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How the human brain retains relevant vocal information while suppressing irrelevant

sounds is one of the ongoing challenges in cognitive neuroscience. Knowledge of

the underlying mechanisms of this ability can be used to identify whether a person

is distracted during listening to a target speech, especially in a learning context. This

paper investigates the neural correlates of learning from the speech presented in a noisy

environment using an ecologically valid learning context and electroencephalography

(EEG). To this end, the following listening tasks were performed while 64-channel EEG

signals were recorded: (1) attentive listening to the lectures in background sound, (2)

attentive listening to the background sound presented alone, and (3) inattentive listening

to the background sound. For the first task, 13 lectures of 5 min in length embedded

in different types of realistic background noise were presented to participants who were

asked to focus on the lectures. As background noise, multi-talker babble, continuous

highway, and fluctuating traffic sounds were used. After the second task, a written exam

was taken to quantify the amount of information that participants have acquired and

retained from the lectures. In addition to various power spectrum-based EEG features

in different frequency bands, the peak frequency and long-range temporal correlations

(LRTC) of alpha-band activity were estimated. To reduce these dimensions, a principal

component analysis (PCA) was applied to the different listening conditions resulting in the

feature combinations that discriminate most between listening conditions and persons.

Linear mixed-effect modeling was used to explain the origin of extracted principal

components, showing their dependence on listening condition and type of background

sound. Following this unsupervised step, a supervised analysis was performed to explain

the link between the exam results and the EEG principal component scores using

both linear fixed and mixed-effect modeling. Results suggest that the ability to learn

from the speech presented in environmental noise can be predicted by the several

components over the specific brain regions better than by knowing the background

noise type. These components were linked to deterioration in attention, speech envelope

following, decreased focusing during listening, cognitive prediction error, and specific

inhibition mechanisms.
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1. INTRODUCTION

The human brain is remarkably capable of focusing on one
specific sound while suppressing all others (Alain, 2007).
Nevertheless, processing of relevant information largely depends
on the specific interaction of the acoustic features of speech
and noise signals, their informative content, attention, state,
and the prior knowledge (familiarity with the presented topic)
of the listener (Szalma and Hancock, 2011). To understand
the underlying mechanisms of this diverse phenomenology in
human sound interaction, short-term features of distracting
events, state of the listener, information flow, and loss
of efficiency need to be studied. One key aspect of the
study design is ecological validity (Chaytor and Schmitter-
Edgecombe, 2003), meaning that realistically complex stimuli
and conditions are included possibly in addition to artificially
designed stimuli.

In a learning context, the ability to acquire and retain vocal
information strongly affects the overall learning performance.
This is even more challenging when this occurs in the
presence of environmental noise. One of the effects involved
in this ability is known as the cocktail party effect (Cherry,
1978), and this refers to the ability of the brain to direct
attention to a target sound despite the presence of distracting
sounds. Although the underlying mechanisms are indispensable
to learn from information presented in an acoustically rich
environment (Lehmann and Schönwiesner, 2014), they are far
from fully understood.

Attention directs both cognitive and sensory resources to the
target sounds (Schneider and Shiffrin, 1977). In general, such
resources are limited in capacity based on the bottleneck (Pashler,
1984) and capacity sharing (Kahneman, 1973) theories. Most
of the observed effects of noise on learning (Alain, 2007)
can be explained by attention, including unlocking undesired
attention focus as well as an increased cognitive load when
listening to speech in noise (Rudner, 2016). Moreover, listening
performance and speech intelligibility in background noise can
be impaired by distracting attention away from the narrative
and hampering relevant sounds (Ljung et al., 2009; Clark and
Sörqvist, 2012). However, attention focusing and appropriate
gating of (ir)relevant stimuli are not only the matter of cortical
processing but also peripheral neurophysiological stages of
auditory analysis are involved. Attention can be modulated
by bottom-up factors (referring to external stimulus-driven
responses that guide the attention due to inherent properties
of salient events relative to the background) as well as top-
down task-specific functions (referring to internal modulation of
attention that is driven by cognition based on prior knowledge,
expectations, and learned schemas) (Katsuki and Constantinidis,
2014; Kaya and Elhilali, 2017).

Auditory attention-related research (especially bottom-up

attention) mostly adopts an event-related potential (ERP)

design (Alain, 2007). However, a classical ERP design with
repeated stimuli conflicts with the idea of ecologically valid
stimuli and studying top-down attention. In the current paper,
the single-trial EEG experiment was used to study how
auditory-related neural responses vary depending on acoustical
stimulus and listening condition. The power spectrum of EEG

signal exhibits peaks in different frequency ranges reflecting
different underlying mechanisms (Buzsáki et al., 2013; He,
2014). Therefore, one of the most common methods to process
the single-trial EEG signals is spectral analysis, which relies
on partitioning the signal into the different frequency sub-
bands (Clayton et al., 2015).

Previous studies using spectral analysis have shown
different frequency bands contribute to the various
underlying mechanisms during listening to speech in
noise, such as top-down attention (Gazzaley and Nobre,
2012), cortical inhibition (Uusberg et al., 2013), language
processing (Pulvermüller et al., 1997), neural entrainment
to speech (Riecke et al., 2018), and excitation-inhibition
balance (Poil et al., 2012). The roles of the different frequency
bands in these mechanisms are discussed separately below.

Low-frequency EEG signals (1 − 8 Hz) can be modulated by
attention (Kerlin et al., 2010; Braboszcz and Delorme, 2011). Two
importantmechanismsmay be associated with the low-frequency
EEG. The first one is the mismatch between current and desired
levels of attention (Clayton et al., 2015) and the transition of
the fatigue state (Borghini et al., 2014), which is observed as a
continuous increase of low-frequency power with time on task
[unlike the alpha-band activity (8 − 13 Hz) (Mierau et al., 2017)].
Frontomedial theta-band (4 − 8 Hz) activity has been linked to
both enhanced attention over short time-scale cognitive tasks and
reduced attention (increased attentional fatigue) following long
time-scale cognitive tasks (Wascher et al., 2014; Clayton et al.,
2015). Moreover, it has been shown that the delta-band (1 − 4
Hz) absolute power is higher in the mind wandering compared
to the focused state over the fronto-central region (Braboszcz and
Delorme, 2011).

The second mechanism is the information and attention
selection (Schroeder and Lakatos, 2009; Herrmann et al.,
2016). This means that the attention can use a mechanism
of selection leading to oscillatory entrainment to a task-
relevant stimulus (Schroeder and Lakatos, 2009). However,
neural entrainment is a broader concept and refers to the
temporal alignment of neural signals with regularities in an
exogenously occurring stimulus, such as speech (Obleser and
Kayser, 2019) and even aperiodic (speech) signals (Obleser et al.,
2012; Goswami and Leong, 2013).

Speech following (and speech envelope following/tracking)
as one the manifestation of the neural entrainment refers to
the relation between the neural and sound signals (Obleser
and Kayser, 2019). Although it has been measured in various
frequency bands (Obleser and Kayser, 2019), its impact on
low-frequency EEG (delta and theta bands) has been shown
in several electrophysiological experiments (Luo and Poeppel,
2007; Doelling et al., 2014; O’Sullivan et al., 2014; Kayser et al.,
2015). The basic hypotheses of these studies are the following:
(1) entrainment occurs also at other frequencies, but this effect
is obscured by stronger signals; (2) the low-frequency speech
envelope entrainment of brain activity could be robust against
different background noises (Ding et al., 2014); and (3) the speech
envelope is constituted by slow temporal modulations, which
contribute to speech recognition despite different background
sounds (Houtgast and Steeneken, 1985; Rosen, 1992; Kerlin et al.,
2010; Ding and Simon, 2013; Ríos-López et al., 2017).
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It has also been shown that attended and unattended
stimuli could be decoded by low-frequency single-trial EEG in
a cocktail party scenario based on a stimulus-reconstruction
algorithm (O’Sullivan et al., 2014). This stimulus-reconstruction
method indicated the slow amplitude envelope of attended
speech (≤ 8 Hz) is tracked more strongly by the low-frequency
EEG (2−8Hz) compared to the unattended speech. Furthermore,
it has been shown that in the multi-talker speech perception, the
attended speaker is represented over the non-primary auditory
cortex (AC) while the individual speakers are represented over
the primary AC (O’Sullivan et al., 2019).

Alpha-band activity (∼8− 13 Hz) is also often modulated by
auditory attention, especially by the inhibition function (Strauß
et al., 2014). The term “alpha-as-inhibition” is used to highlight
that alpha-band activity, beyond resting state, could reflect
inhibition of the distracting sound (Clark, 1996; Uusberg
et al., 2013). Increased alpha-band activity over the task-
irrelevant brain regions reflects less involvement of those
regions. Hence, comparison of alpha power between task-
relevant and task-irrelevant cortical regions can be an indicator
for inhibition (Pfurtscheller and Da Silva, 1999; Chang et al.,
2010). In fact, alpha event-related synchronization (ERS) reflects
inhibition and alpha event-related desynchronization (ERD)
releases from inhibition (Foxe et al., 1998; Snyder and Foxe, 2010;
Klimesch, 2012).

Not only absolute alpha power over a fixed frequency band
but also alpha peak frequency (APF) and its corresponding
power can be associated with attention, inhibition, memory, and
cognitive demand (Klimesch, 1997; Clark et al., 2004; Haegens
et al., 2014; Gulbinaite et al., 2017). APF (Doppelmayr et al.,
1998) and individual alpha frequency (IAF) (Klimesch, 1999)
indicate the actual frequency limits of alpha activity, which
exhibit variability within and between subjects (Haegens et al.,
2014). APF is also linked to the number of spiking neurons
or the input level (Mierau et al., 2017). If the input level
increases with respect to the baseline level, APF increases until
the oscillation becomes unstable and then it is replaced by a lower
frequency (Mierau et al., 2017). Although APF increases with a
higher allocation of attentional resources, it decreases with lower
attentional demand and cognitive load due to unstable state and
overloaded attention capacity (Hutt et al., 2016; Mierau et al.,
2017). Higher APF can be accompanied by lower alpha power
resulting in task-relevant regions that exhibit increased APF
during task performance (Hutt et al., 2016). Studies focusing on
power-related frequency shifts have suggested a rather complex
relationship between alpha frequency and power (Kawabata,
1972). Other studies have shown that APF decreases with
increasing attentional demand and task difficulty (Angelakis
et al., 2004; Haegens et al., 2014), which could be explained by
unstable state and overloaded attention capacity. Enhanced APF
might reflect a state of cognitive preparedness and the attentional
switch between wandering and focused states of mind (Braboszcz
and Delorme, 2011).

In addition to the peaks at the frequency ranges, a
predominant “ 1

f
” component in the EEG power spectra leads

a power-law function, i.e., p ∝ 1
f

a
, where p is power,

f is frequency, and a is the scaling exponent (He, 2014).

