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Aim: In many cases, the dynamics of psychotherapeutic change processes is
characterized by sudden and critical transitions. In theoretical terms, these transitions
may be “phase transitions” of self-organizing nonlinear systems. Meanwhile, a variety
of methods is available to identify phase transitions even in short time series. However,
it is still an open question if different methods for timeseries analysis reveal convergent
results indicating the moments of critical transitions and related precursors.

Methods and Procedures: Seven concepts which are commonly used in
nonlinear time series analysis were investigated in terms of their ability to identify
changes in psychological time series: Recurrence Plots, Change Point Analysis,
Dynamic Complexity, Permutation Entropy, Time Frequency Distributions, Instantaneous
Frequency, and Synchronization Pattern Analysis, i.e., the dynamic inter-correlation of
the system’s variables. Phase transitions were simulated by shifting control parameters
in the Hénon map dynamics, in a simulation model of psychotherapy processes (one
by an external shift of the control parameter and one created by a simulated control
parameter shift), and three sets of empirical time series generated by daily self-ratings
of patients during the treatment.

Results: The applied methods showed converging results indicating the moments of
dynamic transitions within an acceptable tolerance. The convergence of change points
was confirmed statistically by a comparison to random surrogates. In the three simulated
dynamics with known phase transitions, these could be identified, and in the empirical
cases, the methods converged indicating one and the same transition (possibly the
phase transitions of the cases). Moreover, changes that did not manifest in a shift of
mean or variance could be detected.
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Conclusion: Changes can occur in many different ways in the psychotherapeutic
process. For instance, there can be very slow and small transitions or very high and
sudden ones. The results show the validity and stability of different measures indicating
pattern transitions and/or early warning signals of those transitions. This has profound
implications for real-time monitoring in psychotherapy, especially in cases where a
transition is not obvious to the eye. Reliably identifying points of change is mandatory
also for research on precursors, which in turn can help improving treatment.

Keywords: self-organization, phase transitions, pattern identification, nonlinear methods, change points, real-
time monitoring, phase-transition detection algorithm, PTDA

INTRODUCTION

During the last decades, theories and methods of nonlinear
dynamic systems got in the focus of psychotherapy and
counseling research. One important quality of nonlinear dynamic
systems is their ability to spontaneously create patterns
which are not imposed from the outside, but emerge from
the interactions of subsystems or parts of a system. The
spontaneous emergence of ordered states out of disorder or
the transition from one ordered state to another is called self-
organization (Strunk and Schiepek, 2006; Gelo and Salvatore,
2016). Currently, the most prominent theory and methodology
to understand, model, and analyze self-organizing processes
is Synergetics (Haken, 2004; Haken and Schiepek, 2010).
Phenomenologically, the emergence or transition of patterns
takes place in discontinuous jumps, corresponding to “sudden
gains” or “sudden losses” in psychotherapy (Stiles et al.,
2003; Kelly et al., 2005; Busch et al., 2006; Hayes et al.,
2007; Heinzel et al., 2014; Olthof et al., 2019b; de Felice
et al., 2019, 2020). Synergetics provides the mathematical
framework for modeling and explaining these discontinuous
processes (phase transitions). In a strict sense, phase transitions
occur by shifting one or more control parameter(s) which
change the energy dissipation or other conditions of system
functioning, e.g., the nonlinear interactions between components
or subsystems. Usually, critical instabilities precede transitions,
which can be transitions from disorder to order (emergence
of one or few order parameters) or from one ordered state
to another. In contrast to mathematical modeling (Haken,
2004; modeling of movement transitions: Haken et al., 1985;
modeling of psychotherapeutic change dynamics: Schiepek et al.,
2017; Schöller et al., 2018) or to physical experiments (e.g.,
LASER, fluid dynamics, Haken, 2004) in psychological or
social real-world systems we often do not know the control
parameters and/or cannot manipulate them. Mental processes or
emotional functioning are not directly accessible to parameters
which can be arbitrarily controlled by an experimenter, a
trainer, or a therapist (Schöller et al., 2018). Additionally,
control parameters and boundary conditions often are not
stable but for their part evolving and unstable, with the
consequence that dynamic patterns (attractors) are changing
and after a transient period are moving into new patterns.
This is what Haken (2004) calls “quasi-attractors.” Given these
restrictions of the concept of “phase transitions,” we call
changing patterns which do not fulfill all definitory criteria

of the concept by the weaker term of “order transitions”
(Haken and Schiepek, 2010).

It should be noted that pattern transitions – fulfilling the
strict criteria of phase transitions or not – are not only
characterized by changes of the mean level of the respective
signals, what in psychotherapy research is known as “sudden
gains” or “sudden losses,” but by changes of a great variety
of dynamic features. This could be transitions from a point
attractor to a more or less complex rhythm, from some kind
of periodicity to another kind of periodicity characterized by
different amplitudes and/or frequencies, from a periodic regime
to chaos, or from one type of chaos (e.g., low-dimensional) to
another type (e.g., high-dimensional), with transitions in both
directions. A systematic classification of transitions is still missing
and should be developed in psychotherapy research and other
fields of psychology.

