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Institute of Sport Science, Sichuan University, Chengdu, China

With the increase in the number of internet users, the problems associated with excessive 
internet use have become increasingly obvious. Internet addiction can alter neurobiology, 
and its symptoms can be alleviated through exercise, but whether exercise exerts these 
effects through neurobiological pathways is unclear. Here, we reviewed the neurobiological 
mechanisms of exercise-based interventions against internet addiction by searching 
PubMed and Google Scholar for relevant research using such keywords as “exercise”, 
“internet addiction”, “hypothalamic-pituitary-adrenal axis”, “neurotrophin”, and “dopamine”. 
This review summarizes advances in our understanding of the neurobiological processes 
through which exercise can reduce internet addiction, and our analysis strengthens the 
idea that exercise-based interventions can be effective in this regard. The available evidence 
suggests that exercise can increase the levels of neurotrophic factors, cortisol, and 
neurotransmitters; improve the morphology of specific parts of the central nervous system, 
such as by stimulating hippocampal neurogenesis; protect the autonomic nervous system; 
and control the reward urge. In other words, exercise appears to mitigate internet addiction 
by regulating the neurobiology of the central and autonomic nervous systems. In this way, 
exercise-based interventions can be recommended for reducing internet addiction.
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INTRODUCTION

The 2019 report of the China Internet Network Information Center showed that the number 
of Chinese internet users reached 854 million in December 2018, and there are currently 4.5 billion 
internet users worldwide (CNNIC, 2019; Miniwatts, 2019). While the internet brings convenience 
and economic benefits to people and organizations, excessive use of the internet can cause 
addiction, harming their psychological condition and impacting academic, professional and social 
functions (Beard and Wolf, 2001). Studies in the United States and Europe suggest that prevalence 
of internet addiction ranges from 1.5 to 8.2%. In Southeast Asia, the prevalence among young 
people can be  as high as 20–30% (Egorov and Grechanyi, 2019). Internet overuse continues to 
increase due to the low cost, portability, and increasing sophistication of internet-related devices.

Internet addiction is a type of behavioral addiction and is often accompanied by such 
comorbidities as impulsiveness, depression, anxiety, and obsessive-compulsive disorders  
(Alimoradi et  al., 2019). The behaviors associated with internet addiction include “pathological  
internet use” (Davis, 2001), “problematic internet use” (Davis et  al., 2002), “internet addiction 
disorder” (Siomos and Angelopoulos, 2008), and “internet gaming addiction” (Freeman, 2008).  
Internet addiction is currently diagnosed based on criteria analogous to those used to diagnose 
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substance addiction. The physical manifestations are compulsive 
internet use, and the psychological manifestations are behavioral 
problems caused by withdrawal from internet addiction (Mihajlov 
and Vejmelka, 2017). Standard treatments against internet 
addiction have not yet been established; clinical trials have 
focused mainly on psychological, pharmacological, and exercise-
based therapies. Drug treatment has side effects that may affect 
mental and physical well-being, while individualized psychological 
treatment is difficult to design and takes a long time. Therefore, 
exercise-based interventions may be  more practical.

Exercise has been extensively investigated as an alternative 
or adjunct treatment for internet addiction because it has 
psychological benefits (Zhang, 2012), such as reducing depression, 
anxiety, and anger, as well as improves mood (Hassmen et  al., 
2000). It also has physical benefits, such as strengthening 
cardiopulmonary function, promoting blood circulation, and 
improving immune response and nervous system function. A 
meta-analysis concluded that sports interventions can significantly 
reduce internet addiction (Liu et  al., 2017), and one study 
showed that exercise can substantially reduce the time spent 
online and the severity of internet addiction (Kocak, 2018). 
Therefore, we think that exercise-based interventions may be an 
effective way to mitigate and even eliminate internet addiction.

