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A multivariate longitudinal DCM is developed that is the composite of two components,

the log-linear cognitive diagnostic model (LCDM) as the measurement model component

that evaluates the mastery status of attributes at each measurement occasion, and a

generalized multivariate growth curve model that describes the growth of each attribute

over time. The proposed model represents an improvement in the current longitudinal

DCMs given its ability to incorporate both balanced and unbalanced data and to measure

the growth of a single attribute directly without assuming that attributes grow in the

same pattern. One simulation study was conducted to evaluate the proposed model in

terms of the convergence rates, the accuracy of classification, and parameter recoveries

under different combinations of four design factors: the sample size, the growth patterns,

the G matrix design, and the number of measurement occasions. The results revealed

the following: (1) In general, the proposed model provided good convergence rates

under different conditions. (2) Regarding the classification accuracy, the proposed

model achieved good recoveries on the probabilities of attribute mastery. However,

the correct classification rates depended on the cut point that was used to classify

individuals. For individuals who truly mastered the attributes, the correct classification

rates increased as the measurement occasions increased; however, for individuals who

truly did not master the attributes, the correct classification rates decreased slightly as

the numbers of measurement occasions increased. Cohen’s kappa increased as the

number of measurement occasions increased. (3) Both the intercept and main effect

parameters in the LCDM were recovered well. The interaction effect parameters had a

relatively large bias under the condition with a small sample size and fewer measurement

occasions; however, the recoveries were improved as the sample size and the number of

measurement occasions increased. (4) Overall, the proposedmodel achieved acceptable

recoveries on both the fixed and random effects in the generalized growth curve model.
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INTRODUCTION

Diagnostic classification models (DCMs; e.g., Rupp et al.,
2010), also referred to as cognitive diagnosis models (CDMs;
e.g., Leighton and Gierl, 2007), are defined as a family of
confirmatory multidimensional latent-variable models with
categorical latent variables (Rupp et al., 2010). DCMs evaluate
the student’s mastery status on each latent variable from a set
of narrowly defined latent variables, referred to attributes in
the DCM literature, and then classify students into attribute
profiles that were determined as a priori (DiBello et al.,
1995). DCMs provide fine-grained and multidimensional
diagnostic information, which could help educators adjust
classroom instruction and improve student learning. Since
the traditional scale scores (e.g., IRT scores) have limits
in providing enough information to inform classroom
instruction and learning (e.g., de La Torre, 2009), DCMs
have received growing attention in the educational measurement
community as well as from educational practitioners in
recent years.

DCMs have been increasingly used for empirical data
analysis in recent years. For example, DCMs have been
retrofitted to existing large-scale assessments to identify
examinees’ mastery status of tested skills (e.g., Lee and Sawaki,
2009; George and Robitzsch, 2014; Sedat and Arican, 2015;
Ravand, 2016). In addition, some researchers successfully
demonstrated the practical uses of DCMs in test development
(Bradshaw et al., 2014). DCMs have also been applied in
one large-scale assessment program (Dynamic Learning
Maps R© alternate assessment; DLM R©; Dynamic Learning
Maps, 2016) to detect distinct patterns of skill mastery for
students with significant cognitive disabilities. However, most
applications of DCMs are static, meaning that DCMs are
used to classify individuals at a single time point. When
longitudinal data are modeled, the longitudinal DCM is used to
measure the change in the attribute profiles and mastery status
over time.

Currently, two types of longitudinal DCMs have been
proposed to analyze longitudinal data in the DCM framework.
Latent transition analysis (LTA; Collins and Wugalter,
1992)—based longitudinal DCMs (e.g., Li et al., 2016; Kaya
and Leite, 2017; Madison and Bradshaw, 2018) estimate
the probabilities of transitioning from one latent class to
another latent class or staying at the same latent class
across two measurement occasions. Higher-order DCM
(HDCM; e.g., de la Torre and Douglas, 2004; Templin
and Bradshaw, 2014)—based longitudinal DCMs (e.g.,
Huang, 2017; Zhan et al., 2019) assumes a higher-order
continuous factor to predict the mastery status of lower-
order attributes so that the changes in the higher-order
factor are used to infer the changes of lower-order attributes
over time.

These two longitudinal DCM approaches have been evaluated

by a few simulation studies and some applied research, which
has demonstrated their utility for analyzing longitudinal data in

the DCM framework. However, these models are not without

limitations. For example, LTA-based longitudinal DCMs are

restricted to the balanced data1 and assume attributes are
independent. In addition, LTA-based approach is limited to
assessing changes between only two measurement occasions
(Huang, 2017). On the other hand, HDCM-based longitudinal
DCMs assume all attributes have similar growth trajectories.
However, previous studies found attributes could change in
different ways (e.g., Li et al., 2016; Madison and Bradshaw, 2018).

So, the overarching goal of the current study is to develop
a multivariate longitudinal DCM, improves upon current
longitudinal DCMs by (1) being able to incorporate both
balanced data and unbalanced data and (2) measuring the growth
of multiple attributes that have dissimilar growth trajectories.
More specific research questions are presented in the Research
Design and Methods section.

LONGITUDINAL DIAGNOSTIC
CLASSIFICATION MODELS

Currently, two types of longitudinal DCMs have been developed
and applied to measure longitudinal data, including latent
transition analysis (LTA; Collins and Wugalter, 1992)-based
longitudinal DCMs (e.g., Li et al., 2016; Kaya and Leite, 2017;
Madison and Bradshaw, 2018), and Higher-order DCM (HDCM;
e.g., de la Torre and Douglas, 2004; Templin and Bradshaw,
2014)—based longitudinal DCMs (e.g., Huang, 2017; Zhan et al.,
2019). The definitions, model specifications, and limitations
of these two types of longitudinal DCMs are briefly reviewed
as follows.

LTA-Based Longitudinal DCMs
Latent class analysis (LCA; e.g., Lazarsfeld and Henry, 1968;
Goodman, 1974) is developed for analyzing categorical latent
variables. Latent transition analysis (LTA) is the extension of the
general LCA for longitudinal data, which enables the estimation
of both the latent class membership probability, often called
the latent status prevalence in the LTA, and the probabilities
of transitions in latent status from one measurement occasion
to the next (Lanza et al., 2003, p. 161). LTA-based longitudinal
DCMs are a composite of theDCM, as themeasurementmodel to
classify individuals into different latent classes at each time point,
and the LTA, as the structural model to estimate the transition
probability to represent the changes in latent class membership
across two measurement occasions.

A few LTA-based longitudinal DCMs have been evaluated
in simulation studies as well as applied in empirical studies.
For example, Li et al. (2016) used the LTA with DINA(the
deterministic-input, noisy-and-gate model; Junker and Sijtsma,
2001) as the measurement model to evaluate the effectiveness of
an intervention for four cognitive skills across four measurement
occasions for a sample of 109 seventh-grade students. This study
provided base-rates of cognitive skills at each measurement
occasion and three conditional transition probabilities from
Occasion 1 to Occasion 2, Occasion 2 to Occasion 3, and
Occasion 3 to Occasion 4, respectively. The results showed that

1In the current study, the balanced data refers to equal time intervals and

unbalanced data refers to unequal time intervals.
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attributes had different base-rates at the beginning and different
conditional transition probabilities over time.

Madison and Bradshaw (2018) proposed the transitional
diagnostic classification model (TDCM) to measure growth in
attributemastery for pre-test and post-test data, where the LCDM
was adopted as the measurement model along with the LTA
as the structural model. A simulation study showed that the
TDCM could provide accurate and reliable classification and
transition probabilities overtime under the variations in the
number of attributes, sample size, Q-matrix, pre-test, and post-
test base-rates, and marginal mastery transition probabilities.
Additionally, the TDCM was applied to two empirical studies.
In both studies, four mathematic skills were assessed before and
after an intervention. The results showed that the base-rates of
all attributes were improved after the intervention. However,
the improvement differed by attributes and the groups, e.g., the
control group or the intervention groups.

Furthermore, Chen et al. (2018) proposed a family of
first-order hidden Markov models (FOHM) to model the
learning trajectories with the CDM framework. Compared to the
aforementioned LTA-based longitudinal DCMs that estimated
the transition probabilities between two measurement occasions,
FOHMs could estimate a transition probability matrix across
multiple measurement occasions, which shows the probabilities
of remaining in the same latent stage or learning some attributes
or even losing some attributes from time t to t + 1. Such that
it could provide an entire learning trajectory across time. Also,
Chen et al. (2018) emphasized that there might be different types
of learning trajectories, including the unstructured trajectories
and non-decreasing trajectories. And, FOHMs are very flexible
to estimate not only the most general trajectories but also some
more parsimonious trajectories. So, even though the number
of parameters in the transition probability matrix increases
exponentially with the number of measurement occasions
increasing, the restricted learning patterns could reduce the
number of parameters.

