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Technological advancement provides an unprecedented amount of high-frequency data

of human dynamic processes. In this paper, we introduce an approach for characterizing

qualitative between and within-subject variability from quantitative changes in the

multi-subject time-series data. We present the statistical model and examine the

strengths and limitations of the approach in potential applications using Monte Carlo

simulations. We illustrate its usage in characterizing clusters of dynamics with phase

transitions with real-time hand movement data collected on an embodied learning

platform designed to foster mathematical learning.
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1. INTRODUCTION

Human dynamic processes vary within a subject over time and differ between subjects at all
behavioral, physiological, emotional, attentional, and cognitive levels (Molenaar et al., 2003).
Widespread examples include but not limited to change processes in belief and attitudes (van
der Maas et al., 2003; Jansen et al., 2007), affective experiences (Cole et al., 2004; Kuppens et al.,
2010; Hamaker et al., 2015), and executive functions (Zelazo, 2016). The within- and between-
subject variabilities can be quantitative as well as qualitative in nature (Pintrich, 1988; Van Geert,
1991; van der Maas and Molenaar, 1992; van Dijk and van Geert, 2007; Stephen et al., 2009).
For instance, human development is continuous and quantitative with gradual and incremental
growth but simultaneously is discontinuous and qualitative as new forms and abilities emerge
(Thelen and Smith, 1994). Inter-individual differences are also quantitative as no two individuals
are identical within a population, and qualitative as subgroups of individuals may exist and share
similar characteristics (Ram and Grimm, 2009; Bulteel et al., 2016). In order to understand the
essence and drivers of human processes, researchers argue for a need to focus on studying and
interpreting qualitative variability (Kelso, 2000). However, limited labor resources and subjectivity
issues often put constraints on qualitative approaches (e.g., interviews and focus groups) that quest
directly for qualitative findings. Alternatively, we infer qualitative changes and differences from
data using quantitative methods that bring objectivity and computational accuracy and efficiency.

To this aim, we need mathematical and statistical models that represent both quantitative and
qualitative within- and between-subject variability in the processes of interest and the data we
collect. Mathematically, quantitative variability is often accommodated in continuous variables,
while qualitative variability in categorical variables. The former refers to the within-subject
numerical changes (including process noise) and between-subject random effects. In contrast, the
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latter refers to the within-subject regime (or phase) transitions
and between-subject cluster (or group) differences. A cluster or
group is a class of subjects that share similar qualities or dynamic
patterns. A regime or phase is a within-subject time-varying class
of dynamics that may switch from one to another as time passes.
We use regime switches and phase transitions interchangeably. In
our definitions, a regime or phase is different from a stage, which
is a course in one-directional and non-reversible class transitions,
such as age-based developmental stages.

Dynamic processes may exhibit qualitatively different cluster-
wise quantitative changes interspersed with qualitative regime-
switching. As an example, we consider students’ learning
processes that occur with dynamic sensorimotor coordination
in an embodied learning environment. In a typical task,
students acquire the concept of proportionality by coordinating
movements of both their hands. Previous research found
dynamic patterns and solution strategies from the patterns in
students’ action-coordination that relate to Piaget’s theorized
phases of reflective abstraction (Abrahamson et al., 2014; Duijzer
et al., 2017; Pardos et al., 2018). The hand movements represent
within-subject quantitative variability, and the strategies used
form qualitatively switching regimes. High-performing and low-
performing students may differ in the types and sequences of
strategies used, thus displaying cluster-wise regime-switching
patterns of hand movement dynamics. Hence, some interesting
qualitative findings, in this case, are not only distinct regimes in
students’ strategy use or knowledge development but also clusters
of regime-switching trajectories that are indicative of student’s
learning and have implications for interventions.

Many existing mathematical models only consider
quantitative changes. For example, auto-regressive moving-
average models and differential equations models represent
quantitative within-subject changes in time-series data (Chow
et al., 2005, 2011; Voelkle and Oud, 2013; Hu et al., 2014; Bulteel
et al., 2016). The two types of modeling frameworks differ in
whether the time in the model is discrete or continuous. They
both are parametric models that exert top-down assumptions
on the mechanism of change. In contrast, non-parametric
methods like functional data analysis (Ramsay and Silverman,
2005) provide a bottom-up, data-driven way to approximate
the dynamic changes directly using a combination of curves or
smooth functions. Extensions and applications of these models
allow for quantitative between-subject differences. For instance,
when we apply these methods to a single subject’s time-series
data, we naturally allow each subject to have a unique set of
parameters. When a law of change applies to the whole sample,
we can include random effects that follow a specific statistical
distribution to account for variability in model parameters
(Oravecz et al., 2011; Lu et al., 2015; Chow et al., 2016; Ou et al.,
2019).