In time series characterizing human change processes
by psychological measures (e.g., self-ratings), the transition
points can be identified by a diversity of methods. Here
we focus on methods which can be applied to short time
series (100 measurement points or less) and are able to
identify pattern transitions and/or precursors of those
transitions. Further criteria for the selection of methods
is that they should not be restricted by mathematical or
parametric assumptions, applicable to real-world time series,
and available in computer-based tools for routine process
monitoring (e.g., the Synergetic Navigation System, SNS;
Schiepek et al., 2018).

The aim of this article is to get an estimate of the
validity and stability of different measures indicating
pattern transitions and/or early warning signals of those
transitions in nonlinear and non-stationary systems.
Robust and quantifiable measures of transitions and their
precursors are important for science and practice. For
science, because research questions focus on the bio-
psycho-social multi-level dynamics of phase transitions
and the related mechanisms of change (Schiepek et al.,
2013) and for practice, because clinical decisions need
valid indicators of precursors and early warning signals
preceding transitions to the better, e.g., for triggering
steps of change, or to the worse, e.g., for preventing
suicidal crises. Convergent indicators should help to
avoid false positives as well as false negatives in the
identification of transitions.
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MATERIALS AND METHODS

Methods of Time Series Analysis for the
Identification of Transitions
In the following we apply different linear and nonlinear
methods of time series analysis to model systems (computer
simulations based on mathematical models) and to empirical
systems (psychotherapeutic processes assessed by daily self-
ratings) undergoing a significant transition.

Recurrence Plots (RP)
This method identifies recurrent patterns of time series in a
time × time diagram (Eckmann et al., 1987; Webber and Zbilut,
1994). A recurrence plot is a square matrix that visualizes
times at which a pattern of a dynamical system is identical
or very similar to a pattern that has occurred before. In time
series of one variable, as in our examples, the pattern of the
system is identical to several consecutive values of the variable.
For example, one pattern could be “linear increase,” another
one “increase and decline.” The color of each element of the
matrix indicates the similarity between the patterns at each
time: in the recurrence plots of Figures 1, 2 blue indicates
similar (recurrent) patterns, red very different patterns. The color
of the matrix thus indicates times where the pattern of the
time series changes.

Technically, snippets of a full time series are embedded in
a phase space with time-delay coordinates. This implicates that
the number of time-delay embedding coordinates, corresponding
to the snippet length, and the time delay τ between the
embedded measurement points have to be defined. Usually, τ

is defined by the first zero-crossing or the first minimum of
the autocorrelation or of the transinformation function of the
time series. By this method, each snippet of the time series
is embedded in the time-delay phase space by a vector point.
The cell entries in the time × time Recurrence Plot can be
the Euclidean distances between the vector points (distance
matrix) which are rainbow color-coded with blue = recurrent to
red = transient, or, the distances can be binary coded according
to a selected threshold. Technically, this threshold corresponds
to the radius of a hypersphere1 which defines which other vector
points are “neighbors,” that is, similar or “recurrent” segments
of the dynamics. In a Recurrence Plot, recurrent patterns and
their transients become apparent. For all Recurrence Plots we
defined 3 time-delay embedding coordinates for each time series
with τ = 1.

Change Point Analysis (CPA)
The method (Killick et al., 2012) is sensitive to changes of
specific statistical properties of a time series. A time series x
contains a change point if it can be split into two segments x1
and x2 such that C (x1)+ C (x2)+ k < C (x), where C represents
the cost function, here C (x) = Nvar (x), k is a threshold,
and N the number of time points of x. In mathematical

1A hypersphere is a high-dimensional sphere, i.e., a set of points at a constant
distance from a given point called its center. Here, since we used three embedding
dimensions, the hypersphere is equivalent to a sphere.

optimization, a cost function determines how well the data fit
a certain assumption. A popular example of a cost function is
the Mean Sum of Squares; here, the cost function is simply
the variance of a section of the time series [var(x)] times
the number of points constituting this section (N). In other
words, a change point is detected between the segments x1
and x2 of a time series, if the sum of the variance of the
statistical property of interest, e.g., the mean of the segments,
is smaller than the variance of this property of the whole
time series; otherwise, no change point is detected. In our
application, a maximum of two change points was allowed,
one for detecting changes of the mean and one for detecting
changes of the variance. The analysis was done with the
function ischange implemented in Matlab (Release 2018b) with
the default threshold.

