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Perceptual Validation of Nonlinear
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L. James Smart Jr.*

Department of Psychology, Miami University, Oxford, OH, United States

Virtual reality (VR) technology has become increasingly prevalent in our society and has
been used for a myriad of applications ranging from psychotherapy to training members
of the military. However, one issue that arises from the use of VR is motion sickness,
thus making predictors and indicators of motion sickness desirable. To date, a number
of indicators of motion sickness have been derived based on nonlinear characteristics of
human motion recorded using motion capture systems. While it is known that nonlinear
measures can be used to predict motion sickness, it is not known whether people
are perceptually sensitive to these particular nonlinear parameters. The aims of this
study included establishing whether individuals consistently sort phase plots of sick
and well individuals’ postural motion without being explicitly told to do so; determining
what nonlinear movement parameters could be used to represent these judgments; and
assessing the stability of nonlinear measures found to be successful at predicting motion
sickness by Smart et al. (2014). Through two methods of analysis (perceptual and
quantitative), this research demonstrated that participants can indeed sort the graphic
depictions of sick and well participants’ postural motion and seem to be perceptually
sensitive to nonlinear parameters (normalized path length, path length, elliptical area)
that are known to be predictive of motion sickness.

Keywords: perception, categorization, posture, motion sickness, nonlinear measures, sort task

INTRODUCTION

Virtual reality (VR) has become an increasingly commonplace technology largely due to declining
costs to purchase commercial systems and the wide array of applications for this technology. Some
applications for this technology include exposure therapy (Carl et al., 2019), training for the military
(Bowman and McMahan, 2007), and entertainment (e.g., video games; Zyda, 2005). However,
motion sickness stemming from virtual environment use is an ongoing issue across these settings.
The incidence of motion sickness has significant implications for the continued viability of this
technology. Given this, developing the ability to predict motion sickness in order to mitigate its
prevalence through intervention and training is important.
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One potential indicator of motion sickness that has emerged
in recent years is postural motion. It has been found that
changes in postural motion precede motion sickness and can
also be used as a predictive tool (Stoffregen and Smart, 1998;
Yokota et al., 2005; Smart et al., 2007; Otten and Smart, 2009;
Chang et al., 2012; Palmisano et al., 2018). Evidence for this
claim has been found with both physical situations (moving
room: Smart et al., 2002; naval craft: Stoffregen et al., 2013)
and virtual stimuli (such as a military simulator, Stoffregen
et al., 2000; as well as a virtual moving room: Villard et al.,
2008). However, basic descriptive means of quantifying posture
(e.g., variability, velocity, or range) have yielded inconsistent
results, suggesting that these measures may not be capturing the
key aspects of postural motion that would allow for consistent
prediction. Recently, it was discovered that nonlinear measures
of kinematic data, indicative of movement strategies, not only
precede motion sickness (Villard et al., 2008; Stoffregen et al.,
2010), but can be used to predict whether a person will remain
well or become motion sick (Smart et al., 2014; Hadidon, 2016).
In particular, it was found that participants who remain well tend
to exhibit less complex but more temporally flexible movement
strategies than those who become motion sick (Smart et al., 2014;
Cook et al., 2018).

While it is known that quantitative measures of posture
can indeed predict motion sickness, it has yet to be seen if
people can detect differences in postural strategies (which in
turn are indicative of motion sickness) using the same changes
that quantitative measures known to be sensitive to postural
instability and subsequent motion sickness appear to exploit.
Previous research has demonstrated that individuals can judge
relative phase from visual depictions of kinematic data (Bingham
et al., 1999; Zaal et al., 2000). These judgments seem to be a
function of quantitative movement parameters (i.e., mean relative
phase; Zaal et al., 2000). There are also anecdotal reports of people
having the ability to accurately classify motion sickness (Smart,
2010). For example, when individuals are shown phase plots such
as those depicted in Figure 1, they can consistently and accurately
select the plot from the sick individuals (which in this case is the
phase plot on the left). In addition, it has been casually observed
that when conducting motion sickness studies in our laboratory,
the research assistants began to recognize potentially motion-
sick participants by changes in their observable movements. In
conjunction, these two lines of evidence suggest that participants
should be able to differentiate between visual depictions of sick
and well participants’ movement data and may be able to detect
characteristics of it that are exploited by quantitative measures.