Also, models that consider qualitative changes deal with
clusters between subjects, or regimes within a subject but
do not integrate the two. To capture qualitative between-
subject variability, researchers use finite mixture models
(McLachlan and Peel, 2004) to accommodate group differences
by introducing a latent categorical variable that governs the
emission of observed data. A finite mixture model assumes that a

subject’s data come from different latent groups with a particular
set of probabilities. In each group, the emission of observed data
follows different statistical distributions. In social and behavioral
sciences, finite mixture models have been applied to identify
latent groups with distinct means and covariance structures
(Collins and Lanza, 2010), and factor structures (Lubke and
Muthen, 2005; Hallquist and Wright, 2014). By incorporating
assumptions on the longitudinal structure of quantitative
changes, extensions of finite mixture models have been used to
cluster subjects based on different growth trajectories (Colder
et al., 2002; Muthen, 2004; Ram and Grimm, 2009), and
dynamic emotional patterns in close relationships (Liu et al.,
under review).

Hidden Markov models are another standard class of models
to analyze within-subject qualitative phase transitions. They
have been widely applied in social and behavioral sciences
to understand cognitive processes (Vermunt et al., 1999;
Böckenholt, 2005; Dutilh et al., 2010; Visser, 2011; Visser and
Speekenbrink, 2014; Andrade et al., 2017; Shu et al., 2017;
Deonovic et al., 2018; Wang et al., 2018; Arieli-Attali et al., 2019).
Hidden Markov models are extensions of the finite mixture
models as the observed variables follow a mixture distribution
depending on a latent categorical variable. The added feature
is that the latent categorical variable can transition from one
state to another in a first-order Markov chain, where the
current state only depends on the previous state. Similar to
finite mixture models, initial regimes and regime transitions are
interpreted based on probabilities and the effects of covariates
on these probabilities. As an extension of the hidden Markov
model that considers longitudinal quantitative changes, regime-
switching dynamic models permit modeling of manifest variables
with discrete- or continuous-time equations rather than single
emissions. Previous applications of the regime-switching models
include the application of a regime-switching autoregressive
model to facial Electromyography data to identify deactivated
and activated emotional states (Yang and Chow, 2010), and the
use of regime-switching differential equations to represent the
regime transitions between exploration and proximity seeking of
a child in mother-child interactions (Chow et al., 2018).

Despite the above developments, methods for simultaneously
capturing both within- and between-subject qualitative
variability (i.e., clusters and regimes) in time-series data
with quantitative changes are nascent in social and behavioral
sciences. In these fields, the quality of the data largely depends
on the intrinsic complexity in human processes, the quality of
measures (e.g., reliability and validity), and other economic,
ecological, ethical, and privacy issues in data collection. As
intensive longitudinal methods (Bolger and Laurenceau, 2013)
become prevalent, an increasing number of data occur naturally
at time points that are irregularly spaced within a subject and
vary in the total number across subjects. Hence, data issues
such as sample size (in terms of the number of subjects and
number of measurements), noise, and missing data present
challenges in applications of quantitative methods. In particular,
while many clustering techniques require an equal dimension of
data across subjects, data manipulation, including aggregation
and imputation, is almost inevitable. Researchers that are
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interested in applying the methods need to understand whether
the techniques are robust to the various data conditions they
encounter and how the accuracy of the techniques varies with
the data manipulation decisions that they have to make.

In this paper, we introduce and tailor an approach
for characterizing qualitative between- and within-subject
differences from quantitative changes to typical social and
behavioral applications.We aim to present an elegant example for
educational purposes and offer general guidance to researchers
who wish to use the approach in their work. The approach
is called the mixture of regressions with hidden logistic
processes (mixRHLP; Chamroukhi et al., 2010, 2013; Samé
et al., 2011), and was initially developed in engineering and
science. It involves a complex but general modeling framework
that integrates the finite mixture model for capturing group
differences, a logistic regression model for explaining phase
transitions, and a functional data analysis approach for non-
parametrically representing the quantitative dynamics within a
phase. We can estimate the mixRHLP model efficiently within
the frequentist’s framework. We are particularly interested in its
strengths and limitations in understanding dynamic processes in
social and behavioral sciences. Hence, we conduct Monte Carlo
simulations to evaluate the performance of the approach and
related model selection methods and test their robustness to
various data limitations. We examine the fitting of the model
to data with different sample sizes in terms of the number of
subjects and the number of time points, proportions of missing
values, and regression error variances. Then, we illustrate its
usage by analyzing real-time hand movement data collected
from an embodied learning platform designed to foster the
learning of mathematical proportion.We offer practical guidance
on data manipulation and model selection procedures based
on the simulation results. Finally, we discuss the limitations,
contributions, and future extensions of the current study.

