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With the development of big data sharing and data standardization,

electroencephalogram (EEG) data are increasingly used in the exploration of human

cognitive behavior. Most of the existing studies focus on the changes of human brain

network topology (the number of connections, degree distribution, clustering coefficient

phantom) in various cognitive behaviors. However, there has been little exploration into

the steady state of multi-cognitive behaviors and the recognition of multi-participant brain

networks. To solve these two problems, we used EEG data of 99 healthy participants

from the PhysioBank to study multi-cognitive behaviors. Specifically, we calculated

the symbolic transfer entropy (STE) between 64 electrode sequences of EEG data

and constructed the brain networks of various cognitive behaviors of each participant

using the directed minimum spanning tree (DMST) algorithm. We then investigated

the eigenvalue spectrum of the STE matrix of each individual’s cognitive behavior. The

results also showed that the spectrum distributions of different cognitive states of the

same participant remained relatively stable, but those of the same cognitive state of

different participants varied considerably, verifying the relative stability and uniqueness

of the human brain network similar to a human’s fingerprint. Based on these features,

we used the spectral distribution set of 99 participants of various cognitive states as the

original data set and developed a spectral distribution set scoring (SDSS) method to

identify the brain network participants. It was found that most labels (69.35%) of the test

participant with the highest score were identical to the labeled participant. This study

provided further evidence for the existence of human brain fingerprints, and furnished a

new approach for dynamic identification of brain fingerprints.

Keywords: complex network, symbolic transfer entropy (STE), directed minimum spanning tree (DMST), brain

network constancy, participant recognition

1. INTRODUCTION

The human brain is a complex and dense network and as such, it has been explored with
approaches ranging from 3D maps of brain circuitry (Landhuis, 2017), to communication
dynamics in brain networks (Avena-Koenigsberger et al., 2018), and brain evolution (Sporns
and Betzel, 2016; Thiran et al., 2016). The varied topological features of the brain network
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[modular structures (Hearne et al., 2017), network patterns
(Vidaurre et al., 2017), nodes and edges (Kawagoe et al.,
2017), and structural connectivity (Gu et al., 2018)] can
be studied quantitatively (Moon et al., 2017) by techniques
such as functional magnetic resonance imaging (fMRI) and
electroencephalogram (EEG).

The fMRI (Kim et al., 2016; Wang et al., 2016) is an
important quantitative tool to reveal regional functions of the
brain. Hadley et al. used graph theory to study the change in
brain network topology as a function of treatment response in
schizophrenia (Hadley et al., 2016). Shi et al. applied independent
component analysis to investigate the large-scale brain network
connectivity underlying creativity through the task fMRI data
(Shi et al., 2018). Gonzalez et al. validated the utility of
the maximum entropy model in describing neurophysiological
dynamics by measuring the activation rate in a separate resting
state fMRI data set (Gonzalez et al., 2016). Emily et al., using
the results of fMRI detection with functional connectivity as
the classification standard, identified target participants from a
large group of participants. Moreover, recognition was robust
so that participants could be accurately identified in both the
cognitive behavior and the resting state. They demonstrated that
each person’s brain connection profile is intrinsic and similar
to a "fingerprint" that can be used for participant recognition
(Huang J. et al., 2015). Takuya et al. constructed a functional
connection network using fMRI detection data and defined the
information transmission between the resting functional network
and the cognitive behavior network as the transmission network.
The information transmission characteristic was used to detect
the relationship between the resting network and the cognitive
network. It was concluded that the relationship between the
cognitive behavior network and the static network was very
close. In particular, the resting-state functional network provided
a large amount of functional information for the cognitive
information network (Ito et al., 2017). The above researchers,
using the fMRI image processing and analysis technology, were
able to detect the topological structure of participants in each
cognitive state. However, the fMRI technique, with its high cost,
excels mainly in spatial resolution, but is much less satisfactory
with regards to time resolution, which is not conducive to
studying brain network dynamics in different time periods.

By contrast, EEG is less accurate than fMRI in spatial
positioning, but has a high time resolution at the scale of
1/100 s, lending itself particularly well to the time-window
study of the brain network, especially to research brain network
dynamics (Kluetsch et al., 2014; Yu et al., 2016; Zippo et al.,
2018). Researchers often implemented filtering and independent
component analysis (ICA) preprocessing on EEG data (Hatz
et al., 2015), calculated the correlation between each two
EEG signals, and set a threshold to create a brain network.
The methods of calculating the correlation among electrode
sequences include Pearson correlation coefficient, granger
causality test (Farokhzadi et al., 2017), mutual information
(Mikkelsen et al., 2017), and transfer entropy (Centeno and
Carmichael, 2014). Among these methods, transfer entropy is
the most suitable to reflect the non-linear relationship between
brain electrodes. By calculating the transfer entropy between