Therefore, the EEG time series exhibit scale-free dynamics and
do not have a characteristic scale (He et al., 2010; He, 2014).
Furthermore, the ongoing EEG signals hold a memory of their
own dynamics on time-scales, which could be linked to the
scale-free dynamics and the self-similarity concept in fractal
geometry (Palva et al., 2013). Long-range temporal correlations
(LRTC) are the most common measures with which to quantify
how slowly the autocorrelations of the signal decay in power-law
function (Linkenkaer-Hansen et al., 2001; Nikulin and Brismar,
2005; Palva et al., 2013). Alpha-band LRTC could reflect an
optimal balance between excitation and inhibition states (Poil
et al., 2012). Decreased alpha-band LRTC compared to the resting
state correlates with better attentional performance (Colosio
et al., 2017). Higher alpha-band LRTC during resting-state could
predict high performance in decision making (Colosio et al.,
2017), working memory (Mahjoory et al., 2019) and attention
tasks (Irrmischer et al., 2018).

Increased beta-band (∼13 − 30Hz) power over the fronto-
lateral region has been observed in the mind wandering
compared to focused state (Braboszcz and Delorme, 2011).
Furthermore, the beta-band activity can be related to the
maintenance of current sensorimotor or cognitive task (Engel
and Fries, 2010; Weiss and Mueller, 2012; Zhao et al., 2012).
A quasi-harmonic relationship has been suggested between
the beta and alpha peaks or central frequencies only during
rest (Van Albada and Robinson, 2013; Haegens et al., 2014).
The lack of a strict relationship between the beta and alpha
peak frequencies during task-based conditions may reflect
independent networks being activated (Jones et al., 2009;
Haegens et al., 2014).

Localized gamma-band activity (∼30 − 45Hz) has been
found in task-relevant cortical regions (MacDonald and Barth,
1995; Cervenka et al., 2011; Siegel et al., 2011). Gamma-band
activity plays a central role in attention, perception and language
processing (Pulvermüller et al., 1997). Furthermore, gamma-
band activity in sensory cortices has often been linked with
enhanced attention to these particular sensory inputs (Ahveninen
et al., 2013). It has also been shown that gamma-band power
in auditory areas increases during extended auditory attention
tasks (Kaiser and Lutzenberger, 2005; Ahveninen et al., 2013).
According to popular theory, gamma waves may be implicated
in creating the unity of conscious perception and semantic
processing (Buzsaki, 2006).

In this study, we aimed to investigate the different
mechanisms involved in learning from the speech presented
in noise using single-trial EEG and mimicking an ecologically
valid context. To this end, 23 participants were exposed to the
following listening tasks while 64-channel EEG signals were
recorded: (1) attending to a lecture in the background noise
(LA), (2) attending to the background noise alone (BA), and
(3) not attending to the sound while still being exposed to the
background noise (BUA). For the background noise, realistic
environmental sound fragments from continuous highway noise
(HW), fluctuating traffic (FT), and multi-talker babble (MT)
were used. A written exam on the lecture was taken after 13 sets
of 5-min lectures and the BA task for assessing the amount of
information that participants have actually acquired and retained
from the lectures.
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We hypothesized several neural mechanisms, such as
cortical inhibition, auditory attention, neural entertainment, and
predictive coding, can be affected by the listening conditions
we have designed. Therefore, five qualitative hypotheses were
considered: (1) alpha-as-inhibition, (2) excitation-inhibition
balance reflected in the alpha band, (3) low-frequency envelope
following, (4) maintenance of current cognitive task, and (5)
semantic processing and cognitive prediction violation or error.

The alpha-as-inhibition hypothesis (Uusberg et al., 2013)
implies that alpha-band activity mediates inhibition of task-
irrelevant cortical areas. The excitation-inhibition balance
hypothesis (Poil et al., 2012) relates the task performance and
optimal information processing to the long-range temporal
correlations of alpha-band activity. The low-frequency envelope
following hypothesis (Luo and Poeppel, 2007; Kerlin et al.,
2010; Obleser and Kayser, 2019) implies the neural entrainment
and tracking of speech (and background sound) envelope
can be reflected in the low-frequency bands, i.e., delta and
theta frequency bands. However, here, the relation between
the EEG and sound signals has not been analyzed (which is
the main tool to measure the envelope following) due to our
unsupervised approach. In fact, we have assumed that the strong
representation of low-frequency EEG signals (i.e., changes in
spectral characteristics) may be related to the envelope following.
Although, the neural entrainment and envelope following occurs
also at higher frequencies but this effect is obscured by stronger
signals (note that no source reconstruction was used in this
paper). The hypothesis of maintenance of current cognitive
task (Spitzer and Haegens, 2017) implies that the preservation of
the current brain state and the long-range communication can be
associated with the beta-band activity. Finally, the last hypothesis
suggests that semantic or higher-level processes (specifically
semantic violations) due to speech processing induce power
changes in the gamma-band activity (Braeutigam et al., 2001;
Buzsaki, 2006; Hald et al., 2006; Penolazzi et al., 2009). Moreover,
the generative models for the perception, such as the predictive
coding (Sedley et al., 2016) assume the precision of prediction,
changes to predictions, and violations (errors) in predictions
are encoded with the alpha, beta, and gamma frequency bands,
respectively. These assumptions can be in accordance with
our hypotheses.

Since a few EEG indicators, such as alpha peak frequency and
power, alpha long-range temporal correlations, and delta absolute
power were evaluated in a recent work by our group (Eqlimi
et al., 2019), a wider range of EEG features (see below) was
estimated for investigating our hypotheses. More precisely,
the following features were estimated: spectral features and
peak frequency of the alpha-band activity (hypothesis 1), the
alpha-band LRTC (hypothesis 2), the spectral features of the
delta and theta (hypothesis 3), the beta (hypothesis 4), and
the gamma (hypothesis 5) frequency bands. To group these
features, the hypothesis that different listening tasks (LA, BA,
and BAU) create a variance in the EEG features that will also be
responsible for at least part of the observed differences in learning
from speech in noise, was used. Variance in the EEG features
between participants is likewise expected to be informative for
the observed differences in learning from speech. Different

techniques are available for data-driven aggregation of the broad
collection of EEG features. Principal Component Analysis (PCA)
of the z-score for each feature is the lowest order approach.
It could be extended to higher-order statistical methods and
machine learning (e.g., using deep learning auto-encoders).
Because of the amount of data available and the advantage of
explainable results, we decided to use PCA based on z-score
normalized data. To explain the meaning of the EEG-PC scores
(the representation of EEG features in the PC domain), they were
compared between the listening tasks (LA, BA, and BUA) and
background noises (MT, HW, and FT) using linear mixed-effect
modeling (Bates et al., 2015). Assuming that the EEG PCs grasp
themain variance between listening conditions observed through
the different listening tasks, a supervised analysis was performed
to relate them to the information acquiring and retaining z-
scores (the exam results) in the lecture attended (LA) task using
linear fixed and mixed-effect modeling. Also, for this predictive
model, higher-order statistical approaches and machine learning
techniques could have been used, yet we again opted for reducing
the degrees of freedom in the model in view of the available data.

2. MATERIALS AND METHODS

2.1. Participants
Twenty-three young healthy adults (mean age: 27 years, SD: 3.18,
13 females, 20 right-handed), all English speakers, participated
in the experiment. Participants had normal hearing measured
by pure-tone audiometry. All participants signed the informed
consent and received modest financial compensation for their
participation. Based on self-reports, none of them had a history
of psychiatric or neurological disorders. A full battery of
audiological tests was conducted including tonal audiometry,
tympanometry, stapedial reflex measurement, speech in noise,
and otoacoustic emissions (OAE) with contralateral suppression.
No participants were excluded on the basis of this extensive
testing of the auditory periphery. Our test population was
young adults and therefore their hearing capabilities were fully
developed (Klatte et al., 2013).

2.2. Tasks and Stimuli
The main stimulus was about 1 h of English lectures mixed with
realistic background noise and presented through a loudspeaker
while 64-channel EEG signals were recorded. Participants were
instructed to pay attention to the lectures and were informed
that there would be a written exam afterward. This task is
hereafter referred to lecture attended (LA). The lectures were
read by a male speaker and recorded in an anechoic room. To
level out participants’ particular interests, 13 different 5-min
topics were presented over one long lecture. The lectures were
related to topics for which prior knowledge is expected to be
minimal in order to facilitate the focusing of attention during
the presentation.

For the background noise, three 5-min realistic environmental
sound fragments from continuous highway noise (HW),
fluctuating traffic (FT), and multi-talker babble (MT) sounds
were used. Within these fragments, a few discrete instances
of very salient sounds were added. In addition, four lecture
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fragments were presented in silence with a low level pink noise
(PK) (a.k.a 1

f
noise) at a level of 35 dB(A). The signal-to-noise

ratio (SNR) of lectures and background noise was set to 5 dB, with
lectures at a level of 68 dB(A) and overall background noise level
at 63 dB(A). This assured that the background noise did not mask
the lecture energetically. The sound levels reported here refer to
the A-weighted equivalent continuous sound levels in decibels
(LAeq) which were measured over about 360 s.

For the multi-talker babble sound, recordings were made
at a cocktail party where about twenty people were having
conversations. The recorded speech was not intelligible. A few 3-
s phone ringing sounds were added to the multi-talker sound at
certain times. For the highway sound, the noise of dense traffic
was recorded, for which no individual car passages could be
recognized. A few 5-s emergency vehicle sounds were added to
the highway sound at certain times. For the fluctuating traffic
sound, recordings were made at the corner of a one-way car
lane with a bicycle lane next to it, close to a park. Car passages
were added to the quietest periods of the fluctuating traffic
noise. In addition, at certain times, a few 1-s sounds of honking
car were added. The level of the salient sounds (emergency
siren, phone ringing, and car’s horn) was not high enough
to mask the lectures energetically. The order of presentation
was completely random in both lecture and background noise
while assuring the two lectures in silence were not presented
in succession.

The written exam was presented after the BA condition (see
below), which ensured that there was a time span of 45 min
between the lectures and the exam. The purpose of presenting the
exam is to quantify the amount of information that participants
have actually acquired and retained from the lectures. The type
of questions and evaluation of the exam is explained in section
2.9. A sufficiently long time interval between the learning phase
and the memory retrieval during the exam was chosen for
two reasons: (1) to avoid that the last lecture would be more
prominently in short term memory; (2) to avoid sequential recall
as much as possible. Testing the memory and learning in a
timescale of minutes and hours was discussed in Tetzlaff et al.
(2012) and Kelley and Whatson (2013). For example, memory
retention was tested after 30 min (Menzel et al., 2001). The
choice of 45 min was a compromise between the duration of the
experiment and assuring the above.

