
fpsyg-11-01190 June 16, 2020 Time: 18:50 # 1

ORIGINAL RESEARCH
published: 18 June 2020

doi: 10.3389/fpsyg.2020.01190

Edited by:
Antonino Vallesi,

University of Padova, Italy

Reviewed by:
Mario Bonato,

University of Padova, Italy
Samuel Shaki,

Ariel University, Israel

*Correspondence:
David Maximiliano Gómez

david.gomez@uoh.cl

Specialty section:
This article was submitted to

Cognition,
a section of the journal
Frontiers in Psychology

Received: 24 February 2020
Accepted: 07 May 2020

Published: 18 June 2020

Citation:
Morales N, Dartnell P and

Gómez DM (2020) A Study on
Congruency Effects and Numerical

Distance in Fraction Comparison by
Expert Undergraduate Students.

Front. Psychol. 11:1190.
doi: 10.3389/fpsyg.2020.01190

A Study on Congruency Effects and
Numerical Distance in Fraction
Comparison by Expert
Undergraduate Students
Nicolás Morales1, Pablo Dartnell2,3,4 and David Maximiliano Gómez5*

1 Department of Psychology, Faculty of Social Sciences, Universidad de Chile, Santiago, Chile, 2 Department of Mathematical
Engineering, Faculty of Physical and Mathematical Sciences, Universidad de Chile, Santiago, Chile, 3 Center for Advanced
Research in Education (CIAE), Universidad de Chile, Santiago, Chile, 4 Center for Mathematical Modeling (CMM), Faculty of
Physical and Mathematical Sciences, Universidad de Chile, Santiago, Chile, 5 Institute of Educational Sciences (ICEd),
Universidad de O’Higgins, Rancagua, Chile

School mathematics comprises a diversity of concepts whose cognitive complexity is
still poorly understood, a chief example being fractions. These are typically taught in
middle school, but many students fail to master them, and misconceptions frequently
persist into adulthood. In this study, we investigate fraction comparison, a task
that taps into both conceptual and procedural knowledge of fractions, by looking
at performance of highly mathematically skilled young adults. Fifty-seven Chilean
engineering undergraduate students answered a computerized fraction comparison
task, while their answers and response times were recorded. Task items were selected
according to a number of mathematically and/or cognitively relevant characteristics:
(a) whether the fractions to be compared shared a common component, (b) the
numerical distance between fractions, and (c) the applicability of two strategies to
answer successfully: a congruency strategy (a fraction is larger if it has larger natural
number components than another) and gap thinking (a fraction is larger if it is missing
fewer pieces than another to complete the whole). In line with previous research, our
data indicated that the congruency strategy is inadequate to describe participants’
performance, as congruent items turned out to be more difficult than incongruent
ones when fractions had no common component. Although we hypothesized that
this lower performance for congruent items would be explained by the use of gap
thinking, this turned out not to be the case: evidence was insufficient to show that the
applicability of the gap thinking strategy modulated either participants’ accuracy rates or
response times (although individual-level data suggest that there is an effect for response
times). When fractions shared a common component, instead, our data display a more
complex pattern that expected: an advantage for congruent items is present in the first
experimental block but fades as the experiment progresses. Numerical distance had an
effect in fraction comparison that was statistically significant for items without common
components only. Altogether, our results from experts’ reasoning reveal nuances in
the fraction comparison task with respect to previous studies and contribute to future
models of reasoning in this task.
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INTRODUCTION

Rational numbers are key content in mathematics curricula
throughout the world. They are usually taught after natural
numbers and constitute students’ first approach to concepts
such as non-whole quantities and dense sets (Vamvakoussi
and Vosniadou, 2004). Learning rational numbers involves
understanding multiple aspects such as rational number
magnitude and novel algorithms for the arithmetic operations.
Successful learning of some of these aspects (e.g., the notion
of numerical magnitude) has been shown not only to correlate
with future math achievement (Booth and Newton, 2012; Siegler
et al., 2012; Booth et al., 2014; Torbeyns et al., 2015) but also
to be linked to performance in a diversity of jobs (McCloskey,
2007; Handel, 2016; Liu and Fernandez, 2018) as well as to health
outcomes and perception of health risks (Reyna and Brainerd,
2007). Therefore, it is not surprising that an increasing number
of studies are focusing on the learning and understanding of
fractions, within mathematics education (e.g., Cramer et al., 2019;
Flores et al., 2019; Olfos and Rodríguez, 2019; Reinhold et al.,
2020) as well as cognitive psychology and neuroscience (e.g.,
Avgerinou and Tolmie, 2019; Rossi et al., 2019; Stelzer et al., 2019;
Cui et al., 2020).

Difficulties in the Learning of Rational
Numbers
Fractions typically constitute the entrance point to the learning
of rational numbers through the concept of parts of a whole,
although rationals can be learned, and conceptualized in several
other different ways (Kieren, 1976). Many studies attest to
the difficulty that school children (e.g., Reys et al., 1982;
Witherspoon, 2019) and even teachers (e.g., Depaepe et al.,
2015) face in order to understand fractions and rational numbers
in a mathematically and pedagogically mature manner. This
conceptual diversity poses a major challenge to the scientific
study of the cognitive processing of fractions (e.g., Bonato et al.,
2007; Ischebeck et al., 2009; Schneider and Siegler, 2010; Gabriel
et al., 2013a; Barraza et al., 2014).

Several early studies on the cognitive processing of fractions
asked whether these numbers are mentally represented as
approximate magnitudes (e.g., 1/2 as a magnitude located
midway between 0 and 1 on a mental number line) or as
pairs of natural numbers (e.g., 1/2 as the pair {1,2}, Bonato
et al., 2007; Meert et al., 2010; Schneider and Siegler, 2010;
Sprute and Temple, 2011). These studies, together with others
in the field of numerical cognition (e.g., Kallai and Tzelgov,
2009; Gabriel et al., 2013b), suggest that fractions are not
cognitively processed in an automatic manner, in sharp contrast
with natural numbers (Moyer and Landauer, 1967; Henik
and Tzelgov, 1982). A possible explanation of this difference
is the fact that the standard notations for rational numbers
and fractions include natural numbers within them, like a
numerator, and a denominator. Kallai and Tzelgov (2012)
suggested that the automatic processing of these natural number
components hinders the ability to process automatically the
fractions themselves.

