
ORIGINAL RESEARCH
published: 29 May 2020

doi: 10.3389/fpsyg.2020.01094

Frontiers in Psychology | www.frontiersin.org 1 May 2020 | Volume 11 | Article 1094

Edited by:

Virginia Penhune,

Concordia University, Canada

Reviewed by:

Ramesh Balasubramaniam,

University of California, Merced,

United States

Evangelos Paraskevopoulos,

Aristotle University of Thessaloniki,

Greece

*Correspondence:

Marzieh Sorati

marzieh.sorati@ntnu.no

Specialty section:

This article was submitted to

Auditory Cognitive Neuroscience,

a section of the journal

Frontiers in Psychology

Received: 11 February 2020

Accepted: 29 April 2020

Published: 29 May 2020

Citation:

Sorati M and Behne DM (2020)

Audiovisual Modulation in Music

Perception for Musicians and

Non-musicians.

Front. Psychol. 11:1094.

doi: 10.3389/fpsyg.2020.01094

Audiovisual Modulation in Music
Perception for Musicians and
Non-musicians
Marzieh Sorati* and Dawn Marie Behne

Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway

In audiovisual music perception, visual information from a musical instrument being

played is available prior to the onset of the corresponding musical sound and

consequently allows a perceiver to form a prediction about the upcoming audio music.

This prediction in audiovisual music perception, compared to auditory music perception,

leads to lower N1 and P2 amplitudes and latencies. Although previous research suggests

that audiovisual experience, such as previous musical experience may enhance this

prediction, a remaining question is to what extent musical experience modifies N1

and P2 amplitudes and latencies. Furthermore, corresponding event-related phase

modulations quantified as inter-trial phase coherence (ITPC) have not previously been

reported for audiovisual music perception. In the current study, audio video recordings of

a keyboard key being played were presented to musicians and non-musicians in audio

only (AO), video only (VO), and audiovisual (AV) conditions. With predictive movements

from playing the keyboard isolated fromAVmusic perception (AV-VO), the current findings

demonstrated that, compared to the AO condition, both groups had a similar decrease

in N1 amplitude and latency, and P2 amplitude, along with correspondingly lower ITPC

values in the delta, theta, and alpha frequency bands. However, while musicians showed

lower ITPC values in the beta-band in AV-VO compared to the AO, non-musicians did

not show this pattern. Findings indicate that AV perception may be broadly correlated

with auditory perception, and differences between musicians and non-musicians further

indicate musical experience to be a specific factor influencing AV perception. Predicting

an upcoming sound in AV music perception may involve visual predictory processes, as

well as beta-band oscillations, which may be influenced by years of musical training.

This study highlights possible interconnectivity in AV perception as well as potential

modulation with experience.

Keywords: musicians and non-musicians, musical experience, auditory, audiovisual, music perception, inter-trial

phase coherence (ITPC), event-related potential (ERP)

1. INTRODUCTION

Music is regularly heard without seeing the movements producing it, however, music perception is
cross-modal and not solely based on auditory music perception. Body gestures, facial expressions,
and especially finger and hand movements that require a high level of temporal and spatial
accuracy are also involved in music perception. This information provides visual cues which assist
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the intelligibility of music (Thompson et al., 2005; Molnar-
Szakacs and Overy, 2006; Repp and Knoblich, 2009; Behne and
Wöllner, 2011; Platz and Kopiez, 2012; Maes et al., 2014), as
has similarly been observed for speech (Klucharev et al., 2003;
Schwartz et al., 2004; Van Wassenhove et al., 2005; Stekelenburg
and Vroomen, 2007; Arnal et al., 2009; Pilling, 2009; Paris
et al., 2013, 2016a,b; Baart and Samuel, 2015; Biau and Soto-
Faraco, 2015; Hsu et al., 2016). For example, in audiovisual (AV)
speech a talker’s facial articulations begin before the sound onset,
providing a perceiver with potential cues to predict the upcoming
speech sound, and thereby enhance AV speech perception relative
to the audio only (Besle et al., 2004; Schwartz et al., 2004; Paris
et al., 2013). Likewise, in a piano performance, visual information
fromfinger and handmovements can signal the timing ofmusical
events (Thompson et al., 2005), and depending on the key being
played, potentially also provide predictive information about the
frequency of the upcoming sound (Maes et al., 2014).

Electrophysiological studies from AV perception have
demonstrated that visual information from facial movements,
beginning before onset of the auditory speech, can predict an
upcoming speech sound and modulate AV speech perception
(e.g., Stekelenburg and Vroomen, 2007; Paris et al., 2017).
This modulation implies that measures of early event-related
potentials (ERPs), such as N1 and P2, would be lower for AV
speech compared to the condition with auditory perception
(Baart, 2016). Although the N1-P2 waveform is an auditory
evoked response commonly sensitive to variations in the physical
features of auditory stimuli (Näätänen and Winkler, 1999;
Tremblay et al., 2006), previous research (Huhn et al., 2009)
has shown that, as a result of different spatially underlying
mechanisms, N1, and P2 display different scalp distributions.
N1 is the negative anteriorly-distributed component occurring
around 100 ms in response to abrupt acoustical changes. One of
the primary sources of N1 is the medial transverse temporal gyri
(Tan et al., 2016). The N1 waveform is sensitive to attentional
variations (Näätänen and Picton, 1987; Näätänen et al., 2011;
Lange et al., 2013; Paris et al., 2013) and is influenced by the
predictability of the upcoming sound based on corresponding
visual cues, such as lip movements in speech (Paris et al., 2017),
through a direct circuitry from visual to the auditory areas (Arnal
et al., 2009). N1 is also modulated by inter-individual differences
(Liem et al., 2012; Tan et al., 2016). The N1 waveform is followed
by a positive fronto-centrally distributed P2 component which
occurs 200 ms after the onset of auditory stimuli (Pratt, 2011)
and is strongly associated with the auditory association areas
in the brain (Bosnyak et al., 2004; Kühnis et al., 2014). In AV
perception, through a feedback via superior temporal sulcus,
visual information congruent with an auditory signal can lead to
suppression of amplitude and latency of P2 (Van Wassenhove
et al., 2005; Arnal et al., 2009; Paris et al., 2016b).

Amplitude and latency reduction for N1 and P2 in AV
perception is not limited to AV speech perception (Stekelenburg
and Vroomen, 2007, 2012; Baart et al., 2014). AV modulation
has also been observed in studies with ecologically valid stimuli
such as clapping hands and tapping a spoon against a cup
(Stekelenburg and Vroomen, 2007; Vroomen and Stekelenburg,
2010) and artificial stimuli, such as moving bars (Paris et al.,

2016a, 2017). The common feature for these stimuli, including
speech, is their predictability (Stekelenburg and Vroomen, 2007);
the visual cues starting before the sound allow the perceiver to
anticipate what is coming and when (Paris et al., 2017). Similarly,
prediction is essential in playing music (Koelsch et al., 2019). For
example, finger and hand movements in playing the piano will
give some prediction about what key will be pressed and when the
sound will be started (Sebanz and Knoblich, 2009; Heggli et al.,
2019). Thus, the question is, since finger and hand movements
start before the audio onset, and provide possible cues for the
upcoming musical sound, does AV modulation in music also
occur for N1 and P2 amplitudes and latencies, similar to the
speech stimuli?