To increase the range of monitored listening conditions and
to allow to implicitly calibrate for inter-person differences, the
participants were exposed to two additional tasks. Firstly, as a
reference for top-down attention-driven listening, 12 different

3-min fragments of background noise were presented with
equivalent levels of 63 dB(A) and participants were asked to pay
attention to the background noise by focusing on the number
of salient events, such as phone-ringing, emergency vehicle, and
honking car sounds. However, this was only to make them focus
on the background sound and no questions were asked about
this afterward. This task hereafter is referred to as background
attended (BA). Finally, 12 different 3-min background noise
fragments were presented and the participants were instructed
not to pay attention to any sound, which hereafter is referred
to background unattended (BUA). The BUA task is definitely

different from the resting state because not paying attention to
the low-level characteristics of the sounds is inevitable. Unlike
the BA task, the participants during BUA were instructed not to
focus on the information related to the salient events. BUA task
was presented after the exam which made the participants very
aware that no further attention was needed at this point, and they
could relax.

By listening task (or simply task) along with this paper,
we mean the tasks that the participant had to perform
during the experiment, i.e., LA, BA, and BUA. By listening
condition (or simply condition), we mean the conditions
that the subjects were flooded with the listening tasks
and the stimuli. In total, all subjects were exposed to ten
different listening conditions depending on the task and noise:
LA-PK, LA-MT, LA-HW, LA-FT, BA-MT, BA-HW, BA-FT, BUA
-MT, BUA-HW, BUA-FT. For instance, LA-MT refers to the
condition that the task is LA and the background noise is MT.
The experimental protocol is schematized in Figure 1.

Figure 2 depicts the sound level fluctuations as a function
of time (line plots) and standard spectrograms (heatmaps) for
one of the sound fragments presented during the LA and BUA
listening tasks. From Figure 2, the FT background noise stands
out in terms of sound level fluctuation. For the HW background
noise, the sound level is quite stable. Finally, the MT background
noise exhibits somewhat more fluctuations in the sound level
than the HW noise, but the differences between the loudest and
the quietest sounds levels are higher in the FT.

Note that the background sounds used in the LA and BUA
tasks were the same (except the time duration). Furthermore, the
type and order of background sounds presented in BA and BUA
were identical for all participants. The only difference between
the stimuli presented during BA and BUA is that additional
salient sounds were added in the last three fragments of BA due to
the increased chance of focusing on the background noise sound
in the BA task.

2.3. EEG Recording
EEG signals during the different listening conditions were
acquired continuously using a BioSemi System (Amsterdam, NL)
from 64 active electrodes placed according to the standard 10−20
layout (Oostenveld and Praamstra, 2001) at a sampling frequency
of 2, 048 Hz. Subjects were asked to keep their eyes open and
focus on a dot located in the center of the monitor to minimize
eye movement. Signals from seven external electrodes were also
recorded which were applied to the nose, neck, two left & right
mastoids (M1 and M2), left (HEOGL) & right (HEOGR) outer
canthi, and below the left eye (VEOGD). In addition, two external
channels were used for capturing the sound signals (SoundL and
SoundR) together with EEG signals.

2.4. EEG Pre-processing
The EEG data were offline re-referenced to the nose electrode
(channel 65th) and re-sampled to 512 Hz using an anti-aliasing
finite impulse response (FIR) low-pass filter. The EEG data were
then filtered using an FIR bandpass filter (Hamming windowed
sinc) of order 3,380 from 0.5 to 134 Hz to remove extremely slow
drifts and sharp oscillations.
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FIGURE 1 | Schematic of experimental protocol and auditory stimuli presentation. Three sequential listening tasks were performed: (1) Lecture attended (LA), (2)

Background attended (BA), and (3) Background unattended (BUA). In first task, in addition to multi-talker, highway and fluctuating traffic sounds as the background

noises, the lectures were also presented in pink noise and without any background noise. After second task, a written exam was asked to complete about vocal

information in the first task. Equivalent levels of background noise and lecture were ∼63 and 68 dB(A), respectively. The lectures were are shown by L.i, i = 1, . . . , 13,

and the noises are distinguished by different colors in the figure.

FIGURE 2 | Acoustic characteristics of stimuli presented in different listening conditions. Each panel corresponds to one of the sound fragments presented during the

conditions labeled at the top of each panel. The line plots show the sound level fluctuation with time (A-weighted, equivalent continuous sound level in decibels,

LAeq). The averaged LAeqs over the whole duration of the fragment have been annotated in the line plots. The heatmaps show the standard spectrogram of the

sound fragments (with time resolution of 0.01 s and one-third octave frequency bands). LA, lecture attended; BUA, background unattended tasks; MT, multi-talker;

HW, highway; FT, fluctuating traffic background noises.
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EEG signals were cleaned up in two steps. At first, non-
repeating big artifacts were removed based on visual inspection.
In a second step, infomax independent components analysis
(ICA) (Bell and Sejnowski, 1995) with EEGLAB version
13.1.1b (Delorme and Makeig, 2004) using default settings was
applied to identify and remove eye blink and movement artifacts.
To identify the ICA components related to eye artifacts, some
rules of thumbs were applied: (1) no more than three ICA
components were removed; (2) both temporal and spatial plots
should confirm the diagnosis of eye artifact, meaning frontally
located components and a typical blink or nystagmus pattern;
(3) in case of doubt, the temporal pattern of the supposed
ICA component was compared with the temporal pattern of
the Electrooculography (EOG) channels to make sure that the
incidence of potential eye artifacts coincide; (4) only eye artifacts
were removed.

Since playing audio files typically has a latency of a few
milliseconds, the sound was recorded together with the EEG
on a free channel which could be used to synchronize with the
presented audio signal. For this purpose, at first, the presented
audio files were re-sampled to 512 Hz (using an anti-aliasing
FIR low-pass filter) and then the cross-correlation between re-
sampled audio signals and recorded sound signals together with
the EEG was calculated. The lag corresponding to maximum
cross-correlation is the delay in audio files with respect to EEG
measurement. To compensate for this delay, all 64-channel EEG
signals were shifted with estimated delays. For the analysis in this
manuscript, this synchronization is less important.

Finally, the power spectrum plots of all EEG channels
were visually inspected, and the fragments whose all channels
were extremely noisy were excluded. In addition, using the
power spectrum and a combination of visual inspection and
automatic method (median-based criteria), the channels that
were extremely noisy were excluded.

2.5. EEG Signal Processing
First, the continuous EEG signals were split into separate
fragments corresponding to the 3 or 5 min exposures, based
on sound signal recorded as extra EEG channel. Each EEG
fragment was then analyzed per channel. Three types of EEG
feature were estimated: (1) low-frequency-based features, such
as absolute and relative powers, bandwidth, central frequency
and spectral edge frequency for delta and theta activities, (2)
alpha-band based features, such as alpha peak frequency and
power, individual alpha frequency, absolute and relative powers,
and alpha-band scaling exponent value as a dynamic measure to
quantify LRTC, and (3) high-frequency-based features, such as
bandwidth, central frequency, and spectral edge frequency for the
beta and gamma signals. Moreover, wide-band absolute power,
theta/alpha ratio power, and absolute power for lower and upper
alpha were estimated. The subsequent sections describe how a
broad range of EEG features was estimated.

2.5.1. Power Spectra-Based Features
To estimate the power spectrum density, Welch algorithm was
applied. We used 1 s hamming window with 0.5 s overlap, 214

frequency bins, and frequency sampling of 512 Hz. The power

spectrum density, p, is estimated for the frequency range f ←

[0 − 256 Hz] with frequency resolution of 26

214
Hz. In addition to

six fixed frequency bands including δ (1− 4 Hz), θ (4− 8 Hz), α
(8− 13 and 7− 13 Hz), β (13− 30 Hz), and γ (30− 45 Hz), the
lower (8−10 Hz), upper (10−13 Hz) α band, and the wide-band
(1− 45 Hz) were separately analyzed.

Absolute and relative powers (AP and RP) were calculated
from the 64 scalp locations in the mentioned frequency bands.
Relative power was computed as the ratio of power in a given
band to sum of power from 1 to 45 Hz. Moreover, the θ

α

power ratio (RPTA) was computed. For the frequency band 1
to 45 Hz, only the absolute power was computed. In addition
to these power-based features, the following frequency-based
features (Szeto, 1990; Drummond et al., 1991; Estrada et al.,
2004; Vural and Yildiz, 2010) were computed for the different
frequency bands using the definitions in Vural and Yildiz (2010):
(1) central frequency, (2) bandwidth, and (3) spectral edge
frequency 95%. The central frequency (CF) is defined as the
center of gravity for frequency between the lower and upper
cutoff frequencies of the power spectrum. The bandwidth (B)
quantifies the width of the power spectrum over a specific central
frequency. The spectral edge (SE) frequency 95% is defined the
frequency below which 95% of the total power (in a specific
frequency band) are located (Szeto, 1990).

2.5.2. Alpha Peak Frequency Based on Root-MUSIC
To estimate the alpha peak frequency and power, we
used the root-multiple signal classification (root-MUSIC)
algorithm (Barabell, 1983). The root-MUSIC as a subspace-based
method estimates the frequency content of a signal using an
eigenspace method. The root-MUSIC algorithm has been
described in recent work from our group (Eqlimi et al., 2019). In
this paper, the preprocessed EEG signals were band-pass filtered
at 7 − 13 and 8 − 13 Hz (using Butterworth band-pass filter
of order 2) for two reasons: (1) there is no consensus on the
alpha range (like other frequency bands) and both lower cutoff
frequencies (7 and 8 Hz) have been used in literature (Freeman
and Quiroga, 2012; Clayton et al., 2015); (2) it has been shown
that there is a 2.8 Hz between-subject variability (mean = 10.3
Hz) for the alpha peak frequency (Haegens et al., 2014). The
root-MUSIC algorithm was performed on each filtered EEG
channel with P = 2 as the dimension of the signal subspace.
The maximum powers in µV2 and corresponding frequency in
Hz were found. MP2713 and MP2813 terms (which are used
in the following sections) stand for MUSIC-based alpha peak
power which are estimated in alpha frequency ranges of 7 − 13
and 8 − 13 Hz, respectively with P = 2 components. The
corresponding alpha peak frequencies are denoted by MF2713
and MF2813.

2.5.3. Individual Alpha Frequency Based on Fitting

Process
Individual alpha frequency (IAF) could also be estimated
based on the Gaussian fit approach (Nikulin and Brismar,
2006; Van Albada and Robinson, 2013; Haegens et al.,
2014). We employed the algorithm which has been suggested
in Neurophysiological Biomarker Toolbox (NBT) version
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0.5.5 (Hardstone et al., 2012) to quantify IAF. Firstly, PSD (p) and
its corresponding frequencies (f) of each EEG signal with a 0.1
Hz resolution were estimated. The peak amplitudes and locations
of p in the range of 8–13 Hz were found (using Matlab function
“findpeaks”). A polynomial (y0 = p1x + p2) function was fitted
to ln(p) for considering a 1

f
baseline. Then, z ← ep2 + fp1 and

s ← p − z were calculated to remove the 1
f
component of the

spectrum (Nikulin and Brismar, 2006).