Many school children and adults fail to recognize fractions as
numbers that have a magnitude of their own, whether because
of this increased complexity in cognitive processing or due to
the lack of an adequate conceptual foundation (Ni and Zhou,
2005). This failure prevents them from working with fractions
as holistic entities and allows them to use only strategies based
on the fraction components, leading students to think about
fractions in a naïve way as if their natural number components
were isolated numbers. Many school children think, for instance,
that 3/7 > 3/5 because 7 is greater than 5, or that 7/8 + 12/13
is approximately 19 or 21 (Reys et al., 1982; Ni and Zhou,
2005). This naïve generalization from natural to rational number
knowledge has been taken as an indication that natural number
knowledge interferes with the learning of rational numbers
(Hartnett and Gelman, 1998).

Several researchers have proposed that a conceptual
reorganization is needed to learn fractions and rational
numbers successfully (Vamvakoussi and Vosniadou, 2004;
Gabriel et al., 2013a; Van Hoof et al., 2017), a process that
often generates cognitive conflict between the previous natural
number’s, and the novel rational number’s knowledge (Van
Dooren et al., 2015). The difficulties arising from the lack of
such reorganization have been extensively investigated in the
last decade, being often attributed to a whole number bias, or
natural number bias (Ni and Zhou, 2005; Vamvakoussi et al.,
2012; Van Hoof et al., 2013). Highly intuitive concepts from
the natural number domain that do not exist in the rational
number domain, such as successors and antecessors, may also
contribute to this issue (Izard et al., 2008). Conversely, there
are notions that are unique to the set of rational numbers,
such as density (the fact that between any two given rational
numbers, there are infinitely many other rational numbers).
Rational number density is a particularly difficult concept
to master (Vamvakoussi et al., 2012; McMullen et al., 2015;
McMullen and Van Hoof, 2020), as it represents the logical
opposite of the existence of antecessors and successors. In
line with this, many mistakes made by school children relate
to the incorrect application of the concepts of successor
and antecessor to rational numbers, such as believing that
between 1/5 and 4/5, there are only two other rationals
(Vamvakoussi and Vosniadou, 2004).

Yet another issue contributing to the difficulty of learning
fractions is that the numerical magnitude of a fraction is in some
sense independent of the specific components of the fraction,
since any fraction can be written in many different but equivalent
forms (e.g., 2/3, 4/6, or 6/9). Children who view fractions as
no more than a pair of natural numbers might particularly
struggle with the notions of fraction equivalence and magnitude
(Pearn and Stephens, 2004; Stafylidou and Vosniadou, 2004).
On the other hand, people with a deep knowledge of fractions
and rational numbers are able to focus on fraction magnitude
beyond the fractions’ components (Obersteiner et al., 2013;
DeWolf and Vosniadou, 2015).

Experts’ Performance
Performance in fraction comparison, as well as its possible
relation to a natural number bias, has been investigated
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in populations displaying a variety of knowledge level:
middle school students (Van Hoof et al., 2013; Gómez and
Dartnell, 2019), mathematics teachers (Siegler and Lortie-
Forgues, 2015), and experts (Bonato et al., 2007; Obersteiner
et al., 2013; DeWolf and Vosniadou, 2015). Investigating the
performance of mathematics experts when comparing fractions
allows us to observe an advanced stage in the mathematics
development process, informing us about the mature state of
fraction knowledge.

Several tests have been proposed to measure knowledge
related to fractions, mostly in school children populations (e.g.,
Gabriel et al., 2013a; Van Hoof et al., 2015). Whether these
tests constitute a measure of expertise with fractions–beyond
mere knowledge–applicable to both children and adults is,
however, an open question. One way of studying fractions
with expert populations is to work with undergraduate/graduate
students of programs with high mathematical demands, who
can be reasonably expected to be experts in elementary school
mathematics. Early studies on fraction comparison such as
Bonato et al. (2007) resorted to undergraduate students of
engineering and physics. Obersteiner et al. (2013), instead,
worked with professional mathematicians with a focus on
investigating the emergence of a natural number bias in a fraction
comparison task. They recruited professors, PhD students, and
postdocs from mathematics, applied mathematics, and computer
science departments.

The fraction comparison items used by Obersteiner et al.
(2013) were categorized by means of two main dimensions:
the presence or absence of a common component between
the fractions, and the congruency relation between the
mathematically correct answers and the answers expected
from the application of a natural number bias. A fraction
comparison item was called congruent if the numerically
larger fraction had the larger numerator and denominator,
incongruent if the numerically larger fraction had the smaller
numerator and denominator, or neutral otherwise (see examples
in Table 1). Results were consistent with a natural number
bias in the experts’ answers when presented with fractions with
a common component, as congruent items were answered
more quickly than incongruent items. In contrast, comparing
fractions that lacked a common component led to conflicting
results, as congruent items were answered more slowly than
incongruent ones. Although both differences in response
times (RTs) were statistically significant, the one for items
without common components vanished after the removal
of a subset of “easy” items that affected mainly the set of
congruent items (Obersteiner et al., 2013). This raises the
question of whether the observed reversal of the congruency
effect is an essential feature of experts’ fraction comparison
or if it was due to the particular fraction comparison items
chosen. Favoring the former option, a reanalysis of a group
of fraction comparison datasets (Gómez and Dartnell, 2015)
suggested that this reversed congruency effect is not an
isolated finding.

Bonato et al. (2007) provided data from expert and
non-expert undergraduates, suggesting that the numerical

distance between fractions played no role in comparative
judgments of fractions. However, this interpretation has been
called into question by later research (e.g., Schneider and
Siegler, 2010; Sprute and Temple, 2011). Gabriel et al.
(2013b) showed that adults may access fractions’ numerical
magnitude depending on the task. Considering specifically math
experts, another important study is that of Obersteiner et al.
(2013), who aimed at understanding the role of congruency
and numerical distance in fraction comparison in such a
population. Their study, however, had two shortcomings. First,
interpreting mathematical expertise as professional experience
in academia strongly restricts the population under study.
This leads to difficulties in recruiting participants but, more
importantly, to questioning the extent to which the empirical
results of such a specialized population generalize to broader
populations (see Cipora et al., 2016, for an example where
experts’ mathematical performance differs from the broader
population). In this sense, the consideration of undergraduate
or graduate students of programs with high mathematical
demands holds interest.

Studying such a sample (undergraduates from a mathematics
department), DeWolf and Vosniadou (2015) found a reversed
congruency effect similar to the one reported by Obersteiner
et al. (2013). Gómez and Dartnell (2019) presented a fraction
comparison task to a large sample of middle school children
and observed an association between high general mathematics
achievement and a reversed congruency effect as well. Although
these works have shown that mathematical expertise tends to be
associated with a reversal of the congruency effect for fraction
pairs with no common component, no satisfactory explanation
for this association has been given.