Previous electrophysiological studies on auditory music
perception have suggested that N1 and P2 amplitudes, but not
latencies, are sensitive to an individual’s previous experience,
such as musical training (Shahin et al., 2003, 2005; Kuriki et al.,
2006; Baumann et al., 2008; Virtala et al., 2014; Maslennikova
et al., 2015; Rigoulot et al., 2015; Sanju and Kumar, 2016; but
also see Lütkenhöner et al., 2006). Pantev et al. (2001) showed
that musicians’ early cortical amplitude is higher in response to a
piano tone than for non-musicians, and other studies replicate
these findings. For example, Shahin et al. (2003) showed that
musicians have a more enhanced P2 amplitude in response to
music stimuli (piano and violin) than non-musicians. In a later
study, they confirmed their results for enhanced P2 amplitude
for musicians, compared to non-musicians, in response to
different piano tones (Shahin et al., 2005). Other research (e.g.,
Maslennikova et al., 2015) also have suggested that musicians,
compared to non-musicians, have higher amplitude for both N1
and P2 in response to music stimuli.

Musical training as an AV experience also shapes AV
perception (Haslinger et al., 2005; Musacchia et al., 2008; Lee and
Noppeney, 2011; Paraskevopoulos et al., 2012; Maes et al., 2014;
Proverbio et al., 2016). Years of practicing a musical instrument
can enhance auditory processing (Pantev et al., 2001; Shahin
et al., 2003, 2005; Baumann et al., 2008;Maslennikova et al., 2015)
and provide an attractive model for studying experience-based
neural plasticity. Years of musical training enrich a musician’s
multimodal experience and integrate different sensory signals
from the auditory, visual, and motor cortex (Zatorre et al.,
2007; Strait and Kraus, 2014). For example, one study (Petrini
et al., 2009a) suggested that drummers, compared to non-
musicians, were more sensitive to AV synchrony in point-light
motions of drumming and could perceptually interpolate absent
visual information (Petrini et al., 2009b). Moreover, playing an
instrument is also a case of auditory-motor association learning.
For example, when playing piano, pressing a key to produce a
certain pitch will, over time with practice, develop key-to-pitch
mapping (Maes et al., 2014). Years of musical training enhance
auditory mechanisms related to sub/cortical areas, not only in
response to music, such as pitch perception (Kishon-Rabin et al.,
2001; Schön et al., 2004; Zatorre et al., 2007; Barnett et al.,
2017; Bianchi et al., 2017), but also to other AV events such
as speech (Patel, 2011). With this basis, in the present study,
the role of previous musical experience will be examined for
N1 and P2 in AV music perception during which visual cues
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from finger and hand movement can offer prediction for the
corresponding sound.

While N1 and P2 precisely depict the temporal aspect of
neural activity in AV perception, coherence of EEG oscillations is
determined by inter-trial phase coherence (ITPC) in response to a
stimulus. These EEG oscillations measured by ITPCs particularly
in low-frequency (<30 Hz) bands can also shape the generation
of evoked potentials, such as N1 and P2 (Gruber et al., 2004;
Eggermont, 2007; Edwards et al., 2009; Koerner and Zhang, 2015;
van Diepen and Mazaheri, 2018). ITPC in low-frequency bands
has previously been used together with ERP analyses to study N1
and P2. For example, Koerner and Zhang (2015) suggested that
early evoked potentials such as N1 and P2 might be dependent
on ITPC for delta, theta, and alpha-band activities. Moreover,
Kühnis et al. (2014) showed that musicians’ beta activity increase
is accompanied by reduced N1 amplitude in response to a passive
vowel listening task. Therefore, in the present study, ITPC will be
computed for delta, theta, alpha, and beta to investigate the role
of low-frequency bands activity accompanied by N1 and P2.

Many cognitive processes, such as perception, can be linked to
synchronized oscillatory networks (Buzsáki and Draguhn, 2004).
Notably, low-frequency activity is essential in the processing of
speech (Howard and Poeppel, 2012; Gisladottir et al., 2018) and
music (Doelling and Poeppel, 2015; Doelling et al., 2019). Low-
frequency activity also correlates with early ERP components
(Gruber et al., 2004; Fuentemilla et al., 2006; Arnal and Giraud,
2012; Kühnis et al., 2014; Koerner and Zhang, 2015). Moreover,
previous research on AV perception in speech, not taking
musical experience into account, suggested that visual predictory
information signaling an upcoming speech sound might reset
ongoing frequency activity (Lakatos et al., 2007; Busch and
VanRullen, 2010). With this basis, some illustrative cognitive
processes linked to low-frequency oscillations can be mentioned.

Theta activity is reduced in response to AV speech perception
(Lange et al., 2013), however, theta sensitivity is not limited to
speech perception (Luo and Poeppel, 2012), and is linked to
various cognitive functions (Canolty and Knight, 2010), such
as syllable level encoding and speech intelligibility (Giraud and
Poeppel, 2012; Doelling et al., 2014), as well as multisensory
attention (Keller et al., 2017). Theta oscillation also correlates
with auditory N1 and P2 amplitude responses to speech syllables
(Koerner and Zhang, 2015). Moreover, delta-theta activity is
positively correlated with performance in stimulus detection
tasks (Arnal and Giraud, 2012). Doelling and Poeppel (2015)
proposed that delta-theta activity in response to music stimuli
is also correlated with better performance in detection tasks,
and corresponding to speech intelligibility, delta-theta activity
in response to music may be linked to the identification
of individual notes in the sound stream. Moreover, reduced
beta and alpha oscillations have been connected to attentional
shift (van Ede et al., 2014) and predictory processing (Lange,
2013; Todorovic et al., 2015) to an upcoming stimulus. Alpha
oscillationmight also be reduced in response to AV speech, which
might be connected to selective attention mechanisms (Foxe and
Snyder, 2011; Lange, 2013), as well as mechanisms regulating
attention and inhibition (Strauß et al., 2014). In addition, beta-
band activity supports auditory-motor interactions and encoding

of the musical beat (Large and Snyder, 2009). Beta-band activity
has an essential role in predictive timing (Arnal and Giraud,
2012; Doelling and Poeppel, 2015) and in cognitive functions,
especially in tasks that require top-down control procedures
(Engel and Fries, 2010). Additionally, the beta oscillation is linked
to the phase of delta activity in sensory-motor areas (Cravo
et al., 2011). As AV modulation at N1 and P2 may coincide with
ITPC fluctuations in response to AV speech stimuli, especially for
theta activity (e.g., Edwards et al., 2009), a reduction in N1 and
P2 amplitudes is expected to correspond to lower ITPC values.
Therefore, ITPCs in low-frequency bands delta, theta, alpha, and
beta are expected to be lower in AV music perception compared
to the perception of auditory music.