Consider the time series {2,2,2,4,4,4,4,4,4,4}, where the mean
changes from 2 to 4 between t = 3 and t = 4. The change
point analysis algorithm first splits the time series into two
segments, x1 from t = 1 to t = 2, and x2 from t = 3 to
t = 10. For both segments, the cost function C is calculated:
the first part includes N = 2 time points, the second part
N = 8 time points with var(x1) = 0 and var(x2) = 0.5, hence
C (x1) = 2 · 0 = 0 and C (x2) = 8 · 0.5 = 4. The sum of C(x1)
and C(x2), 4, is then compared to the cost function of the whole
time series, C (x) = 10 · 0.933 = 9.33. Since C(x1) + C(x2) + k
are not less than C(x), the algorithm concludes there is no
change point when segmenting the time series after t = 2. It
then proceeds by splitting the time series between t = 3 and
t = 4 and repeats the tests for these segments. Now, both the
variance of x1 and x2 are zero, hence C (x1)+ C (x2)+ k <
C (x) – a change point is detected correctly between t = 3
and t = 4.

Dynamic Complexity (DC)
Dynamic Complexity (DC) (Schiepek, 2003; Haken and
Schiepek, 2010; Schiepek and Strunk, 2010) was developed to
identify critical instabilities in short and coarse-grained real-
world time series, without further mathematical or parametric
assumptions. DC mirrors the increased complexity and
sensitivity to noise and perturbations of system dynamics before
phase transitions, but also the fact that regimes or attractors
of human dynamics realize different degrees of complexity
(e.g., emotional rigidity in Major Depressive Disorder or
emotional instability in Borderline Personality Disorder). DC
is the multiplicative product of a fluctuation measure and
a distribution measure applied to discrete time series data
with given data ranges [xmin, xmax] and constant discrete
time intervals between the data points (sampling frequency,
e.g., one observation per day). The fluctuation measure (F) is
sensitive to the amplitudes and frequencies of a time signal,
and the distribution measure (D) scans the scattering of values
or system states occurring within the range of possible values
or system states. In order to identify non-stationarity, DC is
calculated within a data window moving over the time series.
Because the empirical time series we use in this methods test
were collected by daily ratings, we apply a window width of 7
measurement points.
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FIGURE 1 | Time series and the applied analysis methods for the detection of critical transitions. All time series were z-transformed to get comparable scales. (1A)
Transition from a chaotic to a rhythmic regime produced by the Hénon map. (2A) Simulation run of a mathematical model of psychotherapeutic change processes
with a manually forced parameter shift (time series: “therapeutic progress”). (3A) Simulation run of a mathematical model of psychotherapeutic change processes,
simulated parameter shifts (time series “insight”). (4A) Empirical dynamics of an OCD patient (time series “therapeutic progress”). (5A) Empirical dynamics of an MDD
patient (time series “therapeutic progress”). (6A) Empirical dynamics of an MDD patient (time series “therapeutic progress”). (1B) Linear shift of parameter a (Hénon
map). (2B) Linear parameter shifts of all parameters of the model (a, m, c, r). (3B) Simulated parameter shifts of all parameters of the model (a: red, m: green, c:
bright blue, r: dark blue). (1C,2C,3C,4C,5C,6C) Recurrence Plots (RP) of the time series in line (A). (1D,2D,3D,4D,5D,6D) Change Point Analysis (CPA) applied to
the time series in line (A); the red dots indicate the identified change points with respect to the mean, blue dots change points with respect to the variance.
(1E,2E,3E,4E,5E,6E) Dynamic Complexity (DC) applied to all time series in line (A). (1F,2F,3F,4F,5F,6F) Permutation Entropy (PE) applied to the time series in line
(A). (1G,2G,3G,4G,5G,6G) Time Frequency Distribution (TFD) applied to the time series in line (A). (1H,2H,3H,4H,5H,6H) Instantaneous Frequency (IF) applied to
the time series in line (A). (1I,2I,3I,4I,5I,6I) Synchronization Pattern Analysis (SPA) applied to the time series in line (A). CP, (moving) control parameters; CPA,
change point analysis; DC, dynamic complexity; IF, instantaneous frequency; PE, permutation entropy; RP, recurrence plots; SPA, synchronization pattern analysis;
TS, original time series.
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FIGURE 2 | Continued
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FIGURE 2 | Time series and the applied second order analysis methods for the detection of critical transitions. All time series were z-transformed to get comparable
scales. The red dots indicate change points with respect to a change of the mean, the blue dots change points with respect to a change of the variance.
(1A,2A,3A,4A,5A,6A) Original time series, see line (A) in Figure 1. The gray bar indicates the mean of all change points. (1B,2B,3B,4B,5B,6B) Change Point
Analysis (CPA) applied the original time series in line (A). (1C,2C,3C,4C,5C,6C) Change Point Analysis (CPA) applied to Recurrence Plots (RP).
(1D,2D,3D,4D,5D,6D) Change Point Analysis (CPA) applied to Dynamic Complexity (DC). (1E,2E,3E,4E,5E,6E) Change Point Analysis (CPA) applied to the moving
average (MA, black line) and the moving variance (MV, gray line) of the DC time series (window width: 20 points). (1F,2F,3F,4F,5F,6F) Change Point Analysis (CPA)
applied to Permutation Entropy (PE). (1G,2G,3G,4G,5G,6G) Change Point Analysis (CPA) applied to the moving average (MA, black line) and the moving variance
(MV, black line) of the PE time series (window width: 20 points). (1H,2H,3H,4H,5H,6H) Change Point Analysis (CPA) applied to Instantaneous Frequency (IF).
(1I,2I,3I,4I,5I,6I) Change Point Analysis (CPA) applied to the moving average (MA, black line) and the moving variance (MV, gray line) of the IF time series (window
width: 5 points). (1J,2J,3J,4J,5J) Change Point Analysis (CPA) applied to Synchronization Pattern Analysis (SPA). (1K,2K,3K,4K,5K,6K) Change Point Analysis
(CPA) applied to the moving average (MA, black line) and the moving variance (MV, gray line) of the Synchronization Pattern Analysis (SPA). CPA, change point
analysis; DC, dynamic complexity; IF, instantaneous frequency; MA, moving average; MV, moving variance; PE, permutation entropy; RP, recurrence plots; SPA,
synchronization pattern analysis; TS, original time series.