2. MODELING FRAMEWORK

The mixRHLP model (Chamroukhi et al., 2010, 2013; Samé
et al., 2011) is designed to analyze multi-subject time-series
data. Suppose for each subject i, i = 1, 2, 3, · · · ,Np, there are
a total of Nt measurement occasions and Nt measurements of
an interesting process (e.g., sensory data of student behavior and
emotion), respectively denoted as Nt × 1 vectors of t = (tj)
and yi = (yi(tj)). j = 1, 2, 3, · · · ,Nt indexes Nt measurement
occasions, and (tj) is a set of continuous values that indicate
elapsed time since each subject’s onset and stay the same for all
subjects. Thus, t = (tj) represents a shared time frame for all
subjects, whereas yi = (yi(tj)) exhibit variability across subjects
and over time.We assume yi follow amixture distribution, whose
density p(·) is a weighted sum of component densities pk(·) as

p(yi|ti;2) =

K
∑

k

P(Zi = k)pk(yi|ti,Zi = k), (1)

where Zi ∈ {1, 2, · · · ,K} denotes subject i’s latent cluster class,

with αik
1
= P(Zi = k) being the probability of subject i belonging

to the latent cluster class k. 2k contains all parameters in the
component density pk(·), and 2 contains all parameters in the
density p(·).

At each time point tj, we further assume yi(tj) follows a
finite Gaussian mixture regression model, whose conditional
component density given cluster k and regime r = 1, 2, · · · ,R
is normally distributed with mean Xjβkr and a variance of σ 2

kr
,

denoted as N (Xjβkr , σ
2
kr
). That is, in each regime, the temporal

dynamics of yi(·) is captured by a linear regression model of
time. While the design matrix in the regression model may
take different forms, we assume that the regression model is a
polynomial regression model of order d, where the design matrix

Xj is
[

t0j t1j · · · tdj

]

and βkr is a (d + 1) × 1 vector of regression

coefficients
[

βkr0 βkr1 · · ·βkrd

]⊤
. If we further assume yi|ti,Zi =

k given subject i’s latent cluster class Zi = k are serially
independent, then the component density pk(·) can be written as

pk(yi|ti,Zi = k) =

Nt
∏

j=1

R
∑

r

P(Hij = r|tj,Zi = k)N (Xjβkr , σ
2
kr),

(2)

where Hij ∈ {1, 2, · · · ,R} denotes subject i’s latent regime at time
tj and takes categorical values of {1, 2, · · · ,R}.

The latent regimeHij at each time point tj is assumed to follow
a multinomial logistic regression model such that the probability
of subject i belonging to the latent regime r at time tj under the
condition that subject i belongs to the latent cluster class k is

P(Hij = r|tj,Zi = k) =
exp(ωkr0 + ωkr1tj)

∑R
s=1 exp(ωks0 + ωks1tj)

(3)

with ωks0 = ωks1 = 0 in a reference class. The regression
coefficients ωkr = [ωkr0 ωkr1] control the regime switches, and
thus are regime-switching parameters. For instance, if R is the
reference class, ωkR0 = ωkR1 = 0. Then, ωkr0 + ωkr1tj is the log-
odds or relative probability of subject i belonging to regime r at
time tj compared to the reference regime R, given that the subject
is in cluster k. In the log-odds, ωkr0 is an intercept and ωkr1 is a
slope. If ωkr1 is positive, this relative probability increases over
time. Hence, if the probability of being in the reference regime
R stays the same across time, a positive ωkr1 indicates that the
likelihood of being in regime r goes up with time. In this way,
these parameters influence regime switches.

Assuming the observed data Y
1
= [yi] across subjects

are independently identically distributed, we can write the log-
likelihood function of 2 given all observed data as

l(2) = log

Np
∏

i

p(yi|ti;2) =

Np
∑

i

log

K
∑

k

αikpk(yi|ti,Zi = k).

(4)

Parameter estimation can be obtained via the Expectation-
Maximization algorithm (Dempster et al., 1977). To evaluate the
quality of the model, we use the following information criteria:
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Bayesian Information Criterion (BIC; Schwarz, 1978), sample-
adjusted BIC (saBIC; Sclove, 1987), the Akaike Information
Criterion (AIC; Akaike, 1973) and the corrected AIC (AICc;
Hurvich and Tsai, 1989) for model selection. Each criterion is
defined by the difference between the maximized log-likelihood
lM(2), and a penalty score based on the number of parameters
|2|, and weights goodness of fit against model simplicity: BIC =

log(Nt×Np)|2|−2lM(2), saBIC = log(
Nt×Np+2

24 )|2|−2lM(2),

AIC = 2|2| − 2lM(2), and AICc = AIC +
2|2|2+2|2|

Nt×Np−|2|−1 .