pairs of brain electrodes, one can construct the brain network of
different time periods and participants by means of the threshold
method or the minimum spanning tree (MST) method. Faes
et al. applied entropy-based measures to quantify the predictive
information in brain sub-systems and the heart system and
identified a structured network of sleeping brain-brain and brain-
heart interactions (Faes et al., 2014). Huang et al. calculated the
transfer entropy between brain electrodes in drowsy and alert
driving states. They concluded that the couplings between pairs
of forehead, central lobe, and parietal areas were higher at the
vigilance level than in the drowsy driving state (Huang C. S.
et al., 2015). Qiao et al. constructed a brain network by fglasso
and bootstrapped fglasso for both the alcoholic and the control
groups. They found that links of electrodes in the frontal region
were denser than those for the control group. In addition, more
connected edges were detected in the left central and parietal
regions of the alcoholic group (Qiao et al., 2019). Su et al. used
MST to unveil the differences of brain network efficiency between
young smokers and non-smokers and found that the global
network efficiency decreased in young smokers (Su et al., 2017).

The above studies on EEG sequences were mainly based on
the change of EEG network topology (network state, network
connection number). But there is less research dedicated to
quantitative grouping comparisons between EEG networks of
cognitive behavior of each participant or considering individual
differences among participants. In particular, to our knowledge,
no studies have employed a combination of STE and SDSS in EEG
analysis. In this study, we aim to investigate the EEG sequences of
99 healthy participants to verify the conclusion of Emily’s study
(Huang J. et al., 2015) by means of symbolic transfer entropy and
spectral analysis. We also seek to explore the potential of using
STE and SDSS in participant recognition based on fingerprint
characteristics of EEG sequences.

2. MATERIALS AND METHODS

Ethics Approval
The datasets for this study are publicly available on https://www.
physionet.org/physiobank/database/eegmmidb/ and can be used
with no further permission1 (Goldberger et al., 2000; Schalk
et al., 2004). Since the data have been fully de-identified, no IRB
approval is required.

EEG Data
The data set used in this study was created by the developers of
the BCI2000 instrumentation system consisting of over 1,500 1-
and 2-min EEG recordings, obtained from 99 healthy volunteers.
For each participant, voltage values were measured from 64
electrodes as per the international 10-10 system (excluding
electrodes Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9,
and P10), shown in Figure 1. All participants were required
to perform 14 experimental runs listed in Table 1: two 1-min
baseline runs (one with eyes open, one with eyes closed) and three
2-min runs of each of the four following tasks1 (Goldberger et al.,
2000; Schalk et al., 2004):

1https://www.physionet.org/cgi-bin/atm/ATM
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FIGURE 1 | EEG electrode diagram. The EEG are recorded from 64

electrodes which are created by international 10-10 system (excluding

electrodes Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9, and P10). The

numbers below each electrode name demonstrate the order in which they

appear in the records. The signals in the records are numbered from 1 to 64.

1. A target appears on either the left or the right side of the
screen. The participant opens and closes the corresponding fist
until the target disappears. Then the participant relaxes.

2. A target appears on either the left or the right side of
the screen. The participant imagines opening and closing
the corresponding fist until the target disappears. Then the
participant relaxes.

3. A target appears on either the top or the bottom of the screen.
The participant opens and closes either both fists (if the target
is on top) or both feet (if the target is on the bottom) until the
target disappears. Then the participant relaxes.

4. A target appears on either the top or the bottom of the
screen. The participant imagines opening and closing either
both fists (if the target is on top) or both feet (if the target
is on the bottom) until the target disappears. Then the
participant relaxes.

The EEG recordings were input to the EEGLAB toolbox. Each
annotation includes one of three codes (e1, e2, or e3): e1
corresponds to rest, e2 corresponds to onset of motion (real or
imagined) of the left fist (in runs 3, 4, 7, 8, 11, and 12) and
both fists (in runs 5, 6, 9, 10, 13, and 14), and e3 refers to the
onset of motion (real or imagined) of the right fist (in runs 3,
4, 7, 8, 11, and 12) and both feet (in runs 5, 6, 9, 10, 13, and
14). The 1-min-runs data of a participant in Task1 are listed in
Table 2. Each EEG signal is sampled at 160 points per second.
Events in Table 2 include e1, e2, and e3. Latency means the start
point of each event. For example, event 1 lasts until points 672,
and then event 3 starts at point 1313 (with an intermission of

TABLE 1 | The 14 experimental runs constructed by different motor/imagery

tasks.