The anecdotal observations regarding people’s ability to
discriminate healthy and problematic postural motions also
suggest that movement could be a “trainable” source of
information; the current study is the first formal empirical study
designed to examine what underlies this ability. Cook et al. (2018)
were able to show that participants physically respond differently
to motion of healthy and motion-sick participants, supporting
the informal observations of our research assistants’ reactions
to potentially motion-sick participants. However, this study did
not assess perceptual phenomena, focusing instead on behavioral
reactions to the motion stimuli.

FIGURE 1 | Examples posture phase plots (anterior–posterior
position × anterior–posterior velocity). When presenting these types of figures,
people can readily distinguish between “sick” (left) and “well” (right) plots
when prompted.

Other research studies have been able to demonstrate that
participants are able to discriminate complex categories of
various types, including nonlinear relations, despite not being
able to state explicitly what the underlying membership or
category rule was (e.g., Gibson and Gibson, 1955; Thomas, 1998;
Ashby et al., 2003; Guest and Lamberts, 2010). This suggests that
participants can perceive and act on complex relations even if
they cannot explicitly verbalize what they are acting on. One
particularly relevant example that supports this possibility comes
from a classic study by Gibson and Gibson (1955), who used
stimuli that looked like scribbles (while still having structure)
and found that participants could sort them accurately despite
not knowing what the scribbles were or what they potentially
represented. Gibson and Gibson (1955) asserted that the ability
of participants to successfully discriminate among seemingly
random patterns reveals that the role of experience (perceptual
learning) is to aid in fine tuning the perceptual systems to take
advantage of information present in the environment, a process
they termed differentiation. In the categorization literature, there
are many examples of participant’s ability to create and sort
items into aggregate groups (e.g., food, colors, personalities,
geometric forms; Purcell and Thomas, 2007; Bimler, 2013; Ritter
and Preston, 2013). Sorting methodologies are employed often in
marketing and business to help discover how people understand
and relate products (Varela and Ares, 2012). This study will
be the first to use the sort-and-merge methodology to validate
perceptually the efficacy of nonlinear movement parameters
shown to predict motion sickness.

THE CURRENT STUDY

In the present study, we employed a sorting task in which
participants were asked to sort phase plots of sick and well
participants’ postural sway data while remaining naive to the
origin of the phase plots. Participants were assigned to one of
three conditions that varied in sorting constraints. The aims of
the present study were the following; (1) establish whether or not
individuals can indeed consistently sort phase plots of sick and
well individuals without being explicitly being told to do so, (2)
determine if more constrained task sorting instructions change
sorting judgments, (3) determine what nonlinear movement
parameters could be used to represent these judgments, and (4)
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assess the stability of nonlinear measures found to be successful
at predicting motion sickness by Smart et al. (2014). This
was achieved by performing a secondary analysis of the data
Stoffregen and Smart (1998) and Smart et al. (2002), which were
used to create the phase plots used in the present study.

MATERIALS AND METHODS

Participants
Ninety-three undergraduate students from a large Midwestern
state university participated in the present study for course credit.
Demographic information was not collected, as those parameters
should not have influenced the task. However, the samples did
reflect the makeup of the general psychology undergraduate
population: 60% female, 80% Caucasian, and age range of 18
to 22 years. Thirty-six participants were in the free-choice
condition, 30 in the forced-scale condition, and 27 in the binary-
choice condition. The data for each condition were collected
during separate semesters to ensure that independent samples
were obtained. Participants gave informed consent in accordance
with the Declaration of Helsinki but were not told the purpose of
the study or what the stimuli represented until they completed the
task. The study protocols were approved by the Miami University
Research Ethics and Integrity Office’s review board (E00432).

Stimuli
Seventy-four postural motion phase plots composed of anterior–
posterior (AP; horizontal axis) position versus AP velocity
(vertical axis) were created using postural data from Stoffregen
and Smart (1998) and Smart et al. (2002) and were printed
on 3 × 4-inch cards. Twenty-eight of the cards represented
motion from participants who became sick. Each plot represented
10 min of motion data while being exposed to complex optic flow
with amplitude and frequency characteristics that approximate
that generated by human postural motion (see Stoffregen and
Smart, 1998 and Smart et al., 2002). Importantly, all of the phase
plots represent data collected before explicit reports of motion
sickness by participants in the original studies. All phase plots
were drawn to the same scale. There were no indications of what
the cards represented (cards were labeled on the back for the
experimenter; the labeling conventions were not meaningful for
the participants). The cards were shuffled and then spread out,
in a pseudorandom order on a table prior to the participants’
entrance (Figure 2).