The model yielding the lowest criterion value is perceived as the
model that generalizes best (Myung and Pitt, 2018).

The estimation algorithm also computes the posterior regime
and cluster probabilities at each time point as by-products. We
can determine cluster and regime classifications by the highest
posterior probability in posterior class probabilities at each time
point.

3. SIMULATION

3.1. Simulation Design
As many naturally collected data contain a small sample size
and are collected at irregular intervals, we conducted Monte
Carlo simulations to evaluate the applicability of the mixRHLP
model under these limitations. In particular, we were interested
in (1) whether the information criteria could be useful in model
selection, (2) how accurate the estimation algorithm could be in
estimating parameters and making classifications, and (3) how
the answers to (1) and (2) would change under different data
conditions. We sought to examine the fitting of the model to data
with different sample sizes in terms of the number of participants
and the number of time points, proportions of missing values,
and regression error variances.

We generated data from a mixRHLP model with 2 clusters
(K = 2), 3 regimes (R = 3), and linear functions (d = 1). We
wanted the K, R, d values to be as small as possible so that the
model is simple enough but still exhibits minimal cluster-based
regime-switching properties with time-dependent structure in
each regime. We chose R = 3 instead of 2 to mirror the regime
characteristics observed in our empirical data. The measurement
occasions t were equally spaced time points within the interval
of [0, 1]. The true parameter values are listed in Table 1 and were
selected such that in different clusters and regimes the dynamics
varied but were hard to differentiate by eyes when plotted
altogether. We assumed equal regression error variance σ across
clusters and regimes, and that the datamay bemissing completely
at random. We varied four factors in simulating the data: (1) the
number of participants in the sample (Np = 20, 60, 100), (2) the
number of time points (Nt = 20, 160, 300), (3) the magnitude of
the regression error variance (σ = 0.10, 0.15, 0.20), and (4) the
proportion of missing data in each participant’s data (PMiss =

0, 0.1, 0.2). Figure 1 showed the simulated data in two clusters
under the conditions of Np = 20, Nt = 160, PMiss = 0.1, and
σ = 0.1.

We carried out M = 200 Monte Carlo runs for each
of the 81 (= 34) data conditions. Where data were missing
for a participant, we replaced the missing values using linear

TABLE 1 | True parameter values used in the Monte Carlo simulation study.

Regime 1 Regime 2 Regime 3

X 1 t 1 t 1 t

Cluster 1 α1 = 0.5

ω1· −2.00 3.00 1.00 −2.50 0 0

β1· 0 −1.50 0.60 −0.90 1.20 −0.30

σ1 0.10, 0.15, 0.20

Cluster 2 1− α1 = 0.5

ω2· -1.00 2.00 0.50 −2.00 0 0

β2· 0.60 0.30 1.20 0.90 1.80 1.50

σ2 0.10, 0.15, 0.20

interpolation with the na.approx() function from the zoo R
package (Zeileis and Grothendieck, 2005). To each set of full data
(after imputation), we fitted a total of 32 mixRHLP models with
combinations of different values of K = 1, 2, 3, 4, R = 1, 2, 3, 4,
and d = 1, 2 and heteroskedastic regression error variances
using the mixRHLP package (Chamroukhi et al., 2010, 2013;
Samé et al., 2011). When the algorithm finished successfully,
we computed the four information criteria: BIC, saBIC, AIC,
and AICc.

We used three sets of measures to compare the model
fitting results across simulation conditions: (1) information
criteria measures, (2) parameter estimate accuracy measures
and (3) classification accuracy measures. Information criteria
measures included a proportion measure and a rank measure.
The proportionmeasure is the proportion of runs where a certain
criterion of the true model (K = 2,R = 3, d = 1) indicated
itself as the best-fitting model (i.e., as the smallest among those
of the 32 fitted models). The rank measure is the average rank of
the criterion value among ordered values of the 32 models’ same
criterion arranged from the smallest to the largest. To measure
parameter estimate accuracy, we computed the root mean
squared errors of each parameter. To simplify the presentation of
the simulation results, we grouped the parameters into six sub-
groups, namely, α1, β0 = [βkr0], β1 = [βkr1], σ , ω0 = [ωkr0],
and ω1 = [ωkr1] and took the average RMSE of the parameters
within the same sub-group. Let θg,G and θ̂r,g,G respectively denote
the true and estimated value of a parameter, where r indicates
the r-th Monte Carlo run, and g indicates the g-th parameter
in a parameter group G of size |G|. The average RMSE was

computed as rmseG = 1
|G|

∑

g

√

1
M

∑

r(θ̂r,g,G − θg,G)2. The

classification accuracy measures are the proportion of correct
classifications of either the clusters or the regimes of available
data (before imputation).