Permutation Entropy (PE)
Like Dynamic Complexity, this measure (introduced by Bandt
and Pompe, 2002) identifies complexity in natural, real-world
time series without restricting parametric assumptions and with
high tolerance for noise. Applied to the dynamics of some
chaotic model systems like the logistic map, PE behaves like the
positive Lyapunov exponent (Bandt and Pompe, 2002; Schiepek
and Strunk, 2010). PE is calculated by studying the frequency
distribution of value sequences within a moving window. Patterns
are constructed from the data in the moving window on the
basis of so-called “words” with a given word length n. All
possible words of length n within the moving window are
investigated for their rank ordered sequences, and values within
a word are recoded in rank order numbers ranging from 0 to
n − 1. Therefore, a permutation of n! rank number patterns can
theoretically be found within a data set with no ties. Permutation
Entropy depends on the window width and the word length n.
Permutations of word length 3 are calculated for a window width
of 7. The calculations were done with the permutation entropy
toolbox for Matlab (Ouyang, 2019).

Time Frequency Distribution (TFD)
Time frequency distribution (TFD) is a method to calculate and
visualize the frequency of a signal (time series) as it changes
with time (Cohen, 1989; Sejdić et al., 2009). In order to identify
frequency changes, a moving window approach is implemented.
Mathematically, both time t and frequency ω are variables of
a distribution P(t,ω) which describes the amplitude (energy) of
the signal at each given t and ω. Here, we use the so-called
Stockwell transform (S-transform) which is a combination of
two common TFD-methods, the Short Time Fourier Transform
and the Continuous Wavelet Transform (Stockwell et al., 1996).
It preserves the phase information available from the former
method but uses the variable (i.e., not fixed) window length
of the continuous wavelet method. For visualization, time and
frequency are plotted on a plane (x: time, y: frequency) and color-
coding is used for the representation of the amplitude (energy) of
the frequencies.

Instantaneous Frequency (IF)
The IF of a non-stationary signal is a time-varying parameter that
relates to the average of the frequencies present in the signal as it
evolves (Boashash, 1992a,b). It reduces the TFD matrix to one
dimension by estimating the first conditional spectral moment

of the TFD, which represents the average of the frequencies at
each time point. IF was calculated using the function instfreq
implemented in Matlab (Release 2018b).

Synchronization Pattern Analysis (SPA)
An increase of the synchronization of subsystems or components
of a system before critical transitions was observed in ecosystems
(Dakos et al., 2012), in the emergence of diseases (Chen et al.,
2016), and in psychotherapeutic processes (Haken and Schiepek,
2010; Schiepek et al., 2016b). Here we use the absolute (sign-
independent) values of the Pearson correlations between the
variables of the systems under investigation. For the model
systems, the variables were the one shown in Figures 1 and 2 as
well as the other variables of the system; for the empirical time
series, the variables were the items constituting the factor shown
in Figures 1 and 2. The absolute values of the [N(N − 1)/2]
correlations (N is the number of variables) are averaged within a
moving window (window width = 7). This time varying averaged
correlation is a measure of the coherence of the system dynamics.

Quantification of Transitions
The application of these different methods allows to detect
aspects of the original time series that go beyond a shift of the
mean and/or variance, i.e., changes in the frequency (TFD and
IF), recurring patterns (RP), entropy (PE), critical fluctuations
(DC), and synchronization (SPA) (Figure 1). In order to quantify
changes in these aspects, Change Point Analysis is applied to
the results of these first step analyses (Figure 2). In addition,
the Change Point Analysis was applied to smoothed versions
of the first step analyses that yielded one-dimensional time
series (i.e., the Dynamic Complexity, Permutation Entropy, and
Instantaneous Frequency). For the Instantaneous Frequency, a
gliding window with 5 points was used, since the methods results
in less data points than the original time series, and gliding
windows with 20 points for the other methods. These time series
of the moving average (MA) and the moving variance (MV)
were again analyzed with the Change Point Analysis. As a first
approximation to a quantification of the Recurrence Plots, we
applied the Change Point Analysis to each line of a Recurrence
Plot and used the arithmetic mean of the resulting change
points as the change point for the whole Recurrence Plot. The
localization and concentration of all second order change points
is listed in Table 1.
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TABLE 1 | Localization and analysis of the change points.