General Procedure
Upon providing informed consent, participants were then taken
to a separate room where they were presented with seventy-
four 3 × 4-inch cards with pictures of phase plots on them.
No participants (in any condition) were told what the plots
represented, and the axes in the plots were not labeled.
Participants were asked to divide the cards into categories using
procedures dictated by the condition the participant was in
as described below. These participant-created categories were
attached to index cards using a paper clip to keep the member
plots together. Participants were either told to sort cards into as

FIGURE 2 | Phase plot (all plots drawn to same scale) setup, cards were laid
out prior to participants’ arrival.

many groups (≥2) as they wanted (free-choice condition) based
on perceived similarity; into 10 groups (forced-scale condition)
based on perceived “healthiness” (with 1 being least healthy, 10
being most healthy), with at least one card being placed in each
category; or into two groups (binary-choice condition–healthy,
unhealthy). Participants were never asked to make judgments
or sort cards based on whether the cards indicated motion
sickness. Once the cards were sorted, participants were then
asked to merge the categories based on perceived similarity;
thus, if a participant’s first and third categories were perceived
as being similar, these categories were combined. This process
continued until there was only a single category left. Both the
initial card memberships in each category and the order in
which participants combined categories were recorded, and these
data were analyzed using a multidimensional scaling procedure
(described in the following section). Once the sort-and-merge
process was completed, participants were debriefed and allowed
to ask questions about the study, after which they were given
course credit and could leave.

Data Analysis
The motion capture data from Smart et al. (2002) and
Stoffregen and Smart (1998; used to create all of the phase
plots) were reanalyzed using a custom MATLAB script, which
computed path length, normalized path length, elliptical area,
and normalized sample entropy (described in Smart et al., 2014),
as well as computing Hurst exponents, which are a measure of
self-similarity across time scales (Littman, 2011). In principle,
Hurst exponents and sample entropy are comparable measures.
For the purposes of statistical analysis, the Hurst exponents
(range, 0–1, with 0.5 indicating random noise) were normalized
(using the inverse normal function in Microsoft Excel; new range,
−1 to 1, with 0 indicating random noise). Previous research by
Smart et al. (2014) found the aforementioned measures to be
sensitive to motion sickness. These measures were analyzed using
stepwise discriminant analysis (SDA) as a secondary analysis of
the original data. This was done to assess whether these nonlinear
measures were able to predict motion sickness, as well as (or
better than) the measures employed by Smart et al. (2002).
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The similarity and patterns formed by the data were examined
using a few steps. For the first step, a metric of similarity
among the postural data figures was constructed based on the
participants’ category groups and merges. Custom software was
used to create the distances (see the Supplementary Material
Section 1 for details about the algorithm used). This software
read the data from an Excel file with the participants’ initial
sort data and an Excel file with the participants’ merge data.
It then created two matrices, a similarity matrix for every
participant, and a matrix containing the summed data across
participants. Multidimensional scaling analyses (MDS; Alscal;
IBM Corp., Released 2011, IBM SPSS Statistics for Windows,
version 20.0, IBM Corp., Armonk, NY, United States) were used
to convert these similarities into a spatial map featuring the
objects. The SPSS analysis assumed geometric distances between
points and was set to generate a two-dimensional solution.
Using this coordinate map, a picture of the object’s important
attributes and relationships to one another may be revealed.
The distance between points indicates how similar the stimuli
were perceived to be by the participants (Smith, 1995; Braun,
2012). Spatial maps of all three experimental conditions were
made (Figures 3, 5, 7). The author chose to label the quadrants
in a clockwise fashion for data management purposes because
directionality does not matter.