A Gaussian function, y1 = a1e
−(

x−b1
c1

)2
was fitted to the

detrended power spectrum, s, to consider one peak. 95%
prediction bounds, i.e., confidence interval, [cll, clu] for a1 and
b1 were calculated. If a1 + y0(b1) > clu, then fα ← b1
and pα ← a1. To determine IAF, center of gravity within the
alpha band could be estimated. At first, the individual frequency
interval, namely [f1, f2]← [TF, |5− (fα − 1)| + fα] is calculated.
TF stands for transition frequency and defined as the EEG
frequency lower than the alpha peak frequency showing the
minimum power (Klimesch, 1999). Then, the center of gravity

was calculated using IAF←

∑f2
k=f1

f(k)p(k)
∑f2

k=f1
p(k)

. Finally, f2 was updated

by f2 = |5 − (IAF − 1)| + IAF and IAF was re-calculated based
on same definition. Compared to root-MUSIC based alpha peak
frequency (MF2813), the IAF is expected to be less sensitive to
bandwidth around the observed frequency, yet both parameters
are highly correlated.

2.5.4. Long-Range Temporal Correlations of Alpha

Activity
Processes that do not have a characteristic scale (i.e., scale-free
processes) cannot be described completely in terms of spectral
concepts (e.g., peak frequency). There is convincing evidence that
EEG time series exhibit scale-free dynamics (He, 2014). One of
the successful methods to analyze these scale-free signals is long-
range temporal correlations (LRTC). LRTC has been developed
to quantify how much future dynamics of a signal are influenced
by past temporal events (Linkenkaer-Hansen et al., 2007).

In fractal geometry, LRTC could be interpreted by a self-
similarity behavior, which suggests the signal dynamics are
similar in different time scales. One of the most common
techniques to quantify LRTC is detrended fluctuation analysis
(DFA) (Peng et al., 1994). The presence of a trend in the signal can
cause an overestimation of LRTC, hence DFA tries to eliminate
the trend. Indeed, DFA is employed to quantify how slowly the
autocorrelations of signals decay in power law, which is called
the scaling exponent value, a. The power or scaling law states
that a relative change in one quantity results in a proportional
relative change in another, namely one quantity varies as a power
of another. Distributions of the form p(x) = Cx−a are said to
follow a power law. The constant a is called the exponent of
the power or scaling exponent value (SEV) (Newman, 2005). If
0.5 < a < 1, the signal likely exhibits strong LRTC (Hardstone
et al., 2012).

We employed the DFA algorithm to quantify LRTC for each
EEG channel signal in the alpha band using the NBT version
0.5.5 as suggested in Hardstone et al. (2012). First, the EEG
signals were band-pass filtered from 8 to 13 Hz (alpha range

used in Hardstone et al., 2012) using the Hamming windowed
FIR filter of order 0.25 s (2 cycles of the lowest frequency, 8
Hz). Second, the amplitude envelope of the band-pass filtered
signal was estimated based on the Hilbert transform. Third,
the cumulative sum of the amplitude envelope was calculated
as follows:

c(t) =

t∑

k=1

e(k)− ē, (1)

where e(k) is the amplitude envelope at time instant k, ē is mean
of the amplitude envelope, and c(t) is the cumulative sum of
amplitude envelope at time instant t (a.k.a signal profile). We
defined a set of window size, s = {s1, ...sN}, which are equally
spaced on a logarithmic scale in a predefined calculation range.
The cumulative sum of amplitude envelope (c(t)) was then split
into a set of n separated time windows of length ∀ l ∈ s,
which have 50% overlap. For each time window, the linear trend
was removed using a least squares method and obtained the
detrended version. After calculating the standard deviation of the
detrended time windows, the fluctuation function as the mean
standard deviation of all windows was computed as follows:

f̄(l) =
1

n

n∑

i=1

σŵl
i
, l ∈ s, (2)

where σŵl
i
is the standard deviation of ith time window of length

l ∈ s, n is the number of time windows. Finally, we plotted the
fluctuation function, f̄(l), along l on logarithmic axes. The slope
of the trend line was computed in a predefined fitting interval
using the linear regression as a measure for LRTC which is called
scaling exponent value (SEV). Two different calculation ranges
of 2.5–180 s and 0.1–180 s were evaluated (SEV1 and SEV2,
respectively). A fitting interval of 5–18 s was considered such that
the filter effect is negligible (Hardstone et al., 2012). The signal
length in the LA task was about 360 s, whereas the signal length in
the BA and BUA tasks was about 180 s. To minimize the effect of
signal length, 180 s was selected as the upper bound of calculation
range for the three listening tasks.

2.6. Unsupervised Analysis Using Principal
Component Analysis
Let X ∈ R

n×p contains n observations of p EEG features,
where could be obtained by concatenating the EEG features
per participant, channel, stimulus, and condition in rows. In
order to emphasize variation and identify strong patterns in
EEG features, a principal component analysis (PCA) was applied
on X which is a broad dataset including explicit listening
conditions and persons. All power-based EEG features (i.e.,
absolute and peak powers) were mapped to logarithmic scale
(log-transforming) before applying PCA. Since the EEG features
do not have the same scales, the data was normalized using z-
score transformation such that each column of X re-centered to
have zero mean and scaled to have a unit standard deviation.

PCA seeks a linear combination of features such that the
maximum variance is extracted from the feature. One of the
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methods of performing PCA is the singular value decomposition
(SVD) method. The SVD decomposes X into three matrices, i.e.,
X = USVT. The PCA results are expressed by two matrices: (1)
the PC loadings (coefficients), V ∈ R

p×p, can be understood
as the weights for each original variable when calculating the
principal component; (2) the PC scores (PCSs), UsT ∈ R

n×p

referring to the representation of X in the PC space, where s ∈
R
p×1 is the vector containing the main diagonal elements of S

(i.e., the singular values). In other words, each observation in the
original space may be projected onto a given PC in order to get
a coordinate value along the PC-line. This new coordinate value
is known as the PC score. The PC scores are the representation
of X in the PC space. In fact, the PC scores can be calculated
with X/VT.

2.7. Grouping the Channels in Subregions
The 64 EEG channels were labeled with six fixed subregions:
frontal, central, left and right temporal, parietal, and
occipital. This division, while allowing four main lobes of
cerebrum (Graimann et al., 2010), also considers the central
region and left & right hemispheres for the temporal lobe. A
similar grouping of channels has been used in previous studies,
e.g., for the short-term memory task (Schack et al., 2002).
Although subsequent analyses are presented in section 2.8 was
performed per channel, the subregion was used a categorical
fixed factor in the mixed modeling of EEG-PC scores. However,
EEG-PC scores averaged across subregions were used to model
the exam result (section 2.9).

2.8. Statistical Analysis of EEG-PC Scores
Linear mixed-effect modeling (LMEM) was used to model the
EEG-PC scores as a linear combination of the predictors using
the LME4 package (Bates et al., 2015) of the statistical software
R (R Core Team, 2019) to explain to origin of EEG-PC scores.
The LMEM extends the general linear models (GLMs) to allow
both fixed and random effects. A fixed effect is a constant variable
across individuals while a random effect varies across individuals.
Different LMEMs have been built separately for the nine response
variables (EEG-PC scores) as a function of the fixed and mixed
(random) effects of interest. Since the person-dependent effects
may not be captured in the response variables, the participant
variable has been considered as a random effect in all the LMEMs.

On the one hand, the EEG-PC scores were modeled as a
function of task type and channel subregion for each specific
background noise type based on formula (3), which is hereafter
referred to within-background modeling:

LMEMwithin-background ← PCS
j
i ∼ (1|participant)+ 1

+ task+ subregion. (3)

In formula (3), PCS
j
i ∈ R

nj×1 is a vector including ith EEG-PC
scores for jth background noise and all 64 EEG channels, where
i = {1, ..., 9}, j = {1, ..., 4} and nj is the number of observations
belonging to all listening tasks in jth background noise. The
symbol “∼” implies that left term ismodeled as a function of right
terms. The fixed effects include task and subregion. The constant
and random terms are expressed in 1 and (1|participant),

respectively, where participant is a categorical variable that
has 23 possible outcomes. The term task includes the listening
task types and has three possible values: lecture attended (LA),
background attended (BA), and background unattended (BUA).
The last term, subregion, is another categorical variable and has
six possible outcomes: frontal, parietal, occipital, central, left,
and right temporal. Since for each type of background noise,
one model is separately defined, no interaction between task and
background noise type can be considered.

On the other hand, the EEG-PC scores were modeled as a
function of background noise type and channel subregions for
each specific listening task based on formula (4), which hereafter
referred to within-task modeling:

LMEMwithin-task ← PCSki ∼ (1|participant)+ 1

+ background+ subregion. (4)

In formula (4), PCSki ∈ R
nk×1 is a vector including ith EEG-PC

scores for kth listening task noise and all 64 EEG channels, where
i = {1, ..., 9}, k = {1, 2, 3}, and nk is the number of observations
belonging to all background noises tasks for kth listening task.
The term background includes the background noise types and
takes four possible values: pink (PK), multi-talker (MT), highway
(HW), and fluctuating traffic (FT).

After estimating the coefficients (intercept and slope) for
each fitted model, general linear hypotheses and Tukey post-
hoc multiple comparisons were then performed to test for the
significance of EEG-PC scores changes across the task and
background types. For example, we may consider the six pairwise
comparisons between the background noises for the fitted model
of the first EEG-PC score in the LA task. The question is which
specific background’s means (compared with each other) are
different. A pairwise Tukey’s test examines more than one pair
of means the same time and corrects for family-wise error rate.

2.9. Statistical Analysis of Exam Results
As mentioned in the section 2.2, we performed a written exam
to check the participant’s learning during the lecture attended
(LA) task. The exam was carried out after all lectures and the
attentive listening to background sounds (see Figure 1). Open
and closed questions were asked per topic. Open questions were
either factual or insight questions. Closed questions consisted
of sentences that had to be completed with a specific word
or number. The questions were carefully designed so that the
answers could be found well-spread over the whole lecture. Over
the different topics, the order of question types was randomized.
For the open questions, the answers could always be found in
three or four connected sentences.

The total number of keywords vary per topic. This was
deliberately done to capture as closely as possible anything the
participants might have recalled, which is important for the
EEG analyses (distinguishing between attention and no attention
with remembered keywords as ground truth). The topics of
the lectures were chosen to avoid prior knowledge by the
participants, yet some topics may be more difficult to grasp
than others for the average participant. Moreover, there could
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be small differences in difficulty between the questions. Prior
knowledge and logical reasoning of listeners about the answers
are not reflected in listening conditions (background sound) nor
in the EEG during listening. Therefore, the number of correctly
retained keywords was normalized per participant, background
noise and topic and the exam z-scores were calculated as follows:

Exam z-score =
#Correctly Retained Keywords− µpink

σpink
, (5)

whereµpink and σpink are the mean and standard deviation of the
number of correctly retained keywords across all subjects for each
topic presented in pink noise (LA in silence), respectively. This a
fair reference, as all topics are sufficiently represented in silence.