Hénon (1a) Simulation 1 (2a) Simulation 2 (3a) Empirical case 1 (4a) Empirical Case 2 (5a) Empirical Case 3 (6a)

Length of time series 300 300 101 111 282 80

Real phase transition 125–150 100–150 45–58 Unknown Unknown Unknown

Change point analysis applied to. . .

Original time series – 145 twice 50 twice 31 and 46 146 65 and 79

DC 152 – 57 38 twice 86 –

MA of DC 147 113 and 240 66 and 69 47 and 50 102 twice 25

MV of DC 151 and 167 148 and 149 69 and 70 50 and 51 69 twice 56 and 59

PE 76 and 153 208 32 13 and 86 – 61

MA of PE 157 and 166 – 45 – – 54 and 55

MV of PE 105 and 166 226 48 76 165 54 and 55

IF 139 80 and 110 56 60 118 76 and 80

MA of IF 74 and 164 85 twice 53 and 61 53 and 65 114 twice 76 and 80

MV of IF 84 and 164 65 57 and 61 45 123 twice 76 and 80

SPA 145 125 49 45 144 56

MA of SPA 152 and 172 132 and 136 68 51 twice 142 59 and 40

MV of SPA 79 and 173 173 and 174 68 and 69 51 twice 151 59 and 62

RP 135 and 172 129 and 133 51 and 52 33 and 45 173 64 twice

Mean (SD) 142 (34) 140 (48) 57 (10) 49 (15) 121 (31) 62 (14)

The change point analysis was applied to the “second step” measures presented in Figure 2. When two numbers are given, one refers to a change point found with
respect to a change of the mean, the other found with respect to a change of the variance. When no change point was found, this is indicated by ‘–’. The means (last line)
correspond to the vertical gray bars in Figure 2(A). DC, dynamic complexity; IF, instantaneous frequency; MA, moving average; MV, moving variance; PE, permutation
entropy; RP, recurrence plot; SD, standard deviation; SPA, synchronization pattern analysis.

Time Series of Model and Empirical
Systems Used for the Identification of
Phase Transitions
In order to identify phase transitions, we prepared six time
series from model systems and from empirically assessed
psychotherapy processes. The model systems are used to create
artificial or simulated phase transitions which fulfill the definition
criteria of a phase transition created by at least one moving
control parameter. The empirical time series reveal pattern
transitions without knowing the responsible control parameters.

The first dynamics [Figure 1(1A)] was realized by the Hénon
system, which is – like the logistic map – a well know two-
dimensional nonlinear map creating oscillatory and chaotic
patterns: xk+1 = yk + 1− ax2

k , yk+1 = bxk. 124 iterations were
produced with initial values x0 = 0, y0 = 0 and parameter values
a = 1.20, b = 0.30. From iteration 125 to 150 the value of the
parameter a was linearly shifted to a = 1.25 (step width: 0.002),
b was left unchanged.

After this shift, further 150 iterations were produced at
constant parameter values. Depending on the shift of parameter
a, the dynamics moved from deterministic chaos to a regular
rhythm. Figure 1(1A) shows the dynamics of variable x.

The second example of a phase transition [Figure 1(2A)]
was created by a mathematical model of psychotherapeutic
change processes (Schiepek et al., 2017). The model includes
five variables (S: success and therapeutic progress, M: motivation
for change, I: insight and getting new perspectives, E: emotions,
represented by a bi-dimensional scale between dysphoric and
positive emotions, P: problem intensity and symptom severity),
which are interconnected by 16 nonlinear functions constituting

the terms of five coupled nonlinear equations (one for each
variable). Four control parameters, which can be understood as
competencies or dispositions of a patient mediate the interactions
between the variables. Depending on their values, the effect
of one variable on another is intensified or reduced, activated
or inhibited. The parameters are a: working alliance and
capability to enter a trustful cooperation with the therapist, c:
cognitive competencies, capacities for mentalization and emotion
regulation, r: behavioral resources and skills for problem solving,
m: dispositional motivation for change, self-efficacy, and reward
expectation2. For creating the chaos-to-chaos phase transition,
100 iterations were simulated with initial values of S = −40.7,
M = 7.5, I = 100, E = 97.6, P = 61.5, and parameters
a = c = r = m = 0.20, then all parameters were moved by a
linear shift from 0.20 to 0.35 between iterations 100 and 150, and
after this (from iteration 151 to 300) the parameter values were
kept constant. Figure 1(2A) represents the variable S (“success
and therapeutic progress”), normalized by a z-transformation.
During the simulation 5% dynamic white noise was added
on all variables.