In order to examine the relationship between the nonlinear
motion parameters and participants’ sorting dimensions, a path

analysis was used. The path analysis was conducted using the
seventh edition of Mplus (Muthén and Muthén, 2017). Prior to
analyzing the data, the data were screened for outliers, missing
variables, and multivariate normality. Mahalanobis D2 was used
to screen the data for multivariate outliers, but no multivariate
outliers were found. The percentage of data missing was 0%.
Each variable was checked for normality using histograms–all
variables were found to exhibit departures from normality.
Therefore, Mplus’s MLM estimator was used because it is robust
to non-normality.

The criteria for acceptable model fit were determined a priori.
In order for the model to be acceptable, it must have a χ2 test that
was non-significant, a CFI and TLI value of 0.95 or greater, an
RMSEA value of 0.08 or less, and an SRMR of 0.08 or less. Failing
to meet any of these criteria is grounds for model respecification.
For the exact values of the fit indices and path coefficients, see the
Supplementary Material.

RESULTS

The patterns formed by the data from all three experiments
appear remarkably similar; all form a “u” shape within the
four quadrants spatial maps (Figures 3 ,5 ,7). This shape is an
artifact of the analysis; items at each end of the “u” are actually
not close to the items on the other end despite the fact the

FIGURE 3 | The dimensional map for the free-choice condition, Quadrants 2 and 3 represent the “tails” of the map and are psychologically (perceptually) most
distant. Trials from motion-sick participants are in red.
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FIGURE 4 | The path diagram demonstrating the relationship between elliptical area, path length, normalized path length, and sorting dimensions. Standardized
path coefficients and standard error are reported on this figure.

FIGURE 5 | The dimensional map for the forced scale sorting condition, Quadrants 1 and 4 represent the “tails” of the map and are psychologically (perceptually)
most distant. Trials from motion-sick participants are in red.
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FIGURE 6 | The path diagram demonstrating the relationship between elliptical area, path length, normalized path length, and sorting dimensions. Standardized
path coefficients and standard error are reported on this figure.

FIGURE 7 | The dimensional map for the binary-choice sorting condition, Quadrants 1 and 4 represent the “tails” of the map and are psychologically (perceptually)
most distant. Trials from motion-sick participants are in red.
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quadrants are next to each other (Figure 3). For example, in
the binary-choice plot (Figure 7), bs7 (Q4) and cf5 (Q1) are on
opposite ends of the spectrum, as far apart from each other as
possible. Because direction is irrelevant in this type of analysis,
the fact that the pattern points downward in the free-choice
condition and upward in the binary and forced-scale conditions
is not a meaningful difference.

Stimuli Movement Parameters
An SDA was performed in order to determine if the nonlinear
movement parameters utilized in Smart et al. (2014) could be
used to accurately classify motion from sick and well participants
in this dataset (from Stoffregen and Smart, 1998 and Smart
et al., 2002). In addition, we included the stimuli coordinates
derived from the sort/merge task in the current study. The
values included in the analysis were sorting Dimension 1, sorting
Dimension 2 (from the current study), sample entropy, elliptical
area, path length, normalized path length (used in Smart et al.,
2014), and the Hurst exponent. One function was found that
significantly differentiated the groups and was consistent across
all of the conditions, Wilks λ = 0.56, χ2(3) = 40.82, p < 0.01,
canonical correlation (Rc) = 0.66, and accounted for 44% of
the variance in group membership. This function was found to
correctly classify 79.7% of the cases. Using the cross-validation
method described in Smart et al. (2002), it was found that 78.4%
of the participants were still classified correctly. This level of
accuracy is comparable with that found by Smart et al. (2002).

The structure matrix of the variables included in the function
and group centroids for the function can be seen in Tables 1, 2.
According to the structure matrix, the first and only function
included normalized path length, path length, and sample
entropy, suggesting the function encompasses the complexity of
movement. The group centroids suggest that the function that
was found is elevated in sick individuals and lower in healthy
individuals. Interestingly, the function found by the discriminant
analysis was very similar to the results of the path analysis
conducted on the sorting data dimensions. The implications
of this finding will be elaborated upon in the Discussion. The
sorting dimensions did not contribute to this analysis; we believe
this to be because, treated independently, which SDA does,
the dimensions do not uniquely specify a given stimuli (i.e.,

TABLE 1 | The structure matrix resulting from the discriminant analysis performed
on the motion data used as stimuli.

Measure name Structure matrix coefficient

Normalized path length −0.466

Path length 0.430

Sample entropy −0.200

TABLE 2 | Centroids for the sick and well groups.

