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The last two decades have seen a growing interest in the study of interoception.
Interoception can be understood as a hierarchical phenomenon, referring to the body-
to-brain communication of internal signals, their sensing, encoding, and representation
in the brain, influence on other cognitive and affective processes, and their conscious
perception. Interoceptive signals have been notoriously challenging to manipulate in
experimental settings. Here, we propose that this can be achieved through electrical
stimulation of the vagus nerve (either in an invasive or non-invasive fashion). The vagus
nerve is the main pathway for conveying information about the internal condition of
the body to the brain. Despite its intrinsic involvement in interoception, surprisingly little
research in the field has used Vagus Nerve Stimulation to explicitly modulate bodily
signals. Here, we review a range of cognitive, affective and clinical research using Vagus
Nerve Stimulation, showing that it can be applied to the study of interoception at each
level of its hierarchy. This could have considerable implications for our understanding of
the interoceptive dimension of cognition and affect in both health and disease, and lead
to development of new therapeutic tools.

Keywords: interoception, vagus nerve, vagus nerve stimulation, VNS, tVNS, transcutaneous vagus nerve
stimulation

INTRODUCTION

Interoception pertains to receiving, encoding, and representation of internal bodily signals in the
brain, as well as their perception (Cameron, 2001; Craig, 2002; Critchley et al., 2004). Through
interoception we know when our heart is beating fast, when we need to take a deep breath, and
when we are hungry, thirsty, hot, cold, nauseous, tired, or alert. It encompasses both the non-
conscious bodily signals themselves and our conscious perception of them. Growing research
has shown interoception not only to be crucial for homeostasis and allostasis (acute change to
achieve homeostasis), but also central in a range of cognitive and emotional processes, including
memory, decision-making, emotional processing, social interactions, and even consciousness,
body ownership and a sense of self (Critchley et al., 2001; Dunn et al., 2010; Shah et al., 2017;
Berntson et al., 2018; Critchley and Garfinkel, 2018). By their nature, internal bodily processes
are notoriously difficult to manipulate in experimental settings. The vagus nerve, the main cranial
nerve in the human body known to be central in relaying visceral signals to the brain, is naturally
implicated in interoception (Critchley and Harrison, 2013; Quadt et al., 2019; Yoris et al., 2019).
Yet surprisingly little research in this area has used vagus nerve stimulation (VNS) to modulate
bodily signaling. So far, to the best of our knowledge, only one recent study has explicitly related
VNS to interoception (Villani et al., 2019). Here, we review the accumulated cognitive and clinical
research on VNS and propose that this technique can indeed be used to modulate a wide range of
interoception-related processes.
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The vagus nerve (cranial nerve X) is the longest and one of the
most widely distributed nerves in the body (vagus in Latin means
“wandering”). As part of the parasympathetic division of the
autonomic nervous system, the vagus nerve conveys information
between visceral organs (i.e., organs located in the thoracic and
abdominal cavities, including the heart) and the brain (Berthoud
and Neuhuber, 2000; Craig, 2002; Critchley and Harrison, 2013).
About 80% of the vagus nerve is composed of afferent fibers,
projecting to the nucleus tractus solitarii (NTS) in the medulla,
before being relayed further to other brainstem nuclei (broadly
implicated in homeostatic control) and higher-order structures,
including the thalamus, hippocampus, amygdala, and insula
(Goehler et al., 2000; Saper, 2002). VNS involves electrical
stimulation of the afferent fibers of the vagus nerve, either in
an invasive variant (where the stimulator is implanted in the
patient’s body) or a non-invasive variant where the stimulation
is delivered transcutaneously through the auricular branch of
the vagus nerve (tVNS, aVNS, or taVNS). Both VNS and tVNS
reliably induce activation in the same brain areas (Narayanan
et al., 2002; Frangos et al., 2015; Badran et al., 2018a). These areas,
and their projections, and especially the insula, have been shown
to be implicated in interoception (Craig, 2002).