The third example of a phase transition [Figure 1(3A)] was
produced by the same model system as the second. The difference
is that the parameters were not forced to move by a manipulation,
but by a simulation of the parameter dynamics. For this extended
simulation model four nonlinear equations for each of the four
control parameters were added, which were coupled to the
five order parameter equations. At a specific period (between
iteration 44 and 57) the control parameters underwent a sudden
increase with a steeper gradient as before and after. The initial

2www.psysim.at
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conditions of the variables were: E = 97.6, P = 61.5, M = 7.5,
I = 100, S = −40.7, the initial values of the control parameters
were a = 0.10; c = 0,75; r = 0,46; m = 0.53. The dynamics
was driven by a continuous dynamic noise input of 15% on E
and P, and of 10% on M, I, and S. The phase transition results
from a circular causality between the coupled dynamics of the
variables (order parameters) and the control parameters. If this
circularity crosses a self-organized threshold a phase transition
takes place (Schöller et al., 2018). It occurred between iteration
44 and 57, where the parameters realized a steep increase from
a = 0.11, c = 0.72, r = 0.48, m = 0.55 to a = 0.22, c = 0.96,
r = 0.77, m = 0.89. In Figure 1(3A) the variable I (“insight/new
perspectives”) is shown.

The examples four, five, and six are taken from a real-
time monitoring of psychotherapeutic change. The male patient
(diagnosis: Obsessive-Compulsive Disorder, OCD) of example
four was treated in an inpatient setting (combining Cognitive
Behavior Therapy with different group and creative therapies)
and underwent a sudden gain in OCD- and depressive
symptoms after about the first third of the therapy. The
assessment was realized by daily self-ratings of the items of
the Therapy Process Questionnaire (TPQ, Schiepek et al., 2017)
presented by the internet-based Synergetic Navigation System
(SNS, Schiepek et al., 2018). The TPQ included 47 items
distributed on 7 subscales. In Figure 1(4A) the time series
of the factor S “success/therapeutic progress” is shown, which
corresponds to the factor S of the mathematical simulation model
[Figure 1(2A)].

The female patient (diagnosis: generalized anxiety disorder,
together with different comorbid diagnosis such as somatization,
depression, PTSD, OCD, personality disorder with dependent,
borderline and histrionic traits) of example five was treated in an
outpatient setting (weekly single therapy sessions and a parallel
group program, both with focus on Mentalization-Based Therapy
adjusted to anxiety disorders) and underwent a transition in
her development after about the first half of the therapy. The
assessment was also realized by daily self-ratings using a Danish
translation of the TPQ, presented by the SNS. In Figure 1(5A)
the time series of the factor S (“success/therapeutic progress”) is
shown, which corresponds to the variable S of the mathematical
simulation model [Figure 1(2A)].

The male patient (diagnosis: Major Depressive Disorder) of
example six was – like the patient of example four – treated in
an inpatient setting (combining Cognitive Behavior Therapy with
different group therapies, especially psychodrama, mentalization-
focused therapy, skills training, and creative therapies). He
underwent a transition in his development at the very end of
the hospital stay. The phase transition was not preceded by a
critical instability, but had the shape of a transient relapse, i.e.,
a short period of deterioration followed by a sudden gain. The
assessment also was realized by daily self-ratings using the TPQ.
The case and the synergies of different therapeutic experiences
preparing the phase transition were described in detail in a single
case study (Schiepek et al., 2018). In Figure 1(6A) the dynamics
of the factor S (“success/therapeutic progress”) is shown, which
corresponds to the factor S of the mathematical simulation
model [Figure 1(2A)].

Statistical Analysis
Two methods were used to investigate if the change points were
clustered within a certain range of the time series instead of
being randomly distributed. Inspired by bootstrapping, random
values were drawn from an equal distribution of the length of the
respective time series with the unidrnd function implemented in
Matlab (version R2018b). The number of random values drawn
each time was equivalent to the number of change points found
in the second order analysis for the respective time series, e.g.,
for the Hénon map, 23 change points were drawn randomly 100
times from a uniform distribution. These sets of change points
are randomly distributed onto the time series and have nothing to
do with the phase transition of the time series. When comparing
the dispersion of the random change points with the dispersion
of the real change points, it is possible to statistically assess if the
real change points accumulate, i.e., their dispersion can be tested
against randomly spread points.

In a first approach, the interquartile range (IQR) was
calculated for the real change points and the 100 sets of random
change points for each time series. The IQR describes the number
of points within the second and third quartile of the data, i.e., the
inner 50% around the median, and is a measure of the dispersion
of the data comparable to the variance of normally distributed
data. Then, the confidence intervals of the IQRs of the random
data were calculated in order to see if the IQR of the real data lies
within the confidence intervals.

In the second approach, the dispersion of the change points
was assessed by fitting a normal distribution to the change
points, using the fitdist function with option “Normal” in Matlab.
This was done separately for the 100 sets of random change
point samples and the real sample for each time series. The
width of the normal distribution is characterized by the standard
deviation σ. The estimated standard deviation of each fitted
normal distribution was used as a measure of dispersion. For the
sets of random change points, the mean and the 95% confidence
intervals were calculated. If the dispersion of the real change
points was significantly lower than those of the random change
points, their standard deviation σ would not lie within the
confidence interval of σ of the random change points. This
would indicate that the real change points cluster around a
certain section of the time series, in contrast to random points
that have nothing to do with the phase transition period of the
respective time series.