NO. Experimental runs NO. Experimental

runs

1 Baseline, eyes open 8 Task 2

2 Baseline, eyes closed 9 Task 3

3 Task 1 (open and close left or right fist) 10 Task 4

4 Task 2 (imagine opening and closing left or right fist) 11 Task 1

5 Task 3 (open and close both fists or both feet) 12 Task 2

6 Task 4 (imagine opening and closing both fists or

both feet)

13 Task 3

7 Task 1 14 Task 4

TABLE 2 | A participant of event table for task1.

Number Event Latency Duration Number Event Latency Duration

1 1 1 672 9 1 10593 672

2 3 1313 656 10 3 11905 656

3 1 2609 672 11 1 13201 672

4 2 3921 656 12 2 14513 656

5 1 5217 672 13 1 15809 672

6 2 6529 656 14 3 17281 656

7 1 7825 672 15 1 18577 672

8 3 9297 656

641 points). The duration means the time span of each event.
Part of the corresponding data in Task1 is shown in Figure 2.
The red region (event 1) indicates the opening of the eyes when
the target appears. The green region (event 2) corresponds to
opening the left fist when the target appears on the left. The pink
one (event 3) indicates opening the right fist when the target
appears on the right. The white one means rest. The horizontal
and vertical axes represent the elapsed time (second) and names
of electrodes, respectively.

EEG Signal Pre-Processing and Analysis
We defined the EEG data collection {G} as follows:

Gt
p = {gtp,1(c, e), g

t
p,2(c, e), ..., g

t
p,N(c, e)} (1)

where p is participant, t is task, c electrode, e event, and N
the length of sequence. Prior to data analysis, we used eeglab
(an interactive matlab toolbox) to filter the EEG sequence
and ICA pretreatment. The frequency limit (Kluetsch et al.,
2014) was chosen to be 1–70 HZ and 60 Hz notch filtering
(Kawagoe et al., 2017). Filter order was automatically chosen (528
recommend) using the function pop_eegfiltnew()2 in eeglab. We
used the fully automatic algorithm based on the Independent
Components analysis (ICA) algorithm (Mognon et al., 2011) to
detect and remove artifacts from the filtered signals. Because the
interference signals such as cardiac, eye movement artifacts, and
electromyography (EMG) signals are generated by independent

2https://www.ccn.ucla.edu/wiki/index.php/Hoffman2:MATLAB:EEGLAB:Jobs.
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FIGURE 2 | Part signal diagram of task 1 (NO.3 in Table 1) of participant 1. The red, green, and violet regions indicate getting ready for the task, opening the left fist,

and opening the right fist, respectively. The white regions mean rest. The horizontal axis shows the elapsed time (second) of the tasks, the vertical axis represents the

names of electrodes.

sources, ICA decomposition can extract EEG signals from these
interference signals. After treatment, the EEG sequence was
named {GQ},

GQ = {gqtp,1(c, e), gq
t
p,2(c, e), ..., gq

t
p,N(c, e)} (2)

The final preprocessing was the first-order difference of the
sequence {GQ}, and we obtained sequence {DQ}:

DQ = gqtp,n+1(c, e)− gqtp,n(c, e) = dqtp,n(c, e) (3)

where p = 1, 2 . . . 99, n = 1, 2, . . . ,N − 1, t = 1, 2, . . . , 15(14
experimental runs and 1 rest signal), c = 1, 2, . . . 64, e =

1, 2, 3(events).

Symbolic Transfer Entropy (STE)
After pre-processing, we used transfer entropy to measure the
dynamic non-linear relationship of sequences. Transfer entropy
is used in many fields, such as the correlation between financial
sequences, climate impacts, and EEG/electrocardiogram (ECG)
signals. The general formula of transfer entropy is as follows:

TE(k,l)y→x =
∑

xn+1,x
(k)
n ,y

(l)
n

P(xn+1, x
(k)
n , y(l)n )log2

P(xn+1|x
(k)
n , y

(l)
n )

P(xn+1|x
(k)
n )

(4)

where the sequence X is a Markov process of degree k, and Y

is a Markov process of degree l. The element x
(k)
n means that the

sequenceX is influenced by the k previous states,and y
(l)
n indicates

that the sequence Y is influenced by the l previous states. The
parameters k and l are often set to 1. Then the transfer entropy
from variable Y to variable X is defined as

TEy→x =
∑

xn+1,xn ,yn

P(xn+1, xn, yn)log2
P(xn+1|xn, yn)

P(xn+1|xn)

=
∑

xn+1,xn ,yn

P(xn+1, xn, yn)log2
P(xn+1, xn, yn)P(xn)

P(xn+1, xn)P(xn, yn)