3.2. Simulation Results
To reveal the typical characteristics of the Monte Carlo samples,
we decided to remove the outliers of the simulation measures
within each data condition. We used the OutlierDetection()
function in the R package OutlierDetection (Tiwari and
Kashikar, 2019) to identify outliers based on K-nearest neighbor
graphs (K = 5% of the Monte Carlo runs, Hautamaki et al., 2004).
The remaining Monte Carlo sample size ranged from 165 to 197,
with a median of 191. Most outliers were found when the sample
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FIGURE 1 | Simulated time series in two clusters when Np = 20, Nt = 160, PMiss = 0.1, and σ = 0.1.

size was the smallest (Np = 20, Nt = 20), regression error
variance high (σ = 0.2), and missing data imputation involved
(PMiss = 0.1).

Among the rest of the Monte Carlo samples after outlier
removal, BIC performed better than the other three information
criteria in selecting the right model as the best-fitting model, with
a success rate of 0.54, whereas the success rates of saBIC, AICc,
AIC were 0.38, 0.21, and 0.20, respectively. The median rank of
the true model’s BIC among 32 models was 1 (i.e., the smallest),
and the maximum rank was 10, both smaller than those of saBIC
(median 3, maximum 12), AIC (median 5, maximum 12) and
AICc (median 5, maximum 12). Although BIC could be useful
for model selection under certain conditions, the smallest BIC
did not always indicate the true model in simulations. When we
fitted the correct model, the accuracy of the parameter estimates
was high, characterized by RMSEs lower than 0.1, except for
the regime-switching parameters in ω0 and ω1 categories. Even
though some of the regime-switching parameters could not be
estimated correctly, the classification accuracy was overall very
high. Across all data conditions, the proportion of correct cluster
classifications was invariably 1, and the proportion of correct
regime classifications was 0.99, suggesting the robustness of the
approach in identifying clusters and regimes in time-series data
of our interest.

After examining the results from each simulation condition,
we identified how the four factors considered affected the model
selection and statistical inference. Figure 2 presents the effects
of the factors on the information criteria measures under typical
simulation conditions.When the data were at a sufficient number
of time points (e.g., Nt ≥ 160) and without missing data, the
smallest BIC could be used to select the correct model as the best-
fitting model regardless of Np and σ . As shown in Figure 2A,
the BIC and saBIC of the true model were almost always the
smallest among fitted models when Nt was higher than 160, and

there was no missing data. Also, the utility of information criteria
improved with an increase in Nt even though Np was small, with
higher success rates in selecting the correct model and lower
rank among fitted models. When Nt = 160 under the same
condition without missing data (e.g., in Figure 2B), although BIC
and saBIC performed almost equally well, the utility of AIC and
AICc improved as Np increased. However, when the imputation
of missing data happened, the larger the size of the missing data,
either as a result of a bigger sample size or a more substantial
missing proportion (e.g., partly illustrated in Figure 2C), the
smaller the utility of all information criteria was. Nevertheless,
when the regression error variance in the actual model was high,
the misfit of the mixRHLP model to imputed data could be
considered as regression errors, enabling the use of information
criteria in model selection, as shown in Figure 2D.

Besides, Figure 3 shows the effects of the four factors on
the classification accuracy measures under typical simulation
conditions. Generally, both the cluster and regime classifications
were accurate and not affected by sample size (Np or Nt) nor
proportion of missing data (PMiss), unless the sample size was
really small (i.e., Nt = Np = 20) and the regression error variance
was high, as shown in Figures 3A,D. However, the regime
classification accuracy depended on the characteristics of the
model. For example, the larger the regression error variance was,
the lower the accuracy of regime classifications (see Figure 3D).

Moreover, Figure 4 presents how different factors affected the
accuracy of the estimates of the regime-switching parameters.
As in Figures 4A,B, the larger the sample size was, as a result
of an increase in either Nt or Np, the more accurate the
parameter estimates. When there were no missing data, a sample
of size Np = 100 and Nt = 300 was sufficient for accurate
estimation of all model parameters, with the RMSEs below a
threshold of 0.1. The magnitude of regression error variance
did not affect the accuracy parameter estimates, as seen in
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FIGURE 2 | The utility of information criteria under different simulation conditions. (A) The effect of Nt on the information criteria measures when

Np = 20,PMiss = 0, σ = 0.1. (B) The effect of Np on the information criteria measures when Nt = 160,PMiss = 0, σ = 0.1. (C) The effect of PMiss on the information

criteria measures when Np = 20,Nt = 160, σ = 0.15. (D) The effect of σ on the information criteria measures when Np = 20,Nt = 160,PMiss = 0.1.