RESULTS

Identified Phase Transitions
For each time series, phase transitions were assessed by means
of change point analysis applied to several nonlinear analysis
methods (Figures 1, 2). A summary of the exact values of the
change points is given in Table 1, and a visualization in Figure 3.
Note that the change point analysis alone is not able to identify
all changes, e.g., this method did not find a change in the original
time series of the Hénon map (1A). The CPA algorithm is
designed to detect changes of the variance or of the mean of
the time series; it is not able to detect changes of rhythms or
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FIGURE 3 | Summary of the change points found by the different analysis
methods for all 6 time series (Figures 1, 2). The red dots mark the change
points from Table 1. The dashed line marks the mean of all change points,
and the gray square indicates the known phase transitions in the simulated
time series.

patterns in general. For the simulated data (1A/2A/3A), where the
points of the phase transitions are known, most analysis methods
yielded points within the real phase transitions and were thus able
to successfully identify the real points of change. For the empirical
time series (4A/5A/6A), the different methods also suggested
points that are consistent with the visually visible transitions. The
mean of all change points found with the different methods per
time series (last line in Table 1) lies well within the real phase
transition. The combined application of all methods is able to
reliably identify the real phase transitions.

Comparison With Random Data
As described in the Section “Materials and Methods,” two
approaches were applied to test if the change points found
in the empirical data are clustered around a certain region of
the time series, or if they were randomly distributed. The first
method calculated the interquartile ranges (IQR), which describe
the dispersion of the change points onto the time series. The
confidence interval for the IQRs of the 100 randomly distributed
values, and the IQR of the empirical data is given in Table 2. For
all time series, the IQR values of the original time series are much
smaller and lie well outside the confidence intervals of the IQRs
of the random data. It can be concluded that the change points of
Table 1 are not randomly distributed but cluster around the real
phase transitions of the respective time series.

This result is confirmed by the second analysis method,
which fits a normal distribution to the change points (Figure 4).
Table 3 gives the mean standard deviations (σ) of the random
CP sample and the σ of the real. As anticipated, the mean σ of
the random sample is larger than the σ of the real sample for
each time series. The large values of the σ were expected since
a normal distribution was fitted to equally distributed data. The
statistical difference of the σ was assessed by the 95% confidence
intervals of the random data. Table 3 shows that the real σ lie

outside the confidence intervals of the random data, i.e., they are
significantly different. In other words, the σ of the random change
points differed significantly from the σ of the empirical data for
all time series.

To exclude effects of a possible oversampling, the tests were
repeated without the change points found by the CPA on the
gliding mean and gliding variance methods (lines E, G, I, and K
in Figure 2). The results remained the same, i.e., the IQRs and σ

of the real data were well outside the 95% confidence intervals of
the random data.

DISCUSSION

A diversity of methods which were expected to be able to
identify critical transitions in time series were applied to
simulated (Hénon map and two kinds of simulation runs
of a mathematical model of psychotherapeutic change) and
naturalistic processes (daily self-assessments of three patients
during a psychotherapeutic process). The three examples of phase
transitions in simulated data were used because in these cases
the periods of the transitions are known and can be objectively
localized. The following methods were used for time series
analysis: Recurrence Plots (RP), Dynamic Complexity (DC),
Change Point Analysis (CPA), Permutation Entropy (PE), Time
Frequency Distribution (TFD), Instantaneous Frequency (IF),
and Synchronization Pattern Analysis (SPA). In a further step we
applied CPA to the time series of DC, PE, IF, and SPA, as well as to
the moving average and the moving variance of the DC, PE, and
IF dynamics. The results show that the methods are convergent in
terms of the identification of the critical transitions of the process.
The arithmetic average of the change points of these second
order dynamics is placed within the windows of shifting control
parameters [examples 1, 2, and 3, see Figures 1(1A,2A,3A), 3],
or in close neighborhood to these known shifts. In the empirical
dynamics, the change points are placed in a very narrow range
compared to the time series length. The convergence of all
methods is obvious and highly significant for all time series
(Tables 2, 3).

The transitions shown in the RPs of the six test dynamics are
evidently coincident with the shift points identified by the other
methods. Here we used the CPA of each line in the RPs as a
first approximation of a Recurrence Quantification of Transitions
(RQT, sub-segmentation of the RPs). The TFD patterns shown
in Figures 1(1–6G) demarcate transitions or interruptions of the
frequency amplitudes which can be seen by the naked eye, but
there is no immediate quantification available which could be
applied to these patterns. The quantification which reduces the
pattern to a single time series is given by the IF method.

Different methods applied to the data were able to identify
change or transition points, but few of them are able to identify
precursors or early warnings of critical transitions. One of
the methods, DC, showed increased values just before the
transition occurred [see Figures 1(3E,4E)], which corresponds
to the theoretical concept of critical instabilities preparing phase
transitions. There is empirical evidence that increased dynamic
complexity precedes transitions and predicts good outcome
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TABLE 2 | Analysis of the interquartile intervals (IQR) of the empirical and the random data, expressed as % of the length of each time series.