Interoception has been conceptually divided into hierarchical
levels (Garfinkel et al., 2015; Quadt et al., 2018), from
low-level visceral afferents and their preconscious effects on
cognitive or affective processes to psychological dimensions
and metacognitive awareness of internal bodily processes.
Because the vagus nerve is the main pathway relaying visceral
signals into the brain, we propose that (t)VNS could affect
interoception at each of those levels. Recent years have also
seen a growing interest in the role of interoception in mental
illness, proposing that interoceptive dysfunction can contribute
to impairments in social, cognitive, behavioral, affective, and
somatic processes associated with certain psychopathologies
such as anxiety, depression, eating disorders, addiction, or
post-traumatic stress disorder (PTSD) (Paulus and Stein, 2010;
Harshaw, 2015; Khalsa et al., 2018). Those dysfunctions can occur
at any level of interoceptive processing. Proposed mechanisms
include aberrant processing of the afferent signal (e.g., noisy
inputs) or weight given to its representations (e.g., overweighted
interoceptive signal affecting subsequent evaluation of affective
stimuli), abnormal expectations about bodily states, attentional
or cognitive biases (e.g., hypervigilance to bodily states), or
psychological biases (e.g., weak insight into one’s bodily state
and its relevance to environmental context) (Khalsa et al., 2018;
Petzschner et al., 2017; Gu et al., 2019).

This paper provides an overview of the research on the effects
of VNS on interoception-related processes (both cognitive and
clinical), from the lowest to highest level, and relates those
findings to embodied models of brain function.

LOW-LEVEL AFFERENT
INTEROCEPTIVE SIGNAL

The low-level visceral signal, such as baroreceptor activity or
blood oxygenation, is not consciously perceived unless there is a

problem. However, according to embodied, interoception-based
accounts of the conscious self, access to and evaluation of the
signal from the physical body is necessary for the conscious
“self ” to arise in the first place (Seth et al., 2012; Seth, 2013;
Cleeremans et al., 2020). Stimulated NTS, the projection area
of the vagus nerve, activates the dorsal raphe and other areas
known to control alertness (George et al., 2000). For this
reason, VNS was proposed as a fruitful therapy for disorders
of sleep or even consciousness (George et al., 2000; Naritoku
et al., 2003), and was subsequently shown to promote improved
sleep in rats (Rong et al., 2019) and human adults (Bretherton
et al., 2019). Impressively Corazzol et al. (2017), in a single
case study, demonstrated that long-term VNS may improve
patient condition even after years in persistent unresponsive
wakefulness (vegetative state), warranting future research in
this area. This finding corroborates the proposal that a sense
of conscious self is embodied – the experience of owning
and identifying with one’s own body, and the experience of
first-person perspective, are directly associated with multi-level
representations of physiological condition of the body (Seth et al.,
2012; Seth, 2013; Cleeremans et al., 2020). As such, (t)VNS
may play a pivotal role in helping to restore this conscious,
embodied sensation. This hypothesis could be further reinforced
if classical paradigms exploring the sense of self, such as the
rubber-hand or full-body illusion or sense of agency, proved to
be modulated by (t)VNS.