Higher-Order DCM-Based Longitudinal
DCMs
Higher-order DCMs (HDCMs) parameterize the structural
model of general DCMs in a certain way to reduce the numbers
of structural parameters. Several approaches have been utilized
to construct the structural model (e.g., Hartz, 2002; de la Torre
and Douglas, 2004; Rupp and Templin, 2008). The majority
of HDCM-based longitudinal DCMs are parameterized using
the logistic regression models (e.g., Huang, 2017; Zhan et al.,
2019), which are composites of two model components. The
first component is the HDCM, where a higher-order continuous
factor, θrt , is assumed to predict the mastery statuses of multiple
lower-order attributes at time t. The second component is the
univariate growth curve models (GCMs; e.g., Raghavarao and
Padgett, 2014; Hoffman, 2015), which describes the inter- and
intra-individual differences in changes of this higher-order factor
over T time points.

Recently, Huang (2017) proposed an HDCM-based
longitudinal DCM, where a G-DINA model was used to

evaluate the mastery status of attributes at each time point. Then,
the Rasch model was utilized to construct the higher-order
DCM at each time point. Last, a univariate GCM was applied
to describe the growth of the higher-order factor over time.
In addition, a set of time-invariant predictors (e.g., gender,
age) were included to predict the random intercept and slope.
This HDCM-based longitudinal DCM was evaluated in three
simulation studies which varied several factors, including the
sample size, the test length, the number of attributes, the item
difficulty, and the number of measurement occasions. The
results showed that a large sample size (1,000 individuals),
enough items (30 items), and more measurement occasions (3
measurement occasions) could improve the parameter recovery
and classification accuracy. Additionally, this HCDM-based
longitudinal DCM was retrofitted to an empirical testing data,
which assessed four attributes in a group of 4,177 high school
students across three measurement occasions. The results
showed that attributes differed in both the initial base-rates
and the amount of improvement of the base-rates, for example,
the base-rates of the “geometry” attribute were 0.90, 0.89,
and 0.92 across three measurement occasions; however, the
base-rates of the “number” attribute were 0.36, 0.49, and 0.58
across three measurement occasions. These results indicated
different attributes developed different growth rates. Also, Zhan
et al. (2019) developed a Long-DINA model, where (1) a DINA
model was used to determine the mastery status of attributes
at each time point, (2) the examinee’s general ability at each
measurement occasion was predicted by mastery status of
attributes through a 2PL multidimensional higher-order latent
structural model, and (3) the mean differences between the
general abilities estimated from different measurement occasions
represented the growth of examinees. Furthermore, the main
improvement of this model was that incorporated specific factors
in the DINA model to capture local item dependence due to
the repeated measure rather than assuming the measurement
invariance across time.

Limitations of Current Longitudinal DCMs
Even though the current longitudinal DCMs have provided a few
approaches to analyze longitudinal data in the DCM framework;
these longitudinal DCMs have limitations that could restrict
their usage with empirical data. As discussed above, LTA-based
longitudinal DCMs could estimate the changes of attributes
directly over time. However, this method required balanced
data. In other words, the time interval between measurement
occasions cannot be accounted for in themodel. Thismight result
in inaccurately estimated transition probabilities if examinees
have a different time interval between administrations. On
the other hand, HDCM-based longitudinal DCMs estimate
the growth of the higher-order factor via the univariate
GCM framework, which could cooperate both balanced and
unbalanced data. However, HDCM-based longitudinal models
measure the growth of higher-order factors to indicate the
growth of lower-order attributes, indicating multiple attributes
should have similar growth patterns. While empirical studies’
demonstrated attributes had different growth patterns, some
attributes were improved over time, and some attributes had a
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nearly consistent base-rate over time. For example, Madison and
Bradshaw (2018) measured the changes in mastery status for four
mathematics skills using pre- and post-test data and found the
base-rate of one attribute was almost constant, where the base-
rates changed from 0.65 to 0.70. However, base-rates of another
three attributes improvedmore, ranging from 0.38 to 0.58, 0.38 to
0.51, and 0.59 to 0.73, respectively. Therefore, it is not reasonable
to assume all attributes have the same growth patterns such
that the growth of the higher-order factor cannot represent the
changes in lower-order attributes well.

Therefore, there is a need to improve the current longitudinal
DCMs. The motivation for the current study is to improve
the current longitudinal DCMs by developing a multivariate
longitudinal DCM, which could incorporate both balanced and
unbalanced data, and measure the growth of attributes directly
without assuming that attributes have similar growth patterns.

RESEARCH DESIGN AND METHOD

Multivariate Longitudinal Diagnostic
Classification Models
The proposed multivariate longitudinal DCM is a composite
of two components, the LCDM as the measurement model
component that evaluates the mastery status of attributes at each
measurement occasion, and a generalized multivariate growth
curve model (e.g., GCM;MacCallum et al., 1997; Goldstein, 2011;
Hoffman, 2015) as the structural model component that describes
the changes of attributes over time via a logistic link function.

Model Specification
Let xi denote the item response of item i. Only the binary
item response was considered in the current study; however,
polytomous item responses could be incorporated as well. Let
t = 1, 2, . . . , T denotes the number of measurement occasions;
k = 1, 2, . . . , K denote the number of attributes; and αk

rt =

α1
rt, α2

rt, ..., α
k
rt denote the attribute profile at time t.

A three-level model is considered in the current study; Level 1
is the item level, Level 2 was the within-person level, and Level 3
is the between-person level.

In Level 1, the LCDM estimates the probability of individual
r answering item i correct given profile αr at time t, as shown in
Equation (1), where λi,0 is the intercept parameter of the LCDM,
indicating the logit of guessing the item i correctly without
mastering any attributes, λTi is a vector of size (2K − 1) × 1
with main effect and interaction parameters for item i at Time T,
qi is the set of Qmatrix entries for item i, and h

(

αrt , qi
)

is a vector
of size

(

2K − 1
)

× 1 with linear combinations of the αrt and qi.
For example, as shown in Table 2, the item 4 measures both

Attribute 1 and Attribute 2 across all measurement occasions,
such that, Equation (1) expresses the probability of a correct
response to Item 4 is a function of the intercept (λ1,0), the simple
main effects of attribute 1 (λ1,1,(1)) and attribute 2 (λ1,1,(2)),
interaction effects between these two attributes (λ1,2,(1,2)), and the
mastery status of two attributes. The intercept represents the log-
odds of a correct answer for individuals who did not master any
of the attributes. The simple main effects of attributes represent
the increase in log-odds for individuals who have mastered only

one of the attributes. Moreover, the interaction represents the
change in log-odds for individuals who have mastered both
attributes. Since the attributes are all dichotomous, α1 = 1
indicates attribute 1 is mastered, while α1 = 0 indicates attribute
1 is not mastered. As mentioned, as a general diagnostic model,
the LCDM is able to subsume other frequently used DCMs. Using
the same example, when twomain effects are fixed to 0, the DINA
model is achieved (Bradshaw and Madison, 2016).

P (X4 = 1|αc) =
exp(λ1,0+λ1,1,(1)(α1)+λ1,1,(2)(α2)+λ1,2,(1,2)(α1·α2))

1+exp(λ1,0+λ1,1,(1)(α1)+λ1,1,(2)(α2)+λ1,2,(1,2)(α1·α2))
(1)

In Level 2, αkrt represents the mastery status of attribute k at time
t, Timert represents the time variable for individual i at time
t. Then, the log-odds of P(αkrt = 1), indicating the probability
of mastering attribute k at time t, are predicted by the random
intercept βkr0 and random slope βkr1.

In Level 3, the random intercept βk0r and random slope βk1r are

predicted by the average initial level γk00 and average slope γk10,

respectively. uk0r and uk1r represent the individual r′s deviations
from the average initial level and growth rate for attribute k.

Level 1 πirt = P (Xirt = 1|αrt) =
exp(λi,0 + λTi h(αrt , qi))

1+ exp(λi,0 + λTi h(αrt , qi))

(2)

Level 2 logit
(

P
(

αk
rt = 1

))

= βk
r0 + βk

r1Timert + ǫkrt (3)

R =

















π2

3 · · ·

0 π2

3 . . .

...
...

. . .
...

...

0 0 · · · π2

3

0 0 . . . 0 π2

3

















(4)

βk
0r = γ k

00 + uk0r (5)

βk
1r = γ k

10 + uk1r (6)

Level 3



















σ
(1)2
u0

σu10 ,u
1
1

σ
(1)2
u1

...
. . .

σu10 ,u
K
0

σu11,u
K
0

σ
(K)2
u0

σu10 ,u
K
1

σu11,u
K
1

σuK0 ,u
K
1

σ
(K)2
u1



















(7)

As shown in Equation (3), ǫkrt are the Level 2 residuals, which
follow a multivariate normal distribution with means of 0 and
TK × TK covariance matrix of R, the diagonal elements are π

2

3 ,
and off-diagonal elements are fixed to 0, indicating there are
no covariances among ǫrt across constructs. In Level 3 variance
[uk0r , uk1r] ∼ MVN(0, G), G is a KP × KP covariance matrix,
and P is the number of Level 2 random effects (Pan, 2018).