Group Centroid

Well −0.682

Sick 1.120

several stimuli can have the same x coordinate but different
y coordinates).

Free-Choice Condition
Multidimensional Scaling
As stated above, multidimensional scaling (Alscal) was
performed using the sorting data from the participants in
the free groups condition. The perceptual map produced from
the analysis of the participants’ judgments can be seen in
Figure 3, along with the mean and standard deviation of each
nonlinear measure of the plots in that quadrant. The stress
index for this model was 0.07012, and the R-squared (variance
accounted for by model) (RSQ) value was 0.98368, both of which
suggest that the perceptual map matches the observed data well.

Path Analysis
In order to establish the relationship between the nonlinear
postural characteristics and sorting dimensions, a path analysis
was conducted. As stated above, a path analysis was conducted
in Mplus (version 7; Muthén and Muthén, 2017) using the
MLM estimator (see Supplementary Table S1 for the covariance
matrix). The expected relationships between manifest variables
can be seen in Figure 4. It was found that the model was
overidentified, and the global fit of the model was acceptable,
χ2(2) = 0.80, p > 0.05. Furthermore, all of the local fit indices
suggest that the model fits well (see Supplementary Table S2 for
the fit index values).

Upon examination of the path coefficients, it was apparent
that path length (p < 0.01) and elliptical area (p < 0.01) were
a significant predictor of Dimension 1, whereas only path length
was a significant predictor of Dimension 2 (p < 0.01). Normalized
path length was not found to be predictive of either dimension
in this condition. It should be noted that all three measures
were needed to produce a stable model. See Figure 4, for the
standardized path coefficient estimates and their standard error
(see Supplementary Table S3 for all of the path coefficients and
their exact p values).

Forced-Scale Condition
Multidimensional Scaling
As stated above, multidimensional scaling (Alscal) was
performed using the sorting data from the forced-scale
condition. The perceptual map produced from the analysis of
the participants’ judgments can be seen in Figure 5, along with
the mean and standard deviation of each nonlinear measure of
the plots in that quadrant. The stress index for this model was
0.06664, and the RSQ value was 0.98402, both of which suggest
that the perceptual map matches the observed data well.

Path Analysis
As stated above, a path analysis was conducted in Mplus
(version 7; Muthén and Muthén, 2017) using the MLM estimator
(see Supplementary Table S4 for the covariance matrix). The
expected relationships between manifest variables can be seen in
Figure 6. It was found that the model was overidentified, and
the global fit of the model was acceptable, χ2(2) = 1.9, p > 0.05.
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Furthermore, all of the local fit indices suggest that the model fits
well (see Supplementary Table S5 for the exact fit index values).

Upon examination of the path coefficients, it was apparent that
only path length was predictive of Dimension 1 (p < 0.05). Path
length was also the only variable that was a significant predictor
of Dimension 2 (p < 0.05). Neither elliptical area nor normalized
path length was found to be a statistically significant predictor
of either dimension in this condition. It should be noted that
all three measures were needed to produce a stable model (see
Supplementary Table S6 for all of the path coefficient values and
exact p values). See Figure 5, for the standardized path coefficient
estimates and their standard error.

Binary-Choice Condition
As stated above, multidimensional scaling (Alscal) was
performed using the sorting data from the binary-choice
condition. The perceptual map produced from the analysis of
the participants’ judgments can be seen in Figure 7, along with
the mean and standard deviation of each nonlinear measure of
the plots in that quadrant. The stress index for this model was
0.01863, and the RSQ value was 0.99901, both of which suggest
that the perceptual map matches the observed data well.

As stated above, a path analysis was conducted in Mplus
(Muthén and Muthén, 2017) using the MLM estimator (see
Supplementary Table S7 for the covariance matrix). The
expected relationships between manifest variables can be seen in
Figure 8. It was found that the model was overidentified, and the
global fit of the model was acceptable, χ2(3) = 2.30, p > 0.05.
Furthermore, all of the local fit indices suggest that the model fit
well (see Supplementary Table S8 for the fit index values).