A second issue relates to the way in which items are
presented. Obersteiner et al. (2013) presented in separate
blocks items with a common component and items without
common components, potentially allowing experts to adapt
their strategies for each of these item types. An alternative
to blocked presentation is mixing item types within blocks,
a manipulation shown to affect test outcomes in several
experimental paradigms (e.g., Los, 1996; Odic et al., 2014).
DeWolf and Vosniadou (2015) did not consider items with
a common component in their design, and it is uncertain if
Gómez and Dartnell (2019) results extend to adult populations.
It is thus an open question if Obersteiner et al.’s (2013) results,
particularly congruency effects, will be replicated when items
with and without common components are presented in a mixed
manner, as this manipulation may strongly influence participants’
strategy choices.

Strategies in Fraction Comparison
As mentioned above, the cognitive processing of fractions is
not automatic (Kallai and Tzelgov, 2009; Gabriel et al., 2013b).
Further evidence for this comes from the range of average RTs
of fraction comparison tasks, within seconds (e.g., Bonato et al.,
2007; Schneider and Siegler, 2010; Sprute and Temple, 2011;
Vamvakoussi et al., 2012; Obersteiner et al., 2013). Therefore,
fraction comparison is a task in which the use of strategies
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TABLE 1 | Item types and examples from the fraction comparison task.

Components Congruency Gap thinking # of items Example

With a common component Congruent Leads to the correct answer 36 (12 per distance) 31
84 vs. 17

84 (0.167)

Incongruent Leads to the correct answer 36 (12 per distance) 16
35 vs. 16

75 (0.244)

Without common components Congruent Leads to the correct answer 12 (4 per distance) 37
55 vs. 68

81 (0.167)

Leads to the incorrect answer 12 (4 per distance) 59
79 vs. 16

31 (0.231)

Both fractions have the same gap 12 (4 per distance) 45
64 vs. 75

94 (0.095)

Incongruent Leads to the correct answer 36 (12 per distance) 62
97 vs. 55

69 (0.158)

Neutral Leads to the correct answer 36 (12 per distance) 67
87 vs. 52

97 (0.234)

The task included 180 items, split into seven types. Each item type included items with three different numerical distances between the fractions. For each example, the
numerical distance between the fractions is shown in parentheses.

is highly relevant. Several works have observed or inferred
variability both across and within participants in terms of the
strategies that are used to solve the task (Pearn and Stephens,
2004; Clarke and Roche, 2009; Gómez and Dartnell, 2019). It
is likely that people with a high level of mathematics expertise
use a broad diversity of strategies to compare fractions, opening
the question of whether some of these strategies could drive the
reversal of the congruency effect.

Throughout this work, we understand strategies in the sense
used by Siegler and Araya (2005), as “any goal-oriented, non-
obligatory procedure, rather than in the more restricted sense of
a conscious, rationally chosen procedure” (p. 3). An individual
typically chooses strategies from a dynamic pool, based on
specific item characteristics as well as the past performance
associated to each strategy (Siegler, 1996; Siegler and Araya,
2005). In this sense, there are many strategies that students use to
compare fractions. Some are explicitly taught at school, whereas
others are spontaneously devised by them. Examples include
benchmarking, which uses a well-known fraction magnitude
as an anchor (e.g., 5/7 is larger than 3/8 because the latter is
smaller than 1/2 while the former is larger than 1/2; Clarke
and Roche, 2009; González-Forte et al., 2018; Obersteiner et al.,
2020); naïve componential strategies such as the ones identified
by Ni and Zhou (2005), where a fraction is deemed large if
its components are large (see also Stafylidou and Vosniadou,
2004); and gap thinking (Pearn and Stephens, 2004; Mitchell and
Horne, 2010, 2011; Barnett, 2016; Fagan et al., 2016), where a
fraction is deemed large if the difference between its numerator
and denominator (its gap) is small. Table 2 presents examples
of fraction comparison items that are answered correctly or
incorrectly for each of these three strategies, together with
prototypical examples of reasoning.

Of particular interest to us is gap thinking, as it turns
out to be a mathematically incorrect strategy (because it
disregards the size of the parts missing to complete the whole)
that leads to correct answers in a very large subset of the
set of all possible fraction comparison items. For instance,
in a task presented to expert mathematicians (Obersteiner
et al., 2013), 84 out of 90 items would have been answered
correctly by this strategy. In two of the remaining items,
the fractions to be compared had the same gap, and in the
other four, the larger fraction of each pair had a larger gap.

DeWolf and Vosniadou (2015) presented a fraction comparison
task to a group of mathematically skilled undergraduate
students, where 24 out of the 30 items that involved proper
fractions (those smaller than 1) could be answered correctly by
using gap thinking.

Importantly for the understanding of the effect of congruency
in the cognitive processing of fraction comparison, all the
exceptional items—those for which gap thinking does not
lead to the correct answer—belong to the same category:
congruent items without common components. This is
not due to biases in item selection in previous studies
but, rather, due to a mathematical property that can be
proved after formally defining the involved concepts (see
the Supplementary Material). González-Forte et al. (2019)
conducted a clustering analysis with fraction comparison data
from primary and secondary school students and observed a
cluster of students whose answers aligned with the gap thinking
strategy. Interestingly, the size of this cluster represented
about 30% of 10th grade students, indicating that gap thinking
is used by a relevant proportion of the population. We
therefore speculated that the reversed congruency effect for
fraction pairs without common components documented in
experts’ performance might be due to reliance on the gap
thinking strategy.

The Present Study
The main question guiding this research was whether the
conflicting results about congruency effects can be explained
in a highly mathematically skilled population by gap thinking,
namely, if experts’ lower performance in congruent than
in incongruent fraction comparison items without common
components can be explained by the use of this strategy. To
the best of our knowledge, fraction comparison performance
differences due to the gap relation between fractions have been
approached from a qualitative perspective in educational research
(e.g., Pearn and Stephens, 2004; Clarke and Roche, 2009), whereas
congruency effects have been mostly studied from a quantitative
perspective, and an approach closer to cognitive psychology
(e.g., Obersteiner et al., 2013; Van Hoof et al., 2013). These
differences in paradigms and research traditions raise difficulties
for integrating the results of both lines of research into a
coherent account.
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TABLE 2 | Example items and prototypical explicit reasoning corresponding to three possible strategies to compare fractions. Example items taken from
Gómez and Dartnell (2019).