Research Questions
The purpose of the current study is to develop a multivariate
longitudinal DCM and evaluate it under several conditions.

This study aims to answer the following research questions:
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(1) Does the proposed model provide satisfied classification
accuracy under different conditions?

(2) Do the sample size, the growth patterns, and the number
of measurement occasions, the G matrix design, and their
interactions impact the item parameter recoveries in the
measurement model?

(3) Do the sample size, the growth patterns, and the number
of measurement occasions, the G matrix design, and their
interactions impact the fixed and random effects recoveries
in the generalized growth curve model?

Simulation Design
To answer three research questions listed above, a simulation
study was conducted, which included four design factors, (1) the
sample size; (2) the growth patterns across attributes; (3) the G
matrix design; and (4) the number of measurement occasions.
Factors including the Q-matrix, the test length, the initial base-
rate, and the item parameters were fixed. Simulation conditions
are described below.

Design Factors

Sample size
The current study varied the sample size by 100, 200, and 300 to
investigate the requirement for the sample size in the proposed
model. Previous simulation studies in longitudinal DCMs used
to have a large sample size that normally ranged from 500 to
3,000 (e.g., Kaya and Leite, 2017; Zhan et al., 2019; Madison and
Bradshaw, 2018). However, the empirical studies usually had a
relatively smaller sample size, normally ranging from 100 to 400
(e.g., Li et al., 2016). Therefore, it was useful to investigate the
sufficient sample size for the proposedmodel to detect the growth
of attributes over time, which could guide applied researchers to
collect adequate participants without a waste of time and money.

Growth patterns across attributes
The proposed multivariate longitudinal DCM improves the
current HDCM-based longitudinal DCMs in its potential for
estimating the growth of attributes without assuming that
attributes have similar growth trajectories. To examine if the
proposed model could measure attributes with different growth
patterns and attributes with similar growth patterns equally well,
two different growth patterns across attributes were considered
in the current study: (1) the even growth pattern in which
attributes had similar growth patterns over time and (2) the
uneven growth pattern in which attributes had different growth
patterns over time.

Figure 1 describes these two conditions, where T1–T5
represent the first to the fifth measurement occasion; A1, A2,
and A3 represent Attribute 1, Attribute 2, and Attribute 3,
respectively.

Under the even growth pattern condition, the base-rates of
all three attributes were improved from the first measurement
occasion to the last measurement occasion. Under the uneven
growth pattern condition, the base-rates of Attributes 2 and
3 were improved across five measurement occasions, but the
base-rates of Attribute 1 kept constant over time.

Gmatrix design
The G matrix plays an important role in the multivariate
GCM, which reflects the relationships between outcomes
across time. It is one of the main interests in the
longitudinal studies that measure multiple outcomes over time
(e.g., Hoffman, 2015).

To examine if the proposed multivariate longitudinal DCM
can detect the relationships among attributes, two types of G
matrices are considered in the current study: (1) under the
equal correlation condition, all attributes had equal correlations
between intercept, slopes, and intercept and slope, meaning that
attributes are equally correlated, and (2) under the unequal
correlation condition, as described in Figure 1, Attribute 2 and
Attribute 3 had equal correlations between intercept, slopes, and
intercept and slope, but Attribute 1 had lower correlations with
Attribute 2 and 3. Table 1 presents the two types of G matrices
and corresponding correlation matrices.

Number of measurement occasions
Previous simulation studies in HDCM-based longitudinal DCMs
showed inconsistent results in the impacts of the number of
measurement occasions on the classification accuracy. Huang
(2017) found the number of measurement occasions (e.g., 2 or
3 measurement occasions) did not influence the classification
accuracy significantly. However, Zhan et al. (2019) found the
classification accuracy slightly increased as the number of
measurement occasions increased. For the growth model, more
measurement occasions are associated with good parameter
recoveries (e.g., Preacher et al., 2008). To examine whether the
number of measurement occasions impacted the performance
of the proposed multivariate longitudinal DCM, the number
of measurement occasions varied between 3 and 5 in the
current study.

Fixed Conditions

Test length
A test of 30 binary items was simulated in the current study. The
test length fell within the range of applied research as well as
simulation studies in the longitudinal DCMs (e.g., Huang, 2017;
Kaya and Leite, 2017; Madison and Bradshaw, 2018).

Q-matrix
As discussed above, DCMs are able to incorporate both the
simple structure and the complex structure of the Q-matrix.
In the current study, a complex structure of the Q-matrix was
specified as shown in Table 2. Each item measures up to two
attributes and attributes were assessed by equal numbers of
items. This Q-matrix design was suggested by previous applied
research and simulation studies (e.g., Bradshaw and Templin,
2014; Bradshaw et al., 2014; Kaya and Leite, 2017; Madison and
Bradshaw, 2018).

Initial base-rates
The initial base-rate was fixed to 0.20, 0.25, and 0.30 for Attribute
1, Attribute 2, and Attribute 3, respectively. The previous
empirical studies on measuring growth of attributes found initial
base-rates ranged from 0.02 to 0.90 and suggested an easier
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FIGURE 1 | Two patterns of growth across attributes.

TABLE 1 | G matrix specification and corresponding correlation matrix.

Equal correlation condition Unequal correlation condition

u10 u11 u20 u21 u30 u31 u10 u11 u20 u21 u30 u31

CORRELATION MATRIX

u10 1.0 1.0

u11 0.20 1.0 0.10 1.0

u20 0.90 0.10 1.0 0.90 0.01 1.0

u21 0.10 0.25 0.20 1.0 0.01 0.01 0.20 1.0

u30 0.90 0.10 0.90 0.10 1.0 0.10 0.01 0.90 0.10 1.0

u31 0.10 0.25 0.10 0.25 0.20 1.0 0.01 0.01 0.10 0.25 0.20 1.0

COVARIANCE MATRIX

σ 2
u10

σ 2
u11

σ 2
u20

σ 2
u21

σ 2
u30

σ 2
u31

σ 2
u10

σ 2
u11

σ 2
u20

σ 2
u21

σ 2
u30

σ 2
u31

σ 2
u10

0.1500 0.1500

σ 2
u11

0.0173 0.0500 0.0173 0.0500

σ 2
u20

0.1350 0.0087 0.1500 0.1350 0.0009 0.1500

σ 2
u21

0.0087 0.0125 0.0173 0.0500 0.0009 0.0005 0.0173 0.0500

σ 2
u30

0.1350 0.0087 0.1350 0.0087 0.1500 0.1350 0.0009 0.1350 0.0087 0.1500

σ 2
u31

0.0087 0.0125 0.0087 0.0125 0.0173 0.0500 0.0009 0.0005 0.0087 0.0125 0.0173 0.0500

uk0 and uk1 represent the random intercept and slope for attributes; σ 2
uk0

and σ 2
uk0

represent the random intercept and slope variance for attributes. Bold values means the correlation of

this parameter itself.

attribute might have a base-rate approximately 0.60, a medium
attribute might have a base-rate approximately 0.40, and a hard
attribute might have a base-rate ∼0.20 (Madison and Bradshaw,
2018); therefore, the base-rates are set to 0.20, 0.25, and 0.30 to
mimic the hard, medium-hard, and medium attributes at the first
measurement occasion.

Fixed effects (γk00, γ
k
01)

The linear growth of the log-odds of the probability of mastering
attributes was considered in the current study. It should be noted
that the linear growth of the log-odds of the probability did not
necessarily result in the linear growth of base-rates over time.
Table 3 presents the fixed effects under both even and uneven
growth pattern conditions.

Time variables
The current study planned to mimic the context of the interim
assessments, which are administered several times within a
school year (Great Schools Partnership, 2013). The common
interval ranges from 6 to 8 weeks, such that individuals might
receive the assessment at different times. Therefore, the current
study set the time interval to 8 weeks and the unit of time to 1
week. The mean and standard deviation of time variables at each
measurement occasion was fixed to µtime = (0, 8, 16, 24, 32)
and σtime = 1, such that each individual had his/her own time
variable at each measurement occasion to mimic the unbalanced
data design.

As shown in Table 3, γ00 = −1.38 is the log-odds of the
probability of 0.2, meaning at the first measurement occasion, the
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TABLE 2 | Q-matrix design.

Item Attribute 1 Attribute 2 Attribute 3 Item Attribute 1 Attribute 2 Attribute 3

1 1 0 0 16 1 1 0

2 0 1 0 17 1 0 1

3 0 0 1 18 0 1 1

4 1 1 0 19 1 0 0

5 1 0 1 20 0 1 0

6 0 1 1 21 0 0 1

7 1 0 0 22 1 1 0

8 0 1 0 23 1 0 1

9 0 0 1 24 0 1 1

10 1 1 0 25 1 0 0

11 1 0 1 26 0 1 0

12 0 1 1 27 0 0 1

13 1 0 0 28 1 1 0

14 0 1 0 29 1 0 1

15 0 0 1 30 0 1 1

average probability of mastering Attribute 1 is 20%2. γ01 = 0.05
is growth rates of Attribute 1 in the log-odds scale, meaning that
when time is increasing by one unit, the log-odds of probability
of mastering Attribute 1 is increased by 0.05 in average, which is
equal to the probability of mastery is increased by 0.008.

