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INTRODUCTION

The basic premise of “teaching students according to their aptitude” is to have a relatively objective
and accurate understanding of the students’ current learning statuses (e.g., knowledge mastery
level, learning motivation, learning attitude, and learning mode) and the developments/changes
they undergo over time (e.g., did the students’ knowledge mastery level improve, are the students’
learning motivations enhanced). Measuring and improving individual development are topics that
are actively tackled in psychological, educational, and behavioral studies.

In the past decades, learning diagnosis, which objectively quantifies students’ current learning
status and provides diagnostic feedback, has drawn increasing interest (Zhan, 2020).When focusing
on fine-grained attributes (e.g., knowledge, skills, and cognitive processes), learning diagnosis can
also be regarded as an application of cognitive diagnosis (Leighton and Gierl, 2007) in learning
assessment. Although learning diagnosis aims to promote student learning based on diagnostic
feedback and the corresponding remedial teaching (intervention), currently, only a few studies
have focused on and evaluated the effectiveness of such feedback or remedial teaching (c.f., Tang
and Zhan, submitted; Wu, 2019; Wang L. et al., in press; Wang S. et al., 2020). One of the main
reasons is that cross-sectional design, which cannot measure individual growth in learning, is
adopted by most current learning diagnoses. This issue may also be reflected in current learning
diagnosis models (LDMs) or alternatively cognitive diagnosis models (for review, see Rupp et al.,
2010; von Davier and Lee, 2019), which are the main tools for data analysis in learning diagnosis.
Although various LDMs have been proposed and suggested by previous research, most of them
are only applicable to cross-sectional data analysis, such as the deterministic inputs, noisy “and”
gate (DINA) model (Junker and Sijtsma, 2001), the deterministic inputs, noisy “or” gate (DINO)
model (Templin and Henson, 2006), the log-linear cognitive diagnosis model (LCDM) (Henson
et al., 2009), and the generalized DINA (GDINA) model (de la Torre, 2011).

By contrast, longitudinal learning diagnosis evaluates students’ knowledge and skills and
identifies their strengths and weaknesses over a period of time. The data collected from longitudinal
learning diagnosis provide researchers with the opportunities to develop models for learning
tracking, which can be used to track individual growth over time as well as to evaluate the
effectiveness of feedback. Compared to cross-sectional learning diagnosis, longitudinal learning
diagnosis is more helpful when aiming to promote student learning.

Currently, longitudinal learning diagnosis is a new research direction that mainly stays in the
model development stage and lacks practical applications and related topic research (e.g., missing
data, measure invariance, and linkingmethods). Moreover, although some longitudinal LDMs have
been proposed, these models still have some limitations that need to be further studied. Thus, for
the rest of this opinion article, I will first make a minireview of current longitudinal LDMs and
then I will elaborate on several future research directions that I believe are worth studying. With
this opinion article, I hope to elicit more research attention toward longitudinal learning diagnosis.
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MINIREVIEW

To provide theoretical support for data analysis in longitudinal
learning diagnosis, longitudinal LDMs are needed. However,
the latent variables (namely, attributes) in LDMs are categorical
(typically, binary). Therefore, the methods for modeling growth
for continuous latent variables (e.g., longitudinal item response
theory models) cannot be directly extended to capture growth
in the mastery of attributes. For example, the change in the
mastery of attributes cannot be directly modeled by the variance-
covariance methods when assuming that multiple continuous
latent variables follow a multivariate normal distribution (e.g.,
von Davier et al., 2011).

To this end, in recent years, several longitudinal LDMs
have been proposed. They are summarized in Table 1. Current
longitudinal LDMs can mainly be divided into two categories:
the latent transition analysis (Collins and Wugalter, 1992)-based
models (e.g., Li et al., 2016; Kaya and Leite, 2017; Chen et al.,
2018a; Madison and Bradshaw, 2018; Wang et al., 2018a) and
the higher-order latent structural (de la Torre and Douglas,
2004)-based models (e.g., Huang, 2017; Lee, 2017; Zhan et al.,
2019a). The diagnostic results of these two model types have high
consistency (Lee, 2017).

The latent transition analysis-based methods estimate the
transition probabilities from one latent class/attribute to another
or the same latent class/attribute. Two main differences exist in
these models. First, different measurement models were used.