Congruency Gap thinking Benchmark to 1/2

Brief description “Larger components, larger fraction” “Smaller gap, larger fraction”

Example item that the strategy
answers correctly

17/19 vs. 4/9 5/16 vs. 12/17 6/14 vs. 6/8

Example item that the strategy
answers incorrectly

6/13 vs. 4/5 10/17 vs. 3/9 –

Prototypical explicit reasoning “17 is larger than 4, and 19 is larger than 9,
so 17/19 must be larger than 4/9”

“5/16 is missing 11 pieces to complete
the whole, while 12/17 is missing only 5
pieces; therefore, 12/17 must be larger
than 5/16”

”6/14 is smaller than 1/2, and
6/8 is larger than 1/2; therefore,
6/8 must be larger than 6/14”

In this work, we designed a fraction comparison task allowing
us to analyze and contrast congruency and gap effects within a
population of mathematical experts. Our study followed a similar
methodology to Obersteiner et al.’s (2013) work, by presenting
a computerized fraction comparison task to undergraduate
engineering students of a highly selective faculty, including items
that allowed us to disentangle those effects. Differently from
that study, we used mixed rather than blocked ordering for the
presentation of items in order to hinder participants’ reliance on
strategies that are specifically tailored for items with or without
common components.

As a secondary research question, we tested the role
of the numerical distance between fractions in predicting
participants’ RTs after eliminating the applicability of the 1/2-
benchmark strategy, by using in all items only fractions below or
above this value.

MATERIALS AND METHODS

Participants
Fifty-seven undergraduate students (39 men, 18 women) of a
diversity of engineering programs participated in this study. The
age of one participant was not recorded because of experimenter
error. The others had an average age of 21.1 years (SD = 2.2,
range = 19–31). All participants were recruited in the Faculty
of Physical and Mathematical Sciences of Universidad de Chile
(Santiago, Chile), one of the most selective schools of engineering
in the country according to the national university selection tests.

The protocols of this research (part of a larger project,
Fondecyt 1160188) were reviewed and approved by the Ethics
Committee of the Faculty of Medicine of Universidad de
Chile. Accordingly, participants signed an informed consent
form and were rewarded with CLP 2,000 regardless of their
performance in the task.

Task Items
Pairs of fractions to be compared were selected according to
the following constraints: (a) denominators ranged from 31 to
99; (b) numerators ranged from 11 up to the corresponding
denominator minus 11; (c) in each pair, both fractions
were on the same side of 1/2 (either both above or both
below); (d) whenever fractions had a different numerator

and/or denominator, the numerical distance between these
was at least 5; and (e) the numerical distance of fraction
gaps for fraction pairs with different gaps was at least 5.
Constraints (a) and (b) were aimed at discarding simple and
common fractions (e.g., those with single-digit numerators and
denominators that may be processed differently from other
fractions, Liu, 2018) as well as fractions that are too close to
0 or to 1. Constraint (c) was included to avoid participants’
using the benchmarking-to-1/2 strategy. Finally, constraints
(d) and (e) were included to have clear differences between
items with the same numerator, denominator, or gap, and
items with different ones. In addition, to reduce attempts at
simplifying reducible fractions, we discarded all those fractions
whose numerator and denominator had 2, 3, 5, or 11 as
a common factor.

From all the possible fraction pairs fulfilling the above
constraints, we randomly selected 180 pairs according to the
following classifications: (a) presence/absence of a common
numerator or denominator; (b) congruency: congruent,
incongruent, or neutral pairs; (c) applicability of gap thinking:
pairs in which gap thinking leads to the correct answer or to the
incorrect answer, or pairs in which both fractions have the same
gap; and (d) numerical distance between the two fractions: small
(about 0.10), medium (about 0.17), and large (about 0.24). The
number of items selected for each type, together with examples,
is presented in Table 1 (the full set of items is included in the
Supplementary Material as Supplementary Table S1).

Procedure
The fraction comparison task was presented in a computerized
format, in the computer science classrooms of the faculty. The
task was program using Python 2.7 and Pygame 1.9.1. Fraction
pairs were presented in three blocks of 60 pairs each, and
participants were randomly assigned to one of ten possible
item orderings. For each ordering, the different item types were
presented in an interleaved manner, and the location of the
correct answer (left/right) was randomized taking care that the
correct answer was not on the same side of the screen for more
than three consecutive items.

Each item started with the presentation of the question
“Which of these fractions is LARGER?” (in Spanish) and a
fixation dot in the middle of the screen for 500 ms. Then the
two fractions were presented side by side, and they remained
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on the screen until the participant answered using the keys
Q or P (left/right fraction, respectively) or until a time limit
of 10 s was reached. If this limit was reached, the item was
considered as omitted. A blank screen followed for 1 s before
displaying the next item.

Data Analysis
Statistical analyses were conducted using R (64-bit) 3.4.1, running
in R-Studio 1.1.447. Accuracy rates were computed based on non-
omitted items only. Average RTs were computed considering only
items that were answered correctly. General data manipulation
was done with the help of the package dplyr, version 0.8.0.1
(Wickham et al., 2019).

We used analyses of deviance, a generalization of analysis
of variance for generalized linear mixed regression models, for
the study of accuracy rates and RTs as a function of diverse
fixed factors (e.g., congruency), considering both participants and
items as random factors. These generalized linear mixed models
were analyzed using the package lme4, version 1.1–13 (Bates et al.,
2015), and the fixed factors’ statistical significance was assessed
using Wald’s X2 type III tests as implemented in the package
car, version 2.1–5 (Fox and Weisberg, 2011). The statistical
significance of regression coefficients for the analysis of the effect
of numerical distance on RTs was assessed using Satterthwaite
approximations of the tests’ degrees of freedom as implemented
in the package lmerTest, version 2.0–33 (Kuznetsova et al., 2017).

The raw data analyzed in this manuscript, as well as the
analysis script, are available as Supplementary Material.

RESULTS

We excluded from the analysis one participant who omitted 24
out of the 180 items (13.3%). The remaining 56 participants
omitted, on average, 2.3 items, or 1.3% of the total (SD = 1.6%,
range = 0%–6.1%).

Overall Performance
Table 3 presents descriptive statistics for accuracy and RTs.
For both measures, performance was significantly better when
fractions shared a common component [accuracy (acc): 98%
vs. 91%, t(55) = 10.0, p < 0.0001; RT: 2,795 ms vs. 4,009 ms,
t(55) = 14.6, p < 0.0001].