In response to auditory music, previous research has shown
that musicians, relative to non-musicians, have higher ITPC
values in delta and theta bands, which was correlated to their
years of training and perceptual accuracy (Doelling and Poeppel,
2015). Musicians also showed higher delta activity in response
to music stimuli compared to non-musicians (Bhattacharya and
Petsche, 2005). Some studies (Trainor et al., 2009; Bidelman et al.,
2014; Bidelman, 2017) argue that musical experience may also
regulate oscillatory activity, such as alpha and beta, in response
to speech and non-speech stimuli. Playing a musical instrument
involves sensory-motor practice (Zatorre et al., 2007), which can
regulate beta activity (Fujioka and Ross, 2017). Consequently,
ITPC for musicians and non-musicians in AV music will be
studied to examine whether musicians, compared with non-
musicians, show greater ITPC values in auditory and lower ITPC
values in AV music perception along with their N1 and P2
amplitudes in auditory and AV music perception.

In sum, in the current study, musicians and non-musicians
are first compared based on their ERP and ITPC responses to
auditorymusic, and based on prior findings (e.g., see Shahin et al.,
2005; Baumann et al., 2008), N1 and P2 amplitudes for musicians
are expected to be relatively enhanced in auditory perception,
compared to non-musicians. Next, auditory and AV music are
compared between groups based on N1 and P2 amplitudes and
latencies to examine the effect of the potentially predictive visual
cues from a musical instrument being played starting before the
upcoming musical sound. Both groups are expected to show
lower amplitudes and latencies with AV music compared with
auditory music (e.g., Stekelenburg and Vroomen, 2007).

A novel contribution of the current study is its inclusion
of time-frequency analyses of trial-by-trial fluctuations in delta
(0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (12–
30 Hz) in response to auditory and AV music stimuli. As
low-frequency oscillations correlate with early ERP components
(e.g., Koerner and Zhang, 2015), ITPCs for delta, theta,
alpha and, beta-band in auditory perception are expected
to be higher for musicians than for non-musicians, and
for both groups to be lower for AV music than auditory
music. Furthermore, as previous research (e.g., Petrini et al.,
2009a,b) suggested that relative to non-musicians, musicians
have enhanced AV perception, musicians in the current study
are hence expected to have lower N1 and P2 amplitudes
and latencies, as well as lower ITPC values in corresponding
frequency bands.
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2. MATERIALS AND METHODS

This experiment was designed to investigate the effect of
musical experience on auditory music perception by comparing
musicians and non-musicians, as well as the effect of visual
information from hand and finger movements predicting the
upcoming sound in AV music. For both aspects of the study,
data were based on N1 and P2 amplitudes and latencies and
corresponding ITPC values. Data collection reported here for
AV music perception were recorded within a larger study on AV
perception (see, e.g., Sorati and Behne, 2019).

2.1. Participants
As shown inTable 1, 41 participants (aged between 19 and 33 yrs)
were among the students at the Norwegian University of Science
and Technology (NTNU), among which 20 were musicians and
21 were non-musicians. For technical reasons, data from one
musician were removed from the study. All participants had
Norwegian as a first language, were right-handed based on a
variant of the Edinburgh Handedness Inventory (Oldfield, 1971),
had normal hearing (15dB HL pure tone auditory threshold for
250–4,000 Hz, British Society of Audiology, 2004), and normal
to corrected visual acuity (Snellen test). None of the participants
had a history of neuropsychological disorders.

Musicians were students at NTNU in Music Performance
Studies or Musicology, where admission requirements include
evaluation of music theory and performance as well as
advanced instrumental skills. None of the musicians had
absolute pitch perception. In the timeframe of the experiment,
musicians were actively playing an instrument and were
regularly performing in public. Musicians had expertise with
instruments including piano, keyboard, guitar, percussion, violin,
and saxophone. As general properties of musical training rather
than specific practice with temporal cues are sufficient for
cognitive enhancement, variation in musical instruments played
by musicians is not expected to affect the results (Pantev et al.,
2001; Kühnis et al., 2013). However, since other research (Pantev
et al., 2001; Heggli et al., 2019) suggest that the effect of
musical expertise is specific for each musical instrument, here,
all musicians had keyboard or piano as their main or secondary
instrument. The formal musical training for musicians started at
a mean age of 8 years and had been playing their main instrument
for at least 8 years. Participants’ interest in music was measured
based on a self-reported scale from (1 = “not interesting at all”)
to 10 (“very interesting”), and musicians reported, on average, 9.
Musicians with dancing and singing experience were excluded
from this study, to isolate the effect of musical training to
instrumentalists.

Non-musicians were also NTNU students, although not in
music, and had no more than the once per week music training
for 1 year which is obligatory in Norwegian elementary schools.
The non-musicians’ self-reported their interest in music was, on
average, 5 on the 10-point scale.

All participants signed the consent form registered with
the Norwegian Center for Research Data, and received an
honorarium for their participation in the experiment.

2.2. Stimuli
AV materials were recorded in an IAC sound-attenuated
studio (IAC acoustics, Hampshire, UK) at the NTNU Speech
Laboratory, Department of Psychology, NTNU. A Sony PMW-
EX1R camera (30 fps) connected to an external Røde NT1-A
microphone (Sydney, Australia), mounted on a tripod was used
to video record an instrumentalist’s right hand positioned on a
keyboard (Evolution MK-449C, UK) and with the left side of
the right thumb depressing the middle C4 (261.6 Hz) key and
the tips of other fingers resting on the next four white keys (i.e.,
D4, E4, F4, and G4). This position allowed clear visibility of
the finger and hand movements while depressing the key. Using
Adobe Premiere Pro CS54.5, the audio from the video recording
was replaced with a pure MIDI C4 produced in GarageBand
(10.0.3). Videos were then exported in H.264 format with an
MP4 container.

As shown in Figure 1, these materials were the basis for three
sets of music stimuli: audio only (AO), in which the 700 ms-
long audio signal was presented with a visual gray background;
the video only (VO), which was the original video recording
from the finger and hand movement with no sound; and the
audiovisual (AV), in which the synchronized audio and video
recordings were presented. In addition to these, a stimulus with
a gray background and no audio was included in the experiment,
but is not directly relevant for the issues addressed here, and is
not addressed below.

2.3. Procedure
The experiment was conducted in a dimly lit IAC sound-
attenuated studio at the NTNU Speech Laboratory. Participants
used a chinrest to maintain a stable head position and generally
reduce movements. The visual stimuli were presented on a
40" LCD flat panel display (Samsung SyncMaster 400DX-2)
with a 1152 × 648 resolution, positioned at eye level 190 cm
in front of the participant. The video size and position were
chosen to correspond to the actual size of a MIDI keyboard.
Audio was played over ER1-14B insert earphones via an HB7
headphone buffer (Tucker-Davis Technologies, US). The sound
pressure level for the audio stimuli on average was 65 dB,
based on measurement with a NOR140 digital sound level meter
(Norsonic, Norway).