Table 4 presents the average base-rates of attributes across
five measurement occasions, which was obtained by using the
mean of the time variable and fixed effects shown in Table 3.
Under the even growth pattern condition, the probabilities of
mastery of three attributes were improved by 0.35, 0.38, and
0.39, respectively, across the time, and under the uneven pattern
condition, the base-rate of Attribute 1 had a constant of 0.20, and
the probabilities of mastery were improved by 0.38 and 0.39 for
Attributes 2 and 3, respectively. This amount of improvement fell
in the range of improvement of base-rates found in the previous
studies (Li et al., 2016; Madison and Bradshaw, 2018).

Item parameters
The intercepts of all items were fixed to −1.5 indicating the
probability of having a correct answer was 0.18. The simple main
effects of all items were fixed to 1.5, indicating the probability of
having a correct answer was 0.50 given mastering this attribute.
The interaction effects between two attributes were fixed to 0.50,
indicating the probability of having a correct answer was 0.88,
given mastering two attributes.

Data Generation Procedures
Data were generated in R, version 3.4.2 (R Core Team, 2017).
Each condition was replicated 100 times.

Data generation procedures included two stages: first, the
probability of mastery was generated for each attribute at five
measurement occasions, then the mastery statuses of them was
generated; lastly, the item response data was generated, which are
proceeded as follows:

2This equation describes the relationships between the log odds of probability and

fixed effects. log
(

probability
1−probability

)

= log
(

0.2
1−0.2

)

= −1.38.

Generate the linear predictors of the probability of mastery
for each attribute by using the intercept and slope parameters,
time variables, and G matrix for each individual;
Convert this linear predictor into the probability of mastery;
A binary mastery status for each attribute is randomly
drawn from the binomial distribution with the probability of
mastering attributes.
Generate the probability of having a correct answer for each
item using a prespecified Q-matrix, item parameters, and
person profiles.
A binary item response is randomly sampled from the
binomial distribution with the probability obtained from the
last step.

Analysis Plan and Outcome Variables
A Markov Chain Monte Carlo (MCMC) algorithm was adopted
to estimate model parameters, which was implemented in the
JAGS software (Plummer, 2003) by using the R2jags package
(Su and Yajima, 2015) in the programming environment R (R
Core Team, 2017). The JAGS syntax and more details of MCMC
analyses can be found in the Supplementary Material.

The LCDM was applied to estimate the mastery statuses
of attributes at each measurement occasion. For example, as
described in the Q-matrix in Table 2, item 4 measured both
Attribute 1 and Attribute 2. Thus, the probability of providing
a correct answer to item 4 given the latent class c at Time t can be
expressed as follows:

π4ct = P (x4ct = 1|αct) =
exp(λ4,0+λ4,1,(1)(α1)+λ4,1,(2)(α2)+λ4,2,(1,2)(α1·α2))

1+exp(λ4,0+λ4,1,(1)(α1)+λ4,1,(2)(α2)+λ4,2,(1,2)(α1·α2))
(8)

For items that only measure one attribute, only the intercept and
the main effect of this item were included in the equation.

The generalized multivariate GCM was applied to measure
the changes in mastery statuses of attributes over time. First,
as suggested by MacCallum et al. (1997), Curran et al. (2012),
and Hoffman (2015), a synthesized variable was created, which
was a composite of multiple outcome variables (αk

rt in the
current study), then a series of dummy variables as exogenous
predictors were adopted to control which specific outcomes were
referenced within different parts of the model. Let dvrt denote
the synthesized variable, which contained individual r′s mastery
statuses for three attributes across four measurement occasions.
A total of three dummy variables, A1, A2, and A3, were included
in the model to distinguish which specific element belonged to
which specific outcome variables, where A1 was equal to 1 for
Attribute 1 and A1 was equal to 0 for other attributes. Therefore,
the probability of mastering attribute αk

rt (k = 1, 2, 3) at time t
could be described as follows:

logit
(

P
(

dvrt = 1
))

= A1
[

(

γ 1
00 + u10r

)

+ (γ 1
10 + u11r

)

Timert]

+A2[(γ 2
00 + u20r)+ (γ 2

10 + u21r)Timert]
+A3[(γ 3

00 + u30r)+ (γ 3
10 + u31r)Timert]

(9)

where the main effects of A1, A2, and A3 represent the initial
levels for three attributes, and the interaction effects between
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TABLE 3 | Initial level and growth rates of linear predictors.

Even growth patterns Uneven growth patterns

A1 A2 A3 A1 A2 A3

γ00 −1.38 −1.10 −0.85 −1.38 −1.10 −0.85

γ01 0.05 0.04 0.05 0 0.04 0.05

A1, A2, and A3 represent Attribute 1, Attribute 2, and Attribute 3.

TABLE 4 | Base-rates of attributes over time.

T1 T2 T3 T4 T5

EVEN GROWTH PATTERN

A1 0.20 0.27 0.36 0.45 0.55

A2 0.25 0.32 0.40 0.49 0.58

A3 0.30 0.39 0.49 0.60 0.59

UNEVEN GROWTH PATTERN

A1 0.20 0.20 0.20 0.20 0.20

A2 0.25 0.32 0.40 0.49 0.58

A3 0.30 0.39 0.49 0.60 0.59

A1, A2, and A3 represent Attribute 1, Attribute 2, and Attribute 3; T1–T5 represent the

first measurement occasion to the fifth measurement occasion.

dummy variables and time scores represent the growth rates
for attributes.

Once data analysis was finished, the following outcome
variables across all 100 replications were obtained for
all conditions:

(1) Gelman-Rubin diagnostic (R̂) of parameters, including item
parameters in the LCDM and both fixed effects and random
effects parameters in the generalized growth curve model.

(2) The distribution of estimated parameters, including the
mean, standard deviation, and quantiles.

Evaluation Criteria
Convergence rates, the classification accuracy of attributes at
each measurement occasion, and the parameter recovery were
evaluated in the current study to examine the performance of the
proposed model under different conditions.

Convergence Rates
Convergence was assessed by using the Gelman-Rubin diagnostic
(R̂), also referred to as the “potential scale reduction factor”
(Gelman and Rubin, 1992). Suppose there are m independent
Markov chains, R̂ is given by:

√

R̂ =

√

n− 1

n
+

1

n

B

W
(10)

where B is the variance between the means of the m chains,W is
the average of them within-chain variances, and n is the number
of iterations of the chain after discarding the iterations as burn-
in. If the algorithm converges, R̂ is approaching 1, indicating a

stationary distirbution has been achieved because the marginal
posterior variance (weighted combo of between and within-chain
variance) are equal to the within-chain variances. In the current
study, R̂ was calculated for all model parameters, and we adopted
the criteria of R̂ < 1.2 as the indicator of convergence as
suggested by the previous study (e.g., Sinharay, 2003).

In one replication, if one or more parameters had the R̂ larger
than 1.2, this replication was regarded as non-converged. After a
total of 100 replications, the convergence rates for this condition
was calcualted and reported. Only the results from the converged
replications were kept and used in the following analysis.

Classification Accuracy
The classification accuracy was evaluated by using (1) the bias
of estimated probability of attribute mastery, (2) the correct
classification rates for each mastery status, and (3) Cohen’s kappa
(Cohen, 1960).

The bias of the estimated probability of attribute mastery was
the difference between the estimated and the true probability
of attribute mastery. The correct classification rates for each
mastery status included (1) the correct classification rates for
individuals who truly mastered an attribute, and (2) the correct
classification rates for individuals who truly did not master an
attribute. Cohen’s kappa measures the agreement between the
true and the estimated mastery status.

The estimated class membership was obtained by applying 0.5
as the cutpoint, meaning that an individual with an estimated
probability larger than 0.5 would be classified as mastery,
vice versa.

Parameter Recovery
The bias andmean squared error (MSE) of estimated parameters,
including item parameters from the measurement model,
intercept and slope parameters, and variance and covariance
parameters from the structural model were computed to assess
the parameter recovery in each condition.

Biasθ =

∑R
r = 1

∑N
i (θ̂ir − θi)

RN
= θ̂ ir − θi (11)

MSEθ =

∑R
r = 1

∑N
i = 1

(

θ̂ir − θi

)2

RN
(12)

where θ represents the estimated parameter, which is the mean of
the sample distribution obtained from the Bayesian estimation. R
is the number of replications; N is the number of elements in the
set of θ .
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A factorial analysis of variance was adopted to assess the
impact of design factors on outcome variables. In all analyses,
the α level was controlled at 0.05 level, and partial η2 was
adopted as themeasure of effect sizes. According to Cohen (1988)
convention, partial η2 values of 0.01, 0.06, and 0.14 were regarded
as small, medium, and large effects.