NEUROBIOLOGICAL MECHANISMS OF 
INTERNET ADDICTION

Internet Addiction and Autonomic Nervous 
System (ANS) Dysfunction
The neurobiology of internet addiction has attracted much attention, 
but relatively little is known (Tereshchenko and Kasparov, 2019; 
Vaccaro and Potenza, 2019). This addiction appears to involve 
the simultaneous activation of the sympathetic and parasympathetic 
arms of the autonomic nervous system (ANS). For example, when 
internet addicts are on-line, their pulse and respiration accelerate, 
while their peripheral temperature and skin conductivity decrease 
(Lu et al., 2010). This contradicts an earlier proposal that internet 
addiction involves antagonism between the sympathetic and 
parasympathetic systems (Carlson, 2007). The reward-and-aversion 
hypothesis of addiction may also apply to internet addiction 
(Huang, 2017): when using the internet, addicts experience a 
brain reward process; when not using the internet, addicts 
experience displeasure as a result of withdrawal symptoms (Young, 
1996). These mutually reinforcing processes contribute to the 
development and maintenance of addiction and relapse (Brand 
et al., 2014). Therefore, interventions designed to create antagonism 
between sympathetic and parasympathetic nervous systems may 
be  effective at alleviating and preventing internet addiction.

Internet Addiction and the Hypothalamic-
Pituitary-Adrenal (HPA) Axis
The hypothalamic-pituitary-adrenal (HPA) axis is involved in 
substance addiction and other addictive behaviors (Nawata 
et al., 2012; Vinson and Brennan, 2013). A study on the activity 
of the HPA axis in adolescents with internet gaming addiction 
found that the level of serum cortisol in the addicted group 

was significantly higher than that in the non-addicted group 
(p  <  0.026) (Kim and Kim, 2013). On the other hand, another 
study found no relationship between the HPA axis and internet 
use disorder (Geisel et  al., 2015). This discrepancy may reflect, 
at least in part, the relatively small study samples and the 
possibility that HPA axis dysfunction exceeds the reactive change. 
It seems plausible, even likely, that the HPA axis is involved 
in internet addiction because it responds to stress, and stress 
responses are related to the onset, severity and maintenance 
of internet addiction (Heinze et  al., 2016; Kaess et  al., 2017). 
Early adversity and trauma may also alter the HPA axis to 
increase risk of internet addiction (McGowan, 2013).

Internet Addiction and Morphological 
Changes in the Central Nervous  
System (CNS)
Numerous imaging modalities have shown that internet addiction 
is associated with changes in neural structure. Internet addiction 
has been associated with decreases in the thickness of the left 
lateral orbit frontal cortex, insular cortex, and entorhinal cortex, 
as well as with increased thickness of the left anterior central 
cortex, anterior nerve process, middle frontal cortex, 
infratemporal cortex, and middle temporal cortex. These changes 
in cortical thickness are related to control execution, visual 
image, attention, and memory retrieval functions (Yuan et  al., 
2013; Zhu et  al., 2015). Internet addiction is also related to 
a decrease in gray matter density in left anterior cingulate 
cortex, left posterior cingulate cortex, and left island and to 
a decrease in gray matter volume in bilateral dorsolateral 
prefrontal cortex, auxiliary motor area, orbit frontal cortex, 
cerebellum, and left medulla. These areas of gray matter change 
are related to cognitive control, personality expression and 
decision-making. Uncontrolled use of internet may be  related 
to the reduction in gray matter volume in prefrontal cortex 
(Miller and Cohen, 2001; Yuan et al., 2011b; Zhou et al., 2011).

In addition to gray matter abnormalities, internet addiction 
has been linked to white matter abnormalities, namely an 
increase in the fractional anisotropy of thalamus, left posterior 
cingulate cortex and left posterior limb of internal capsule, as 
well as a decrease in fractional anisotropy of parahippocampal 
gyrus, prefrontal cortex and anterior cingulate cortex. Indeed, 
higher fractional anisotropy has been related to addiction and 
some behavioral disorders (Yuan et  al., 2011a; Dong et  al., 
2012; Lin et al., 2012). In these ways, brain imaging technology, 
increasingly used to study internet addiction, indicates that 
the brain structures involved in such addiction are related to 
reward, decision, memory, and cognitive control.