Upon examination of the path coefficients, it was apparent that
path length was a significant predictor of Dimension 1 (p < 0.05),
and normalized path length was predictive of Dimension 2

(p < 0.01). However, neither elliptical area nor normalized path
length individually predicted Dimension 1. It should be noted
that all three measures were needed to produce a stable model.
See Figure 8, for the standardized path coefficient estimates and
their standard error (see Supplementary Table S9 for all of the
path coefficients and their exact p values).

DISCUSSION

The current study sought to employ a common category
formation paradigm (sort/merge task) to examine whether there
are perception-based indices of postural motion that can be used
to validate/support quantitative indices that have been used in the
literature (Smart et al., 2014; Hadidon, 2016; Cook et al., 2018).
Through two methods of analysis (perceptual and quantitative),
this research demonstrates that there is a viable set of (nonlinear)
measures that can be used to identify and predict motion sickness.
In addition, we sought to determine if more constrained task
sorting instructions would change sorting judgments. The results
of the present study confirm that individuals can consistently
sort phase plots without explicitly having knowledge of what
those plots represent. What is important about this outcome
are the parameters that the participants seemed to exploit
when completing the task map almost directly onto the same
nonlinear measures shown to be effective in other studies (and
in the current study). Furthermore, task constraints did indeed
change the participants’ sorting task performance, although
overall distributions of the plots were very similar across
conditions. The change in instructional constraints also produced
increasingly constrained use of movement parameters (i.e., path
length, normalized path length, and elliptical area) for sorting
judgments. This finding is made even more interesting by its

FIGURE 8 | The path diagram demonstrating the relationship between elliptical area, path length, normalized path length, and sorting dimensions. Standardized
path coefficients and standard error are reported on this figure.
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similarity to the function derived using discriminant analysis to
sort data into sick and well groups using movement parameters.

In order to understand better participants’ sorting judgments,
multidimensional scaling (Ascal) was used on the data from
each sorting condition. As can be seen in Figures 3, 5, 7, the
multidimensional scaling maps are remarkably similar across
the three conditions. Based on examination of the stimuli from
each quadrant, Dimension 1 (the x axis) appears to be spread
of the phase plot, with higher positive numbers indicating more
spread phase plots. Dimension 2 (the y axis) appears to reflect
complexity of the phase plots, with higher positive numbers
indicating more complexity. Based on the model statistics (low
stress and high RSQ), in all of the models derived using
multidimensional scaling, these indices seem to be the best
descriptors of the changes that we observed across the maps.
Interestingly, the sick individuals and well individuals during
later trials (who often resemble participants who are sick) were
more prevalent in Quadrants 3 and 4 of the multidimensional
scaling perceptual map, indicating that they had high levels of
phase plot complexity and low (Quadrant 4) or high (Quadrant 3)
levels of phase plot spread. This reflects trends that were observed
by Smart et al. (2002) as well as Hadidon (2016), suggesting
that there are reliable characteristics that indicate non-optimal
movement patterns.

It is intriguing that the pattern generated by the participants
in this study reflects the general idea that there may be an
optimal level of variability (cf., Stergiou et al., 2006) and that
exceeding or falling short of this can lead to problems. This is
also consistent with Riccio and Stoffregen (1991), who suggested
that instability could be exhibited in multiple manners (not only
more movement, but also qualitatively different movement). In
this case, we saw that the majority of motion-sick plots were
clustered at the two extremes of the perceptual maps in all three
conditions (see Figure 9, for representative plots). In addition,
these extremes seem to represent trials that exhibited either
too much variability/complexity or too little and lend empirical
support to the idea that too much (“hypercontrol”) or too little
(“hypocontrol”) regulation can lead to suboptimal outcomes such
as motion sickness (Smart and Smith, 2001) or simply failing to
maintain the intended behavior (Stergiou et al., 2006). This type
of dual unstable regions was also noted by Chagdes et al. (2016),
who noted in their model that postural movement outside of the
stable region exhibited either rigid oscillatory characteristics or
noisy (chaotic) characteristics.