We also looked at item-level variability, in order to understand
the degree of consistency between participants’ performance for
different items within each category. Figure 1 depicts average
accuracy rates and RTs for all items, revealing that some
item types displayed a much higher variability than others.

TABLE 3 | Overall performance in the fraction comparison task. Standard
deviations in parentheses.

Items Accuracy Response time (ms)

With a common component 98% (2%) 2,795 (739)

Without common components 91% (5%) 4,009 (993)

Total 94% (3%) 3,494 (829)

We quantified this dispersion by computing median absolute
deviations (MADs; a robust alternative to SDs) for each item
type. Overall, items with a common component showed the
lowest MADs, whereas congruent and incongruent items without
common components exhibited the highest MADs, with neutral
items in between (see Table 4).

Although it is not the focus of the present work to contrast
our findings with a non-expert group, as part of the larger project
in which this research took place, we also gathered data from
such a population. The average accuracy rate in this non-expert
sample was 76% (SD = 22%; data not published), supporting the
consideration of engineering students as an expert sample.

Congruency Effects
We computed average accuracies and RTs for each of the item
types defined by components and congruency (see Table 5).
Interesting contrasts emerged when comparing our data with
those of Obersteiner et al.’s (2013) mathematicians. Our
participants were about 10% less accurate when responding
to congruent items without common components and about
800–900 ms slower when responding to items with a common
component. This pattern of differences may be partly explained
by item presentation: Obersteiner et al. (2013) presented items
with and without common components in separate blocks,
allowing mathematicians to apply componential strategies that
are tailored for items with a common component, allowing them
to answer these items more quickly.

The statistical analysis of accuracy rates revealed a significant
interaction between components and congruency [X2(1) = 3.9,
p = 0.05]. This interaction reflects the fact that congruent and
incongruent items were answered with similar accuracy when
items shared a common component [t(55) = 0.2, p = 0.83], but
congruent items without common components were answered
less correctly than their incongruent counterparts [t(55) = 2.9,
p = 0.005]. A similar analysis for RTs showed a significant
interaction as well [X2(1) = 5.7, p = 0.02], stemming from a non-
significant advantage for congruent items when items share a
common component [t(55) = 1.7, p = 0.09], and a significant
advantage for incongruent items when items lack common
components [t(55) = 3.2, p = 0.002].

Looking at the individual level, we observed that 16
participants obtained higher accuracies in congruent than in
incongruent items with a common component, whereas 12
participants showed the opposite pattern. In contrast, the relation
for items without common components reversed to 21 vs. 32
participants. As for RTs in the common component case, 35
participants exhibited quicker responses to congruent items and
21 participants quicker responses to incongruent items, whereas
in the non-common component case, this relation reverses to 19
vs. 37 participants. Fisher’s exact tests for count data indicated
that the reversal for accuracy rates was not significant (odds
ratio = 2.01, p = 0.16), while that of RTs was significant (odds
ratio = 3.21, p = 0.004).

The analysis of neutral items, compared to the other items
without common components, showed significantly greater
accuracy rates and smaller RTs than both congruent [acc:
t(55) = 7.8, p < 0.0001; RT: t(55) = 6.0, p < 0.0001] and
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FIGURE 1 | Accuracy rates and response times (RTs) for all items. Mean accuracies (top) and RTs (bottom) separately for each item of the fraction comparison task.
Different shapes represent different item types, from left to right: congruent with a common component, incongruent with a common component, congruent without
common component (gap thinking leads to correct answer), congruent without common component (gap thinking leads to incorrect answer), congruent without
common component (both fractions have the same gap), incongruent items without common components, and neutral items without common components.

TABLE 4 | Median absolute deviations (MADs) for all items within each type.

Components Congruency Gap thinking Accuracy MADs Response time MADs

With a common component Congruent Leads to the correct answer 2.7% 196

Incongruent Leads to the correct answer 2.7% 245

Without common components Congruent Leads to the correct answer 9.2% 584

Leads to the incorrect answer 5.1% 639

Both fractions have the same gap 5.9% 583

Incongruent Leads to the correct answer 4.2% 601

Neutral Leads to the correct answer 2.7% 343

TABLE 5 | Performance by components and congruency.

Components Congruency Accuracy Response time (ms)

With a common component Congruent 98% (3%) 2, 752 (787)

Incongruent 98% (2%) 2, 839 (739)

Without common components Congruent 85% (13%) 4, 292 (1, 217)

Incongruent 91% (7%) 4, 058 (1, 012)

Neutral 97% (3%) 3, 747 (934)

Mean accuracies and response times (RTs) for each of the item types defined by components and congruency. Standard deviations in parentheses.

incongruent [acc: t(55) = 7.7, p < 0.0001; RT: t(55) = 5.1,
p < 0.0001] items.

In contrast with previous studies (Vamvakoussi et al., 2012;
Obersteiner et al., 2013), our RT data showed a non-significant
difference between congruent and incongruent items with a
common component. Given that this result has consistently
emerged in the past, we conducted a post hoc exploration by
looking at items with a common component presented during
the first and last blocks of the testing session (each block
contained 60 items in total; see Supplementary Table S2 in
the Supplementary Material). Whereas accuracies showed no

relevant changes between these blocks, RTs for items with a
common component displayed a significant interaction between
block and congruency [X2(1) = 11.7, p = 0.0006], reflecting the
presence of a significant advantage for congruent items in the first
experimental block [t(55) = 3.2, p = 0.002] but not in the last block
[t(55) = 0.15, p = 0.88; see Figure 2].

Regarding RTs for items without common components, our
data showed the expected reversed congruency effect: congruent
items were answered more slowly than incongruent items (see
also Obersteiner et al., 2013; DeWolf and Vosniadou, 2015).
A post hoc exploration comparing the first and last blocks of items
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FIGURE 2 | Response times by components, congruency, and experimental
block. Mean RTs for each of the item types defined by components (white:
with a common component, black: without) and congruency (�: congruent,
•: incongruent, and N: neutral), separately for items in the first and last
experimental blocks. Vertical bars depict 95% confidence intervals.

suggests that this difference remained unchanged throughout
the experimental session, as there was no significant interaction
between block and congruency [X2(2) = 0.9, p = 0.64].