In addition to these structural changes, internet addiction 
is associated with functional abnormalities in the brain area. 
Resting cerebral blood flow in parahippocampal gyrus, amygdala, 
and insula was significantly higher in addicts than in the 
control group of one study (Feng et  al., 2013), and these areas 
of altered blood flow are involved in learning and memory. 
Internet gaming addiction changes the distribution of cerebral 
blood flow in adolescents (Zhu et  al., 2015), but it is not 
clear whether these changes reflect damage to the nervous 
system or are secondary changes to compensate for the damage. 
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Internet addiction has been associated with enhanced functional 
connections between the bilateral cerebellum posterior lobe 
and middle temporal gyrus but weakened connectivity between 
the bilateral inferior parietal lobe and right inferior temporal 
gyrus (Ding et  al., 2013). Similarly, internet gaming disorder 
has been linked to increased regional homogeneity of the 
inferior parietal lobe, left posterior cerebellum and the left 
middle frontal gyrus but decreased regional homogeneity of 
the temporal, occipital, and parietal lobes (Dong et  al., 2012). 
Other works have shown that internet addiction can change 
the distribution of resting cerebral blood flow, cause dysfunction 
in connections, decrease the efficiency of inhibition responses, 
increase brain activity related to game impulses, and decrease 
brain activity related to game control to an extent that causes 
control dysfunction (Ko et  al., 2009, 2013, 2014).

In addition to functional abnormalities, brains of individuals 
with internet gaming disorder show reduced metabolism in 
the anterior cingulate cortex, temporal area, frontal area, parietal 
lobe and striatum, as well as low metabolic connectivity between 
the temporal area and marginal area and between the motor 
area and occipital area (Kim et  al., 2019). Areas of decreased 
metabolism are responsible mainly for the integration of auditory 
and visual information, as well as physical representation. The 
change in metabolic connectivity leads to dysfunction of sensory 
integration and impaired sensory information processing.

In these ways, molecular and functional imaging techniques 
have shown that internet addiction involves structural changes 
in brain areas involved in reward, decision-making, memory, 
and cognitive control. It alters the distribution of resting cerebral 
blood flow, increases impulsive behavior, and reduces inhibition 
control and other brain activities. The neurobiology of internet 
addiction also involves metabolic reduction, and the change 
in metabolic connectivity causes sensory integration dysfunction.

Internet Addiction and Neurotrophic Factors
Increasing evidence shows that neurotrophic factors are involved 
in the regulation of negative emotions and play a key role in 
treating depression, drug abuse, and other addictions (Levy et al., 
2018). A case-control study showed that the levels of glial cell-
derived neurotrophic factor (GDNF) in plasma were significantly 
reduced in internet gaming addicts, and that GDNF level is 
inversely related to severity of internet addiction and motivation-
related cognitive processes (Jeong et  al., 2019). GDNF is a 
neurotrophic factor that has an important role in the maintenance 
of dopaminergic neurons in several brain regions, as well as in 
the development, survival, and maintenance of dopaminergic 
neurons in the midbrain (Carnicella and Ron, 2009). Although 
the role of GDNF in internet addiction is not clear, GDNF can 
promote the survival and differentiation of dopaminergic neurons 
in the midbrain, which is related to the activity of tyrosine 
hydroxylase in that brain region. These changes may alter synapses 
and responsiveness of the mid-limbic dopaminergic system, 
ultimately leading to weakening of stimulation or reward pathways 
as well as to addiction-related neuroadaptation (Rosenblad et  al., 
2003). In contrast, another study found that the serum levels of 
brain-derived neurotrophic factor (BDNF) were not altered in 
men with internet use disorder (Geisel et  al., 2012), so internet 

addiction may involve different pathophysiology from other types 
of addiction. Further research is needed to clarify the neurobiological 
mechanism of internet addiction (Geisel et  al., 2013).