To validate the predictability of exam results by a linear
combination of the EEG-PC scores, we used the linear fixed and
mixed-effect modeling as explained in the previous section. In
fact, the response variable here is the exam z-scores and the
EEG-PC scores are considered as the predictors. Moreover, to
show that the EEG contains more information than the listening
condition, the exam results was also modeled as a function of
background noise type and performance was compared to the
models based on EEG.

Person-dependent differences in the exam results may include
the following: mental state, traits, physiological differences, prior
knowledge, etc. Some of these differences may reflect in EEG,
others may not. Hence it is useful to use both linear fixed
and mixed-effect modeling. Linear fixed-effect model regresses
the exam results as a function of desired fixed factors without
considering participant as a random factor, whereas linear
mixed-effect model includes participant as a random effect to
capture between-subject variability. The latter implies that a
fixed offset in exam results per participant is included in the
model. Linear fixed-effect models (LFEM) are expressed in the
following formulas:

LFEMconstant ← exam z–scores ∼ 1,

(6)

LFEMbackground ← exam z–scores ∼ 1+ background type,
(7)

LFEMEEG ← exam z–scores ∼ 1+

i=9∑

i=1

j=6∑

j=1

PCS
Avg
ij ,

(8)

where exam z-scores (as the response variable) were defined by
a vector including all exam z-scores computed by Equation (5).

PCS
Avg
ij includes ith EEG-PC scores for jth channel subregion

for lecture attended task in all background noises, which
were obtained by averaging the PC scores across the channels
corresponding to the given subregion (see the section 2.7).
The background type term is a categorical variable that
has four possible outcomes: pink, multi-talker, highway, and
fluctuating traffic.

Similarly, linear mixed-effect models (LMEM) could be
expressed in

LMEMconstant ← exam z–scores ∼ (1|participant)+ 1, (9)

LMEMbackground ← exam z–scores ∼ (1|participant)+ 1

+ background type, (10)

LMEMEEG ← exam z–scores ∼ (1|participant)+ 1

+

i=9∑

i=1

j=6∑

j=1

PCS
Avg
ij , (11)

where exam z-scores and PCS
Avg
ij are defined same as the linear

fixed effect models. The constant and random terms are shown
by 1 and (1|participant), respectively.

Since 54 EEG-PC scores (the 9 components for each of
the 6 subregions) are available to regress exam z-scores, a
stepwise regression method can be used to choose the most
contributing predictive variables. The backward-elimination
approach was applied on both full models (LFEMEEG and
LMEMEEG). To this end, we used “step” function in “STATS”
v3.6.2 package of the statistical software R (R Core Team,
2019). This function starts from 54 candidate variables, tests
the effect of the deletion of each variable using the Akaike
information criterion (AIC) (Akaike, 1974), deletes the variable
whose loss gives the least statistically insignificant deterioration
of the model fit, and repeats this process until no further
variables can be deleted without a statistically significant loss
of fit.

3. RESULTS

The results consist of two parts: (1) unsupervised analysis of
the EEG features observed under different listening conditions
(sections 3.1–3.3) and (2) supervised analysis to predict
the exam results in lecture attended task (section 3.4).
Section 3.1 presents the loading of principal components
(PC) on underlying features; section 3.2 demonstrates the
scalp topographies of the PC scores; and section 3.3 explains
the relationship between PC scores, listening conditions and
backgrounds. In the last section, a supervised training of
models was used to investigate the predictability of acquiring
and retaining performance scores (exam results) by EEG-
PC scores.

3.1. Principal Component Analysis
The explained variances by the ten most important principal
components in percent are displayed in Figure 3A. Together
these ten components explain about 94% of the variability
in the dataset. The coordinates of individual EEG feature in
principal component (PC) domain are visualized in Figure 3B.
The correlation between a feature (variable) and a PC is used
as the coordinates of the variable on the PC. The size and
darkness of circles in Figure 3B is proportional to the correlation
value between an EEG-feature and a given PC. The positive
and negative correlation values are visualized by cool and warm
colors, respectively.
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FIGURE 3 | PCA on EEG features. (A) Scree plot displays the percentage of explained variance in a downward curve, ordering the eigenvalues from largest to

smallest. (B) The coordinates of EEG features in PC domain in the rows. The positive and negative correlation values between features and PCs are visualized by cool

and warm colors, respectively. (C) The contribution of EEG feature to the PCs in percentage, i.e., the squared coordinates were normalized to total sum of squared

coordinates on the PCs. The larger and darker circles indicate the EEG features contributes more to the given component. The difference between (B,C) is that the

(B) shows the correlation between features and PCs, while (C) shows the representation quality of features on the PCs (i.e., normalized squared correlation values in

percentage).

Figure 3C visualizes the contribution of EEG features to

the PCs in percentage. The contribution of ith EEG feature

to jth PC is expressed in
(yij)

2
∑n

j=1(yij)
2 × 100, where yij is the

coordinate of ith EEG feature on jth PC and n = 10

is the number of PCs. In fact, in Figure 3C, the squared
coordinates were normalized to total sum of squared coordinates
on the PCs. The squared coordinates can be a quantity
to measure the quality of representation of the features on
PC domain.
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FIGURE 4 | Topographic maps of nine first EEG-PC scores (PCSi, i = 1, . . . , 9) of EEG-features (in rows) for three listening tasks (in three panels): (A) lecture attended

(LA); (B) background attended (BA); and (C) background unattended (BUA) in different noises. Heads are in vertex view, nose is above, and left ear is on the left side.

Each topographic map has been obtained by averaging EEG-PC scores across participants and fragments per listening condition and EEG channel. Each column

belongs to one specific listening condition. The type of background noises is shown above the corresponding columns. The warm and cool color-coded areas

represent the positively and negatively correlated cortical areas with the extracted components, respectively. Red frames show some spatial and activation differences

suggesting the EEG-PC scores might contribute to statistical significance in the discrimination between the three listening tasks and the three background noises.

Specifically, (i) PCS4 is higher in BA compared to BUA, (ii) PCS5 is the maximal and minimal in BUA and LA, respectively, (iii) PCS 6 is the maximal for highway in LA

and multi-talker in BA, and (vi) PCS7 is the maximal for multi-talker in LA and BUA.

As can be seen from Figures 3B,C, the different features
contribute to each component. Accurate grouping of these
PCs is not possible due to presence of different positively and
negatively correlating features with the PC scores (Figure 3B). It
is worth noting that normalized version of squared coordinates
(Figure 3C) shows that the last five PCs have more specific
loading (representation quality) than those of first five PCs.
Specifically, the long-range temporal correlations of alpha band
and frequency information of gamma and beta bands are most
contributing features to represent PC domain.

3.2. Scalp Topographic Maps
For visualization across the scalp, 2D topographic maps of the
component scores are shown in Figure 4. The topographies of
the nine first PC scores (PCSi, i = 1, ..., 9) were obtained by
averaging across all subjects and the specific fragments for each
listening conditions. In fact, for cth EEG channel, jth listening
task, and kth noise, the average value of ith PC scores was

calculated using PCS
jk
i (c) =

∑N
p=1

∑l
f=1 S

f
p(c), where S = PCS

jk
i ,

N = 23, and l are the number of participants and stimulus
fragments, respectively.

Note that here we do not aim at reporting the statistical
differences between the listening conditions in terms the PC
scores. However, some spatial and activation differences can
be observed between different listening conditions (shown by

red frames in Figure 4) suggesting the EEG-PC scores might
contribute to statistical significance (refer to section 3.3) in the
discrimination between the three listening tasks and the three
background noises. Each component is a linear combination of
different positively and negatively correlated features with the
components (refer to Figure 3). Therefore, in Figure 4, both
of the warm and cool color coded areas are important, which
represent the positively and negatively correlated cortical areas
with the extracted components, respectively.

The qualitative differences of some components between
different conditions have been shown by red frames in Figure 4.

Specifically, the PCS 5 is the lowest in the LA compared to other
tasks, the PCS 6 is the highest in the highway during the LA,
and the PCS 7 is the highest in the multi-taker for the three
tasks. In addition, these topographies indicate that different PCs
contribute to different cortical areas. For example, the third PC
score is positively dominant over temporal and occipital regions.

3.3. Explainable Origin of EEG-PC Scores
The unsupervised extraction of PCs from our dataset implicitly
attempts to discriminate between participant, listening task (LA,
BA, BUA), and background (MT, HW, FT). One way to analyse
the origin of a PC is to construct a regression model for its score
based on the above-mentioned factors as explained in section 2.8.
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A constant mixed-effect model for predicting EEG-PC scores
is expressed in [PCSi ∼ (1|participant)], where PCSi is ith
PC score for all listening conditions and channel subregions.
If channel subregion is added as a fixed factor to the constant
model, the new model could better predict all PC scores (p <

10−15) compared to the constant model. By adding listening task
type to the current model, all PC scores except the sixth PC
score are better predicted (p < 10−8). Background noise type
as an additional fixed effect could improve the current model
for all PC scores except the ninth PC score (p < 0.05). By
adding interaction between background noise and task types, the
improvement of current model is significant for all PC scores
(p < 10−4) except the ninth PC score. Since the interaction
between task and background noise type significantly improves
modeling EEG-PC scores, its effect was separately investigated
using two distinct models, within-background and within-task
modeling based on formulas (3) and (4), respectively.

Tukey post-hoc multiple comparison for within-background
and within-task models were reported in Tables 1, 2, respectively
(refer to section 2.8). Each test in the sub-matrices was run
independently. For example, for a particular background type
and PC score, the listening conditions are compared. In each
4 × 4 and 3 × 3 sub-matrices, upper triangular elements
denote p-values of significant differences for corresponding
comparisons, lower triangular elements denote which noise or
task results in higher values of the given EEG-PC score and
main diagonal elements denote which background noise or task
results in the maximum/minimum values of the given EEG-
PC score. For example, in Table 2, MT PCS1 is significantly
higher than that of PK during LA because e1,4 and e4,1
elements of matrix corresponding to LA and PCS1 are <

0.001 and an arrow directed toward MT, respectively. Note
ei,j represents the element at the ith row and jth column of
the sub-matrix.

In within-background modeling (see Table 1), the first PC
score is (significantly) the highest and lowest in the BUA and
BA tasks for all the background noises, respectively. Moreover,
the BUA task has the highest PCS3 values compared to other
tasks for all background noises. For the MT background noise,
the LA has the highest PCS2 compared to other tasks. The
fourth PC score exhibits significant contrast between background
attended and other tasks for all background noises. The
lecture attended can be discriminated from other tasks for all
background noises by the fifth PC score. The sixth PC score
has a significant contrast between LA and BA tasks in the
MT background noise. The seventh PC score is the highest
for the BUA compared to other tasks in the MT and HW
noises. For all the background sounds PCS8 is consistently
minimal in the BA task. Finally, the ninth PC score is the
maximal and minimal for the BA task in the MT and FT
sounds, respectively.