(5)

where P(A,B,C) is the joint probability of A, B, and C, and
P(A|B) is the conditional probability of A given by B. Before
the calculation of transfer entropy, we translated the sequence
{DQ} into a symbol sequence. Specifically, we took one sequence
from 64 channels for the same participant, same task, and same
event as the target research object. For example, in Figure 2,
the elapsed times from the 1st second to the 4th second (the
horizontal axis) filled in red color means evet1 of task1 (shown
in NO.3 of Table 1) of participant 1. We arranged the combined
64 signals in ascending order and divided these data points into
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three equal parts. The final forms were as follows:

Bp,i =



































1 :Tt
p,1(e) ≤ dqtp,n(c, e) < Tt

p,
1
3 L
(e)

2 :Tt

p,
1
3 L
(e) ≤ dqtp,n(c, e) < Tt

p,
2
3 L
(e)

3 :Tt

p,
2
3 L
(e) ≤ dqtp,n(c, e) ≤ Tt

p,L(e)



































(6)

where T is a new combined sequence of 64 signals. L means
the length of sequence T. p, t, c, and e represent participant,
task, electrode, and event, respectively. p = 1, 2, 3, . . . , 99,
t = 1, 2, 3...15, c = 1, 2, 3, . . . 64, e = 1, 2, 3. We the used
phase space reconstruction for symbol EEG signals and set the
embedding dimension as 3 (Grassberger and Procaccia, 1983).
The correlation between symbol EEG signals was expressed by
the (Symbol Transfer Entropy)STE (McAuliffe, 2014).

Directed Minimum Spanning Tree (DMST)
By calculating the STE between each two EEG symbol sequences,
we obtained the quantitative impact relationships between EEG
signals. On this basis, the next vital step was to construct
directed brain network diagrams. Using the threshold method
to construct directed networks can depict certain brain network
structures, but the network constructed by the threshold method
is subjective and unstable. In order to ensure the consistency
and objectivity of network connections, we made use of the

DMST (Gabow et al., 1986; Kwon and Yang, 2008) method
to construct the brain network. The minimum spanning tree
(MST) algorithm (Crobe et al., 2016) is an important part of
graph theory. The classical Kruskal and Prim algorithms of the

undirected minimum spanning tree can solve the problem of
the symmetrical adjacency matrix. Due to the asymmetry of

the transfer entropy matrix, the relations between nodes can
be described by DMST, also known as minimum arborescence

(Hemminger, 1966). It assigns a special root node to the directed
weighted graph. The DMST from the root node requires the

minimum total weight of all distance weights. Steps of DMST
algorithms are as follows:

1. Select a node as the root node randomly.
2. Travel all edges and find the smallest entry edges of all points

except for the root node. Then sum up the weighted values of

edges to form the new graph. Determine the final minimum
arborescence if no cycles exist in the new graph.

3. If a ring exists in the new graph, shrink the ring into a point
and change the edge weight. The way to change edge weights
are as follows:

(1). Choose a node u in the ring and set the incoming
edge of this node as in[u], and the outgoing edge of
this one as (u, i,w). i and w refer to source node and
weight, respectively.

(2). Set the new edge weight of node u as (u, i,w− in[u]).
(3). Return to Step 2 if the new weight graph contains rings.

FIGURE 3 | Participant recognition process using the SDSS method. The left part displays the process of constructing the coarsening data set, and the right one

indicates the process of calculating the coarsening data set of the test participant. The last step expressed by the rounded rectangle shows the comparison of the

data set of 99 participants and the data set of the test participant, to obtain the final score. This final score is used to determine the label of the test participant.
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4. Expand the new graph if rings do not exist by the breaking
loop method (Hemminger, 1966; Gabow et al., 1986). The
steps of the breaking loop method were as follows:

(1). Find a loop in the graph.
(2). Remove the edge with the largest weight in the loop, but

keep the graph connected.
(3). Repeat this process until there are no loops in the

graph (but they are still connected) and get the minimum
spanning tree.

Average Euclidean Distance and Spectrum
Distribution Set Scoring (SDSS)
The brain network constructed using the DMST method can
reveal the relation between EEG channels of each participant in
each action. The relative stability of events and the difference
between participants can be observed in DMST graph. Because
of the lack of quantitative analysis in the DMST method, we took
the average Euclidean distances as the quantitative parameter
indicating the distinctions between brain network patterns:

ADp =

√

15
∑

t=1

3
∑

e=1

99
∑

pA=1

99
∑

pB=1

64
∑

i=1,j=1
(TE

pA ,e
i,j − TE

pB ,e
i,j )2

15× 3× 99× 99× 64
(7)

ADe =

√

99
∑

p=1

15
∑

tA=1

15
∑

tB=1

3
∑

eA=1

3
∑

eB=1

64
∑

i=1,j=1
[TEtA ,eAi,j (p)−TEtB ,eBi,j (p)]2

99× 15× 15× 3× 3× 64
(8)

where ADp and ADe indicate the average Euclidean distances
of participants and the average Euclidean distances of events,
respectively. emeans an event in each task, eA and eB indicate two
events in the same task or a different task (eA = eB is allowed),

p means a specific participant out of the 99 participants, pA and
pB refer to two different participants or the same participant out
of the 99 participants (pA = pB is also allowed), and tA and tB
correspond to two tasks from the total 15 tasks.