In order to determine if participants were using different
aspects of the motion to make sorting judgments, path analysis
was used on the data from each condition separately. Based
on the movement parameters that could be seen in the
phase plots, a model in which path length and normalized
path length predicted Dimensions 1 and 2, and elliptical area
was predictive of Dimension 1. All models were found to
have acceptable fit. Furthermore, as task instructions became
increasingly constrained, so did the movement parameters that
were used to make sorting judgments. As can be seen in
the path diagram for the free-choice condition, elliptical area
and path length were predictive of Dimension 1, and only
path length was predictive of Dimension 2. In the forced-scale

condition, only path length was predictive of Dimensions 1 and
2. In the binary-choice condition, path length was found to
be predictive of Condition 1, and normalized path length was
predictive of Dimension 2. Furthermore, the function derived
using discriminate analysis was very similar to the statistically
significant paths in the models. In essence, not only were
movement parameters predictive of sorting judgments, but also
the parameters used became more constrained as the task
instructions became more constrained.

The fact that participants could sort phase plots of sick and
well individuals consistently is not a trivial finding, particularly
because they were never explicitly asked to do so. In light of the
anecdotal reports of individuals being able to detect if someone is
becoming ill by how they are moving (in the absence of a phase
plot), this ability to detect structural patterns (for good or ill)
seems to extend beyond static patterns (see, for example, Cook
et al., 2018). Several studies (in other contexts) lend support to
this possibility (Bingham et al., 1999; Zaal et al., 2000).

The findings of this study have several important implications
for the development of VR. Virtual reality has frequently been
associated with motion sickness, thus making an algorithm that
can detect motion sickness before an individual is aware of it is
highly desirable. Previous work by Smart et al. (2002) revealed
that linear measures of postural sway (variability, velocity) were
predictive of motion sickness, although not consistently. The
nonlinear measures employed in this study seem to allow for
more consistent classification and prediction of sickness, as they
have been able to classify differences in well and motion-sick
participants (Smart et al., 2014; Cook et al., 2018), as well
as make predictions both post hoc (current study—using data
collected 20 years ago) and in real time (Hadidon, 2016). The
nonlinear measures also accounted for more of the variability
in the data (44%) than the linear measures used in Smart
et al. (2002; 31% variance accounted for). Based on the results
of the present study, people also seem to be using nonlinear
characteristics to classify phase plot cards of sick and well
participants into categories that suggest a progression from useful
to suboptimal movement patterns (strategies). This latter point
is intriguing because it suggests that these nonlinear differences
are not only something that can be detected, but used to make
judgments about behavioral states in general and progression
toward instability in particular.

The present study has a couple potential limitations. One
potential limitation was that stimuli used did not allow
participants to see the time course of the movement. This is
reflected by the fact that the measures that are time dependent
(Sample entropy and Hurst) did not contribute to the path
analysis, but did contribute to the discriminate analysis (sample
entropy). However, the fact that participants seemed to be using
the same structurally based, nonlinear parameters (path length,
normalized path length, elliptical area) that can be used to predict
motion sickness suggests comparable results may be obtained
using dynamic stimuli. Another limitation was that participants
were not told what the phase plots were from and were never
explicitly told to make judgments about motion sickness (the
closest was “healthy” vs. “unhealthy”). This was done purposely
to elicit “unbiased” categories, but may have increased variability
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FIGURE 9 | Representative phase plots at the extremes of each dimensional map. Left panels (A,C,E) are from Quadrant 3 (free choice)/4 (forced scale, binary
choice), and right panels (B,D,F) are from Quadrant 2 (free choice)/1 (forced scale, binary choice). Plots in blue (A,B) are from well participants.

in judgments. Knowing what the phase plots represented may
have an impact on judgments.

Based on the data in the present study, it would seem
that it may be possible to train people recognize non-optimal

postural movements and potentially intervene before someone
begins experiencing motion sickness symptoms. This could be
achieved by some form of exposure training–presenting people
with exemplar plots and having them sort based on the exemplars
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and then repeating the process until the person learned to detect
the relevant traits. Machine learning techniques could also be
applied to this type of data. Fortunately, these are possibilities that
can be addressed through further research; the key finding is that
these perceivable movement changes precede motion sickness
and can provide early opportunities for prevention.

In summary, the results of the present study suggest that
people are capable of detecting nonlinear aspects of postural
phase plots that allow them to discriminate between motion
generated by motion-sick and well participants. This ability to
sort postural data is on par with quantitative methods and seems
to be exploiting the same properties of the sway data, suggesting
that nonlinear changes are not only a perceivable but also reliable
indicator of behavioral states.

The data and stimuli for this research are available through
Miami University Scholarly Commons: (Teaford et al., 2019).
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