In the cognitive literature, a demonstration that VNS directly
manipulates the read-outs of basic visceral afferent signals
has yet to be given. The most promising candidate is the
modulation of Heartbeat Evoked Potential (HEP) amplitude.
The cardiac signal is one of the most widely explored low-
level afferent signals, reflected in electroencephalography as
an event-related potential synchronized with cardiac R-peaks.
HEP has been shown to predict individual heartbeat perception
(Pollatos et al., 2005; Terhaar et al., 2012), and was proposed
to reflect interoceptive belief updating (Ainley et al., 2016)
and affective predictions (Gentsch et al., 2018; Marshall et al.,
2018). It has also been shown to be modulated by internal
(vs. external) attentional focus, proposed to reflect interoceptive
precision (Petzschner et al., 2019). The HEP has been shown
to originate in the insula, the brain region assumed to
be key for interoception (Park et al., 2017), and activated
through (t)VNS (e.g., Badran et al., 2018a). Interestingly, Park
et al. (2017) confirmed the HEP’s functional role in self-
consciousness by demonstrating HEP modulations as a response
to an experimentally-induced altered sense of self-identification
(full-body illusion). This result supports the proposal that
interoceptive information is a crucial substrate of the sense of
self and body ownership (Sierra and David, 2011; Critchley
and Harrison, 2013; Crucianelli et al., 2018). Additionally, the
sense of body ownership has been shown to be impaired after
insula lesions (Karnath, 2005; Gandola et al., 2012; Moro et al.,
2016). Given that (t)VNS reliably activates the interoceptive
network (including the insula), it could constitute a tool for
manipulating low-level interoceptive signals and their read-outs,
such as the HEP, for research into consciousness, sense of self and
body ownership.
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PRECONSCIOUS IMPACTS ON
COGNITIVE PROCESSES

While the previous, lowest level of the interoceptive hierarchy
was concerned with the mere communication and detection
of bodily afferents, the second, preconscious level refers to the
early stages of central processing and pertains to the impact
the afferent visceral signals have on cognitive and affective
processing. The cardiac signal in particular has been shown to
play a part in emotion processing (Bechara and Naqvi, 2004).
There is evidence that processing of emotional faces is enhanced
at systole compared to diastole (Garfinkel and Critchley, 2016),
and the learning of fearful face-name pairs is better at systole
than at diastole (interestingly, just in people with heightened
interoceptive ability, and not for happy or neutral faces;
Pfeifer et al., 2017). Higher interoceptive ability (encompassing
perception and confidence in one’s perception of bodily signals;
see next section) correlates with recognition memory for
emotional pictures (Pollatos and Schandry, 2008) and words
(Werner et al., 2010). “Gut feeling” is commonly used to mean
intuition, pointing to a popular sensation of visceral signals
influencing decisions. Adaptive behavior and optimal decision-
making have indeed been proposed to be supported, or even
guided, by visceral signals, where the physiological state of the
body provides a reference frame for homeostatic or motivational
value of given choice options (Damasio, 1994; Bechara, 2004; Gu
and FitzGerald, 2014; Maniscalco and Rinaman, 2018). Although
the (t)VNS literature has not focused on interoception, studies
have shown that this technique modulates similar interoceptive
processes to those mentioned above. Emerging evidence suggests
that tVNS can improve facial emotion recognition (Colzato et al.,
2017a), though, interestingly, not from entire bodies (Sellaro
et al., 2018). Elsewhere, preliminary experimental evidence
suggests that VNS can improve decision-making on the Iowa
Gambling Task (Martin et al., 2004).

Another example of a physical state influencing cognitive
function is the phenomenon of memory enhancement during
somatosensory arousal. Traumatic memories are remembered
particularly vividly. This phenomenon is crucially reliant on
vagal transmission of various neuromodulators (Flood and
Morley, 1988; Williams and Jensen, 1993; Nogueira et al.,
1994; Talley et al., 2002). VNS may induce a state similar
to arousal, most likely linked to secretion of noradrenaline
and acetylcholine in the brain, neurotransmitters known to
mediate attention (Martino et al., 2007; Klinkenberg et al.,
2011). Studies have shown that (t)VNS may improve declarative
memory retention (Clark et al., 1999; Ghacibeh et al., 2006;
Jacobs et al., 2015; Broncel et al., 2020; Giraudier et al.,
2020), even in patients with Alzheimer’s Disease (Clark
et al., 1999; Sjogren et al., 2002; Merrill et al., 2006).
Other authors have found mixed results in single-session
studies (see Vonck et al., 2014 for review), depending on
the stimulation settings (0.5 mA being optimal). Clinical
interventions have capitalized on this memory-enhancing
effect of (t)VNS to strengthen the formation of adaptive
memories and behaviors after brain damage, e.g., “targeted