In within-task modeling (see Table 2), the MT has the highest
PCS1 compared to other background noises in the LA task,
whereas in the BUA task, the MT has the lowest PCS1. The
second PC score in the HW is significantly lowest compared
to other noises in the LA task. The third PC score exhibits

only significant differences in the BA and BUA tasks. The
background sounds can be discriminated by the fourth PC
score in the LA and BA tasks. The fifth PC score has the
highest values in the HW noise during the LA task compared
to other background noises. The sixth and seventh PC score
are significantly able to distinguish the background sounds for
all the listening tasks. The eighth PC score exhibits the highest
value for the MT and HW in the LA and BA tasks, respectively.
The ninth PC score is not very capable of distinguishing the
background sounds.

Remark 1: The statistical results reported in Tables 1, 2 have
been obtained by eliminating the person-dependent effects, while
in the previous section, the topographic maps (Figure 4) were
obtained by averaging across all subjects without eliminating the
person-dependent effects. As a result, the differences are seen
in Figure 4 are not only due to differences between tasks and
between noises (like Tables 1, 2) but also due to differences
between participants. This means that some of the differences
seen in the tables and the topographies are not comparable due
to the presence of the effect of the changes between individuals.
For example, in the highway noise, although the second PC
scores of the BUA task are qualitatively lower than other tasks
based on Figure 4, Table 1 shows only the dominance of the
LA over the BUA. To explain this difference, we performed
Tukey’s post-hoc testing of linear fixed-effect modeling (without
participant as a random factor). The post-hoc test revealed that
BUA<BA (p < 10−5) and BUA<LA (p < 10−5) meaning that
the second PC score can be affected by individual differences
likely due to the wideband power (1 − 45 Hz) contributing to
this component.

Remark 2: Referring to section 2.8, in Tables 1, 2, the results
were shown for a model also including the subregions. This
implies that a statistically significant difference in one subregion
is sufficient for obtaining significant differences. In the maps of
Figure 4, the reader is expected to interpret the differences in this
way. However, the effect of different subregions were separately
investigated to model the exam results in the LA task (refer to
section 2.9 and 3.4).

3.4. Predictability of Exam Results in
Lecture-Attended Task
As noted in section 2.9, the exam z-score defined in
Equation (5) is a fairer measure compared to the exam scores

(
#Correctly Retained Keywords

#Total Keywords
) to quantify the amount of information

that participants have actually acquired and retained from the
lectures. To normalize the exam results (the number of correctly
retained keywords) and find the exam z-scores, the exam results
of a lecture-attended task in pink noise (lecture in silence)
were used. Figure 5 visualizes the number of correctly retained
keywords for lecture attended task in pink noise across thirteen
topics. Mean and standard deviation values (µpink and σpink in
Equation 5) are shown by circles and triangles, respectively. The
boxplots display the median marked as a bold line. The lower and
upper whiskers represent another 50% data distributed outside
the interquartile box. As can be seen from Figure 5, the number
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TABLE 1 | Tukey post-hoc multiple comparison testing for within-background model.

MT HW FT

LA BA BUA LA BA BUA LA BA BUA

PCS1

(α, θ
α
pow.)

LA – < 10−5 < 10−5 – < 10−5 < 10−5 – < 0.05 < 0.001

BA ↑ Min < 10−5 ↑ Min < 10−5 ↑ Min < 0.001

BUA ← ← Max ← ← Max ← ← Max

PCS2

(δ, θ ,WB pow.)

LA Max < 10−4 < 10−4 – – < 0.05 – < 10−4 –

BA ↑ – – – – – ↑ Min < 10−4

BUA ↑ – – ↑ – – – ← –

PCS3

(α freq.)

LA – < 10−4 < 0.001 – < 0.05 < 0.05 – – < 10−5

BA ↑ Min < 10−4 ↑ Min < 0.001 – – < 10−5

BUA ← ← Max ← ← Max ← ← Max

PCS4

(δ freq.)

LA – < 0.001 < 0.05 – < 10−4 < 0.01 – < 10−4 –

BA ← Max < 0.001 ← Max < 10−4 ← Max < 10−4

BUA ↑ ↑ Min ↑ ↑ Min – ↑ –

PCS5

(β freq.,γ pow.)

LA Min < 10−6 < 10−6 Min < 10−4 < 10−4 Min < 10−4 < 10−4

BA ← – < 10−6 ← – < 0.01 ← Max < 0.01

BUA ← ← Max ← ← Max ← ↑ –

PCS6

(γ freq.)

LA Min < 10−4 < 10−4 Max < 10−4 < 10−4 – < 0.001 –

BA ← Max < 10−4 ↑ Min < 0.05 ↑ Min < 0.001

BUA ← ↑ – – ← ↑ – ← –

PCS7

(α LRTC)

LA – – < 0.001 – < 0.001 – – < 0.01 < 10−4

BA – – < 10−4 ↑ – – ↑ Min < 10−4

BUA ← ← Max – – – ← ← Max

PCS8

(β freq.)

LA – < 10−6 – – < 10−4 – – < 10−4 –

BA ← Max < 10−6 ← Max < 10−4 ← Max < 10−4

BUA – ↑ – – ↑ – – ↑ –

PCS9

(β, γ freq.)

LA – < 0.01 – Min < 10−4 < 10−4 – < 0.001 –

BA ← Max < 10−4 ← – – ← Max < 10−4

BUA – ↑ – ← – – – ↑ –

Tukey variable is the task type (LA, BA, and BUA) and all possible pairs of means in each subtable are compared. Significant p-values are reported in upper triangular. Main diagonal
denotes which task is the maximum (Max) and the minimum (Min) compared to other tasks in terms of a given PC score. Lower triangular arrows are directed toward the tasks which have
higher PC scores, when comparing two tasks. The non-significant (p >0.05) differences are shown by dash signs. The type(s) and frequency band(s) associated with each component
(using the features have the strongest impacts; refer to Figure 3C) are reported in the first column.
Each element of the sub-matrices is corresponding to the listening tasks labeled above and to the left side: LA, lecture attended, BA, background attended, BUA, background unattended;
Each sub-matrix is corresponding to the background noise type: MT, multi-talker; HW, highway; FT, fluctuating traffic and EEG principal component scores (PCSi ) labeled above and
to the left side, respectively.

of retained keywords in silence for different topics are different,
and hence, the difficulty of retaining information in each topic
is different.

In order to assess the effect of background noise type
on predicting the exam z-scores, the exam z-scores were
modeled using formula (10) and then, Tukey post-hoc multiple
comparison testing was used to compare the background noise
types. The statistical results are reported in Table 3. As can be
seen, there are significant differences between pink and multi-
talker, between pink and highway, and between fluctuating traffic

and multi-talker noises. This means that the exam z-scores are
higher in the pink noise (LA in silence) than those of in the
multi-talker and highway background noise (as we expected).
In addition, the fluctuating traffic background noise leads to
the higher exam z-scores compared to those of the multi-talker
background noise. Therefore, compared to the fluctuating traffic
noise, the multi-talker noise leads to more difficult condition for
information retention. Note that pink noise refers to a very low-
level pink noise (see section 2.2) and means that subjects have
listened to the lectures in silence.
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TABLE 2 | Tukey post-hoc multiple comparison testing for within-task model.

LA BA BUA

MT HW FT PK MT HW FT MT HW FT

PCS1

(α, θ
α
pow.)

MT Max < 0.05 < 0.001 < 0.001 – – < 0.001 Min < 0.001 < 0.01

HW ↑ – – < 0.001 – – < 0.05 – – –

FT ↑ – – < 0.05 ↑ ↑ Min ← ↑ –

PK ↑ ↑ ↑ Min – – – – – –

PCS2

(δ, θ , WB pow.)

MT – < 0.001 – – – – < 0.01 – – < 10−4

HW ↑ Min < 0.001 < 0.001 – – – – – < 10−4

FT – ← – – ← – – ← ← Max

PK – ← – – – – – – – –

PCS3

(α freq.)

MT – – – – Min < 10−4 < 10−4 – – –

HW – – – – ← – – – – < 0.01

FT – – – – ← – – – ← –

PK – – – – – – – – – –

PCS4

(δ freq.)

MT – – < 0.05 – – < 0.001 – – < 0.05 < 0.001

HW – – < 0.001 < 0.001 ← – – ← Max < 0.001

FT ↑ ↑ – – – – – ↑ ↑ Min

PK – ↑ – – – – – – – –

PCS5

(β freq., γ pow.)

MT – < 0.05 – – – – – – – < 0.01

HW ← Max < 0.05 < 0.001 – – – – – < 0.001

FT ↑ – – – – – – ↑ ↑ Min

PK – ↑ – – – – – – – –

PCS6

(γ freq.)

MT Min < 10−5 < 10−4 < 10−5 Max < 10−4 < 10−4 – – < 0.01

HW ← Max < 10−5 < 10−5 ↑ Min < 10−4 – – < 10−4

FT ← ↑ – – ↑ ← – ← ← Max

PK ← ↑ – – – – – – – –

PCS7

(α LRTC)

MT Max < 0.05 < 0.001 < 0.001 Max < 0.05 < 0.001 Max < 10−5 < 10−5

HW ↑ – < 0.001 < 0.001 ↑ – < 0.001 ↑ Min < 0.001

FT ↑ ↑ – < 0.05 ↑ ↑ Min ↑ ← –

PK ↑ ↑ ↑ Min – – – – – –

PCS8

(β freq.)

MT – – < 10−4 < 10−4 – – – Max < 0.05 < 0.001

HW – – < 10−4 < 10−4 – – < 0.01 ↑ – < 0.001

FT ↑ ↑ – – – ↑ – ↑ ↑ Min

PK ↑ ↑ – – – – – – – –

PCS9

(β, γ freq.)

MT – – – – – – – – – –

HW – – – < 0.01 – – – – – –

FT – – – < 0.01 – – – – – –

PK – ← ← – – – – – – –

Tukey variable is the background noise type and all possible pairs of means in each subtable are compared. Significant p-values are reported in upper triangular. Data can be decoded
like Table 1. The type(s) and frequency band(s) associated with each component (using the features have the strongest impacts; refer to Figure 3C) are reported in the first column.
Each element of the sub-matrices is corresponding to the background noise type labeled above and to the left side: MT, multi-talker; HW, highway; FT, fluctuating traffic; Each sub-matrix
is corresponding to the listening tasks: LA, lecture attended, BA, background attended, BUA, background unattended and EEG principal component scores (PCSi ) labeled above and
to the left side, respectively.
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FIGURE 5 | Number of correctly retained keywords in silence (LA-PK) across 13 topics; mean and standard deviation values are shown by circles and triangles,

respectively. The box-plots display the median marked as a bold line. The lower and upper whiskers represent another 50% data distributed outside the

interquartile box.

TABLE 3 | Effect of background noise on exam z-score; Tukey post-hoc multiple

comparisons between different types of background noise for modeling exam

z-score in lecture attended task (using mixed-effect modeling).