Internet Addiction and Neurotransmitters
In recent years, many studies have shown that internet addiction 
is related to dysfunction of the dopamine system. One study 
found that internet addiction reduced the levels of the dopamine 
D2 receptor and the expression of dopamine transporter, and 
it dysregulated dopamine D2 receptor, leading to loss of control 
and forced behavior (Kim et  al., 2011; Hou et  al., 2012; Tian 
et al., 2014). Several types of addiction are associated with lower 
levels of dopamine D2 receptor (Pallanti et  al., 2010), indicating 
that internet addiction may share neurobiological mechanisms 
with other addictive diseases. Therefore, we speculate that internet 
addicts may engage more in internet activities in order to obtain 
more dopamine reward and normalize dopaminergic activity in 
their brains. The decrease in dopamine transporters may reflect 
the loss of striatal terminals or the impairment of dopaminergic 
function in the brain (Hou et  al., 2011).

Internet gaming addiction can reduce the plasma catecholamine 
level in teenagers in the resting state, which manifests as a 
decrease in adrenaline and noradrenaline levels (Kim et  al., 
2016). Internet addiction may involve altered autonomic regulation 
of the central nervous system (CNS), leading to a decrease in 
catecholamine. This may reduce the responsiveness of internet 
addicts to external stimulation and lead to cognitive impairment 
in the long term (Volkow et  al., 1996).

Internet Addiction and Genetic Variation
In recent years, only a small number of studies have examined 
genetics and internet addiction (Hahn and Spinath, 2017). Gene 
and environment play a role in internet addiction, leading 
researchers to investigate twins and their parents. Problematic 
internet use is heritable, and there are gender differences, with 
addiction in men showing greater heritability (Li et  al., 2014). 
In the case of addiction to internet gaming, the role of minor 
alleles is associated with low level of dopamine secretion (in 
the case of DRD2 alleles encoding dopamine D2 receptor) and 
low level of dopamine receptor in prefrontal cortex (in the case 
of COMT alleles encoding catecholamine-O-methyltransferase) 
(Han et  al., 2007). Sequencing showed that the T-mutation (CC 
genotype) in the rs1044396 polymorphism in the CHRNA4 gene 
encoding nicotinic acetylcholine receptor subunit alpha 4 was 
more frequent in internet addicts than in healthy controls (Montag 
et al., 2012). In addition, there is evidence that internet addiction 
causes shortening of telomeres and protective structures on the 
ends of chromosomes (Kim et  al., 2019). This shortening may 
reflect inflammation or oxidative stress. For example, repetitive, 
long-term activation of the stress response induces the release 
of proinflammatory catecholamine, which increases cell turnover, 
promotes oxidative stress, and damages telomeres (Mather et al., 
2010; Sofia et  al., 2017). Genetic variation may help explain 
the effects of internet addiction on cognition, emotion and 
addictive behaviors.

This literature suggests that internet addiction and substance 
addiction share the same neurobiological basis (Ko et al., 2009), 
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FIGURE 1 | Neurobiological mechanisms of internet addiction.

but there is evidence of differences in BDNF levels between 
pathological gambling and internet addiction (Geisel et  al., 
2012). Exercise-based interventions may help counteract the 
neurobiological causes of internet addiction (Figure  1).

NEUROBIOLOGICAL MECHANISMS OF 
EXERCISE INTERVENTIONS AGAINST 
INTERNET ADDICTION

Exercise-based intervention has been shown to reduce the 
prevalence and symptoms of internet addiction, and participation 
in sports can predict internet addiction (Rahimi-Rigi et  al., 
2019; Hong et  al., 2020). In fact, many studies have shown 
that more generally, exercise-based intervention can be effective 

against mental diseases (Rosenbaum et al., 2015). The potential 
explanation for the efficacy of such intervention against  
internet addiction is that exercise replaces most of the internet  
experience, as well as improves the physical and mental health  
of individuals.