Congruency Effects and Gap Thinking
Obersteiner et al. (2013) suggested that the reversed congruency
effect for items without common components stemmed from
specific items, particularly those where one fraction had
a numerator 1 or 2 units smaller than its corresponding
denominator (i.e., where one of the fractions had a gap of 1 or
2). After discarding these items, the reversed congruency effect
they observed was no longer statistically significant. Our item
set was chosen so that no fraction had a gap smaller than 11
[see constraint (b) in the section “Task Items”], allowing us to
exclude this alternative explanation, but still our data revealed
a significant reversed congruency effect. To dig into a possible
cause of this difference, we asked whether the applicability of the
gap thinking strategy made a difference in participants’ responses,
by computing accuracy rates and RTs for congruent items without
common components separately for those in which gap thinking
leads to the correct answer and to the incorrect answer, and for
items in which both fractions have the same gap (see Table 6).
We remind the reader that these three possibilities can only occur
in the case of congruent items without common components,
while for all the other item types, gap thinking always leads to
the correct answer.

Against our hypothesis, the applicability of gap thinking
had no significant effect on either participants’ accuracy rates
[X2(2) = 1.7, p = 0.44] or RTs [X2(2) = 5.0, p = 0.08]. A post hoc
analysis of RTs showed that participants took significantly less

TABLE 6 | Performance by gap type.

Item type Accuracy Response time (ms)

Gap thinking leads to the correct answer 87% (11%) 4,021 (1,255)

Gap thinking leads to the incorrect answer 83% (18%) 4,483 (1,427)

Both fractions have the same gap 84% (16%) 4,417 (1,296)

Mean accuracies and RTs for congruent items without common components,
separately for each type defined by the applicability of gap thinking. Standard
deviations in parentheses.

time to answer items where gap thinking leads to the correct
answer (i.e., where the larger fraction has the smaller gap) with
respect to items where gap thinking leads to the incorrect answer
[t(55) = 3.7, p = 0.0005] or to items where both fractions share
the same gap [t(55) = 3.6, p = 0.0006], whereas the latter two item
types did not statistically differ from one another [t(55) = 0.6,
p = 0.56]. The lack of statistical significance of gap in the linear
mixed model for RTs, as it includes random factors, suggested
the presence of a high variability in RTs across items within the
gap item types. This was confirmed by computing the intraclass
correlation coefficient, ICC = 0.11, indicating a very low similarity
of RTs within each type.

Looking at the individual level, the relation between
participants who had better accuracy in items where gap thinking
leads to the correct vs. to the incorrect answer and vice versa was
28:18 (p = 0.18, binomial test). For RTs, this relation was 38:18
(p = 0.01). The corresponding figures for the contrast between
items where gap thinking leads to the correct answer vs. items
in which gap thinking is uninformative are 22:20 (accuracies,
p = 0.88) and 40:16 (RTs, p = 0.002).

As a final post hoc analysis, we regressed RTs on the distance
between fractional gaps for each item type, leading to no
significant effects [items where gap thinking leads to correct
answer: b = −63, SE = 29, t(9.8) = −2.2, p = 0.06; items where
gap thinking leads to the incorrect answer: b = 1, SE = 21,
t(10.1) = 0.1, p = 0.95].

Numerical Distance
As a final analysis, we investigated the effect of numerical distance
on participants’ RTs. Since all our items were chosen so that both
fractions were either above or below 1/2, our test of this effect is
less affected than previous studies by participants’ use of strategies
such as benchmarking against 1/2. We computed average RTs
for each level of numerical distance present in our item set,
categorized into small, medium, and large distances (approx.
0.10, 0.17, and 0.24, respectively; see Table 1 for examples).
Overall, there is a significant effect of numerical distance
[X2(1) = 8.8, p = 0.003; RTs for items with small, medium, and
large distances were 3,655, 3,512, and 3,303 ms, respectively].
However, as Figure 3 shows, this effect was markedly different
for items with and without common components. Table 7
presents the results of linear regressions applied separately to
each combination of components and congruency, showing that
although RTs for all item types tend to decrease with increasing
numerical distance, this change is only statistically significant for
items without common components.
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FIGURE 3 | Response times by components, congruency, and numerical
distance. Mean RTs for each of the item types defined by components (white:
with a common component, black: without) and congruency (�: congruent,
•: incongruent, and N: neutral), separately for each of the three possible
numerical distances between fractions (small, medium, and large). Vertical
bars depict 95% confidence intervals.

Following previous studies (Bonato et al., 2007; Obersteiner
et al., 2013), we also looked at the effect of fractional numerical
distance as opposed to that of the distances between fraction
components (numerators and denominators). Table 8 presents
the outcome of multiple regressions for RTs of items without
common components, considering numerator and denominator
distances in addition to fractional numerical distance. The only
case in which numerical distance explained RTs above and
beyond componential numerical distance was that of incongruent
items. For neutral items, in contrast, statistical significance was
reached for the denominator distance only. This suggests that for
these items, the effect of numerical distance on RTs is mediated
by the denominator distance.

DISCUSSION

We presented a fraction comparison task to a sample of
undergraduate engineering students to test the role of different
item characteristics and strategies in their performance. We
measured accuracy rates and RTs to a set of fraction comparison
items that were categorized in terms of the presence of a common
component, congruency, the applicability of gap thinking, and
numerical distance. Our data aligned in some respects with
previously reported results but also revealed interesting nuances.

Variability at the Individual and Item
Levels
Our data show important variability at both the individual
and the item levels. Particularly regarding response accuracies,

variability within item types seems much larger than in other
fraction comparison studies such as the one with middle
school children by Gómez and Dartnell (2019; see Figure 1
therein). While variability at the individual level has traditionally
been considered in statistical inference, variability at the item
level has not been fully acknowledged until more recently
(Baayen et al., 2008; Bates et al., 2015). Mixed-effects regression
models allow researchers to consider the variability that stems
from the random selection of participants and of items
simultaneously, by means of random factors. In our statistical
analyses of congruency, gap, and numerical distance effects,
the inclusion of random factors for items allowed us to
assess whether our effects of interest were robust enough so
as to be generalizable to novel items from the same item
population. While the statistical significance of the majority of
our results was unaffected by the inclusion of these random
factors, it is worth commenting that the gap effect reported in
section “Congruency effects and gap thinking,” was significant
without the item random factor but non-significant with it.
We interpret this change in results between both analyses as
revealing that, despite the presence of a significant gap effect
within our specific item set, there is not enough evidence
that this effect may generalize to novel, similarly constructed
items. Alternatively, it is also possible that gap thinking is not
consistently used across items. Nonetheless, our results suggest
that outcomes like the reversed congruency effect for items
without common components can be expected to generalize to
novel items.