After quantitative analysis of differences between brain
networks, we conducted a union analysis of the brain network
by calculating the eigenvalue of the transfer entropy matrix for
each participant and event as follows:

λtp(e, c) = αt
p(e, c)+ β t

p(e, c) • i (9)

where α, β indicate real and imaginary parts of the eigenvalues,
and p, t, e, and c represent participant, task, and event,
respectively. p = 1, 2...99, t = 1, 2...15, e = 1, 2, 3, c = 1, 2...64.
All the eigenvalues were normalized by the Z-Score method
and the eigenvalue spectrum distribution of the transfer entropy
matrix was shown by the real and imaginary eigenvalues of each
action and participant on two-dimensional coordinates. On this
basis, we observed and analyzed the spectral distributions of the
same events of different participants and different events of the
same participants.

At the same time, the eigenvalues of each action for each
participant were conducted to data pre-processing through
the coarse graining. First, we took the maximum (αt

p(e)max,

β t
p(e)max) and minimum (αt

p(e)min, β t
p(e, c)min) of the real and

the imaginary parts of the eigenvalues. Secondly, we defined
the scale of coarse-graining θ . Then the ranges of the real
part and the imaginary part were defined as {αt

p(e)min +

θ ,αt
p(e)min + 2θ , . . . ,αt

p(e)max − θ ,αt
p(e)max} and {β t

p(e)min +

θ ,β t
p(e)min+2θ , . . . ,β t

p(e)max−θ ,β t
p(e)max} respectively. Finally,

we counted the number of actual eigenvalues of different events
and participants in this two-dimensional coarsening space. The

FIGURE 4 | Flowchart of each algorithm.

Frontiers in Psychology | www.frontiersin.org 6 June 2020 | Volume 11 | Article 1003

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Qiu and Nan Brain Network Constancy and Participant Recognition

result was taken as a coarsening data set and used in participant
recognition. For participant recognition, the full process of SDSS
was shown in Figure 3 with the following steps.

1. We calculated the STE between 64 electrode sequences of each
event from the 99 participants and transformed the transfer
entropy matrix into the spectral distribution.

2. We created a coarsening data set including the three events
(task1) for each of the 99 participants.

3. We selected the data of a participant performing other
tasks out of the 99 participants as the test data set
and calculated the spectral distribution of the test
data set.

4. Finally, we compared the scores and determined the label of
the test participant.

The entire experiment process is illustrated by a flowchart
(Figure 4).

FIGURE 5 | Brain networks of three events of participant 1 and participant 2. The nodes from 1 to 64 correspond to Figure 1. (A) event 1 of participant 1 (B) event 1

of participant 2 (C) event 2 of participant 1 (D) event 2 of participant 2 (E) event 3 of participant 1 (F) event 3 of participant 2.
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3. RESULTS

By means of the above methods, we transformed the EEG signal
sequences of the 99 participants into symbolic sequences and
calculated the STE of each participant and task. The transfer
entropy matrix was transformed into brain networks using the
DMST method.

Figure 5 shows the brain networks of the three events of
task 1 for participant 1 and participant 2. For participant 1 in
Figure 5A, the node 1(FC5) had the largest out degree which
was then treated as the key node in the analysis. In this way,
not only can the characteristics of the participants be studied,
but the recognition of EEG fingerprints can also be facilitated.
At the same time, it can be seen from Figures 5A,C,E that there

FIGURE 6 | Brain networks of three events of participant 3 and participant 4. The nodes from 1 to 64 correspond to Figure 1. (A) event 1 of participant 3 (B) event 1

of participant 4 (C) event 2 of participant 3 (D) event 2 of participant 4 (E) event 3 of participant 3 (F) event 3 of participant 4.
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were little differences among the three brain network graphs
of participant 1, which were basically in a constant state. In
Figures 5B,D,F, the three brain network diagrams of participant

TABLE 3 | Euclidean distances among participants of the same event.