Exercise Improves CNS Structure
Exercise is a natural reward that alters midbrain nigrostriatal 
dopamine circuits and dopamine circuits involving emotional 
evaluation (Greenwood, 2019). Animal studies have shown 
that acute and chronic exercise increase reward-related 
dopaminergic activity in the striatum circuit (Greenwood et al., 
2011; McMorris, 2016), and strenuous exercise causes the 
human brain to release opioids (Boecker et al., 2008; Saanijoki 
et  al., 2018). In rats, exercise increases expression of the 
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reward-related plasticity marker DFosB in the dorsal striatum 
and nucleus accumbens (Herrera et  al., 2016), and it increases 
dopaminergic activity in the ventral tegmental area (Dubreucq 
et  al., 2013). These results suggest that exercise can control 
the reward impulse, which may help explain its ability to 
mitigate internet addiction.

Effect of Exercise on the HPA Axis
Exercise affects the HPA axis by reducing the pressure response 
and producing beneficial effects on health. The difference between 
the stress caused by exercise and the stress caused by negative 
life events is that exercise can reverse decreases in cortisol 
(Heijnen et  al., 2016): autonomous exercise can activate the 
HPA axis and improve cortisol levels (Drogos et  al., 2019). 
Although higher levels of cortisol are associated with cognitive 
impairment, cortisol responses can be maintained within healthy 
limits by carefully selecting the exercise type and intensity and 
by optimizing nutritional status and reducing stress level (Huang 
et al., 2009; Anderson and Wideman, 2017). For example, more 
than 12  weeks of intervention based on closed motor skill 
exercise (e.g., track and field, swimming, and gymnastics) can 
substantially mitigate internet addiction (Liu et  al., 2019).

At the same time, exercise reverses the increase in 
corticosterone and decrease in glucocorticoid receptor caused 
by chronic stress, and it induces the HPA axis to adapt to 
the stress response (Stranahan et  al., 2008). Exercise can 
antagonize the abnormal level of corticosterone in the adrenal 
gland, hippocampus, and plasma caused by stress stimulation, 
helping maintain the normal regulatory function of the HPA 
axis (Heijnen et  al., 2016). This dual role of activating and 
adapting the HPA axis may help explain how exercise can 
reduce internet addiction.

Exercise Improves CNS Structure and 
Connectivity
Long-term exercise promotes prefrontal cortex growth and 
improves learning, memory, and cognition (Chaddock et  al., 
2010; Weinstein et  al., 2012). A 6-month randomized trial 
reported a positive correlation between prefrontal cortex volume 
and exercise (Ruscheweyh et  al., 2011). This volume increase 
may relieve internet addiction as well as concurrent cognitive 
disorders (Gujral et  al., 2017). Similarly, exercise and good 
fitness level are associated with larger hippocampal volume 
(Thomas et al., 2016). Moderate-intensity aerobic exercise such 
as brisk walking for 12 months increased hippocampal volume 
by about 2% in one study (Inoue et  al., 2015). This increase 
in volume is most obvious in the front part of the hippocampus, 
which is related to emotion and motivation. Exercise can also 
serve as an adjuvant therapy to reduce hippocampal apoptosis 
and oxidative stress-induced neuronal injury (Alipour et  al., 
2012). In these ways, long-term physical exercise may be effective 
against internet addiction in part because it increases the 
volume of hippocampus and prefrontal cortex.

Exercise promotes functional connections between the fronto-
parietal and fronto-executive networks of the brain, which 
are related to the default mode network and cognitive control  

(Voss et  al., 2010a). In a review of nine studies, exercise was 
found to alter the default mode network (Voss et  al., 2010b; 
Chirles et  al., 2017; McGregor et  al., 2018). Exercise also alters 
functional connections in attention, salience, and executive networks 
(Voss et al., 2019). In this way, improving functional connections 
among regional networks in the brain may help explain how 
exercise-based interventions can help alleviate internet addiction.