The Presence of Common Components
and Strategy Selection
Obersteiner et al. (2013) presented items with and without
common components in different blocks (see also Vamvakoussi
et al., 2012), whereas we intermixed all item types within blocks.
We expected mixed ordering to reduce participants’ reliance on
strategies that are specific for items with a common component.
Although participants in our study took longer overall to answer
common component items than in the previous studies, they
performed significantly better than in items without common
components. This indicates that these highly skilled participants
can flexibly adapt and use component-based strategies within the
time frame allowed in our design.

Congruency Effects
As in many previous studies, congruent items with a common
component tended to be easier than the corresponding
incongruent items (Vamvakoussi et al., 2012; Obersteiner et al.,
2013; Gómez and Dartnell, 2015, 2019). This difference, however,
was not statistically significant in our data. A more careful
analysis, considering the degree of progress of the experimental
session, showed that this congruency effect was present in the
first block (items 1–60) but became negligible in the last one
(items 121–180), indicating that the advantage for congruent
items depends on the participants’ level of practice with the task,
and/or on task-specific strategies that participants may develop
throughout the experimental session.
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TABLE 7 | Response time regressions for fractional numerical distance, by components and congruency.

Components Congruency b t d.f. p

With a common component Congruent −1, 031 (680) −1.5 33.9 0.14

Incongruent −879 (715) −1.2 34.0 0.23

Without common components Congruent −4, 149 (1, 416) −2.9 34.2 0.006

Incongruent −4, 992 (1, 066) −4.7 34.4 <0.0001

Neutral −3, 281 (865) −4.0 33.5 0.0006

Results of linear mixed regressions applied to RTs, considering the numerical distance between fractions as a fixed factor and participants and items as random factors.

TABLE 8 | Response time regressions for fractional and componential numerical
distance, by congruency.

Congruency Predictor b t d.f. p

Congruent Frac −2, 679 (1, 666) −1.6 31.7 0.12

Num −26.8 (14.7) −1.8 31.1 0.08

Den 18.6 (9.6) 1.9 31.1 0.06

Incongruent Frac −4, 198 (1, 261) −3.3 31.7 0.002

Num 18.5 (13.1) 1.4 31.8 0.17

Den −5.6 (8.1) −0.7 31.4 0.50

Neutral Frac −835 (1, 298) −0.6 31.3 0.52

Num −26.0 (18.5) −1.4 31.5 0.17

Den −20.7 (8.0) −2.6 31.2 0.01

Results of linear mixed regressions applied to RTs of items without common
components, considering the numerical distance between fractions (Frac) as well
as the numerical distance between fraction components (Num, Den) as fixed
factors and participants and items as random factors.

In the case of pairs where fractions lack a common
component, our results confirmed the presence of a reversed
congruency effect by showing that congruent items were
answered less correctly and more slowly than incongruent items
(DeWolf and Vosniadou, 2015; Gómez and Dartnell, 2015, 2019).
Individual-level data confirmed this reversed pattern. Whereas in
Obersteiner et al.’s (2013) study, this reversed effect could have
been explained by the presence of a subset of “easy” items where
one of the fractions had a very small gap, this confound does not
apply to our set of items. This provides further evidence that the
reversed congruency effect is a robust finding that needs to be
considered in theories about the cognitive processing of fraction
comparison in the context of highly skilled individuals.

It is also relevant to notice that neutral items turned out to be
easier (in terms of both accuracy and RT) than both congruent
and incongruent items, an outcome that has also been reported
previously (e.g., Obersteiner et al., 2013) but not discussed in
depth so far. Our analysis of numerical distance effects suggests
that this advantage follows from a component-based strategy
used specifically for neutral items, as the effect of fractional
numerical distance on RTs for these items was modulated by that
of denominator distance.

Congruency Effects and Gap Thinking
As a possible explanation to the reversed congruency effect
observed in items without common components, we investigated
the role of gap thinking in young experts’ mental processes during
fraction comparison. Although mathematically incorrect, gap

thinking leads to the correct answer in a very high proportion
of cases: out of the 1,101,230 possible fraction pairs that fulfilled
the constraints described in section “Materials and Methods,”
84% are answered correctly by gap thinking. Moreover, all
items that fail to be answered correctly by this strategy are
categorized into one of our main item types: congruent items
without common components. Therefore, while it is unclear
if it is representative of the fraction comparison items that
students are actually presented with in the classroom, gap
thinking needs to be explicitly considered in the cognitive study
of fraction comparison.

Our data showed that accuracy rate variations due to the
applicability of gap thinking were minimal and not statistically
significant. RTs, on the other hand, seemed to be affected by
gap type, but this effect did not reach statistical significance.
Pairwise post hoc comparisons suggested, however, that there
are significant differences between items in which gap thinking
leads to the correct answer and the other two types, implying
that the lack of significance of the omnibus test could be a
matter of statistical power (due, for instance, to the low intraclass
correlation found in RTs across gap types).

An absence of a gap effect both in accuracy rates and in
RTs (or a very low effect size) would indicate that, against
our expectations, the impaired performance in congruent items
without common components is not due to participants using
gap thinking. This is consistent with the negative result showing
that RTs were not modulated by the numerical distance between
fractional gaps. It is possible, nonetheless, that participants do
not use gap thinking frequently or consistently enough for
gap effects to reach statistical significance (it is worth noting
that individual-level data supported a gap effect). Variability
in strategy use is inherent to models such as Siegler’s (1996)
overlapping waves model, and we can take it as an indication
that young experts do not consider (whether consciously or
not) fractional gaps consistently for strategy selection in fraction
comparison. A promising line of inquiry for further research is
that used by González-Forte et al. (2018) with school children,
who complemented a fraction comparison task similar to ours
with post-task interviews in order to probe participants’ reliance
on the gap thinking strategy.

Numerical Distance
Our data also replicated previously documented numerical
distance effects (Schneider and Siegler, 2010; Sprute and Temple,
2011; Obersteiner et al., 2013; DeWolf and Vosniadou, 2015),
by showing that items in which fractions are numerically farther
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apart were quicker to answer. In comparison to these previous
studies, the set of items used here controlled for a number
of characteristics that strengthen our conclusion. Among these
characteristics, the most prominent is that all items were chosen
to avoid participants’ use of the benchmarking-to-1/2 strategy.

