follow are for illustrative purposes only,
they analyse the Stroop data under the wrongful assumption
that the samples are independent. These examples are in the
manuscript mainly to explain how we can use bayes4psy
to compare multiple groups simultaneously. The examples also
include priors, we based them on our previous experience with
similar tasks—participants finish the task in ~1 min and the
typical standard deviation for a participant is <2 min.

R> mu_prior <- b_prior(fam!ly="normal",

pars=c(60, 30))
sigma_prior <- b_prior(fam|ly="unifornt,
pars=c(0, 120))

R> priors <- list(c("mu", mu_prior),
c("signa", sigma_prior))
R> fit_reading_neutral <-

b_ttest(data$readi ng_neutral,
priors=priors,
i ter=4000,
war mup=500)

fit_readi ng_i ncongruent <-
b_ttest (data$readi ng_i ncongruent,
priors=priors,
i ter=4000,
war mup=500)
fit_nam ng_neutral <-
b_ttest(data$nan ng_neutral,
priors=priors,
i ter=4000,
war mnup=500)

fit_nam ng_i ncongruent <-
b_ttest (data$nani ng_i ncongruent,
priors=priors,
i ter=4000,
war nup=500)

There were no causes for concern in the MCMC diagnostics
and model fits, so we omit them for brevity. In practice, we
should of course always perform these steps. We proceed by
cross-comparing several fits with a single line of code.

R> fit_list <- c(fit_reading_incongruent,
fit_nam ng_neutral,
fit_nam ng_i ncongruent)

R> nul tipl e_conparison <-
conpare_neans(fit_readi ng_neutral,
fits=fit_list)
Goup 1 vs. Goup 2
Probabilities:
- Goup 1 < Goup 2: 1.00 +/-
- Goup 1 > Goup 2: 0.00 +/-
95% HDI :

0. 00054
0. 00054
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- Goup 1 - Goup 2: [-4.66, -0.96] Probabilities:
- Goup 1 < Goup 4: 1.00 +/ - 0.00000
—————————— Goup 1 vs. Goup 3 ---------- - Goup 1 > Goup 4: 0.00 +/- 0.00000
Probabilities: 95% HDI :
- Goup 1 < Goup 3: 1.00 +/ - 0.00000 - Goup 1 - Goup 2: [-36.72, -28.44]
- Goup 1 > Goup 3: 0.00 +/- 0.00000
95%HDI: e Goup 2 vs. Goup 3 ----------
- Goup 1 - Goup 2: [-15.34, -10.19] Probabilities:
- Goup 2 < Goup 3: 1.00 +/- 0.00000
—————————— Goup 1 vs. Goup 4 ---------- - Goup 2 > Goup 3: 0.00 +/- 0.00000
-2.84 -12.70 -32.60
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FIGURE 13 | Differences in the mean task completion times for the four conditions. Row and column 1 represent the reading neutral task, row and column 2 the
reading incongruent task, row and column 3 the naming neutral task and row and column 4 the naming incongruent task. Since 95% HDI intervals (black bands at the
bottom of graphs) in all cases exclude 0 we are confident that the task completion times between conditions are different.
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95% HDI :

- Goup 1 - Goup 2: [-12.63, -7.09]

G oup 2 vs.
Probabilities:

- Goup 2 < Goup 4:

- Goup 2 > Goup 4:
95% HDI :

- Goup 1 -

1.00 +/- 0.00000
0.00 +/- 0.00000
G oup 2:

[-34.12, -25.48]

---------- G oup 3 vs.
Probabilities:

- Goup 3 < Goup 4:

- Goup 3 > Goup 4:
95% HDI :

- Goup 1 -

1.00 +/- 0.00000
0.00 +/- 0.00000
G oup 2:

[-24.21, -14.88]

Probabilities that a certain group is
smal | est/| argest or equal to all others:

| ar gest smal | est equal
1 0 0.9991111111 0
2 0 0.0008888889 0
3 0 0. 0000000000 0
4 1 0.0000000000 0

When we compare more than two fits, we also get an estimate
of the probabilities that a group has the largest or the smallest
expected value. Based on the above output, the participants are
best at the reading neutral task (Group 1), followed by the
reading incongruent task (Group 2) and the naming neutral task
(Group 3). They are the worst at the naming incongruent task
(Group 4). We are very confident that this ordering is correct (the
probabilities distinguishing the groups are extremely high), so
we can conclude that both naming and incongruency of stimuli
increase the response times of subjects, with naming having a
bigger effect. We can also visualize this in various ways, either
as distributions of mean times needed to solve the given tasks or
as a difference between these means (Figure 13).
R> pl ot _nmeans(fit_readi ng_neutral,
fits=fit_list) +
scal e_fill_hue(l abel s=c("Readi ng_neutral ",
"Readi ng_i ncongruent",
"Nam ng_neutral ",
"Nam ng_incongruent")) +
thene(l egend. titl e=el enent _bl ank())

R> pl ot _nmeans_di fference(fit_reading_neutral,
fits=fit_list)

3.4. Afterimages

In the afterimages task participants were asked to fix their gaze on
a fixation point in the middle of the computer screen. Stimulus—
a colored rectangle—was then shown above the fixation point.
After 20 s the rectangle disappeared and a color palette was
shown on the right-hand side of the screen. Participants were
asked to keep their gaze on the fixation point while using the
mouse to select the color that best matched the color of the
afterimage that appeared above the fixation point. To help select
the correct color, a rectangle of the same size as the adapting
stimuli was shown below the fixation point in the color currently
under the mouse cursor. Participants confirmed their selection

by pressing a mouse button when they were satisfied that color
of the rectangle below the fixation point matched the color of
the afterimage experienced above the fixation point. For each
trial the color of the stimulus rectangle, the subject’s response
in RGB and the subject’s response time were recorded. The goal
of this study was to determine which of the two color coding
mechanisms (trichromatic or opponent-process) better explains
the perceived color of the afterimages. We used six differently
colored rectangles: red, green, blue, cyan, magenta, yellow.