Figure 4D. However, as in Figure 4C, the presence of missing
data, although imputed, affected the parameter estimation
negatively. An increase in the proportion of the missing data
led to higher RMSEs of the regime-switching parameters. In
Figure 4C, we also present the RMSEs of the parameters
under the data condition that is close to the data in our
empirical example.

4. EMPIRICAL EXAMPLE

To illustrate our approach with real data, we built upon the
work of the Mathematics Imagery Training of Proportion (MIT-
P) and analyzed secondary data collected from a previous study
(Abrahamson et al., 2015; Duijzer et al., 2017) with informed
consent from the legal guardians of the participants and approval
of the ethical committee board of the faculty of Social Sciences
at Utrecht University. In the study, 45 fifth- and sixth- graders of
ages 9–11 participated in task-based semi-structured interviews
at schools in the Netherlands. In the interview, the participants
played with a touchscreen tablet and used their index fingers
to move two parallel vertical bars up and down (see Figure 5).

The bars changed colors between red and green based on their
heights. The closer the ratio between the height of right and left
bars was to a predefined value (1 : 2), the greener the bars were,
which was the mysterious rule the participants did not know
before the interview and needed to find out. In the beginning,
the participants were given instructions to move the bars and
find as many greens as possible. After they found the first green,
the participants were encouraged to find more. In the end, the
participants needed to move the bars from the bottom to the
top while keeping them green. During the process, participants
were probed to think aloud why the bars turned green and
what actions they were to take to solve the problem. The same
procedures applied under different task and screen conditions,
where the proportional value varied from 1

2 to 3
4 or grids with

and without numbers appeared on the screen. Screen recordings
of participants’ hand movements, together with tracking of their
eye movements and concurrent verbalization, were captured
during the whole interview. The data of 38 participants were
of sufficiently high quality to include them in the analysis. The
mean age of the participants was 11.3 years old (SD = 0.70), and
there were 17 females in the sample. For retaining time series data
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FIGURE 3 | The accuracy of classification under different simulation conditions. (A) The effect of Nt on the cluster and regime classification accuracy measures when

Np = 20,PMiss = 0, σ = 0.2. (B) The effect of Np on the cluster and regime classification accuracy measures when Nt = 160,PMiss = 0, σ = 0.2. (C) The effect of

PMiss on the cluster and regime classification accuracy measures when Np = 20,Nt = 160, σ = 0.2. (D) The effect of σ on the cluster and regime classification

accuracy measures when Np = 20,Nt = 160,PMiss = 0.

under the same task and screen condition from all participants,
we only focused on hand movement data collected in the task
with the proportion of 1 : 2 and on blank screen background
without grids.

The original real-time capture of hand movement data
happened as the participants moved their fingers on the tablet,
and hence the data contained missing values and were irregularly
spaced. To prepare the data for our analysis, we first removed
data with a partial recording of only one hand’s movement,
which took up <5% of the available data and was missing largely
because of off-task behavior and technical errors. The remaining
data for each participant varied in the number of measurement
occasions (6,132–32,543) and the total period they covered (3.28–
13.71 min, with a mean of 6.74). To construct a common time
frame for all participants, we re-scaled individuals’ measurement
occasions to a range of [0, 1] by subtracting the initial time point
and dividing the times by the total period of each individual.
We then aggregated data at the individual level in 200 equally
spaced intervals in [0, 1) using their mean to create a data set of
38 participants on the same 201 occasions equally spaced in [0, 1].

In cases where there was no recording in a certain time interval
for an individual, missing data would occur in the aggregation.
In the new data, the proportion of missing data ranged from 0
to 0.17, with a median of 0.05, across individuals. We replaced
the missing values with linear interpolation via the na.approx()
function in the R package zoo. We took the ratios between right
and left-hand positions as our variable of interest and winsorized
the data by substituting the extreme ratios that are above the 95
percentile of the ratios with the 95 percentile. Figure 6 shows
the aggregated time series of two individuals in points, and the
imputed and winsorized data in lines. We marked the imputed
data with squares.

We fitted the mixRHLP models to the time series data with
different values of K (1–4), R (1–4), and d (1–2). Among all
32 models, we chose the more parsimonious model with the
top three smallest BIC values, which consisted of two clusters,
three regimes, and linear regressions. The parameter estimates
from fitting the chosen model to the data are summarized in
Table 2. The probability of an individual being in Cluster 1 was
estimated to be 0.42, a little smaller than that of being in Cluster
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FIGURE 4 | The average root mean square error (RMSE) of parameter estimates under different simulation conditions. (A) The effect of Nt on the parameter estimate

accuracy measures when Np = 20,PMiss = 0, σ = 0.1. (B) The effect of Np on the parameter estimate accuracy measures when Nt = 300,PMiss = 0, σ = 0.1. (C)

The effect of PMiss on the parameter estimate accuracy measures when Np = 20,Nt = 160, σ = 0.1. (D) The effect of σ on the parameter estimate accuracy

measures when Np = 100,Nt = 300,PMiss = 0.