The audio and video presentation delays when playing the
stimuli were recorded for AO, VO, and AV stimuli using an
audiovisual delay test toolbox (Electrical Geodesics, Oregon, US),
connected to the EEG system (Electrical Geodesics, Oregon, US).
Presentation delays for audio (50 ± 12 ms jitter), and video (57
± 2 ms jitter) were compensated in the analysis.

Prior to the experiment, each participant was instructed to
limit eye movements, and to try to relax. Participants were
informed that their task was to detect target trials and press a
button on a Response Pad 200 (Electrical Geodesics, USA). The
target trials were included to engage the participants in the task
(ca. 10% of the trials). As previous research (Wild et al., 2012)
has shown that attentional influences on the sensory processing
are related to the modality of the stimulus, targets in the target
trials were the same modality as non-target trials. Specifically,
in the AO target trials a 120 ms-beep was presented with two
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TABLE 1 | The descriptive information, means, and standard deviations in the parentheses, for musicians and non-musicians based on participant information.

Age Gender Interest in

music

Listening to

music per week

Age of starting

an instrument

Musical

experience

Hours of practice

per week

Musicians 23 yrs (3 yrs) 10 females,

9 males

9(1) / 10 19 h (13 h) 8 yrs (2 yrs) 14 yrs (3 yrs) 15 h (11 h)

Non-

musicians

23 yrs (3 yrs) 10 females,

11 males

5(2) / 10 5 h (5 h) - Less than a

year

-

FIGURE 1 | Timeliness for the audio only, video only, and audiovisual stimuli.

onset variations: one beginning 200 ms and another one 400 ms
after the audio onset. In the VO target trials a 120 ms-white dot
was presented above or below the C4 keyboard key. In the AV
target trials a white dot was synchronized with a tone (500 Hz,
120ms). After receiving instructions about the experimental task,
participants completed 5 practice trials to ensure they understood
the experimental task.

As presented in Figure 1, a trial started with a fixation cross
on a gray background (500 ms), presented at the position of
the C4 key. The fixation cross was followed by a still keyboard
image with a random interval of [0, 100, 200] ms until the video
started. The first detectable finger movement frame (video onset)
started 165 ms preceding the auditory onset. Each AV stimulus
lasted 1,036 ms (31 frames), and the last frame of the video was
displayed (800 ms).

The experiment took about 50 minutes, presenting 738
pseudo-randomized trials in four blocks, including 72 target trials
and 246 trials for each stimulus. The breaks between the blocks
were 3-minute long and each block contained eight short pauses.

2.4. EEG Recordings
Raw EEG data were recorded at a 1,000 Hz sampling rate with a
128-channel dense array EEG system cabled to a Net Amps 300

amplifier (Electrical Geodesics, Oregon, US). Psychtoolbox (Pelli
and Vision, 1997) was used for stimulus presentation, and EEG
was recorded with Net Station (5.2.0.2). During the experiment
the experimenter used a separate display to monitor stimuli
and EEG channels. No online filters were applied, and Cz was
used as the default reference. Before the session started for each
participant, a cap was selected based on head size measured from
the nasion to the inion and the left-right preauricular distance.
To improve the electrode-to-scalp conduction, participants were
asked to brush their hair (Luck, 2014) prior to the cap being
applied with Cz positioned at the midpoint of the nasion.
Impedances were maintained below 100 K�.

2.5. Data Analyses
2.5.1. Preprocessing
EEG recordings were interpolated to the 10-20 system (Jasper,
1958) and imported into Matlab R2015b with the EEGLAB (v15)
extension (Delorme and Makeig, 2004) which was used for the
full analysis. In EEGLAB, a high-pass filter (0.5, 12 dB/octave)
and a low-pass filter (48Hz, 12 dB/octave) were applied to the raw
continuous data. After removing bad channels, the remaining
channels were re-referenced to the average reference. Large
artifacts, such as head movements, were later removed from the
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data. Independent component analysis was performed to remove
the stereotypical artifacts (e.g., eye blinks).

2.5.2. Event-Related Potential
Preprocessed EEG data were epoched from 200 ms before, to 500
ms after the audio stimulus onsets (i.e., each epoch was 700 ms),
and−200 ms to 0 ms was selected for baseline correction. N1 was
defined in a window of 75–125 ms and P2 in a window of 175–
225 ms. Since Cz displays activity from the auditory brain areas
(Bosnyak et al., 2004), and has been previously used in the field
(e.g., Van Wassenhove et al., 2005), Cz was therefore chosen for
further analyses. Separately for each participant, and based on the
non-target trials, average ERPs were calculated for each condition
(AO, VO, AV).

Musicians have been shown to have enhanced N1 and P2
amplitudes (Shahin et al., 2003, 2005; Baumann et al., 2008;
Maslennikova et al., 2015). Therefore, first the difference between
musicians and non-musicians for N1 and P2 in the AO condition
was investigated. Then, a difference wave (AV-VO)was calculated
by subtracting VO signals from the AV signals, to extract
the contribution of the visual waveform from the AV ERPs.
Furthermore, to examine N1 and P2 amplitude and latency
reduction due to the predictive visual cues for a coming audio
signal, for each group N1 and P2 from AV-VO were compared
with N1 and P2 from the AO condition (AO vs. AV-VO)
(Van Wassenhove et al., 2005; Baart, 2016). Finally, musicians
and non-musicians were compared based on their N1 and P2
amplitudes and latencies.

In addition, to investigate spatio-temporal activity of AV
modulation (in anterior, posterior and lateral sites), separately for
musicians and non-musicians, AO and AV-VO were compared
by applying pointwise t-tests in a window of 1–250 ms for 8
electrodes (F3, Fz, F4, C3,C4, P3, Pz, P4) in addition to Cz.

2.5.3. Inter-trial Phase Coherence
ITPC is a measure of the phase synchrony across trials as a
function of frequency in the epoch time series and time point,
which can be computed for different frequencies. ITPC values
are defined between one and zero. While one suggests total phase
coherence, zero value suggests arbitrary phase distribution across
trials (Cohen, 2014).

ITPCtf = |n−1
n∑

r=1

eiktfr | (1)

In Equation 1 t, f , and n stand for time, frequency, and the
number of trials, respectively, and eik is the Fourier transform
index at t and f .

Preprocessed EEG data were segmented into 2,400 ms epochs,
from 1,200 ms before to 1,200 ms after the auditory onset. ITPC
1 was run with EEGLAB toolbox function “newtimef” (Delorme
and Makeig, 2004) in a window of 75–225 ms which matches N1
and P2 latencies, for low-frequency bands (<30 Hz), such as delta
(0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (12–30Hz).