RESULTS

Convergence Rates
As aforementioned, the Gelman-Rubin diagnostic (R̂) of
item parameters in the LCDM, fixed effects andrandom
effects parameters in the generalized growth curve model
were evaluated, and we adopted the criteria of R̂ < 1.2 as
the indicator of convergence as suggested by the previous
study (e.g., Sinharay, 2003). When all the parameters,
including the item parameters in the LCDM, fixed effects,
and the random effects parameters in the generalized
growth curve model were converged in one replication,
this replication was regarded as converged. Results found
that the average convergence rate is 0.95 under the
conditions with three measurement occasions (MO = 3).
And, the average convergence rate is 0.97 under the
conditions with five measurement occasions (MO = 5).
The details in convergence rates can be found in the
Supplementary Material. Only the converged replications
were used in the following analyses.

Classification Accuracy
The classification accuracy was evaluated by using (1)
bias of the estimated probability of attribute mastery, (2)
correct classification rates for each mastery status, and
(3) Cohen’s kappa.

The average bias of probability of attribute mastery under the
conditions whenMO = 5 showed that the probability of attribute
mastery was recovered well under most conditions. The average
bias of the probability of attribute mastery was all close to 0 under
most conditions. Similar patterns were found whenMO = 3. For
the sake of page limits, only the average bias from the condition
MO = 5 in Table 5, the summary of MO = 3 could be found in
the Supplementary Material.

Table 6 presents the average correct classification rates for
individuals who truly mastered attributes, and Table 7 presents
the correct classification rates for individuals who truly did not
master attributes under different conditions when MO = 5. The
average correct classification rates were very low for individuals
who truly mastered the attributes at the first measurement
occasion (T = 1), but the correct classification rates improved
as the number of measurement occasions increased as shown in
Table 6. For individuals who truly did not master the attributes,
Table 7 shows that the correct classification rates were perfect at
the first measurement occasion, and then decreased to about 0.9
at the following measurement occasions.

This pattern might be due to the cut point of 0.5 used in the
current study. The true mastery status was randomly generated
through a binomial distribution with the true probability of
mastery, such that, there is still some probabilities of mastering

attributes, even the probability is very low. However, the
estimated probability of attribute mastery was very low on the
first two measurement occasions; the majority of individuals’
probabilities were lower than 0.5. After 0.5 was set as the cut
point to classify individuals into mastery or non-mastery classes,
most of the individuals were classified into the non-mastery
class even they truly mastered the attributes by design. With the
increasing of measurement occasions, the estimated probabilities
for individuals who truly mastered the attributes were increasing
to be larger than 0.5, thus the cut point of 0.5 can classify them
correctly. Such that, the correct classification rate was very low
on the first two measurement occasion, but it increases as the
measurement occasions increase.

The similar patterns were found when MO = 3, which
could be found in the Supplementary Material. In summary,
even though the probability of attribute mastery were recovered
well, the correct classification rates depended on the individuals’
mastery status and the cut point that was adopted to
classify individuals.

Cohen’s kappa was calculated to evaluate the degree of
agreement between the estimated and true mastery status.
Table 8 presents the average kappa under different conditions
when MO = 5. The calculation of kappa required that both
true and estimated mastery status should have at least two levels;
however, estimated mastery status only had one level under
some conditions, especially at the first measurement occasion.
Therefore, kappa was not applicable under some conditions.
Results found that kappa values improved as time increased. This
pattern might be due to the same reason as discussed above
that the estimated probability of mastery was very low for all
individuals at the first and second measurement occasions, such
that after applying 0.5 as the cutpoint, the most of individuals
who truly mastered the attributes were falsely classified to non-
mastery. Therefore, kappa values were low at the beginning but
improved as the number of measurement occasions increased.
Similar patterns were foundwhenMO = 3, which could be found
in the Supplementary Material.

In summary, the agreement between true and estimated
mastery status improved as the number of measurement
occasions increased, and it was influenced by the cutpoint applied
to classify individuals.

Parameter Recovery
The bias and mean square error (MSE) of the estimated
parameters were computed to assess the parameter recovery in
each condition through the simulation. Then, ANOVA tests were
conducted to assess the impact of the design factors on the bias
and MSE values of the estimated parameters of the measurement
model and the structural model, respectively.

Measurement Model Parameter Recovery
There were three sets of item parameters in the LCDM: the
intercept (λ0), the main effect (λαk ), and the interaction effect
(λαkαk′

) parameters. Therefore, the average bias and MSE of
all three sets of item parameters were assessed to evaluate the
measurement model parameter recoveries.
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TABLE 5 | Bias of probability of attribute mastery (MO = 5).

T1 T2 T3 T4 T5

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

G1 gam1 N100 . . 0.01 . . . . . . . . . . . .

N200 . . . . . . . . . . . . . . .

N300 . . . . . . . . . . . . . . .

gam2 N100 . . 0.01 . . . . −0.01 . . . . . . .

N200 . . . . . . . . . . . . . . .

N300 . . . . . . . . . . . . . . .

G2 gam1 N100 . 0.01 . . . . . . . . . . . . .

N200 . . . . . . . . . . . . . . .

N300 . 0.01 . . . . . . . . . . . . .

gam2 N100 0.01 . 0.01 . −0.01 . . −0.01 . . −0.01 . . . .

N200 . . . . . . . . . . . . . . .

N300 . . . . . . . . . . . . 0.01 0.02 0.01

T1–T5 represent the first to the fifth measurement occasion; A1, A2, and A3 represent Attribute 1, Attribute 2, and Attribute 3; N100, N200, and N300 represent the sample size of 100,

200, and 300, respectively; G1 and G2 represent equal correlation G and unequal correlation conditions of G matrix, respectively; gam1 and gam2 represent the same growth pattern

across attributes and unequal growth patterns across attributes, respectively; · represents <0.001.

TABLE 6 | Average correct classification rates for individuals who truly mastered attribute (MO = 5).

T1 T2 T3 T4 T5

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

G1 gam1 N100 0 0.04 0.06 0.69 0.73 0.76 0.86 0.88 0.88 0.90 0.91 0.92 0.92 0.94 0.94

N200 0.03 0.02 0.03 0.70 0.73 0.77 0.86 0.87 0.89 0.91 0.91 0.92 0.93 0.93 0.94

N300 0.02 0.02 0.03 0.70 0.73 0.77 0.87 0.87 0.88 0.91 0.91 0.91 0.93 0.93 0.94

gam2 N100 0.04 0.04 0.07 0.60 0.71 0.76 0.80 0.86 0.89 0.87 0.90 0.92 0.90 0.92 0.93

N200 0 0.02 0.03 0.62 0.73 0.77 0.82 0.86 0.89 0.88 0.91 0.92 0.90 0.93 0.94

N300 0.01 0.02 0.02 0.64 0.73 0.77 0.82 0.88 0.88 0.88 0.91 0.92 0.90 0.93 0.94

G2 gam1 N100 0.05 0.08 0.07 0.69 0.73 0.75 0.87 0.87 0.88 0.91 0.91 0.91 0.93 0.94 0.93

N200 0 0.03 0.04 0.70 0.73 0.76 0.86 0.87 0.88 0.90 0.91 0.92 0.92 0.93 0.94

N300 0.02 0.02 0.03 0.69 0.73 0.76 0.86 0.86 0.88 0.90 0.90 0.91 0.91 0.92 0.93

gam2 N100 0.05 0.04 0.07 0.64 0.70 0.75 0.82 0.86 0.87 0.88 0.91 0.92 0.90 0.92 0.94

N200 0.02 0.02 0.04 0.63 0.73 0.77 0.83 0.87 0.89 0.87 0.91 0.91 0.90 0.93 0.94

N300 0.02 0.02 0.02 0.64 0.74 0.76 0.83 0.87 0.88 0.88 0.91 0.91 0.90 0.93 0.93

T1–T3 represent the first to the third measurement occasion; A1, A2, and A3 represent Attribute 1, Attribute 2, and Attribute 3; N100, N200, and N300 represent the sample size of

100, 200, and 300, respectively; G1 and G2 represent equal correlation G and unequal correlation conditions of G matrix, respectively; gam1 and gam2 represent the same growth

pattern across attributes and unequal growth patterns across attributes, respectively.

As presented in Table 9, the proposed model achieved
good parameter recoveries in intercept and main effect
parameters, but the interaction parameters had relatively large
bias and MSE values under most conditions. However,
the recovery of the interaction effect parameters was
improved as the sample size and the number of measurement
occasions increased.