Event 1 p1a p2a p3a p4a AEDb

p1 0 42.988 36.354 24.143

36.640
p2 42.988 0 46.512 45.141

p3 36.354 46.512 0 24.704

p4 24.143 45.141 24.704 0

p1 p2 p3 p4 AEDb

Event 2

p1 0 48.827 51.503 55.224

43.107
p2 48.827 0 42.520 31.579

p3 51.503 42.520 0 28.989

p4 55.224 31.579 28.989 0

Event 3

p1 0 41.039 34.286 36.366

35.767
p2 41.039 0 44.181 36.563

p3 34.286 44.181 0 22.167

p4 36.366 36.563 22.167 0

ap1, p2, p3, p4, indicate participant1, participant 2, participant 3, participant 4,

respectively.
bAED, average of Euclidean distances.

2 were also basically in a constant state, which showed that
the brain network graphs of the same participant in different
events had a certain degree of stability. But the same events
from different participants, such as p1E1 (event1 of participant
1) and p2E1 (event1 of participant2) in Figures 5A,B, were
widely different in structure. Similarly, in Figures 6A,C,E, the
network diagrams of the three different events in participant
3 were similar. The three different events in participant 4
also resembled those in Figures 6B,D,F. But the same event
of different participants, such as event 1 of participant 3 and
participant 4, can be drastically different.

From the results of Figures 5, 6, we can conclude that
brain networks of the same participant remain constant to a
certain extent regardless of task or rest. The network structures
of different participants vary greatly, indicating that everyone
has his or her own brain network distribution, similar to a
fingerprint, thus lending support to the finding of Emily (Huang
J. et al., 2015).

The superposition of brain networks can be used to verify the
similarity of networks for different tasks of the same participant,
but the error edges arose from the union process lead to
information loss in the brain network research. In order to
solve this problem, we calculated the eigenvalues of the transfer
entropy matrix between EEG recordings of different tasks.
The characteristic of the transfer entropy matrix was extracted
and then the eigenvalue spectrum was superposed, which not
only reveals the basic characteristics of the network, but also

FIGURE 7 | Spectra graphs of transfer entropy matrix. The horizontal axis shows the real part of the transfer entropy matrix, while the vertical axis represents the

imaginary part of the transfer entropy matrix. The red star, blue star, and black circle indicate waiting state, opening, and closing the left hand, and opening and closing

right hand, respectively. (A) 3 events of participant 1 (B) 3 events of participant 2 (C) 3 events of participant 3 (D) 3 events of participant 4.
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achieves the effect of superimposing the common characteristics.
Because of the asymmetry of the transfer entropy matrix, the
eigenvalues obtained include a real part and an imaginary part.
The eigenvalues of different actions between the same participant
were extracted and summarized on the coordinate axes.

Figures 7A–D show the spectral distribution of the three
actions of participant 1, 2, 3, and 4, respectively. The red star
means rest state, the blue star refers to moving the left hand,
and the black circle indicates moving the right hand. It can be
seen that the spectral structures of the network eigenvalues of
the three events of the same participant were very similar, but
the spectral structure of each participant obviously differed from
each other. The Euclidean distances as quantitative indicators are
shown in Tables 3, 4. In Table 3, columns from 2 to 5 indicate the
Euclidean distance between the first 4 participants of the same
event. The results in column 6 of Table 3 illustrates the mean
value of the Euclidean distance of the first 4 participants on the
same event. The results in the Table 4 are the Euclidean distances
among events of the same participant. Data in Tables 3, 4 are
also the corresponding quantitative distances between the left
and right networks in Figures 5, 6. From these tables, it can be
seen that the average Euclidean distances (36.640, 43.107, 35.767)
of participants (from participant 1 to participant 4) in Table 3

were all higher than those (24.792, 25.820, 9.320, 22.154) of events
(event1, event2, and event3) in Table 4.

In order to statistically analyze the spectral distribution of all
participants, we used the two-factor repeated measures ANOVA
to test the differences between within-participant and between-
participant spectra. Specifically, we transformed the spectrum
distribution results into 5760-by-99 matrices (128*3*15 = 5760).
The length of each spectrum distribution was 128 including the
real part and the virtual part. The numbers of task and event
were 15 and 3, respectively. Ninety-nine indicated the participant
number. Then we put the matrix into the two-factor repeated
measures ANOVA model and obtained the results shown in
Table 5.

In Table 5, the p − value of the participant factor (between-
participant shown by Columns) in the second row was 1.61805×
10−10< α = 0.01. In the third and fourth rows, the p −

values of the task factor (within-participant expressed with Rows)
and interaction factor equaled 1 > α = 0.01. That means

between-participant spectrum distributions were significantly
different while the within-subject spectrum distributions had no
significant difference.