2.5.4. Statistical Analyses
Repeated-measures analyses of variance (ANOVA), with α =

0.05, were performed with SPSS (v. 25) to assess condition
(AO vs. AV-VO) and musical experience (musicians vs. non-
musicians) as well as their interactions, both for N1 and P2
amplitudes and latencies at electrode Cz. Since N1 and P2 have
previously been shown (e.g., Arnal et al., 2009) to rely on different
mechanisms for predictory visual cues in AV perception, an
interaction between N1 and P2 was not expected, and they were
therefore analyzed separately. Similarly, ANOVAs were run for
ITPC in the delta, theta, alpha, and beta-band activity. In the two-
way ANOVA analyses both for ERP and ITPC, a main effect of
experience would collapse data from AO and AV-VO conditions
and would not give a meaningful comparison between musicians
and non-musicians. Therefore, for a precise comparison between
the two groups, musicians and non-musicians, were compared in
AO music perception, and in the interaction between condition
and musical experience. While the main effect of experience
is not directly addressed, F-values are presented in Table 4

for evaluation.
For EEG, factors affecting the signal-to-noise ratio in a

condition (e.g., noise, number of trials) have consequences for
statistical reliability, yet are not commonly reported (Cohen,
2014). For instance, even with environmental and systemic noise
at a minimum, for statistical reliability, Luck (2014) suggested
using a set number of trials for specific ERP components. For
ITPC analyses, the number of trials in a condition can be used to
calculate the strength of the ITPC (Cohen, 2014), and to achieve
this in the current study, a bootstrapping algorithm was run for
each frequency band between 75 and 225 ms, corresponding to
the N1 and P2 windows. First, to run the convolution over the
signal, a Gaussian function centered for each frequency band
(for delta at 2.5 Hz, theta at 6 Hz, alpha at 10 Hz, and beta at
21 Hz) was used as a wavelet function. The average ITPC for
the convoluted signal in a time window was calculated with the
bootstrap algorithm iterated 50 times for each trial. Statistical
analyses were carried out (p < 0.01) for the AO and AV
conditions for musicians and non-musicians. The maximum
number of trials needed for the ITPC analyses among all groups
and conditions was considered theminimum threshold (n= 501)
for each condition and group.

3. RESULTS

As detailed in Table 2, on average across conditions, musicians
correctly responded to 95% and non-musicians to 94% of the
target trials with similar standard deviations, indicating that
the groups had a comparable focus on the stimuli during
the experiment.

3.1. Audio Only Condition
As summarized in Table 3 and shown in Figure 2, for the AO
condition, musicians and non-musicians were compared for N1
and P2 amplitudes and latencies, as well as for their trial-by-trial
phase coherence, as is shown in Figure 3.
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3.1.1. Event-Related Potentials
For the AO music condition, one-way analyses of variance
(ANOVA) were carried out comparing musicians and non-
musicians for N1 and P2 amplitudes and latencies. Results
in Table 3 show that musicians had a higher N1 amplitude
(1 = 0.55µV) than non-musicians [F(1,38) = 5.25, p =

0.2], whereas N1 latency [F(1,38) = 0.62, p = 0.43], P2
amplitude [F(1,38) = 0.07, p = 0.77], and P2 latency [F(1,38) =

3.2, p = 0.08] showed no significant difference between the
two groups.

TABLE 2 | Mean percentages, with standard deviations in parentheses, for correct

responses to target trials in the audio only, video only, and audiovisual conditions.

Audio only

condition

Video only

condition

Audio visual

condition

Average

Musicians 95% (1) 95% (1) 96% (1) 95% (2)

Non-musicians 93% (1) 95% (1) 94% (1) 94% (3)

3.1.2. Inter-trial Phase Coherence
For the AO music condition one-way ANOVAs comparing
musicians and non-musicians were run for the delta, theta, alpha,
and beta bands. As summarized in Table 3, results showed a
significant enhancement of delta-band activity for musicians
compared to non-musicians [F(1,38) = 6.54, p = 0.01].
Furthermore, while theta [F(1,38) = 0.92, p = 0.34] and alpha
[F(1,38) = 1.03, p = 0.31] showed no significance difference
between the two groups, beta activity was significantly [F(1,38) =
6.94, p = 0.01] higher for musicians than for non-musicians.

3.2. Audiovisual Modulation
The AO condition was linked with the audio from the
corresponding AV (i.e., AV-VO), and musicians and non-
musicians were then compared based on condition (AO vs.
AV-VO) for amplitudes and latencies of N1 and P2 (Figure 2),
likewise for ITPC in each of the frequency bands (Figure 3).
Means are shown in Table 3, and F-statistics are presented in
Table 4.

TABLE 3 | ERP and ITPC means and standard deviations (in the parentheses) for musicians and non-musicians in audio only (AO) and audiovisual minus video only

(AV-VO).

Event-related potential (ERP) Inter-trial phase coherence (ITPC)

N1 P2

Amplitude (µV) Latency (ms) Amplitude (µV) Latency (ms) Delta Theta Alpha Beta

Musicians
AO −2.20 (0.60) 96 (7) 1.48 (1.5) 142 (7) 0.40 (0.07) 0.36 (0.09) 0.36 (0.09) 0.24 (0.07)

AV-VO −1.86 (0.87) 90 (12) 0.86 (0.86) 140 (5) 0.36 (0.08) 0.30 (0.09) 0.31 (0.09) 0.19 (0.04)

Non-musicians
AO −1.65 (0.88) 93 (14) 1.38 (0.74) 147 (10) 0.31 (0.10) 0.33 (0.09) 0.39 (0.11) 0.18 (0.04)

AV-VO −1.27 (0.77) 83 (15) 0.98 (0.89) 145 (12) 0.26 (0.11) 0.27 (0.08) 0.33 (0.12) 0.18 (0.06)

FIGURE 2 | Grand averaged event-related potentials at Cz and topographical maps for N1 and P2, plotted for audio only (blue) and audiovisual minus video only (red).
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FIGURE 3 | Musicians and non-musicians’ ITPC spectrum (0.5–48 HZ) for audio only (AO) and audiovisual minus video only (AV-VO).

TABLE 4 | Summary of F-statistics for ERP and ITPC data.

Event-related potential (ERP) Inter-trial phase coherence (ITPC)

N1 P2

Amplitude Latency Amplitude Latency Delta Theta Alpha Beta

Condition(AO vs. AV-VO) 11.15* 11* 19.82** 2.45 11.55* 23.62** 12.79* 8.78*

Experience(musicians vs. non-musicians) 10* 7.52* 0.001 5.10* 18.28** 1.81 1.40 5.63*

condition×Experience 0.01 0.55 0.98 0.19 0.03 0.00 0.10 5.48*

*p ≤ 0.05, **p < 0.0001.