Since the bias and MSE values of item parameters were not

consistent across conditions, ANOVA tests were conducted to

examine the impact of design factors on them. When MO =

3, results found that the sample size had small to large effects

on the recoveries on the intercept and main effects parameters

(η2λ0Bias
= 0.05, η2λαBias

= 0.15; η2λ0MSE
= 0.67, η2λαBias

= 0.74).
A large sample size was associated with good recoveries. The
recoveries of interaction effect parameters were influenced by
the sample size, the G matrix, and the growth pattern. The
sample size had large effects on both the bias (η2λαkα

k
′
bias

=0.66)

and MSE (η2λαkα
k
′
MSE

=0.53). Similarly, a large sample size

resulted in better recoveries. Both the growth pattern and the
G matrix design had small effects on interaction parameter
recoveries (the growth pattern: η2λαkα

k
′
bias

=0.02, η2λαkα
k
′
MSE

=0.02;

the G matrix: η2λαkα
k
′
bias

=0.02, η2λαkα
k
′
MSE

=0.02); the
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TABLE 7 | Average correct classification rates for individuals who truly did not master attribute (MO = 5).

T1 T2 T3 T4 T5

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

G1 gam1 N100 1 1 1 0.87 0.83 0.79 0.88 0.87 0.85 0.92 0.90 0.89 0.94 0.94 0.93

N200 1 1 1 0.86 0.83 0.79 0.87 0.87 0.86 0.92 0.91 0.90 0.94 0.94 0.93

N300 1 1 1 0.86 0.82 0.79 0.87 0.87 0.86 0.91 0.91 0.90 0.94 0.94 0.93

gam2 N100 1 1 0.99 0.91 0.84 0.79 0.91 0.87 0.86 0.94 0.91 0.90 0.96 0.94 0.93

N200 1 1 1 0.91 0.83 0.79 0.91 0.87 0.85 0.94 0.91 0.89 0.95 0.93 0.93

N300 1 1 1 0.90 0.82 0.78 0.90 0.87 0.85 0.93 0.91 0.90 0.96 0.94 0.93

G2 gam1 N100 1 1 0.99 0.86 0.82 0.80 0.86 0.86 0.85 0.91 0.90 0.90 0.94 0.93 0.93

N200 1 1 1 0.85 0.82 0.79 0.87 0.86 0.85 0.91 0.91 0.89 0.94 0.94 0.93

N300 1 1 1 0.85 0.82 0.79 0.86 0.85 0.85 0.91 0.90 0.89 0.93 0.92 0.92

gam2 N100 1 1 0.99 0.90 0.85 0.80 0.90 0.86 0.85 0.94 0.91 0.90 0.96 0.94 0.94

N200 1 1 1 0.90 0.82 0.79 0.90 0.87 0.86 0.94 0.92 0.90 0.95 0.94 0.93

N300 1 1 1 0.89 0.82 0.79 0.90 0.87 0.85 0.93 0.91 0.89 0.94 0.92 0.91

T1–T3 represent the first to the third measurement occasion; A1, A2, and A3 represent Attribute 1, Attribute 2, and Attribute 3; N100, N200, and N300 represent the sample size of

100, 200, and 300, respectively; G1 and G2 represent equal correlation G and unequal correlation conditions of G matrix, respectively; gam1 and gam2 represent the same growth

pattern across attributes and unequal growth patterns across attributes, respectively.

TABLE 8 | Average kappa (MO = 5).

T1 T2 T3 T4 T5

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

G1 gam1 N100 . . . 0.57 0.55 0.55 0.74 0.75 0.72 0.82 0.81 0.81 0.87 0.88 0.86

N200 . . . 0.56 0.56 0.56 0.73 0.74 0.74 0.82 0.82 0.82 0.87 0.87 0.87

N300 . . . 0.56 0.55 0.56 0.73 0.73 0.74 0.83 0.82 0.82 0.87 0.87 0.87

gam2 N100 . . . 0.54 0.55 0.55 0.72 0.72 0.75 0.82 0.81 0.82 0.86 0.86 0.86

N200 . . . 0.56 0.56 0.56 0.73 0.73 0.73 0.82 0.82 0.81 0.86 0.86 0.87

N300 . . . 0.55 0.55 0.55 0.73 0.74 0.74 0.82 0.82 0.82 0.86 0.87 0.87

G2 gam1 N100 . . . 0.56 0.55 0.55 0.72 0.72 0.73 0.82 0.81 0.81 0.87 0.86 0.87

N200 . . . 0.56 0.55 0.55 0.73 0.73 0.74 0.82 0.82 0.81 0.87 0.87 0.86

N300 . . . 0.54 0.55 0.55 0.72 0.71 0.73 0.80 0.80 0.80 0.85 0.84 0.85

gam2 N100 . . . 0.56 0.55 0.55 0.72 0.72 0.73 0.82 0.82 0.82 0.86 0.86 0.87

N200 . . . 0.54 0.55 0.55 0.73 0.74 0.75 0.81 0.83 0.82 0.85 0.87 0.87

N300 . . . 0.54 0.55 0.54 0.73 0.74 0.73 0.81 0.81 0.80 . . .

T1–T5 represent the first to the fifth measurement occasion; A1, A2, and A3 represent Attribute 1, Attribute 2, and Attribute 3; N100, N200, and N300 represent the sample size of 100,

200, and 300, respectively; G1 and G2 represent equal correlation G and unequal correlation conditions of G matrix, respectively; gam1 and gam2 represent the same growth pattern

across attributes and unequal growth patterns across attributes, respectively; ‘.’ presents the kappa for this condition was not applicable.

growth and the equal correlations conditions resulted in
better recoveries.

When MO = 5, the item parameter recoveries were mainly
influenced by the sample size. The sample size had small to
large effects on the recoveries of intercept and main effects
(η2λ0Bias

= 0.01, η2λ0MSE
= 0.33; η2λαBias

= 0.05, η2λαMSE
=

0.37), and large effects on the recoveries of interaction effects
(η2λαkα

k
′
bias

=0.19, η2λαkα
k
′
MSE

=0.17). The parameter recoveries were

improved as the sample size increased. In addition, the recoveries
of intercept parameters were influenced by the growth pattern
slightly. The non-growth condition had a slightly better intercept
parameter recoveries, although the effect sizes were very small.

For the sake of page limits, the details of ANOVA results could be
found in the Supplementary Material.

In summary, the item parameter recoveries were mainly
influenced by the sample size, especially for the interaction effect
parameters. In general, the larger sample size resulted in the
better item parameter recoveries.

Structural Model Parameter Recovery
Recoveries of both fixed effects and random effects in the
growth model were evaluated in this study. The fixed effects
included the intercept and slope parameters for each attribute

(γ
Ak
00 , γ

Ak
01 ), and the random effects included the variance of
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TABLE 9 | Summary of measurement model parameter recoveries.

Three measurement occasions (MO = 3) Five measurement occasions (MO = 5)

λ0 λαk λαkαk′
λ0 λαk λαkαk′

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

G1 gam1 N100 0.03 0.05 −0.09 0.13 0.58 0.60 0.03 0.03 −0.07 0.07 0.31 0.24

N200 0.02 0.03 −0.06 0.07 0.32 0.27 0.00 0.02 −0.03 0.04 0.15 0.11

N300 0.02 0.02 −0.04 0.04 0.23 0.17 0.01 0.01 −0.03 0.03 0.11 0.07

gam2 N100 0.04 0.05 −0.08 0.13 0.62 0.68 0.02 0.03 −0.07 0.07 0.33 0.27

N200 0.03 0.03 −0.06 0.07 0.36 0.31 0.01 0.02 −0.03 0.04 0.16 0.11

N300 0.01 0.02 −0.04 0.04 0.24 0.19 0.00 0.01 −0.02 0.03 0.09 0.07

G2 gam1 N100 0.04 0.05 −0.09 0.13 0.62 0.66 0.03 0.04 −0.07 0.07 0.31 0.25

N200 0.02 0.03 −0.05 0.07 0.36 0.32 0.02 0.02 −0.04 0.04 0.17 0.11

N300 0.01 0.02 −0.03 0.05 0.25 0.20 0.01 0.01 −0.02 0.03 0.10 0.07

gam2 N100 0.03 0.05 −0.08 0.13 0.66 0.73 0.02 0.03 −0.06 0.07 0.34 0.28

N200 0.03 0.03 −0.06 0.07 0.39 0.36 0.02 0.02 −0.04 0.04 0.18 0.13

N300 0.01 0.02 −0.03 0.05 0.28 0.26 0.01 0.01 −0.02 0.03 0.11 0.08

λ0, λαk , and λαkαk′
represents the intercept, main effect, and interaction effect parameters of the LCDM; A1, A2, and A3 represent Attribute 1, Attribute 2, and Attribute 3; N100, N200,

and N300 represent the sample size of 100, 200, and 300, respectively; G1 and G2 represent equal correlation G and unequal correlation conditions of G matrix, respectively; gam1

and gam2 represent the same growth pattern across attributes and unequal growth patterns across attributes, respectively.

intercept and slope parameters for each attribute (δ
u
Ak
0

, δ
u
Ak
1

)

as well as the covariance among intercept and slope parameters
(δ

u
Ak
0 ,u

A
k
′

0

δ
u
Ak
1 ,u

A
k
′

1

δ
u
Ak
0 ,u

A
k
′

1

).