To further investigate the numerical distance effect for items
without common components, we also conducted multiple
regressions to pit the effect of numerical distance against that
of the distances between fraction components. While items
without common components all showed an effect of numerical
distance when considered as the only predictor, the addition
of componential distances into the models led to very different
outcomes. For congruent items, all three predictors fell short
of statistical significance. For incongruent items, the effect of
numerical distance remained significant after the inclusion of
componential distances, suggesting that participants’ reliance
on numerical distance is more consistent in this item type. In
terms of strategy selection, this could be interpreted as a higher
activation of strategies related to numerical distance because
of a lower activation of component-based strategies. Finally,
for neutral items, the significant effect of numerical distance
when considered alone was linked to a significant effect of
denominator distance in the multiple regression. This indicates
that the numerical distance effect is in this case mediated by the
denominator distance and may be the reason why neutral items
were answered more quickly than the other item types lacking
common components.

The Fraction Comparison Process
Fraction comparison is a complex cognitive process, and while it
has been extensively investigated in the mathematics education
literature, cognitive psychology research has focused on it
only during the past decade. In this period, the effect of
several item characteristics, such as the presence/absence of a
common component (Meert et al., 2009; Barraza et al., 2014),
congruency (Ischebeck et al., 2009; Vamvakoussi et al., 2012;
DeWolf and Vosniadou, 2015; Gómez and Dartnell, 2019),
and numerical distance (Bonato et al., 2007; Schneider and
Siegler, 2010; Sprute and Temple, 2011; Obersteiner et al.,
2013), have been explored. Nonetheless, research has also shown
that item and task characteristics are not enough to explain
fraction comparison performance and that individual differences
and strategies need to be taken into account (Hallett et al.,
2010; McMullen et al., 2018; Gómez and Dartnell, 2019). Our
research contributes in this direction, investigating in a more
systematic way than previous studies one interaction between
item characteristics and strategies, specifically that of congruency
and gap thinking.

The Congruency Account
Congruency has been hypothesized by several researchers as
a relevant dimension to understand fraction comparison and
other fraction tasks (Ischebeck et al., 2009; Vamvakoussi et al.,
2012; Obersteiner et al., 2013; Gómez et al., 2014). However, the
evidence for its role in explaining people’s fraction comparison
performance is mixed. While congruency is a very strong
predictor of school children’s answers in the early stages of

learning, where accuracy rates are highly affected by congruency
even regardless of the presence of a common component
(Gómez et al., 2014; Gómez and Dartnell, 2019), data from
skilled individuals and experts have shown a reversed effect
(Obersteiner et al., 2013; DeWolf and Vosniadou, 2015; Gómez
and Dartnell, 2019). In this study, we confirmed the presence
of this reversed effect using a more controlled item set than
these previous works and others. This outcome is problematic
for the consideration of congruency as a theoretically relevant
dimension in experts’ cognitive processes for comparing fractions
(see a similar argument by DeWolf and Vosniadou, 2015).
While congruency remains correlated with fraction comparison
performance when fractions lack common components (i.e., it
explains variability in experts’ accuracies and RTs), its conceptual
foundation falls apart as it predicts a wrong direction for
the effect. Our results might even imply that the congruency
effect for fraction pairs with a common component is not
as robust as previously expected, as our analysis for the first
and third blocks of the experimental session suggests that it
may vanish with extended task practice. Altogether, while it is
undeniable that congruency correlates with experts’ performance
in fraction comparison, it is conceptually unsuccessful in
explaining this performance.

As an alternative account for the reversed congruency effect,
we explored the role of gap thinking, although results did not
align with our expectations. Neither accuracy rates nor RTs
were significantly modulated by the applicability of gap thinking,
although RTs showed interesting pairwise differences in a post hoc
analysis as well as in individual-level data. Further research is
needed to clarify whether this mixed outcome for RTs is a matter
of statistical power or an actual lack of effect. Our data show that
the three gap item types have a very low intraclass correlation,
indicating that a large share of variance comes from item-specific
effects rather than from item types.

Note that even if we considered our RT results as a positive
indication of the use of gap thinking, the reduced accuracy for
congruent items without common components would remain
unexplained. Such reduced accuracies have been documented
before, not only with adult experts (DeWolf and Vosniadou,
2015) but also with high-achieving middle schoolers (those in
cluster B in Gómez and Dartnell, 2019), showing that this is not
an isolated finding and that it needs to be directly addressed in
future research.

It is possible that other strategies, not considered in our
design, produce this pattern of results. One possibility is a “larger
denominator, smaller fraction” strategy (Gómez et al., 2014),
which systematically leads to the incorrect answer for congruent
items without common components and to the correct answer
for all incongruent and neutral items. Additional support for this
strategy comes from the significant denominator distance effect
we observed for RTs to neutral items. However, the outcomes of
this strategy are highly correlated with those of congruency: just
like gap thinking, it leads to correct answers for all incongruent
and neutral items, but it leads systematically to incorrect answers
in congruent items without common components and to no
answer for congruent items with a common component (i.e.,
fraction pairs with the same denominator). It is therefore very
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difficult to draw conclusions about this strategy based on our
item set and data.

Numerical Distance Effects
Numerical distance effects have often been considered as
evidence of someone’s ability to access the numerical magnitude
of fractions (e.g., Bonato et al., 2007; Schneider and Siegler,
2010; Sprute and Temple, 2011). Our data call into question
this association, as component-based strategies may also
lead to numerical distance effects, adding to the increasing
evidence suggesting that working with fraction magnitude is
better understood as a process based on strategies rather
than on automatic access to a numerical magnitude (Kallai
and Tzelgov, 2012; Gabriel et al., 2013b). Recent evidence
by Binzak and Hubbard (2020) challenged this account by
observing numerical distance effects when allowing participants
much shorter time windows to answer each item, a finding
that deserves further research for both its theoretical and
practical implications.

Final Remarks
Our study provided fraction comparison data from a highly
mathematically skilled population to understand the role
of several item characteristics and strategies: congruency,
gap thinking, and numerical distance. Results confirm
previous outcomes that congruency effects fail to conceptually
explain skilled participants’ performance, and also discard a
possible alternative explanation represented by gap thinking.
Regarding numerical distance in fraction comparison, our
study revealed significant effects for items without common
components even after controlling for specific strategies such
as benchmarking against 1/2. A closer examination, however,
reveals a complex pattern where this effect is only robust
for one item type, and for another type, it is mediated by
denominator distance.

Altogether, this work contributes to our knowledge of the
interaction between item characteristics and strategies in the
fraction comparison task, helping to unveil the great complexity
hidden behind middle school mathematical content. At the same
time, our results reveal that item-level variability is important
within items without common components, and future work is
needed to uncover its sources.
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