3.2.1. Event-Related Potentials
Repeated-measures ANOVA was carried out to investigate the
effect of condition (AO vs. AV-VO) and its interaction with
participants’ musical experience (musicians vs. non-musicians)
for amplitudes and latencies of N1 and P2 components. Results
from the main effect of condition for N1 amplitude [F(1,38) =

11.15, p = 0.002], N1 latency, [F(1,38) = 11, p = 0.002], and for
P2 amplitude [F(1,38) = 19.82, p = 0.00007] showed a smaller N1
amplitude and latency and P2 amplitude in AV-VO compared to
the AO condition. However, the ANOVA for P2 latency [F(1,38) =
2.45, p = 0.12] showed no significant difference between the
two conditions.

Results showed no significant interaction between condition
and experience for N1 amplitude [F(1,38) = 0.01, p =

0.89], N1 latency [F(1,38) = 0.55, p = 0.46], P2 amplitude
[F(1,38) = 0.98, p = 0.32] or P2 latency [F(1,38) =

0.19, p = 0.66]. As described above, in the AO condition
the N1 amplitude was enhanced in musicians compared
to non-musicians, which might have contributed to the
nonsignificant interaction for N1 amplitude. A one-way analysis
of covariance was therefore conducted for AV-VO comparing
N1 amplitude in musicians and non-musicians with AO
N1 amplitude as a covariate. Results showed no significant
difference between musicians and non-musicians’ AV-VO N1
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amplitude after controlling for AO for N1 amplitude [F(1,38) =

0.87, p = 0.35].
In addition, a pointwise two-tailed t-tests were used to

examine the difference between ERPs for AO and AV-VO at
F3, Fz, F4, C3, C4, P3, Pz, P4, for musicians, and for non-
musicians. As illustrated in Figure 4, results showed that in the
frontal sites (F3, Fz, and F4) for both groups, AV-VO is lower
around 100 ms and 200 ms after the stimuli onset, compared to
the AO waveform. However, in lateral and posterior sites (C3,
C4, P3, Pz, P4), while for musicians AV-VO was lower than the
AO condition, for non-musicians this modulation pattern was
less evident.

3.2.2. Inter-trial Phase Coherence
For ITPC in each of the frequency bands, ANOVAs were
carried out to examine the main effect of condition and its
interaction with musical experience. As shown in Table 3, results
for condition showed significantly lower ITPC values in AV-VO
compared to the AO condition for delta [F(1,38) = 11.55, p =

0.002], theta [F(1,38) = 23.62, p = 0.00002], alpha [F(1,38) =

12.79, p = 0.001] and beta [F(1,38) = 8.78, p = 0.005].
Whereas the interaction between condition and experience

was not significant for delta [F(1,38) = 0.03, p = 0.85], theta
[F(1,38) = 0, p = 0.99] or alpha [F(1,38) = 0.1, p = 0.75], the
interaction was significant for ITPC in the beta-band [F(1,38) =

5.48p = 0.02]. One-way repeated-measures ANOVAs with
multiple comparison Bonferroni correction showed that ITPC in
the beta-band for musicians was significantly lower for AV-VO
compared to the AO condition [F(1,18) = 11.41, p < 0.025], while
results for non-musicians did not show this pattern [F(1,20) =

0.24, p = 0.62].
In summary, in response to auditory music stimuli, musicians

showed a higher N1 amplitude as well as higher delta and beta
ITPCs compared to non-musicians. In AV music perception,
when the visual cues predict the upcoming sound, both groups
had lower N1 amplitude and latency, and P2 amplitude for AV-
VO compared to the AO condition. While both groups showed
lower delta, theta, and alpha ITPCs in response to AV-VO music
compared to auditory music, only musicians had a lower beta
ITPC in AV-VO relative to the AO condition.

4. DISCUSSION

To position the current study with previous research,
musicians and non-musicians were first compared in
auditory music perception based on their ERPs and ITPCs.
The current study then extended previous findings by
studying whether the AV modulation from visual and
hand movements is predicting an upcoming piano sound
is affected by musical experience. Consequently, musicians
and non-musicians were compared based on N1 and P2,
as and ITPC values in the delta, theta, alpha, and beta
frequency bands.

4.1. Auditory Music Perception
Previous research has shown that musicians have enhanced
auditory music perception (Pantev et al., 2001; Shahin et al.,

2003, 2005; Kuriki et al., 2006; Baumann et al., 2008; Virtala
et al., 2014; Maslennikova et al., 2015; Rigoulot et al., 2015, for
a review see, Sanju and Kumar, 2016, but also see, Lütkenhöner
et al., 2006). Electrophysiological studies show that musicians,
compared to non-musicians, demonstrate higher amplitudes
within 100 ms after the onset of musical sound (e.g., Pantev et al.,
2001; Baumann et al., 2008; Rigoulot et al., 2015). For example,
Baumann et al. (2008) showed auditory music stimuli elicited
a higher N1 amplitude, but not P2 amplitude, for musicians
compared to non-musicians. In contrast, Shahin et al. (2003)
have shown that musicians, relative to non-musicians, elicited
a higher P2 amplitude in response to auditory music stimuli.
Likewise, other studies (Shahin et al., 2005; Maslennikova et al.,
2015) also showed that musicians have higher N1 as well as P2
amplitudes than non-musicians. Consistent with these previous
findings (Baumann et al., 2008), auditory music in the current
study evoked an enhancedN1 amplitude for musicians compared
to non-musicians, and while the musicians’ mean P2 amplitude
was slightly higher than for the non-musicians (Shahin et al.,
2003, 2005; Maslennikova et al., 2015), this group difference was
not significant (Baumann et al., 2008).

Although in the current findings, the average P2 amplitude
is higher for musicians than non-musicians, the musicians’
greater variability in P2 amplitude (Table 3) might be behind
the musicians not showing a significantly higher P2 amplitude
than non-musicians. In addition to the previous musical
experience, top-down attentional processes are a source of
variation which might influence the P2 component both for
musicians and non-musicians, while, N1 amplitude is less
sensitive to attentional processes which lead to less variation
(Baumann et al., 2008) and consequently significant difference
between musicians and non-musicians due to previous musical
experience. Moreover, research showed variation in N1 and
P2 might be due to factors other than musical experiences,
such as experimental task (Näätänen et al., 2011), and
individual differences (Liem et al., 2012; Tan et al., 2016).
Although previous research (e.g., Shahin et al., 2003, 2005;
Baumann et al., 2008) does not unequivocally show N1
and P2 amplitude enhancement for musicians in response
to music stimuli, compared to non-musicians, research does
generally show that musicians have enhanced amplitude at
N1 or P2 or both of the components. Therefore, Baumann
et al. (2008) suggested that in lieu of assigning distinct roles
to the enhanced N1 and P2 due to musical experience,
these components could rather be considered as an enhanced
N1-P2 complex.