We then obtained the quantitative result to confirm that
inter-participant differences in the same event were more
pronounced than inter-task differences of the same participant.
As shown in Figure 8, the quantitative parameter indicating the
average Euclidean distance among participants, shown by the red

TABLE 5 | The results of the two-factor repeated measures ANOVA.

Source SS df MS F Prob>F

Columns 3137.88 98 32.0192 2.17 1.61805E − 10

Rows 16.24 44 0.3691 0.03 1

Interaction 757.01 4312 0.1756 0.01 1

Error 8330284.5 565785 14.7234

Total 8334195.5 570239

FIGURE 8 | Average Euclidean distance among different participants and

among different tasks. The red column and the blue column indicate the

average Euclidean distance among participants and the average Euclidean

distance among tasks, respectively. The error bars indicate the standard

deviations of average Euclidean distances.

TABLE 4 | Euclidean distances among events of the same participant.

Participant 1 Event 1 Event 2 Event 3 AEDa Participant 2 Event 1 Event 2 Event 3 AEDa

Event1 0 20.232 27.630

24.792

event1 0 27.891 18.140

25.820Event2 20.232 0 26.514 event 2 27.891 0 31.430

Event3 27.630 26.514 0 event 3 18.140 31.430 0

Participant 3 Event 1 Event 2 Event 3 AEDa Participant 4 Event 1 Event 2 Event 3 AEDa

Event 1 0 9.954 5.977

9.320

event 1 0 24.310 17.820

22.154Event 2 9.954 0 12.027 event 2 24.310 0 24.333

Event 3 5.977 12.027 0 event 3 17.820 24.332 0

aAED, average of Euclidean distances.
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column, was higher than the average Euclidean distance among
events represented by the blue column. The standard deviation
within the participant group was also higher than that between
event groups. In addition, we also compared the Euclidean
distance among participants and the Euclidean distance among

TABLE 6 | z − test analysis for two groups of Euclidean distances.

Participants Tasks

Average 39.471 29.362

Standard deviation 11.496 1.546

Numbers of Euclidean distances 4851 990

z 59.564

P(Z<=z) one-tailed (α = 0.01) 0

z critical value of one-tailed 2.326

P(Z<=z) two-tailed (α = 0.01) 0

z critical value of two-tailed 2.576

tasks by z − test. As presented in Table 6, the average Euclidean
distance and standard deviation were the same as shown in
Figure 8. The numbers of Euclidean distances were calculated

as follows: 99∗98
2 = 4851, (15∗3)∗(15∗3−1)

2 = 990, where 99 was
the number of participants, 15 was task number, and each task
contained three events. The z value was higher than the critical
value of both one-tailed and two-tailed tests. The p − value of
the z − test equaled 0. The results of the z − test quantitatively
demonstrated that the differences between brain networks of
participants were larger than the differences between tasks.

Based on the relative stability of brain network of each
participant, we used the SDSSmethod to create data sets using the
network spectrum data of three events of 99 participants. When
judging the test participants, any task of the test participants,
such as moving both legs, can be used as measurement data.
We compared the network spectrum structure of the measured
participant with 99 participants’ data set by coarsening the
network spectrum. The choice of the accuracy of coarsening
determines the accuracy of the final results. In this paper, we set

FIGURE 9 | Coarsened spectrum distributions and test scores. (A) Coarsened spectrum distribution of task 1 of participant 1. (B) Coarsened spectrum distribution of

task 1 of participant 7. (C) Coarsened spectrum distribution of task 3 of test participant. (D) Score of TXE3 (task3 of test participant); the horizontal axis shows the

participant number; the vertical axis indicates the score (overlapping part of the spectrum of TXE3 and data sets).
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θ = 1 to divide the spectrograms into various small squares and
counted the number of particles in each small square. Finally,
a participant test was carried out, assuming that the moving
legs of participant 7 in task 3 were selected as measurement
actions, labeled as TXE3. We calculated the transfer entropy
matrix of this labeled task, whose spectrum distribution was
coarsened by θ = 1. By comparing the TXE3 coarsening data
with 99 participants’ coarsening data, the number of TXE3 was
found with the highest score. Figures 9A,B show the spectrum
distribution sets of participant 1 and participant 7, respectively.
Figure 9C is the spectrum distribution set of TXE3. Figure 9D
is the test score of TXE3. The horizontal axis represents the
participant number, and the vertical axis score represents the
overlapping part between the spectrum of TXE3 and data sets
created by the three events of 99 participants. It can be seen that
the highest score corresponds to participant 7. That is to say,
the test participant was participant 7. This was consistent with
the participant number selected beforehand. We also checked all
participants of T_new1 (open and close both fists), T_new2 (open
and close both feet), and T_new3 (imagine opening and closing
both fists) by creating three new groups named T_new1_g,
T_new2_g, and T_new3_g. Each group contained 99 participants
of the new tasks (T_new1, T_new2 and T_new3). Thirty-three
participants were selected without repetition from T_new1_g,
T_new2_g and T_new3_g. A new cross test group was then
created.We repeated the extraction 1,000 times and created 1,000
test groups. The 1,000 scores are shown in Figure 10 and the
average accuracy of test participants is 69.35%, which helped
validate the effectiveness of the SDSS method.