plasticity” interventions (Hays et al., 2013). Interestingly, there
is mixed evidence whether long-term VNS may lead to
general memory improvement, which was not observed in
those undergoing chronic VNS treatment for epilepsy, but was
in depression (Aaronson et al., 2013; Vonck et al., 2014).
Vonck et al. (2014) point out that cognitive dysfunctions
are inherent to clinical depression and known to improve
with improvement of depressive symptoms. This ties in with
accounts of depression linking it to malfunctioning interoceptive
evaluation of bodily signals (Barrett and Simmons, 2015; Quadt
et al., 2018). Chronic aberrant interoceptive processing has
maladaptive allostatic consequences for dealing with stress and,
in particular, inflammation, which frequently cooccurs with
depression. Indeed (Howland, 2014) points that the relationship
between depression and inflammation may be mediated by
the vagus nerve.

Malfunctioning interoceptive evaluation of bodily signals is
also implicated in anxiety and panic. It may result from distorted
interoceptive learning, when a benign sensation is experienced
in the context of an initial panic attack, resulting in rapid
conditioning. Overriding such strongly conditioned responses
remains a challenge for most therapies. Fear extinction, a removal
of conditioned response, is a gold standard therapy for PTSD
(Genheimer et al., 2017), yet for many it remains not entirely
effective, calling for its enhancement, potentially with VNS or
tVNS. So far, however, the results are mixed, with promising
results of VNS on fear extinction in rats (Peña et al., 2013, 2014;
Noble et al., 2017; Souza et al., 2019, 2020), and with varied
success of tVNS in humans (Burger et al., 2016, 2017; Genheimer
et al., 2017; Szeska et al., 2020), which may depend on particular
stimulation parameters (Hansen, 2019).

PSYCHOLOGICAL DIMENSIONS:
INTEROCEPTIVE ACCURACY,
SENSIBILITY, AND AWARENESS

Psychological dimensions of interception refer to the conscious
perception of bodily signals (Garfinkel et al., 2015). These
dimensions have been conceptualized across three levels:
interoceptive accuracy (referring to objective accuracy in
perceiving a bodily signal, e.g., one’s own heartbeat), sensibility
(subjective beliefs about the ability to perceive own bodily
sensations), and awareness (the correspondence between
accuracy and confidence, i.e., a metacognitive aspect of
interoceptive ability). Interoceptive accuracy and awareness
are typically quantified with performance on bodily signal
perception tasks, such as heartbeat counting or detection tasks
(e.g., Schandry, 1981). Those who perform well on heartbeat
detection tasks also tend to experience greater arousal and
higher HEP amplitudes for emotional pictures (Herbert et al.,
2007). Performance on such tasks is shown to correlate with the
intensity of one’s own emotions (Wiens et al., 2000), perception
of others’ emotions (Terasawa et al., 2014), and decision-making
(Werner et al., 2009; Kandasamy et al., 2016), although the causal
relations are still unclear.
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The role of tVNS on the psychological dimensions of
interoception was directly tested by Villani et al. (2019). They
found tVNS to improve participants’ ability to correctly identify
(but not count) their own heartbeats (interoceptive accuracy).
Furthermore, participants reported higher confidence in their
decisions under tVNS, but this did not lead to enhanced
interoceptive awareness. This promising result, in light of the
range of phenomena shown to be improved in individuals with
higher interoceptive accuracy outlined above, offers an avenue for
further research.