As generation of N1 and P2 are superimposed on the trial-by-
trial phase alignments, ITPCs for auditory music perception were
examined, with findings that ITPC for beta and delta oscillations
are enhanced for musicians compared to non-musicians. These
findings are consistent with previous research (Bhattacharya and
Petsche, 2005) showing that, while listening to music, synchrony
in the delta-band is enhanced for musicians compared to non-
musicians, as well as similar studies showing that musicians
have enhanced beta-activity while listening to music compared
to non-musicians (Trainor et al., 2009; Doelling and Poeppel,
2015).
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FIGURE 4 | Pointwise two-tailed t-test comparison of AO and AV-VO ERPs at F3, Fz, F4, C3, C4, P3, Pz, P4.
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4.2. Audiovisual Modulation in Music
Perception
The current study evaluated whether musicians and non-
musicians differ in how the predictive visual cues from a musical
instrument being played affect perception of an upcoming
musical sound. Previous research (e.g., Baart, 2016) showed that
adding visual information to the auditory signal evokes lower
amplitudes and latencies for N1 and P2, and consequently, ITPC
values would be expected to decrease as well (Edwards et al.,
2009). Baart (2016), based on twenty studies with speech stimuli,
suggested that the size of the N1 and P2 amplitude and latency
suppression in AV perception might be positively correlated
with the amplitudes and latencies of the auditory condition,
suggesting a relatively direct relation between early ERPs in
auditory and AV perception. This proposal can be extended to
the observed findings with musical experience. While musicians
in the auditory music condition had a higher N1 amplitude
and higher ITPC values in the delta and beta-bands than non-
musicians, a corresponding difference could be expected with AV
music perception. Moreover, sensory-evoked potentials, such as
N1 and P2, and ITPCs in low-frequency activities co-exist for
all cortical processing (Koerner and Zhang, 2015; van Diepen
and Mazaheri, 2018), and low-frequency (< 30 Hz) phase-
resetting is likely to contribute to the generation of cognitive ERP
components (Edwards et al., 2009; Schroeder and Lakatos, 2009).
Therefore, in AV music perception ITPCs in low-frequency
bands could also be expected to be suppressed along with N1 and
P2, although nevertheless suppressed more for musicians than
non-musicians (e.g., Panasiti et al., 2016).

4.2.1. Event Related Potentials
The current study evaluated amplitudes and latencies of N1
and P2 in the perception of auditory music compared with the
auditory component of AV music. Previous research suggested
that visual predictory cues starting before the auditory signal
modulate AV perception, leading to lower amplitudes and
latencies of N1 and P2 both with speech (Van Wassenhove
et al., 2005; Stekelenburg and Vroomen, 2007; Arnal et al.,
2009; Paris et al., 2016b) and non-speech stimuli (Stekelenburg
and Vroomen, 2007; Vroomen and Stekelenburg, 2010; Paris
et al., 2016a, 2017). Consistent with previous research, in the
current study, both groups showed a lower N1 amplitude and
latency and P2 amplitude for AV music compared to auditory
music perception.

Although both groups showed an earlier P2 peak for AVmusic
compared to auditory music, this difference was not significant.
In line with the current results, Paris et al. (2017) did not
report any decrease for P2 latency with non-speech-stimuli. In
a meta-analysis of AV speech perception, Baart (2016) showed
that, although most of the studies show a smaller P2 latency
in AV compared to the auditory speech, having no decrease of
latency for P2 is not uncommon (e.g., Pilling, 2009; Baart et al.,
2014). Furthermore, in contrast with the current study’s results,
Stekelenburg and Vroomen (2007) showed a decrease for P2
latency for non-speech stimuli. Therefore, although P2 latency
is generally lower in an AV vs. an auditory condition, a lack of

a lower P2 latency in AV perception also has been reported in
response to speech and non-speech stimuli.

Previous research (e.g., Stekelenburg and Vroomen, 2007; van
Wassenhove, 2013) suggested that AV modulation due to visual
cues predicting the upcoming sound on early evoked potentials
is mostly visible at central sites. For example, Stekelenburg and
Vroomen (2007) showed that AV modulation which leads to
lower amplitudes and latencies for N1 and P2 in AV perception
compared to the auditory condition, is more evident in fronto-
central electrodes for non-speech stimuli, compared to the speech
stimuli. Similarly, the current findings suggested that for both
groups, the AV modulation effect is strongest in fronto-central
sites around 100 ms, and 200 ms after stimulus onset. However,
while musicians also showed AV modulation bilaterally and
posteriorly, for non-musicians AV modulation was less evident
at posterior sites, such as Pz. These findings are in line with fMRI
research (Petrini et al., 2011) suggesting that musicians compared
to non-musicians showed lower neural activity bilaterally and
in more posterior areas, such as the cerebellum, in response
to an AV simultaneity judgment task. Together, these findings
suggest that while AVmodulations on early evoked potentials are
generally more evident at fronto-central electrodes, musicians,
compared to non-musicians, also show such modulations in
posterior areas of the brain.

4.2.2. Inter-trial Phase Coherence
ITPCs in low-frequency bands are likely to shape the generation
of N1 and P2 (e.g., Edwards et al., 2009) and co-exist with these
components for all cortical processing (e.g., Koerner and Zhang,
2015). Therefore, here, for AV music relative to auditory music,
lower N1, and P2 amplitudes are expected to coincide with lower
ITPC values for delta, theta, alpha, and beta. Findings showed
lower N1 amplitude and latency, and P2 amplitude, together with
lower ITPCs in delta, theta, and alpha-band activity in AV music
perception, relative to the auditory music perception condition.
Nevertheless, while musicians showed lower beta-band activity
in AV perception, relative to the auditory music perception,
non-musicians did not show such suppression.

These results are also consistent with previous research on
visual cues predicting the upcoming speech sound in AV speech
perception. For example, Arnal et al. (2011) suggested that theta
oscillation is decreased in response to AV speech perception.
Theta and delta oscillations reflect visual predictiveness of the
stimuli (Arnal and Giraud, 2012), and also, signal the processing
of correctly predicted stimuli. The predictiveness of the visual
cues also modulates the phase in delta-theta activity, which can
provide an explanation for the cross-modal benefits of visual cues
in AV speech perception studies (Arnal et al., 2011). Furthermore,
as with the current findings, Stefanics et al. (2010) showed a
decrease in earlier processing of delta-band activity in response
to correctly predicted stimuli. Along with expected findings
for ITPCs in the theta and delta-bands, current results further
indicate that ITPC for both groups showed desynchronization for
the alpha-band in AV compared to auditory music perception.
Other studies also suggest that the onset of the predictory
visual cues itself can lead to substantial lower amplitude of
ongoing alpha activity (Foxe and Snyder, 2011; Arnal andGiraud,
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2012) which is consistent with research on anticipatory attention
(Bastiaansen and Brunia, 2001; Bastiaansen et al., 2001) with
speech (Arnal and Giraud, 2012; Gisladottir et al., 2018), and
tactile stimuli (van Ede et al., 2014). In summary, findings in the
current study show that coinciding with N1 and P2 amplitudes,
ITPCs in delta, theta, and alpha are lower in AV music due to
visual cues predicting the upcoming musical sound, compared to
the auditory music, regardless of musical experience.