Background type Pink Highway Multi-talker Fluctuating traffic

Pink – p < 0.05 p < 0.01 –

Highway ↑ – – –

Multi-talker ↑ – – p < 0.05

Fluctuating traffic – – ← –

Tukey variable is the background noise type and all possible pairs of means are compared.
Upper triangular elements indicate corresponding p-values (p) between two background
noises (if p <0.05). Lower triangular arrows are directed toward the background noises
which have higher (better) exam z-scores.

To identify the link between EEG-PC scores and the exam
z-scores, both fixed and mixed-effect models were employed
as presented in section 2.9. Note that the EEG-PC scores
used in this section were obtained by averaging across the
channels corresponding to the given subregions. The models
were compared using two criteria. First, χ2 test was used to
compare between the two models using “anova” function in
STATS v3.6.2 package of the statistical software R (R Core Team,
2019). A good model not only needs to fit data well—it also

needs to be parsimonious. This criterion takes the model objects
as arguments and returns an ANOVA testing whether or not
the more complex model is significantly better at capturing the
data than the simpler mode. If the resulting p-value is <0.05, we
conclude that themore complexmodel is significantly better than
the simpler model. If the p-value is >0.05, we should favor the
simpler model.

The second criterion used to compare the fitted models was
the Akaike information criterion (AIC) (Akaike, 1974). When
comparing models fitted by maximum likelihood to the same
data, a lower AIC value indicates a better fit. We have used
“extractAIC” function in STATS v3.6.2 package of the statistical
software R (R Core Team, 2019). The following equation is used
to estimate AIC:−2 log(L)+(k×edf ), where k = 2, L refers to the
likelihood, and edf stands for the equivalent degrees of freedom
(i.e., the number of free parameters for the models) of fit.

Table 4A reports the predictability of exam z-scores based on
linear fixed-effect modeling (without considering participant as
a random factor). The following predictors (fixed factors) were
used: (1) no fixed factor (constant), (2) background type, and
(3) 54 EEG-PC scores as defined by formulas (6), (7), and (8),
respectively. Furthermore, a stepwise fixed-model regression was
performed to regress exam z-score using the most significant
EEG-PC scores (refer to section 2.9). P-values shown on the
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TABLE 4 | Predictability of exam z-scores using (A) fixed-effect and (B) mixed-effect models.

(A) Fixed-effect model: [Exam z-score ∼ 1 + Fixed Factor].

Fixed factor Constant Background type 54 EEG-PC scores Stepwise EEG-PC

scoresa

Constant AIC = 134.26 p < 0.01 p < 10−12 p < 10−15

Background type ← AIC = 128.67 p < 10−10 p < 10−15

54 EEG-PC scores ← ← AIC = 89.73 –

Stepwise EEG-PC scores ← ← ← AIC = 38.72

aContributing PC scores (PCSs):

p < 10−4 → Parietal PCS 7 (−0.86);

p < 10−3 → Central PCS1 (0.63);

p < 0.01→ Occipital PCS 1 (−0.51), Occipital PCS 2 (−0.33), Occipital PCS 7 (0.50), Occipital PCS 9 (−0.32), Frontal PCS 4 (−0.33), Central PCS 5 (0.57), Central PCS

8 (−0.41), Left Temporal PCS 4 (0.52);

p < 0.05→ Occipital PCS 4 (−0.25), Frontal PCS 3 (−0.16), Parietal PCS 1 (0.42), Parietal PCS 5 (−0.40), Parietal PCS 8 (0.25), Left Temporal PCS 2 (0.65), Left

Temporal PCS 1 (−0.53), Left Temporal PCS 6 (0.26);

•p < 0.2→ Frontal PCS 6 (−0.14), Frontal PCS 7 (0.14), Left Temporal PCS 3 (0.12), Left Temporal PCS 5 (−0.18), Right Temporal PCS 2 (−0.42).

(B) Mixed-effect model: [Exam z-score ∼ (1|Participant) + 1 + Fixed Factor].

Fixed effects Constant Background type 54 EEG-PC scores Stepwise EEG-PC

scoresb

Constant AIC = 839.75 p < 0.01 p < 10−3 p < 10−7

Background type ← AIC = 830.94 p < 0.01 p < 10−5

54 EEG-PC scores ← ← AIC = 851.45 –

Stepwise EEG-PC scores ← ← ← AIC = 806.76

bContributing PCSs:

p < 10−5 → Parietal PCS 7 (−0.37)

p < 10−4 → Occipital PCS 2 (−0.47);

p < 0.001→ Central PCS 1 (0.68), Left Temporal PCS 2 (0.35);

p < 0.01→ Central PCS 8 (−0.45);

p < 0.05→ Occipital PCS 1 (−0.17), Central (0.39) and Parietal (−0.38) PCS 5, Parietal PCS 4 (−0.12), Parietal PCS 8 (0.37), Left Temporal PCS 1 (−0.41).

Upper triangular elements are pairwise p-values (p) when two models are compared using χ2 test (if p <0.05). Lower triangular arrows are directed toward the better models when
comparing two models. If the resulting p-value is <0.05, the more complex model is significantly better at capturing the data than the simpler model. If the p-value is > 0.05, we favor
the simpler model. Main diagonal elements indicate AIC values for given models. The lowest AIC value (corresponding to the best model) is shown in bold. The PC scores obtained by
the stepwise method are reported below the tables and (•) denotes the regression coefficient (slope) of each factor.

upper diagonal of Table 4A, suggest that there are pairwise
significant differences between all models except between two
models which use 54 EEG-PC scores and stepwise EEG-PC scores
as the fixed factors. This means that the stepwise model (simpler
model) is better than the full model (more complex model) in
terms of χ2 test criterion.

AIC values shown on the main diagonal of Table 4A, suggest
that stepwise EEG-PC scores can predict the exam z-scores better
than other models (the lowest AIC). We found the 23 predictors
that play more significant roles to predict the exam z-scores. The
names of these predictors, their p-values (to predict the exam z-
scores), and their coefficient (slope in regression) are reported
below Table 4A. They were ordered according to their statistical
significance. As can be seen from Table 4. the parietal PC score
7 (related to alpha LRTC), which is negatively correlated with
exam z-scores, is themost important predictor tomodel the exam
z-scores using the linear fixed-effect modeling.

The results of the mixed-effect models (formulas 9–11) to
model exam z-scores are presented in Table 4B. By including the
participant as a random factor, the models are less likely to be
affected by individual differences. Therefore, those EEG features
that contribute to differentiate between participants are expected
to be less relevant in this modeling. In contrast to the fixed-effect
model, in the mixed-effect model, background noise type can
better predict the exam z-scores compared to 54 EEG-PC scores
(in terms of AIC and not χ2 test). However, the stepwise EEG-
PC scores results in a significantly better model than knowing
background noise type to predict exam z-scores (the lowest AIC).

According to the tables, in the both fixed and mixed-effect
models, the modes which use stepwise EEG-PC scores predict
the exam z-scores better than all other models. It is worth noting
that unlike the fixed-effect model which all the components in the
certain subregions play the significant roles in predicting, in the
mixed-effect model, the most contributing predictors are limited
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to the PCS 1, 2, 4, 5, 7, and 8 in the particular subregions (as
can be seen from below Table 4B). These results are consistent
with the results of section 3.3, where the importance of these
components (especially PCS 7) to distinguish between the
background noises in the lecture attended task was shown
(refer to Table 2). The relationship between these components
and hypotheses presented in the introduction section and their
underlying mechanisms will be discussed in the next section.

4. DISCUSSION

The present study used a single-trial 64-channel EEG
measurement and ecologically valid stimuli to investigate
the neural correlates of acquiring and retaining vocally presented
information. To identify significant EEG components, a broad
set of three listening tasks were performed: (1) attentive listening
to 5-min lectures in the environmental sound (LA), (2) attentive
listening to environmental sounds (BA), and (3) inattentive
listening to environmental sounds (BUA). The environmental
sounds included multi-talker, highway, and fluctuating traffic
sounds. During this unsupervised learning step, a wide range
of features of sensor-space EEG signals were collected and their
principal component scores (PCSs) were calculated. Unlike
the attention decoding studies that aim to explicitly decode
an attended from unattended speech stream based on the
supervised approach (Horton et al., 2014; O’Sullivan et al.,
2014), we aimed to distinguish between attentive and inattentive
listening conditions. To this end, we used an unsupervised
learning method that, as such, did not require knowledge of the
attended sound signal.

During the LA task, the mixture of verbal lectures and
different types of background noise were presented. The lectures
were related to topics for which prior knowledge is expected
to be minimal. A written exam was taken after the experiment
to quantify the amount of information that participants have
acquired and retained from the lectures. Since the exam included
the questions related to fact and insight, memory is expected to
be more specifically involved. It is worth noting the following: (1)
although the background sounds could distract the participants
while listening to the speech, they did not mask the speech
energetically, and (2) no visual distractor was presented during
the experiment.

4.1. Essential EEG-PC Scores to Predict
the Exam Results
The predictability of exam results of the LA task by the EEG-
PC scores (EEG-PCSs) has been assessed by linear fixed and
mixed-effect modeling of the exam z-scores. It is expected that
differences in the exam z-scores can arise from the instantaneous
listening state but also from the overall state, personal traits,
physiology, and prior knowledge, hence both fixed and mixed-
effect models were used to regress the exam z-scores. The fixed-
effect model, not considering participant as a random factor,
assumes that all relevant differences for predicting exam z-
scores are visible in EEG-PCS, whereas the mixed-effect model,
considering participant as a random factor, assumes some

personal differences are not visible in the EEG-PCS. We first
consider the latter approach.

Firstly, it could be confirmed that knowing the type of
background sound improves the predictability of exam z-
scores (refer to Table 4). Exams on information presented in
background noise always gave significantly lower scores, except
for fluctuating traffic noise that did not seem to significantly affect
exam z-scores (refer to Table 3). Note that in our experiment,
noise may affect speech perception, listening comprehension,
distraction, and memory encoding. Speech perception in noise
was found to be consistently worse in babble than in traffic
noise in previous research (Shukla et al., 2018). For episodic
memory tasks, it was found that encoding under traffic noise
and meaningful irrelevant speech were worse than under silent
conditions, but scores were lower for traffic noise than for
competing meaningful speech (Hygge et al., 2003). Thus, our
results seem to confirm previous works. We can now turn to the
question of whether EEG allows us to disentangle the multitude
of interacting effects that play a role.

A stepwise mixed-effect model identified that a few specific
EEG-PCSs play a more significant role in modeling the exam
z-scores (refer to Table 4B). These EEG-PCSs are the central,
occipital, and left temporal PCS 1, the occipital and left temporal
PCS 2, the parietal PCS 4, the central and parietal PCS 5, the
parietal PCS 7, the central, and parietal PCS 8. The underlying
mechanisms of these components and their links with our
hypotheses are discussed based on the unsupervised learning
phase and the previous studies as follows.