TABLE 1 | Summary of longitudinal cognitive diagnosis models.

Basic

method

References Basic model Learning tracking

Latent

transition

analysis (LTA)

Li et al., 2016 DINA LTA with attribute-level

transition probability matrix

Kaya and Leite,

2017

DINA, DINO LTA with attribute

pattern-level transition

probability matrix

Madison and

Bradshaw, 2018

LCDM LTA with attribute

pattern-level transition

probability matrix

Chen et al., 2018a DINA LTA with attribute

pattern-level transition

probability matrix

Wang et al., 2018a DINA LTA with modeled

attribute-level transition

probabilities

Higher-order

latent

structural

model

Lee, 2017 DINA Latent growth curve model

Huang, 2017 GDINA Multilevel latent growth

curve model

Zhan et al., 2019a Testlet-DINA,

DINA

Variance-covariance

method

The article collection ended at April 11th 2020; listing only the first article of the proposed

model; DINA, deterministic-inputs, noisy “and” gate model Junker and Sijtsma, 2001;

DINO, deterministic-inputs, noisy “or” gate model Templin and Henson, 2006; LCDM, log-

linear cognitive diagnosis model Henson et al., 2009; GDINA, generalized deterministic-

inputs, noisy “and” gate model de la Torre, 2011; Testlet-DINA, deterministic-inputs, noisy

“and” gate model for testlet design (see e.g., Zhan et al., 2019b).

Reduced LDMs, e.g., the DINA model and the DINO model,
were used by Li et al. (2016), Kaya and Leite (2017), Chen
et al. (2018a), and Wang et al. (2018a), but a generalized
LDM, i.e., the LCDM, was used by Madison and Bradshaw
(2018). Second, the attribute-level transition probability matrix
(i.e., attributes are transited independently from one other) was
used by Li et al. (2016) and Wang et al. (2018a), but the
attribute pattern-level transition probability matrix was used
by Kaya and Leite (2017), Chen et al. (2018a), and Madison
and Bradshaw (2018). In addition, different from Li et al.
(2016), Kaya and Leite (2017), Chen et al. (2018a), and Madison
and Bradshaw (2018), who directly estimated the transition
probabilities, Wang et al. (2018a) used a set of covariates, such
as a time-invariant general learning ability and intervention
indicators, to model the transition probabilities. The effectiveness
of different learning interventions was further considered by
Zhang and Chang (2019). Additionally, to reduce modeling
complexity, Chen et al. (2018a) and Wang et al. (2018a) assumed
learning trajectories to be non-decreasing (i.e., respondents did
not forget). However, this non-decreasing assumption may only
be suitable for short-time interval assessments. Furthermore,
by incorporating response times into LDMs (Wang et al.,
2018a, 2019; Zhan et al., 2018a; Zhang and Wang, 2018)
used response times to assist in measuring students’ growth in
attribute mastery.

Meanwhile, the higher-order latent structural model-based
methods estimate the changes in a higher-order latent ability over
time to further infer the changes of lower-order latent attributes.
One of the representative models is the longitudinal higher-
order DINA (Long-DINA) model (Zhan et al., 2019a), which is
a multidimensional extension of the higher-order DINA model
(de la Torre and Douglas, 2004). However, multidimensionality
does not refer to different general abilities, but rather, the same
general ability measured at different time points. As noted by
Zhan et al. (2019a), the latent growth curve model instead
of the variance-covariance method can also be employed in
the third order. Lee (2017) proposed a growth curve DINA
model, which can be seen as an alternative of the long-DINA
model that incorporates the latent growth curve model but
ignores the local item dependence among anchor or repeat items.
Furthermore, Huang (2017) proposed amultilevel GDINAmodel
for assessing growth, which can be seen as an extension of
Lee’s (2017) model in both measurement model part (i.e., from
DINA model to GDINA model) and latent structural model part
(i.e., from one-level growth curve model to multilevel growth
curve model).

FUTURE RESEARCH DIRECTION

Although the utility for analyzing the longitudinal learning
diagnosis data of these longitudinal LDMs has been evaluated
by some simulation studies and a few applications, these models
are not without limitations, which need to be further studied.
Based on current research on longitudinal learning diagnosis,
I believe that the following are directions that are worthy of
further study.