FIGURE 5 | The touchscreen tablet version of the Mathematical Imagery Trainer for Proportion (MIT-P). (A) Fingers maintain a 1:2 ratio to make the bars green. (B)

Fingers do not maintain such ratio and therefore the bars are red.
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FIGURE 6 | Time series data of two individuals identified in two clusters. The imputed data are marked as squares.

2. Although the regimes’ regression parameters differed across
clusters, the respective three regimes were comparable in the two
clusters. In particular, Regime 1 in both clusters had regression
intercepts near one with small error variances, indicating hands
were moving at the same height. Regime 2 in both clusters had
significant error variances with intercepts around one, indicating
hands moving with a noticeable variability. Regime 3 in both
clusters had intercepts about two with small error variances,
suggesting hands moving at the desired heights of 1:2 ratio to
keep the bars green.

After completing our statistical analysis, we also wanted a
qualitative interpretation of the results in light of the possible
solution strategies subjects were following during each regime.
Accordingly, Regime 1 corresponded to an initial phase of
the embodied interaction. During this regime, the hands were
at the same height; perhaps the student awaited to see what
happened next. Regime 2 corresponded to an intermediate phase
of the interaction. During this regime, it seems as though the
participant was actively exploring different hand ratios, perhaps
attempting to find how to make the bars green. From prior
qualitative observations, we know that this regime contains a
mixture of strategies in that changes in the hands’ ratio not
only happens when the two hands move independently but
also when they move at fixed distances. As our analysis missed
this distinction, this seems to be one of the limitations of our
current approach. Regime 3 corresponded to a later phase of
the interaction and was the desired outcome of the interview.
During this phase, the hands maintained a 1:2 ratio. However,
as the task asked students to find green in as many ways as
they could, from time to time, this particular ratio was lost,
and the student fell back into Regime 2. Note that to keep the
same ratio as the hands move up, the one hand has to move
twice as fast as the other hand, which proves to be a challenging

TABLE 2 | Parameter estimates from the empirical example.

Regime 1 Regime 2 Regime 3

X 1 t 1 t 1 t

cluster 1 α1 = 0.42

ω1· 1.899 −7.871 1.864 −2.597 0 0

β1· 1.014 −0.019 1.149 0.016 2.017 −0.061

σ 2
1 0.003 0.180 0.015

cluster 2 1− α1 = 0.58

ω2· 1.423 −14.651 0 0 −0.386 1.794

β2· 1.018 −0.039 0.896 0.594 2.027 −0.043

σ 2
2 0.009 0.213 0.009

bodily coordination exercise for participants even though they
have figured out the proportion rule. Further analysis of the
participants’ verbalization during the interview using natural
language processing techniques confirmed our interpretation of
the different regimes to some extent [see Ou et al. (2020) for
more details].

Additionally, Figure 7 illustrates the estimated expected
logistic curves of the probabilities of an individual being in a
regime during the interview. In Cluster 1, the probability of
being in Regime 1 was the highest at the start of the session but
close to the probability of being in Regime 2, which grew slowly
but soon became the highest until Regime 3 became the most
probable regime at around 70% into the interview session. In
Cluster 2, the probability of being in Regime 1 was the highest
until approximately 10% into the session, when the probability
of being in Regime 2 took the lead but was only slightly higher
than that of being in Regime 3; then, Regime 3 became the
most probable state at about 20% into the session, much sooner
compared to Cluster 1. Indeed, what the logistic curves tell us
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FIGURE 7 | The estimated logistic curves of different regimes in two clusters.

is that a student in Cluster 1 has about the same likelihood
to find the rule than not to find it, as indicated by the high
logistic curve of Regime 2 for most of the task segment. Instead,
students in Cluster 2 have a much higher probability of finding
the proportional rule, especially after the first half. It is apparent
that, in Cluster 2, the probability of being in Regime 1 goes down
a lot more quickly than that in Cluster 1, and almost disappears
after the first quarter. On the other hand, the probability of
Regime 2 goes down but still lingers on, albeit low, until the end
of the task segment.