4. DISCUSSION

EEG network research is regarded as an effective tool in
identifying subject specific characteristics. As a core method
for creating a network, the MST method assesses the strongest
connection of individual EEG traits. Crobe et al. used MST
and the k-core decomposition method to find the existence of
a distinctive functional core. Their results confirmed the great
impact of EEG analysis on several bioengineering applications
(Crobe et al., 2016). Compared to the MST method, the DMST
method can express the direction between each two nodes in
the created EEG network. We can obtain the source node from
the EEG network and find some features from it. Gennaro
et al. found that the individual EEG-trait remains stable despite
the change of sleep architecture. They proposed that EEG
invariances can be related to genetic individual differences rather
than sleep-dependent mechanisms (De Gennaro et al., 2005).
Thomas et al. confirmed that the EEG signals are robust carriers
of unique personality traits and reported that future research
must focus on the uniqueness, acceptability, and robustness of
EEG signals by various optimization algorithms and advanced
technology (Thomas and Vinod, 2017). As mentioned in the
above literature (De Gennaro et al., 2005; Huang J. et al.,
2015; Thomas and Vinod, 2017): the connections in the human
brain network are intrinsic and maintains a stable state, similar
to the human “fingerprint.” In our research, we also found

FIGURE 10 | Test accuracy rates of 1,000 test groups. The horizontal axis

shows the number of extractions; the vertical axis indicates the accuracy rate

(99 was divided by overlapping capacities of the spectrum of each test group

and data sets).

these stable individual EEG traits using the graphic method
(DMST) and quantitative analysis (z-test of Euclidean distance).
Specifically, we used the eeglab toolbox in MATLAB to load
the 20G EEG sequence data of 99 participants and preprocessed
the data. The STE method was then used to calculate the
transfer entropy of the three events for the 99 participants, and
the DMST method was used to generate the brain networks
of various cognitive behaviors for each participant. By visual
inspection, brain networks of the same participant were very
similar in different events, but there were great differences
between different participants in the same event. For quantitative
analysis, we used z − test to compare Euclidean distances of
participants and events. The results showed that the Euclidean
distances between participants were significantly greater than
those between events.

In addition, by focusing on this feature (EEG-trait remains
stable), we used the SDSS method to construct the respective
micro data sets (fingerprint database) based on the coarsened
network spectrum of the rest, the left-hand and right-hand tasks
of the 99 participants. For participant recognition, we created
three groups of test data named by tasknew1 (open and close
both fists), tasknew2 (open and close both feet), and tasknew3
(imagine opening and closing both fists). Each group contained
99 participants. We chose 33 different participants from group1,
group2, and group3 randomly and created the new disordered
group. We repeated the selection 1,000 times and obtained 1,000
new disordered groups. The average accuracy of test groups was
69.35%, which showed the effectiveness of the SDSS method.

5. LIMITATION

This present study is not without limitations: 1. In this
paper, we selected the BCI2000 dataset as the research data,
but BCI has a critical hurdle, in that performance varies
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greatly, especially in motor imagery based BCI. Researchers
tried to address the problem of performance variation (Ahn
and Jun, 2015) to improve reliability. In future studies, we
look forward to improving the reliability and to focus the
attention on task-related factors and longitudinal tracking of
participants as well as integrative studies of related variables
(psychological and physiological). 2. This study was limited
in catching the flexible and dynamic characteristics of
EEG signals when calculating the STE (McAuliffe, 2014).
Further studies with the STE of short EEG sequences (about
102 points) (Zhang et al., 2012; Pan et al., 2014) would
be required to avoid excessive reduction of brainwave
features. 3. The accuracy of the coarse-grained network
spectrograms of the 99 participants was likely to affect the
final results, thus, in future work, we will try to select a better
parameter not only to increase the accuracy of the coarse-
grained network spectrogram but also to enhance the speed
of identification.

6. CONCLUSION

In conclusion, the spectral analysis in complex networks can
provide a very simple computational model for studying the rules
of big data (multiple participants and multi-channel EEG). One
can use the characteristics of the complex network spectrum to
identify EEG participants. In addition, the SDSS method in this
paper had important implications for the detailed comparison of
network states.
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