Recovery of the fixed effects
Table 10 presents the summary of average bias and MSE of fixed
effects under all conditions when MO = 5, which reveals that
the proposed model achieved good recoveries on the intercept
parameters for Attributes 2 and 3, and slope parameters for
all attributes, indicated by the small MSE values and the bias
values being close to zero. However, the intercept parameter
of Attribute 1 had relatively larger bias than other parameters.
WhenMO = 3, similar patterns were found, which can be found
in the Supplementary Material.

The bias and MSE of intercept parameters were not consistent
across different conditions, so ANOVA tests were conducted
to investigate if the design factors influenced the intercept
parameter recoveries for both MO = 3 and MO = 5
conditions. As shown in Table 11, when MO = 3, the
sample size had small effects on the MSE values of intercept

parameters (η2
A1
γ00

= 0.03, η2
A2
γ00

= 0.04, η2
A3
γ00

= 0.03).
A large sample size was associated with small MSE values.
However, the bias of fixed effects was not influenced by the
design factors.

When MO = 5, ANOVA tests found that the sample size
had small effects on the MSE values of intercept parameters for

Attribute 2 and 3 (η2
A2
γ00

= 0.01, η2
A3
γ00

= 0.01). Similarly,
the bias of intercept parameters was not influenced by the
design factors.

In summary, the intercept parameters of Attributes 2 and 3

and all the slope parameters were recovered well in the current

study, but the intercept parameters of Attribute 1 had a relatively

large bias. ANOVA tests found that the sample size had small

effects on theMSE values of intercept parameters; a larger sample

size resulted in smaller MSE values. However, no design factors

were associated with the bias of intercept parameters.

Recovery of the random effects
Regarding the recovery of variance parameters, the average bias
and MSE values of the variance of intercept and slope for all
attributes were examined, the results reveal that the proposed
model achieved good recoveries in both the intercept and slope
variance parameters in both MO = 3 and MO = 5. The details
of the summary of random variance recoveries could be found in
the Supplementary Material.

Since bias of intercept variance parameters were not consistent
across all conditions, ANOVA tests were conducted to examine
the impact of design factors on them. As shown in Table 12,
when MO = 3, results found that the sample size had medium
effects on the bias of intercept variance parameters (η2δ

u
A1
0

=

0.14; η2δ
u
A2
0

= 0.13; η2δ
u
A3
0

= 0.11); the large sample size had

large bias values.
When MO = 5, similar patterns were found. The variance

of intercept and slope parameters were recovered well. Since
the recoveries of the variance of intercept parameters were
varied by conditions, ANOVA tests were conducted to investigate
the impact of design factors on them. As showed in Table 12,
the sample size had small effects (η2δ

u
A1
0

= 0.02; η2δ
u
A2
0

=

0.02; η2δ
u
A3
0

= 0.02); the larger sample size had larger bias values.

In summary, the proposed model achieved good recoveries on
the variance of intercept and slope parameters. Moreover, a large
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TABLE 10 | Summary of fixed effects recoveries (MO = 5).

γ A1
00 γ A1

01 γ A2
00 γ A2

01 γ A3
00 γ A3

01

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

G1 gam1 N100 −0.11 0.08 . 0.01 0.01 0.04 . 0.01 0.02 0.06 .

N200 −0.13 0.06 −0.01 . 0.02 0.05 . . 0.05 0.05 . .

N300 −0.10 0.04 . . −0.01 0.03 0.01 . 0.03 0.04 −0.01 .

gam2 N100 −0.12 0.08 0.01 0.01 0.01 0.06 . 0.01 0.01 0.05 . 0.01

N200 −0.13 0.06 −0.02 0.01 0.02 0.05 0.01 . 0.05 0.06 0.01 0.01

N300 −0.15 0.06 −0.01 . . 0.04 0.01 . 0.10 0.04 −0.01 .

G2 gam1 N100 −0.14 0.09 −0.01 0.01 −0.01 0.07 . 0.01 0.07 0.08 0.01 0.01

N200 −0.16 0.06 0.01 0.01 0.01 0.04 . . 0.03 0.04 −0.01 0.01

N300 −0.11 0.06 0.01 0.01 −0.02 0.04 0.01 . 0.01 0.03 −0.01 .

gam2 N100 −0.12 0.07 −0.01 0.01 −0.03 0.07 −0.01 0.01 0.04 0.07 0.01 0.01

N200 −0.13 0.07 0.01 . −0.04 0.05 . . 0.06 0.05 . .

N300 −0.11 0.05 . . −0.02 0.03 0.01 . 0.06 0.04 . .

γ k
00 and γ k

01 represents the intercept and slope parameters of attributes; A1, A2, and A3 represent Attribute 1, Attribute 2, and Attribute 3; N100, N200, and N300 represent the sample

size of 100, 200, and 300, respectively; G1 and G2 represent equal correlation G and unequal correlation conditions of G matrix, respectively; gam1 and gam2 represent the same

growth pattern across attributes and unequal growth patterns across attributes, respectively; represents <0.001.

TABLE 11 | ANOVA results of fixed effects parameter recoveries.

Three measurement occasions (MO = 3) Five measurement occasions (MO = 5)

Bias MSE Bias MSE

Design factors Df F η
2 p F η

2 P df F η
2 p F η

2 p

γ A1
00

G 1 0.1 . 0.75 0.37 . 0.54 1 0.05 . 0.82 1.05 . 0.31

SZ 2 0.06 . 0.94 14.93 0.03 . 1 2.04 . 0.15 1.11 . 0.29

G×SZ 2 0.42 . 0.66 0.83 . 0.43 1 1.19 . 0.28 0.11 . 0.74

Residuals 1128 0.5 0.5 770 0.5 0.5

γ A2
00

G 1 0.89 . 0.35 2.78 . 0.1 1 2.57 . 0.11 0.37 . 0.55

SZ 2 0.72 . 0.49 22.14 0.04 . 1 1.02 . 0.31 8.58 0.01 .

G × SZ 2 0.05 . 0.95 0.23 . 0.79 1 0.22 . 0.64 0.08 . 0.78

Residuals 1128 0.5 0.5 770 0.5 0.5

γ A3
00

G 1 2.31 . 0.13 0.28 . 0.6 1 1.26 . 0.26 0.42 . 0.52

SZ 2 0.03 . 0.97 15.78 0.03 . 1 0.2 . 0.65 6.65 0.01 0.01

G × SZ 2 1.07 . 0.34 1.46 . 0.23 1 0.38 . 0.54 1.4 . 0.24

Residuals 1128 0.5 0.5 770 0.5 0.5

G represents G matrix design; gamma represents the growth patterns; SZ represents the sample size; · represents <0.001.

sample size was associated with large bias values of the variance
of intercept parameters.

Regarding the recovery of covariance parameters, on
average, the proposed model achieved good recoveries
on the covariance among intercept and slope parameters
for both MO = 5 and MO = 3. However, the
covariance between intercepts had a lightly larger bias
than other sets of parameters. Details of the summary
of covariance parameter recoveries could be found in the
Supplementary Material.

When MO = 3, As shown in Table 13, ANOVA tests found
that the sample size had medium effects (η2 = 0.13) on the bias
of covariance between intercept parameters; a large sample size
was associated with a large bias.

Similar patterns were found when MO = 5, ANOVA tests
showed the sample size had medium effects on the bias values
of covariance between intercept parameters; a larger sample size
was associated with a larger bias value.

On average, the proposed model achieved good recoveries on
the covariance among intercept and slope parameters. The bias
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TABLE 12 | ANOVA results of random variance parameter recoveries.

Three measurement occasions (MO = 3) Five measurement occasions (MO = 5)

Bias MSE Bias MSE

Design factors Df F η2 p F η2 p Df F η2 p F η2 p

γ A1
00

G 1 0.10 . 0.75 1.53 . 0.22 1 2.21 . 0.14 . . 0.97

SZ 2 89.68 0.14 . 1.27 0.02 . 1 14.49 0.02 . 2.35 . 0.13

G × SZ 2 2.58 . 0.08 1.12 . 0.33 1 0.01 . 0.94 0.19 . 0.66

Residuals 1128 0.50 0.50 770 0.50 0.50

γ A2
00

G 1 0.08 . 0.78 2.79 . 0.10 1 . . 0.97 0.54 . 0.46

SZ 2 84.06 0.13 . 11.79 0.02 . 1 13.35 0.02 . 4.22 0.01 0.04

G × SZ 2 1.78 . 0.17 2.19 . 0.11 1 0.01 . 0.92 1.48 . 0.22

Residuals 1128 0.50 0.50 770 0.50 0.50

γ A3
00

G 1 0.14 . 0.71 3.54 . 0.06 1 0.64 . 0.43 . . 1.

SZ 2 72.67 0.11 . 7.26 0.01 . 1 14.08 0.02 . 6.48 0.01 0.01

G × SZ 2 3.01 0.01 0.05 2.37 . 0.09 1 0.08 . 0.77 0.59 . 0.44

Residuals 1128 0.50 0.50 770 0.50 0.50

G represents G matrix design; gamma represents the growth patterns; SZ represents the sample size; · represents <0.001.