Deficits in interoceptive processing at this level are related
to poor processing or evaluation of own bodily signals (e.g.,
impaired insight into one’s internal state and its relevance
to environmental context; e.g., Paulus and Stein, 2010;
Petzschner et al., 2017), and can predict emotional and
affective psychopathology. Individuals with alexithymia, an
impairment in recognizing one’s emotions which often cooccurs
with autism (ASC), show reduced interoceptive accuracy
(Ernst et al., 2013), as well as reduced brain activation in the
insular cortex (Bird et al., 2010). Evidence for a reduction in
interoceptive accuracy in the autistic population is mixed (Quadt
et al., 2018), and correlated with co-existing alexithymia (Shah
et al., 2016). Interestingly, autistic individuals tend to have
elevated confidence (sensibility) relative to their performance
accuracy (Garfinkel et al., 2016). A similar discrepancy, termed
“interoceptive trait prediction error,” has been found in anxiety
disorders (Paulus and Stein, 2006). Direct interventions with
tVNS have been proposed for autism (Engineer et al., 2017)
and anxiety (George et al., 2008). tVNS has been shown to
alleviate some symptoms of ASC in epileptic patients with
this comorbidity (see Levy et al., 2010; Jin and Kong, 2017 for
review), which we hypothesize to be modulated by improvement
in their interpretative processing. More research is needed to
correlate treatment-induced change in ASC symptomatology
and interoceptive accuracy, sensibility, and awareness.

Aberrant performance on interoceptive tasks (usually lower
accuracy) has been shown in eating disorders (ED), such as
anorexia nervosa (Pollatos et al., 2008; Van den Bergh et al., 2017),
along with impaired ability to differentiate hunger and satiety,
and reduced response to emotional states (Fassino et al., 2004).
Together these characteristics suggest weakened interoceptive
processing. Vagus nerve stimulation is slowly being recognized
as a potential treatment to regulate food craving (Wernicke
et al., 1993; Boveja and Widhany, 2003) proposed that vagal
signal suppression could be helpful in treating obesity, signal
stimulation in anorexia, and intermittent stimulation in bulimia,
though experimental research is still needed. Further work might
also identify whether the regulation of food cravings leads to
changes in performance on interoceptive tasks.

Finally, pain has also been described in terms of interoceptive
processing (Craig, 2003; Khalsa et al., 2009), with the vagus nerve
crucial in relaying somatosensory sensations. Pain is usually
caused by the activation of nociceptors and nociceptive pathways
(Meyer et al., 2006), but it is also known to occur without
corresponding activity, and nociceptors can be active without the
sensation of pain (e.g., lack of reported pain by soldiers during
battle, despite severe injuries), and be modulated by psychological

state (Melzack et al., 1982; Mariana von Mohr, 2019). Deficits
in interoceptive accuracy have been reported in patients with
fibromyalgia (Duschek et al., 2015), lower back pain (Mehling
et al., 2013) and migraines (see (Lernia et al., 2016) for review).
VNS has been shown to modulate the sensation of pain in
fibromyalgia (Lange et al., 2011) and migraines (Barbanti et al.,
2015). Pain perception has been also reported to be reduced in
patients treated with VNS for depression (Borckardt et al., 2005).
This points toward the conclusion that vagus nerve stimulation
affects interoceptive processing of pain, though more research
is needed to elucidate the causes of individual differences in
response to treatment.

METACOGNITIVE LEVEL

The final, metacognitive level represents an executive dimension.
It refers to one’s ability to flexibly switch between attending
to and utilizing interoceptive and exteroceptive information in
an adaptive manner. Though direct tests on such tasks are yet
to be done, there is promising evidence that tVNS facilitates
attentional switching in conflict situations, such as a number
version of the Simon task (Fischer et al., 2018), allows rapid
attentional adaptation (Colzato et al., 2017b), and improves
response selection in sequential action (Jongkees et al., 2018).
In the clinical domain, tVNS has been shown to reduce temper
outbursts in Prader-Willi Syndrome (Manning et al., 2019),
further reinforcing the notion that it improves interoceptive
processing at the high level implicated in executive control.