Frontiers in Psychology | www.frontiersin.org 2 July 2020 | Volume 11 | Article 1185

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Zhan Longitudinal Learning Diagnosis

(1) A systematic comparison between different longitudinal
LDMs, which can provide theoretical suggestions for
practitioners in choosing suitable models.

(2) Only binary attributes (e.g., “1” means mastery and
“0” means non-mastery) were considered in all current
longitudinal LDMs. However, in actual teaching, it is
challenging to use binary attributes to describe the growth
of students, as they can be classified into only four categories
between two adjacent time points, i.e., 0→ 0, 0→ 1, 1→
0, and 1→ 1. Some small but existing growths are ignored,
which in turn may lead students, especially those with low
motivation to learn, to conclude that the current diagnostic
feedback is ineffective or to abandon remedial action.
Thus, further studies can attempt to extend the current
models to handle polytomous attributes (Karelitz, 2004) and
probabilistic attributes (Zhan et al., 2018b) because they can
describe the learning growth in a more refined way than
binary attributes.

(3) Only outcome data (or item response accuracy) were
considered in most current longitudinal LDMs. Although
a few studies have incorporated item response time into
current models (e.g., Wang et al., 2018b), future studies
may attempt to introduce other types of process data (e.g.,
number of trial and error and operation process), or even
biometric data (e.g., eye-tracking data; Man and Harring,
2019). Utilizing multimodal data can evaluate the growth
of students in multiple aspects, which is conducive to a
more comprehensive understanding of the development of
students (Zhan, 2019).

(4) All current longitudinal LDMs assumed that attributes
are structurally independent, in that mastery of one
attribute is not a prerequisite to the mastery of
another. However, when attribute hierarchy (Leighton
et al., 2004) exists, the development trajectory of
students is not arbitrary and should be developed in
such hierarchical order. Therefore, incorporating the
attribute hierarchy into current longitudinal LDMs is
worth trying.

(5) A limited number of attributes at each time point were
assumed in current longitudinal LDMs. In practice, a large
number of attributes may involve more than 10 or 15
attributes at each time point. In such cases, using current
longitudinal LDMs with existing parameter estimation
algorithms may lead to unrobust parameter estimation.
Thus, more powerful or efficient algorithms or special
strategies may need to be introduced.

(6) The simultaneity estimation strategy was adopted by
almost all current longitudinal LDMs. This involves the
reintegration of response data frommultiple time points into

one large response matrix, which is then analyzed as a whole

(Zhan et al., 2019a). However, this strategy requires subjects
to wait until all the tests end before an analysis of the results
becomes available. Thus, using this strategy cannot provide
timely diagnostic feedback to either students or teachers. In
light of the foregoing, new estimation strategies for timely
diagnostic feedback should be further studied (e.g., Zhan,
2020).

(7) In addition to theoretical and methodological studies, the
corresponding applied studies should also be strengthened.
For example, a few studies have focused on and evaluated
the effectiveness of diagnostic feedback or remedial
teaching in promoting learning (cf. Tang and Zhan,
submitted). Moreover, effective and systematic intervention
methods based on longitudinal diagnostic feedback are also
worth studying.

(8) Adaptive learning system involving LDMs is also
worthy of further study (e.g., Chen et al., 2018b; Tang
et al., 2019). This system can diagnose an individual’s
latent attribute profile online while the assessment is
being conducted.

(9) Compared with cross-sectional learning diagnosis, the
diagnostic accuracy and validity of longitudinal learning
diagnosis used to depict the learning trajectories are more
worthy of attention by researchers and practitioners. In
addition to choosing a suitable longitudinal LDM, many
factors such as the quality of the longitudinal test itself,
the setting of a cognitive model, students’ response attitude,
cheating, and missing data will also affect the accuracy
and validity of the diagnostic results. The impact of these
factors on the longitudinal learning diagnosis and the
corresponding compensation or detection methods are also
worthy of further discussion.

Overall, there are still many issues related to longitudinal learning
diagnosis that are worthy of discussion. In view of the advantages
of longitudinal learning diagnosis compared with cross-sectional
learning diagnosis, the former is more in line with the idea
of assessment for learning (Wiliam, 2011) and the needs of
formative assessments.
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