To exemplify these results, Figure 6 shows different hand
movement dynamics of participants with IDs 75 and 83.
Participant 75, classified in Cluster 1, spent a substantial
proportion (> 50%) of the session exploring various ratios
(Regime 2) or merely moving her hands at the same speed
(Regime 1). Participant 83, classified in Cluster 2, spent only 10%
of the time moving hands at the same heights (Regime 1) and
quickly switched to a 1:2 ratio phase (Regime 3), interspersed
with chunks of short periods of Regime 2.

5. LIMITATIONS

The modeling framework and our empirical illustration have
some limitations. First, a shared time frame of measurement
occasions needs to apply to all subjects, which is often unrealistic
in data collection. As participants differed in their time spent
on the task, we were only able to construct a proportional time
relative to their respective elapsed time such that the time frame
is within [0, 1]. Besides, we had to involve data aggregation and
missing data imputation based on the shared time frame, which
could affect the accuracy of parameter estimates.

Second, the modeling framework and estimation algorithm
only apply to univariate time-series data at this moment. Our
example only took into account the hands’ ratio, so we were
not able to identify from the ratio data some of the strategies
discussed in prior studies, such as the fixed-distance strategy with
which participants kept their hands at the same speed. We could
utilize eye gaze data and other hand-movement variables such as
speed and distance between hands to study how hand and eye
movements coordinate in such activities.

Third, the logistic transition process in Equation (3) assumes
that the log odds of being in a regime relative to the reference
regime change monotonically with time. It ignores the local

context of a regime switch such as the current regime from
which a switch is happening. Further, it lacks some flexibility in
modeling bidirectional regime switches that are more common
in hidden Markov type models and may apply under different
circumstances.

Despite the limitations, the mixRHLP model is useful in
extracting qualitative clusters and regimes from quantitative
time-series data, and the illustrative example furthers our
knowledge of qualitative differences in how students approach
the mathematical concept of proportion physically.

6. DISCUSSION

Advancements in real-time data capture technology
revolutionized the type and amount of data we collect about
human dynamic processes. In this paper, we have introduced the
mixRHLP model for clustering multi-subject time-series data
with regime-switching properties. In a Monte Carlo simulation
study, we examined the accuracy of the approach in parameter
estimation and cluster and regime classification under various
data conditions. We tested the feasibility of using information
criteria for model selection. We showed how different factors
such as the number of time points, the number of participants,
the proportion of missing data, and the error variance in the
model could affect the performance and applicability of the
approach and had a deeper understanding of the strengths and
limitations of the approach.

To illustrate the use of this approach in real scenarios, we
applied it to studying students’ behavior in an action-based
learning environment for mathematical learning. We based our
data aggregation and model selection decisions on the Monte
Carlo simulation results. We discovered qualitative differences
in students’ hand movements on a tablet during the task and
across students, as they explored the concept of proportion using
physical actions. This type of analysis helped reveal between and
within-subject differences in dynamic processes not seen with
prior qualitative analyses (Duijzer et al., 2017). That is, although
qualitative analysis may help reveal phase transitions in strategy
use, efficiently comparing students’ experiences and performing
grouping exceeded human capacity. Using the approach, we can
not only extract strategies directly and efficiently from data but
also identify clusters of students with homogeneous dynamics
and potentially similar needs for intervention.
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In the future, we should extend the estimation algorithm to
fit multivariate time series data to account for systematic changes
in dynamic systems. For instance, Kuppens et al. (2007) found
that the extent to which individuals experience qualitatively
different feelings in the core affect space is a consistent measure
to their trait measures of self-esteem and depression. We
need cluster-based multivariate dynamic models potentially with
regime-switching features to help reveal systematic emotion
dynamics that may have implications for psychological well-
being and adjustment. Besides, we need to compare the
mixRHLP modeling approach to other model-based and data-
driven approaches for clustering regime-switching dynamics in
simulations and applications. Candidate approaches include
but not limited to the mixture of hidden Markov models
(Chamroukhi and Nguyen, 2019) and potential extensions of
existing data-driven methods that identify clusters or regimes
(e.g., Cabrieto et al., 2018). Moreover, it is worthwhile to examine
different imputation methods for missing data, for example,
the newly developed ones that depend on machine learning
approaches (Yoon et al., 2018).

Finally, themodel contributes to the tools to extract qualitative
cluster and regime patterns from quantitative time-series of
human dynamics. We anticipate its broader usage in analyzing
the increasingly prevalent multi-modal time-series data in
social and behavioral sciences beyond mathematics learning.
In applications, developers and practitioners may use the
qualitative findings from time-series data to inform intervention
and training programs. For instance, in collaborative learning
environments such as classrooms, we might be able to monitor
students’ real-time behavior with various sensors and utilize the

technique to generate learners’ qualitative profiles and tailor
personalized or group-based feedback to facilitate learning and
shift students from one cluster to another.
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