A VNS influence on metacognition may also account for the
rare adverse side effect observed in 4 epilepsy patients, namely
hallucinations and psychosis (De Herdt et al., 2003), most likely
caused by acutely increased alertness and decreased sedation
through VNS. Patients with mild or severe intellectual disability
may be specifically prone to the development of these symptoms.
We suggest that in cases where cognitive resources for the
appraisal of peripheral, somatosensory information are impaired,
augmenting the signal strength can lead to systemic overload
and malfunction.

DISCUSSION

The range of processes which can be affected by stimulating
the vagus nerve points to the sheer scale of visceral influence.
The presented literature can be unified under the theoretical
frameworks which posit that affective and cognitive states are
continuously interpreted through, and biased by, the body’s
internal states. While the primary function of interoceptive
signals is to feed the brain a continuous stream of information
on the internal state of the organism so as to ensure survival,
there is increasing consensus that they also fundamentally inform
motivational states, adaptive behavior and emotion (Damasio,
2010; Critchley and Harrison, 2013; Seth, 2013; Barrett and
Simmons, 2015; Critchley and Garfinkel, 2018; Seth and Tsakiris,
2018). According to this view, the brain interprets its current
environmental challenges in light of the concurrent state of the
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body. The evidence of VNS influence on higher-order processes
can thus lend support to models of brain function that assume a
causal visceral dimension.

The successful application of VNS in clinical settings, briefly
outlined here in the context of interoception, also corroborates
the idea that a number of clinical conditions may have an
interoceptive dimension. The visceral contribution has been
noted for anxiety, depression, and PTSD, and many of the
conditions discussed above have overlapping symptoms (Khalsa
et al., 2018). For example, (Howland, 2014) pointed out that
the relationship between depression, inflammation, metabolic
syndrome, and heart disease may be mediated by the vagus
nerve. VNS research can lead to greater understanding of the
interoceptive dimension in clinical conditions, giving rise to
future treatments.

While VNS has been enjoying increasing clinical success
and is a promising tool for interoceptive manipulation, it is
noteworthy that the optimal experimental protocols are still a
work in progress, and should be carefully considered on an
individual basis. Considerations under ongoing debate include
optimal stimulation locations on the ear (Burger and Verkuil,
2018), potential differences in signal paths between VNS and
tVNS, and the longevity of the effect after stimulation ceases. It
seems that although cognitive effects of VNS may be detectable
after short periods of stimulation, even 20 min (e.g., Colzato
et al., 2017b), attenuation of certain clinical symptoms may
require much longer stimulation durations (e.g., Manning et al.,
2019) point to reduction in number and severity of temper
outbursts in Prader-Willi Syndrome with 4 h/daily stimulation
(as recommended for epilepsy), applied for 6–9 months, but a
prompt return of the symptoms in all 5 participants when the
stimulation was subsequently reduced to 2 h. Researchers should
also consider making age related adjustments, e.g., (Koo et al.,
2001) point out that in children younger than 12 stimulation
settings may require a higher stimulus current or longer pulse
along with lower stimulus frequency than adults (e.g., stimulation
at 20 Hz or lower instead of e.g., 30 Hz), as a child’s vagus nerve
has slower conduction velocity. The effects of VNS on heart rate
need to be considered as well. (Badran et al., 2018b) have shown
that certain settings (pulse width 500 µs and frequency 10 Hz) are
likely to lower the heart rate.

As for limitations of using VNS to modulate interoception,
VNS cannot afford selective targeting of aspects of the
interoceptive signal which may be of specific interest (e.g.,
heart, stomach, breath). As such, protocols should be designed
to capitalize on VNS’s capacity to manipulate the strength of
the afferent signal. Functional neuroimaging studies could be
particularly amenable to this. For a thorough treatment of the
limitations, see Kaniusas et al. (2019).

To conclude, vagus nerve stimulation affords a novel
experimental approach to studying interoception and its
role in cognitive and emotional processes and disorders
at increasing levels of complexity. With developments in
the method and optimal protocols gaining momentum,
vagus nerve stimulation may prove a fruitful new gateway
to interoception.
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