TABLE 13 | ANOVA results of random covariance parameter recoveries.

Three measurement occasions (MO = 3) Five measurement occasions (MO = 5)

Bias MSE Bias MSE

Design factors Df F η
2 p F η

2 p df F η
2 p F η

2 p

δ
u
Ak
0 ,u

A
k
′

0

G 1 0.16 . 0.69 3.2 . 0.07 1 0.82 . 0.37 0.1 . 0.75

SZ 2 81.22 0.13 . 6.96 0.01 . 1 5.32 0.01 0.02 5.81 0.01 0.02

G × SZ 2 2.87 0.01 0.06 2.04 . 0.13 1 0.25 . 0.62 0.7 . 0.4

Residuals 1128 0.5 0.5 770 0.5 0.5

G represents G matrix design; gamma represents the growth patterns; SZ represents the sample size; · represents <0.001.

of covariance among intercept parameters was influenced by the
sample size; the larger sample size resulted in larger bias values.

DISCUSSION

Performance of the Multivariate
Longitudinal DCM
Model Convergence
Overall, the proposed model achieved satisfactory convergence
rates; however, the proposed achieved a slightly higher
convergence rates when MO = 5 than MO = 3, which was
reasonable since more measurement occasions would provide
more information to help the estimation and the model be
converged. Also, as shown in the Supplementary Material, the
conditions with five measurement occasions had more chains
and a longer chain length for each chain than the conditions
with three measurement occasions, which might have led to an

improvement in the convergence rates. Therefore, the number
of chains and the chain length might be not sufficient for the
conditions with three measurement occasions.

Classification Accuracy
The bias of the estimated probability of attribute mastery, the
correct classification rates for each mastery status, and Cohen’s
kappa was used to evaluate the classification accuracy of the
proposed model.

The probability of attribute mastery was recovered well in
the current study consistently across all measurement occasions,
which indicated that the proposed model could provide accurate
estimates of probabilities of attribute mastery.

Regarding correct classification rates, results found different
patterns for individuals who truly mastered the attributes
and individuals who truly did not master the attributes. For
the individuals who truly mastered the attributes, the correct
classification rates improved significantly as the number of
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measurement occasions increased. However, for individuals who
truly did not master the attributes, the correct classification
rates decreased slightly as the number of measurement occasions
increased. This pattern might be due to that we adopted the
cut point of 0.5 to classify the individuals. Since the estimated
probabilities of attribute mastery for most of the individuals
were lower than 0.5 on the first two measurement occasions,
individuals would be classified into the non-mastery status, even
some of them truly mastered the attributes by design. As a
result, the correct classification rates were low for individuals
who truly mastered the attributes on the first two measurement
occasions. As the number of measurement occasions increased,
the estimated probability of mastery increased, such that correct
classification rates increased. Due to the same reason, Cohen’s
kappa increased as the number of measurement occasions
increased. Therefore, the cutpoint had influenced the correct
classification rates and kappa values of the current model.

Parameter Recoveries
The bias and mean square error (MSE) of the estimated
parameters were computed to assess the parameter recovery in
each condition through the simulation.

Measurement model parameter recoveries
Regarding the item parameter recoveries, conditions with three
and five measurement occasions illustrated similar patterns.
The proposed model achieved good parameter recoveries in
intercept and main effect parameters, but poor interaction effect
parameter recoveries. However, the recoveries of the interaction
effect parameters were improved as the sample size and the
number of measurement occasions increased. In addition, results
from the ANOVA tests found the sample size had large impact
on the interaction effects recoveries. Nonetheless, this result
was expected. Previous research showed that the intercept
and main effect parameters were easier to recover than the
two-way interaction effect parameters. The recoveries of the
interaction effect parameters were problematic when the sample
size was <1,000 (e.g., Choi et al., 2010; Kunina-Habenicht
et al., 2012). Therefore, these results suggested that a large
sample size was necessary to achieve good item parameter
recoveries in the LCDM framework, especially for the interaction
effect parameters. The maximum sample size (n = 300) in
the current study was not sufficient for obtaining accurate
interaction effect parameters, especially for the conditions with
three measurement occasions.

Structural model parameter recoveries
Both the recoveries of fixed effects and random effects in the
generalized growth curve model were evaluated.

Regarding the recoveries of the fixed effects, overall, the
proposedmodel achieved good intercept recoveries for Attributes
2 and 3, and slope recoveries for all attributes, but relatively poor
recoveries for Attribute 1 intercept. Attribute 1 had relatively
small intercept value by design (γ A1

00 = −1.38), therefore, the
small intercept value might have led to enlarge the bias. To
avoid the influence of the small value of the intercept parameter,
the time variable could be centered at the medial measurement

occasions (T = 2 when MO = 3, or T = 3 when MO = 5),
such that there would be sufficient information to estimate the
intercept parameters.

Regarding the recoveries of the random effects, on average,
the proposed model achieved good recoveries on the random
effects, including the variance of intercept and slope parameters
of each attribute as well as the covariance among intercept
and slope parameters within and crossed attributes. To improve
the model convergence, the current study adopted the true
variance-covariance matrix in the population as the prior of the
estimated variance-covariance matrix, which might have led to
good recoveries of the random effects.

Conclusion and Recommendations
The current study developed a multivariate longitudinal DCM
that could measure growth in attributes over time, and it
evaluated this proposed model using a simulation study. The
results revealed the following: (1) In general, the proposed model
provided good convergence rates under different conditions.
(2) Regarding the classification accuracy, the proposed model
achieved good recoveries on the probabilities of attribute
mastery. For individuals who truly mastered the attributes,
the correct classification rates increased as the measurement
occasions increased; however, for individuals who truly did not
master the attributes, the correct classification rates decreased
slightly as the numbers of measurement occasions increased.
Cohen’s kappa increased as the number of measurement
occasions increased. (3) Both the intercept and main effect
parameters in the LCDM were recovered well. The interaction
effect parameters had a relatively large bias under the condition
with a small sample size and fewer measurement occasions;
however, the recoveries were improved as the sample size and
the number of measurement occasions increased. (4) Overall, the
proposed model achieved acceptable recoveries on both the fixed
and random effects in the generalized growth curve model.

In summary, a large sample size is recommended for applying
the proposed model to the real data. When the sample size
is small, the scale with a simple structure of the Q matrix
is recommended, because the interaction effects in the LCDM
might not be estimated accurately with the small sample size.
Also, applied researchers are suggested to center the time variable
at the medial measurement occasion to improve the recovery
of the intercept parameter in the generalized growth curve
model. Additionally, when doing the MCMC analysis, multiple
chains with the longer chain length are recommended to achieve
satisfied model convergence rates.

Therefore, when practitioners try to measure students’
growth in the DCM framework using the proposed model,
they should use a larger sample size, an assessment with less
complex Q-matrix design, and multiple chains with longer chain
length to maximize the convergence rates and the accuracy of
parameter estimates.

Contributions and Limitations
In the current study, a multivariate longitudinal DCM was
developed to analyze longitudinal data under the DCM
framework. It represents an improvement in the current
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longitudinal DCMs given its ability to incorporate both balanced
and unbalanced data and to measure the growth of a single
attribute directly without assuming that attributes grow in the
same pattern. The current study had several limitations. First,
the true variance-covariance matrix was used as the prior
for the random effects parameters in the generalized growth
curve model in the current study; however, the true variance-
covariance matrix is unknown when fitting the model to the real
data. Therefore, future studies could adopt a non-informative
variance-covariance matrix as the prior, then evaluate if the
proposed model could achieve satisfying recoveries on the
random effects as well. Second, local item dependency was not
incorporated in the current study. However, in real longitudinal
data, repeated measures always have some degree of local item
dependence (e.g., Cai, 2010). Therefore, future research could
simulate local item dependence with the common items to
mimic real data. Third, only three or five measurement occasions
were included in the current model. The small number of
measurement occasions might have limited the reliability and
accuracy of the estimation of the growth curve model (e.g.,
Finch, 2017). In the future, more measurement occasions could
be included to examine the performance of the proposed model
comprehensively. Fourth, the definition of the time variable in
longitudinal studies is very crucial. In the current study, we
follow a conventional way to use the length of time between
adjacent measurement occasions as the time variable. However,
in reality, students likely have spent different lengths of time
learning different attributes. So, in the future, we suggest using
the number of hours spent on learning an attribute as the time
variable if the data is available. In addition, we applied the cut-
score to the average of the post burn-in probability of master to
obtain a binary master status of one iteration on each condition,
meaning that we cannot obtain a posterior distribution of
the mastery status. So, we suggest future researchers applying

the cut-score within MCMC analysis to obtain a posterior
distribution of mastery status, which should provide a more
accurate estimated mastery status. Last but not least, due to the
limited data resources, we did not find a real dataset to evaluate
the proposed model. We plan to add a real data application
if some longitudinal diagnose assessment data is available in
the future.
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