• The first component: overall attentive state

In general, the alpha-band activity has been assumed as
an idling rhythm (Pfurtscheller et al., 1996) meaning the
power of alpha activity increases during resting state and
conditions of mental inactivity. During the cognitive effort,
alpha activity usually diminishes, which is referred to as
alpha desynchronization (Pfurtscheller and Da Silva, 1999;
Sauseng et al., 2005). In addition, previous studies have argued
increased occipital (task-irrelevant) and decreased frontal (task-
relevant) alpha activity can reflect the distracted auditory
attention (Pfurtscheller and Da Silva, 1999; Sauseng et al., 2005;
Clayton et al., 2015). Our results showed the occipital and PCS
1 is negatively correlated with the exam z-scores (p = 0.02,
s = −0.17, where s is the slope of corresponding factors in the
linear regression). Based on the results yielded by PCA (refer
to Figure 3), the alpha peak power and alpha bandwidth are
the most positively and negatively contributing feature to this
component, respectively. Therefore, an increase in the exam
z-scores can be associated with a decrease in this component
score due to overall mind wandering and distracted attention.
This statement is in accordance with the unsupervised analysis
results where the multi-talker and pink (lecture in silence) PCS
1 is the maximal (the least attention) and minimal (the highest
attention) compared to other background sounds during the
lecture attended task (see Table 2). In addition, the ratio of theta
to alpha power (RPTA in Figure 3) also positively contributes to
this component which also confirms that an increase in PCS 1
indicates the deterioration in attention (in agreement with Holm
et al., 2009; Borghini et al., 2014).
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• The fourth component: low-frequency speech
envelope following

The parietal PCS 4 is negatively correlated with the exam z-scores
(p = 0.027, s = −0.12). The fourth PC is strongly determined
by various characteristics of the delta frequency band, such as
bandwidth, central frequency, and spectral edge frequency (refer
to Figure 3). This frequency band is observed during speech
envelope following (Kerlin et al., 2010; Ding and Simon, 2014;
Vanthornhout et al., 2019). In addition, the gamma central
frequency and the alpha-band LRTC negatively contribute to
the fourth PCS and are visible in the occipital, temporal, and
parietal regions (see Figures 3, 4). The unsupervised analysis
revealed that the fourth PCS exhibits the highest and lowest
values in background attended and unattended tasks, respectively
(see Table 1). Therefore, the fourth PCS may reflect speech
envelope following and listening attentively without necessarily
linguistic processing or gating out (our third hypothesis). This
interpretation could be consistent with the lower values (more
negative values) of the parietal and occipital fourth PCS in
fluctuating traffic noise compared to other background noises in
the lecture attended and background unattended tasks (refer to
Figure 4).

• The fifth component: decreased focusing during listening

The parietal fifth PCS exhibits a reverse relationship with the
exam z-scores (p= 0.020, s=−0.38). The positively contributing
EEG features to the fifth PCS include the beta central frequency
and the gamma absolute power. Based on the unsupervised
analysis, the fifth PCS is the lowest in the lecture attended (LA)
task compared to other tasks for all background noises (refer to
Table 1). Therefore, decreased fifth PCS is likely associated with
more focus during listening, where the exam scores are expected
to improve as well.

• The sixth component: cognitive prediction error

Although the sixth PCS is not obtained from the mixed-
effect stepwise regression as a contributing component, the left
temporal PCS 6 is the most significant component obtained
from the full mixed model (p = 0.02, s = 0.55). The sixth
PCS positively loads on the gamma spectral edge frequency,
bandwidth, and central frequency. Moreover, the frontal and
central sixth PCS is negatively correlated with the exam z-scores
(s = −0.10 and s = −0.20). Based on the unsupervised analysis,
the sixth PCS is more discriminating between the background
noises. Its highest values are observed for attended speech in
continuous highway sound (LA-HW) and for attended multi-
talker sound (BA-MT) (refer to Table 2). These two conditions
have in common that one may rely on linguistic processing and
prediction to complete the information. This factor is therefore
likely associated with predictive coding. Higher values of the sixth
PCS result in lower exam z-scores which may be explained by
the fact that a need for prediction to complete the information
may result in poor encoding. This finding is in line with Bastos
et al. (2012), Sedley et al. (2016), and Alexandrou et al. (2017)
where has been shown the prediction violations or errors (our
fifth hypothesis) are encoded by gamma-band activity (especially
over higher brain areas). It was also found that this component

over the left temporal region is positively correlated with the
exam z-scores reflecting task-relevant gamma-band activity role
on speech processing in alignment with Giraud et al. (2007),
Morillon et al. (2012), and Alexandrou et al. (2017).

• The seventh component: alpha-as-inhibition and inhibition-
excitation balance

The parietal seventh PCS, which positively loads on alpha-
band LRTC, is negatively correlated with the exam z-scores
(p = 8 × 10−6, s = −0.37). Interestingly, this PC score in
multi-talker noise and independent of task type is significantly
dominant compared to other background noises. Increased
alpha-band LRTC reflects that the autocorrelations of alpha
activity slower decay in power-law behavior and as a result, the
self-similarity of alpha activity increases. In fact, high levels of
alpha-band LRTC reflect the enduring alpha waves. In agreement
with Poil et al. (2012), this increased self-similarity or long-
lasting changes could reflect more balance between excitation
and inhibition states of alpha-band activity during the auditory
stimulus (our second hypothesis). Both excitation and inhibition
sates are therefore involved during attentive listening to the
lecture inmulti-talker sound, which is required formore listening
effort due to multi-talker distraction. In contrast to multi-
talker, attentive listening to lectures in pink noise (lecture in
silence), the alpha-band LRTC is the lowest compared to other
noises due to less need for inhibition during listening. In fact,
during this listening condition, the excitation state is more
dominant than the inhibition state. Increased PCS 7 could thus
be associated with a higher inhibition-excitation balance. This
component can be linked to the alpha-as-inhibition (Clark,
1996; Uusberg et al., 2013) hypothesis (our first hypothesis)
where alpha synchronization reflects suppression of irrelevant
information (inhibition).

For the fixed-effect model, where all differences between
people are assumed to be explainable through EEG, also adding
second (over non-occipital regions), third, sixth, and ninth PCSs
improves the predictability of exam results (refer to Table 4A).
The second PCS loads strongly on the wide-band absolute power
and absolute powers in the low-frequency bands (delta and
theta). It is probably related to the observability of EEG for
each specific person and may not indicate specific brain-related
functions. The third PCS mainly loads on alpha peak frequency,
alpha central frequency, and related factors. As PCS 1, the third
PCS is significantly higher in the BUA task. Literature is not
univocal on the expected trends in relation to tasks (Angelakis
et al., 2004; Mierau et al., 2017) but points at a significant
difference between persons (Klimesch et al., 1993; Haegens et al.,
2014). The latter may explain why PCS 3 only occurs as a
significant predictor in the fixed-effect model where it helps to
differentiate between persons.

4.2. EEG-PC Scores Related to Task
Difficulty-Based Cognitive Load
In this experiment, adding background sound to the lectures
increases the effort needed to process the sound, but it may also
affect cognitive load and task difficulty. The cognitive load of
subjects has been assessed from different perspectives using EEG
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depending on the type of task. For instance, the task difficulty
during the intelligence test (Friedman et al., 2019) and learning
task (Mills et al., 2017) as the cognitive load has been linked to
EEG features. Moreover, the cognitive load during a visual task
has been associated with the attentional demand using an ERP
analysis (Grassini et al., 2019). There is no unique EEG feature
that is directly related to cognitive load. Theta power has been
suggested as an indicator for the average cognitive load of subjects
and the linguistic complexity of educational videos (Castro-
Meneses et al., 2019). Mu rhythm oscillations (8 − 13 Hz over
the sensorimotor cortex) could be affected by the cognitive load
during speech perception due to attention and working memory
processes (Jenson et al., 2019). In addition to the task difficulty,
the listener’s skill also may affect the cognitive load.

In this paper, although the cognitive load of listeners has
not been explicitly investigated, some PCSs may reflect the task
difficulty-based cognitive load, such as the sixth and seventh
PCSs (reflecting the prediction error and the inhibition during
listening, respectively). However, caution is needed to link neural
results to these behavioral outcomes as this study is based
on a sample of young adults only. Aging populations might
react differently.

Since there are more noiseless gaps during fluctuating traffic
sound compared to the highway sound (refer to Figure 2), it
is expected that less mental resources are needed to predict the
missing part (less PCS 6) during LA in fluctuating traffic sound.
Therefore, LA in the highway sound (LA-HW) is likely more
difficult task compared to LA in the fluctuating traffic sound (LA-
FT). However, the task difficulty can be reflected either in the
continuous inhibition by increased PCS7 (highway sound) or in
the fluctuating inhibition by decreased PCS7 (fluctuating traffic
sound). Moreover, in the BUA task, the fluctuating traffic sound is
the most difficult sound to predict (the highest PCS6) compared
to the other sounds. Although the BUA in the multi-talker
sound exhibits more inhibition compared to the fluctuating
traffic (higher PCS7), the multi-talker sound in the BUA can be
easier predicted (lower PCS 6) compared to the fluctuating traffic
sound. These findings may explain the impacts of different types
of environmental sound during daily activities.

5. CONCLUSION

The current study showed that it is possible to predict beyond the
chance level the amount of vocal information that participants
acquire and retain from the lectures presented in different
environmental sounds using 64-channel EEG. Five principal
component scores of the EEG features obtained under different
listening conditions and for different persons were essential for
this prediction. Based on their loading on the spectral range and
their ability to distinguish between listening tasks, we associate
them with overall attentive state, speech envelope following
(listening attentively without necessarily linguistic processing),
focusing during listening, cognitive prediction error, and specific
inhibition. Part of the variance between persons could further
be explained by principal component scores that tend to relate
to overall signal strength, an indication of observability of
EEG signals, and person identification through inter-individual
differences between typical alpha peak frequencies.

Inhibition-excitation balance (reflected by alpha-band
representation) and predictive mechanisms (reflected by gamma-
band representation) play a more important role thanmight have
been expected and could be observed via EEG. Furthermore,
the results of comparing the principal components scores of
three different auditory tasks (attentive listening to the lecture
in environmental noise, attentive listening to the environmental
sound, and inattentive listening to the environmental sound)
showed the extracted principal components scores are able to
discriminate the different listening tasks and background noises.
Specifically, (i) the sixth and seventh principal component
scores, which reflect prediction error and inhibition-excitation
balance, respectively, allow us to distinguish different types of
background sound. Moreover, (ii) the type of listening tasks
could be completely distinguished by the first and fifth principal
component scores, which reflect the overall attentive state and
decreased focusing, respectively.

In terms of methodology, by combining different listening
conditions to train in an unsupervised way the definition of
orthogonal features based on EEG, a more efficient supervised
model for the prediction of the memorization of information
could be obtained. This methodology could be relevant for
assessing the impact of environmental sounds on daily activities,
such as communicating, learning, and relaxing as some of the
principal components identified could be related to increased
cognitive load. They could also be relevant for future artificial
intelligence communicating optimally with humans based on
observed brain activity. The methodology also allows us to
assess individual differences in the ability to process speech
in noise.
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