We start our analysis by loading the experiment and stimuli
data. The experiment data include subject index, reaction time,
response in RGB format, stimuli name (e.g., blue) and stimuli
values in RGB and HSV. The stimuli data include the information
about stimuli (stimuli names and their RGB/HSV values).

R> |i brary(bayes4psy)
R> library(dplyr)
R> 1ibrary(ggpl ot 2)
<

R> data_al | after_i nages

R> stimuli <- after_inmages_stinuli

Once we load required libraries and data we can start fitting
Bayesian color models. Below is a detailed example of fitting
the Bayesian color model for the red color stimuli. For a visual
inspection of the fit (see Figure 14).

R> data red <- data_all %%
filter(stimuli == "red")
data_red <- data.franme(r=data_red$r,
g=dat a_r ed$g,

b=dat a_r ed$b)

R>
fit_red <- b_color(col ors=data_red)

pl ot _trace(fit_red)
print(fit_red)

pl ot _hsv(fit_red)

FIGURE 14 | The special pl ot _hsv function developed for the color model.
Input data points are visualized with circles, mean of the fit is visualized with a
solid line and the 95% HDI of the underlying distribution is visualized as a
colored band.
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We repeat the same process five more times for the remaining

five colors of stimuli. We start the analysis by loading data R> lines[[2]] <-
about the colors predicted by the trichromatic and the opponent- o
h opponent _process|
process theory. opponent _process$stinuli == stimulus, ]$h,
R> trichromatic <- after_inmages_trichromatic opponent _process]|
opponent _process$stinuli == stimlus, ]$s,
R> opponent _process <- opponent _process]| . ) )
after_i mages_opponent _process opponent _process$stinuli == stinulus, ]$v
)
We can then use the pl ot _di st ri buti ons_hsv function
of the Bayesian color model to produce a visualization of R> points <- list()
the accuracy of both color coding mechanism predictions for )
. . . . . R> points[[1]] <-
each stimuli independently. Each graph visualizes the inferred o(
distribution, displayed stimuli, and responses predicted by stimuli[stimli$stimli == stinulus, ]$h_s,
the trichromatic and opponent-process coding. This additional stimuli[stimuli$stinuli == stinulus, ]$s_s,
information can be added to the visualization via annotation stinuli[stimulisstimli == stinmulus, ]$v_s
points and lines. Below is an example for the red stimulus, )
visualizations for other five stimuli are practically the same. R> plot_red <
R> stimlus <- "red" pl ot _distributions_hsv(fit_red,
R> lines <- list() poi nt s=poi nts,
R> lines[[1]] <- I'ines=lines,
c( hsv=TRUE)
trichromatic[trichromatic$stinuli == stinulus, ]$h,
trichromatic[trichromatic$stinuli == stimulus, ]$s, R> plot_red <- plot_red +
trichromatic[trichromatic$stimuli == stimulus, ]$v ggtitle("Red") +
) thene(plot.title = el enent _text(hjust = 0.5))
Red Green Blue
n
Yellow Cyan Magenta

FIGURE 15 | The comparison of trichromatic and opponent-process color coding prediction. The long solid line visualizes the trichromatic color coding prediction.
The dashed line visualizes the opponent-process color coding prediction. Short solid line represents the mean hue of the fit. The colored band the 95% HDI of the
distribution underlying the fit. The small colored circle visualizes the color of the presented stimuli. In the case of blue and yellow stimuli the dashed line is not visible
because both color codings predict the same outcome. The prediction based on the trichromatic color coding seems more accurate as its prediction is always inside
the 95% of the most probable subject’s responses and is always closer to the mean predicted hue than the opponent-process prediction. The opponent-process
prediction is outside of the 95% of the most probable subject’s responses in cases of red and green stimuli.
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We can use the cowpl ot (Wilke, 2019) package to combine the
plots into a single figure (see Figure 15).

R> cowpl ot:: plot_grid(plot_red,
pl ot _green,

pl ot _bl ue,

pl ot _yel | ow,

pl ot _cyan,

pl ot _magent a,

ncol =3,

nrow=2,

scal e=0.9)

4. DISCUSSION

The bayes4psy package helps psychology students and
researchers with little or no experience in Bayesian statistics or
probabilistic programming to do modern Bayesian analysis in
R The package includes several Bayesian models that cover a
wide range of tasks that arise in psychological experiments. We
can perform a Bayesian t-test or Bayesian bootstrap, analyse
reaction times, success rates, colors, or sequential tasks. The
package covers all parts of Bayesian data analysis, from fitting and
diagnosing fitted models to visualizations and comparisons.

We plan to continuously upgrade the package with new tools
and Bayesian statistics even closer to non-technical researchers.
For example, we will implement probability distribution
elicitation tools, which will ease the extraction of prior knowledge
from domain experts and the prior construction process (Morris
et al., 2014). Over the last couple of years neuroimaging
techniques (e.g., fMRI and EEG) have become very popular for
tracking brain activity during psychological experiments. The
implementation of Bayesian models for analysing such data is
also one of our future goals.
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