In the current study, ITPC for beta activity showed a different
pattern of results than for the other frequency bands studied;
for non-musicians, the ITPC for the beta-band showed no
difference between AV and auditory music perception, whereas
for musicians the ITPC for the beta-band was lower in AV music
perception compared to the auditory condition. Beta activity is
widely associated withmotor tasks, the response time (Senkowski
et al., 2005), and coordination within the sensory-motor system
(Baker, 2007; Lalo et al., 2007). Previous research showed that
beta oscillations first decrease and then increase synchronized
with the musical beat of stimuli (Fujioka et al., 2009, 2015).
Fujioka et al. (2012) also suggested that beta oscillation shows a
similar decrease and rebound to temporal anticipation during the
beat perception, which engages motor-related areas despite no
intended movement. Moreover, previous research on AV speech
suggested that beta oscillations are associated with accuracy in
the temporal prediction of the upcoming stimuli (Arnal et al.,
2015) as well as feedback loops and prediction errors (Arnal et al.,
2011; Arnal, 2012; Arnal and Giraud, 2012). For example, beta
activity is higher in response to incongruent AV stimuli than
congruent stimuli (Paris et al., 2016b). In another study, Fujioka
et al. (2009) showed that a beta decrease, which usually occurs
after a regular musical beat, was absent after the omission of an
expected beat. Furthermore, previous research (Fujioka and Ross,
2017) also showed that, after 1 month of musical training, beta
activity increases during passive listening to a metronome for
older adults. Moreover, based on topographical analysis, Mikutta
et al. (2014) suggested that musicians, compared to amateurs,
have enhanced beta activity (between 19 and 23 Hz) in central
cortical areas in response to emotional music. Together, these
studies suggest that in AV perception, the low ITPC values in the
beta-band for musicians can be a consequence of their musical
training with the use of visual information to temporally predict
an upcoming sound.

In short, the proposal by Baart (2016) that findings for AV
perception may be correlated with those for auditory perception
is generally supported by the ERP and ITPC results for music in
the current study. However, findings here, in addition, showed
notable differences between musicians and non-musicians and
highlight experience as a factor influencing AV perception.

4.3. Musicians and Sensory-Motor Systems
To isolate the neuroplastic effect of musical training to
instrumental music, for the current study the musician group
consisted of highly trained instrumentalists, a form of training
which excludes vocal and dance training which might lead to
functional and structural differences compared to instrumental
training, and thereby affect auditory perception (Halwani et al.,
2011; Poikonen et al., 2018). For instance, sensory-motor and

pre-motor cortices, as well as the superior temporal sulcus, have
been shown to structurally differ for dancers and non-dancers
(Hänggi et al., 2010). Moreover, beta oscillation in the auditory
cortex facilitates signaling the temporal cues to enhance motor
preparatory processes for sound synchronization (Fujioka et al.,
2012), such that dancers who have training in predictive actions
and moving in synchrony with an auditory rhythm (Fujioka
et al., 2012) might have facilitation in these processes (Fujioka
et al., 2015). These studies underpin isolating song and dance
training in research on instrumental musical experience in AV
music perception as they might have confounding effects on
brain regions, such as the motor cortex, auditory cortex, and
superior temporal sulcus (Arnal et al., 2009; Arnal and Giraud,
2012), as well as the role of beta oscillation in sensory-motor tasks
(Fujioka et al., 2009).

Previous research has shown that playing a musical
instrument involves continual cooperative processing between
the visual, auditory, and sensory-motor networks, both in terms
of motor timing and motor planning (Zatorre et al., 2007). While
playing an instrument, musicians usually integrate sensory
information from sight-reading (Sluming et al., 2007) and hand
and finger movements, with auditory feedback from the musical
sound of the instrument they are playing (Baumann et al.,
2007; Jamali et al., 2014), as well as visual feedback from seeing
their hand and finger movements while playing the instrument
(Richardson et al., 2013). Moreover, the presentation of AV
(Gordon et al., 2018b) or auditory music is sufficient to activate
motor networks (Gordon et al., 2018a). Therefore, musical
experience, which requires such cross-modal coordination,
may improve timing and execution over many years of musical
training (Zatorre et al., 2007; Jamali et al., 2014).

Previous studies on musical experience (e.g., Kühnis et al.,
2014) have suggested that musicians, compared to non-
musicians, have increased beta activity. Moreover, research
(e.g., Lalo et al., 2007; Patel and Iversen, 2014) further
suggests that beta oscillation underpins functional pairing of
distant cortical areas, such as the motor, visual (Comstock
et al., 2018), and auditory cortex. Beta oscillation supports
sensory-motor integration and feedback loops (Arnal, 2012),
allowing coordinated task-related modulation of auditory
and motor processing (Lalo et al., 2007). For example,
beta desynchronization is involved in self-paced motor tasks
(Gilbertson et al., 2005; Senkowski et al., 2006). Moreover,
beta activity inversely correlated with response time in an AV
task (Senkowski et al., 2006), and reflects timing predictions
within the visual system (Comstock et al., 2018), suggesting
that visual predictory processing may be involved in beta
oscillation for AV perception. Findings in the current study
highlight that more needs to be understood about the role
of beta oscillation and visual perception. Together, these
studies suggest that lower beta activity in AV perception
compared to the auditory music perception for musicians
might be associated with the potential involvement of beta
oscillation in auditory-motor tasks, even with no intention
for movement (Fujioka et al., 2009; Fujioka and Ross, 2017).
This would suggest that for musicians, AV perception is
modulated by activating auditory and sensory-motor, possibly
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also visual, networks over years of instrumental training
(Trainor et al., 2009).

5. CONCLUSIONS

This study supports previous ERP research on AV modulation,
suggesting that the predictory visual cues from hand and finger
movements starting before the auditory onset of musical sound
lead to lower N1 amplitude and latency and lower P2 amplitude
independent of musical training. These findings are consistent
with previous research with speech and non-speech stimuli
suggesting similar AV modulation in early sensory processing.
The proposal that AV may be broadly correlated with auditory
perception (Baart, 2016), extended to music perception in the
current study, is generally supported by the ERP findings.
Notably, differences for N1 amplitude between musicians and
non-musicians further indicate musical experience to be a
specific factor influencing AV perception.

A novel contribution of this research is investigating
the predictory effect of visual cues starting before the
musical sound onset by ITPC analysis. Coinciding with
the amplitude suppression for early ERPs amplitude, ITPC
values in corresponding frequency activity were lower in AV
music perception compared to the auditory music perception,
regardless of musical experience. However, beta activity differed
with musical training; while musicians showed lower beta
ITPCs in AV, compared to the auditory music perception, non-
musicians did not. These findings suggest an association between
beta activity in AV music perception with beta oscillation in
sensory-motor tasks, as well as visual predictory processing.
Moreover, for musicians, visual predictory processes in AV

music perception have been influenced by years of multisensory
training, which appears to also modulate beta-band activity. This
study highlights the possible interconnectivity in AV perception
as well as the potential modulation with experience.
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