Exercise Upregulates Neurotrophic 
Factors
Animal experiments have shown that exercise affects hippocampus 
structure and function by regulating levels of neurotrophic 
factors such as GDNF (Maass et  al., 2016; Alves et  al., 2019), 
which plays a key role in the development and maintenance 
of spinal motor neurons and midbrain dopaminergic neurons 
(Sopova et  al., 2014). In hemi-Parkinsonian mice, exercise 
increases GDNF levels (Speck et al., 2019). Exercise also improves 
cardiac function and upregulates neurotrophic factors (Alves 
et al., 2019). GDNF is involved in the regeneration of damaged 
axons and regulates neuromuscular connections between synapses 
in motor neurons (Cortés et  al., 2017). By increasing GDNF 
levels, exercise may normalize axon regeneration in internet 
addicts, which may help alleviate their symptoms.

Exercise Upregulates Neurotransmitters
Long-term regular aerobic exercise has a positive effect on 
monoamine neurotransmitters (Liu et  al., 2019). For example, 
continuous aerobic exercise increases the release of dopamine 
and norepinephrine in the hypothalamus (Hasegawa et  al., 
2011), and running increases dopamine level in dorsal striatum 
(Herrera et al., 2016). Six weeks of treadmill training deregulated 
adenosine type 1, adenosine type 2A, and dopamine type 2 
receptors in rat dorsal and ventral striatum (Clark et al., 2014). 
Increases in levels of norepinephrine and endorphins may 
reduce stress and anxiety (Everly and Lating, 2019). Exercise 
also promotes plasticity in the striatum, which may help reduce 
internet addiction (Dimsdale and Moss, 1980). The association 
between low monoamine neurotransmitter levels and negative 
emotions in internet addiction suggests that exercise may reduce 
addiction in part by upregulating these neurotransmitters.

Exercise Preserves Telomeres
A meta-analysis of 19,292 participants showed that telomeres 
were longer in athletes than in non-exercisers (Lin et al., 2019), 
and resistance exercise and yoga can stabilize and lengthen 
telomeres (Krishna et al., 2015). Exercise may exert these effects 
by increasing antioxidant enzyme activity, making cells more 
resistant to oxidative stress that would otherwise damage 
telomeres (Alessio et al., 1988; Radak et al., 2000, 2008). Exercise 
can help regulate the immune system and improve quality of 
life (Radak et al., 2008), it reduces the production of adipokines 
and inflammatory factors produced by adipocytes (Görgens 
et al., 2015), and it reduces production of inflammatory factors 
in monocytes and macrophages (Gleeson et  al., 2011; Wang 
et  al., 2012). These effects may also help explain how exercise 
can stabilize and lengthen telomeres.
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SUMMARY AND CLINICAL 
IMPLICATIONS

Based on neurobiology and neuroimaging technology, internet 
addiction leads to changes in neural structure, decreases activity 
of the dopaminergic system and limits neurocognitive function. 
Exercise-based intervention can effectively improve the ANS 
of patients with internet addiction and normalize the structure 
of specific parts of the CNS to some extent. At the same time, 
it can increase the levels of plasma GDNF and glucocorticoids, 
the release of neurotransmitters, and the length of telomeres 
in leukocytes (Figure  2).

The application of exercise-based interventions to internet 
addiction and other addictions is a rapidly developing scientific 
field. However, such interventions do carry some risk of inducing 
exercise addiction. Nevertheless, exercise-based therapy does not 
have the side effects of drug intervention and other interventions, 
it is easy to implement, and it can show clinically significant 
results. Therefore, future research should explore the optimal 
exercise-based interventions for internet addicts that treat their 
disease while minimizing risk of exercise addiction. Future work 
should also examine internet addicts with a broader range of 
ages and ethnicities, since most studies so far have involved 
East Asians under 30  years old (Montag and Reuter, 2017). 
Future studies should carefully differentiate among the many 
subtypes of internet addiction; explain the observed difference 

in plasma cortisol levels between those diagnosed with internet 
gaming addiction or internet use disorder; and explore 
systematically the differences and similarities between internet 
addiction and substance addiction, since the two conditions 
are associated with similar changes in brain structure but different 
changes in neurotrophic factors. The genetic basis for the observed 
gender differences in the prevalence of internet addiction should 
be  studied. All these studies can also include a component 
assessing the safety and efficacy of exercise-based interventions.
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