Hénon map (1a) Simulation 1 (2a) Simulation 2 (3a) Emp. case 1 (4a) Emp. case 2 (5a) Emp. case 3 (6a)

Mean IQR of random data 47% 47% 47% 48% 48% 48%

CI of IQR of random data [45%, 49%] [45%, 49%] [45%, 49%] [46%, 50%] [46%, 50%] [46%, 50%]

IQR of original data 10% 17% 17% 5% 19% 26%

The empirical IQRs are considerably smaller than the random IQRs and lie well outside the 95% confidence interval of the random IQRs. In other words, the random data
cover around 45–50% of the length of the respective time series, while the change points of the original data cover only 5% (in the best case) to only 26% (in the worst
case), i.e., they are much more concentrated on a certain section of the time series. This indicates a non-random distribution of the change points found by the algorithm.
CI, confidence interval; IQR, interquartile range.

FIGURE 4 | Illustration of the second statistical analysis method: normal distributions were fitted to all sets of change points. The blue line represents the distribution
for the real change points found by all methods, and the red line those of the random samples. The width of the fitted distributions allows to conclude that the real
change points are much more concentrated (clustered) on a certain section of the time series, since their distributions are considerably narrower.

TABLE 3 | Mean and 95% confidence intervals of the width of the normal distributions (σ) fitted to the random change point samples and the original sample, expressed
as % of the length of each time series.

Hénon map (1a) Simulation 1 (2a) Simulation 2 (3a) Emp. case 1 (4a) Emp. case 2 (5a) Emp. case 3 (6a)

Mean σ of random samples 29% 29% 24% 27% 29% 26%

CI of σ of the random samples [22%, 40%] [22%, 42%] [22%,40%] [22%, 41%] [22%, 43%] [22%, 40%]

σ of the original sample 11% 16% 10% 13% 14% 17%

The empirical σ are considerably smaller than the random σ and lie well outside of their 95% confidence intervals. In other words, the random data cover around 22–43%
of the length of the respective time series, while the change points of the original data cover only 10% (in the best case) to only 17% (in the worst case), i.e., they are
much more concentrated on a certain section of the time series. This indicates a non-random distribution of the change points found by the algorithm. CI, confidence
interval; σ , standard deviation (width of the fitted normal distribution).

(Schiepek et al., 2001, 2014; Haken and Schiepek, 2010; Olthof
et al., 2019a). For short term predictions of suicidal crises DC
may be used as an early warning signal for suicidal attempts
or suicidal ideations (Fartacek et al., 2016). It should be noted
that in the third empirical case [Figure 1(6A)], no increased DC
could be found because the “transient relapse” transition was not
characterized by preceding critical fluctuations.

Implications for Clinical Practice and
Research
Real-time monitoring of the therapeutic progress is getting
increasingly popular and has been adopted by mental health

providers all over the world (Schiepek et al., 2016c). Evidence
is accumulating that the resulting time series are nonlinear
and contain discontinuous jumps (see section “Introduction”).
Importantly, it has been shown that such discontinuities
have a clinical impact. For example, Helmich et al. (2020)
report that sudden gains and nonlinear trajectories of the
therapeutic progress were significantly more frequently observed
in treatment responders. Likewise, increasing fluctuations have
repeatedly been shown to improve treatment outcome as they
indicate possibilities for the patient to reorganize (Schiepek et al.,
2020). Identifying abrupt changes in an objective way is not
trivial, especially in cases where the transition is not obvious
to the eye. Combining several methods as proposed in this
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paper not only guarantees objectiveness but also gives important
hints toward the validity of the change points. Moreover, the
methods under investigation here allow not only to detect shifts
of the mean and/or variance, but other properties like changes
of the frequency, or of patterns in general. The study therefore
considerably extends the common change point analyses. Once
points of transitions have been identified in an objective and valid
way, they can be used to look for precursors, i.e., variables that
change before the system switches into another state. Successful
identification of these indicators preceding change would, of
course, be highly relevant for clinical practice. In any way, being
aware of a change in the psychological system of a client can guide
the practitioner through the therapeutic process as described by
the Generic Principles (Haken and Schiepek, 2010).

Limitations and Strengths
This study may be seen as a first step onto the development of
an algorithm which could objectively identify phase transitions
or phase transition-like phenomena (order transitions). We
tested a limited number of methods applied to a limited
number of data sets. Next steps have to include much more
simulation runs and also much more empirical time series
to test the converging results of the methods. A bigger
number of cases would allow for a statistical testing of the
results. A bigger number of simulation runs with simulated
control parameter dynamics (comp. example 3 in our study)
would produce some evident and clear-cut transitions, but
also ambiguous dynamics and dynamics without transitions. It
would be necessary to evaluate the discriminative validity of
the methods for differentiating pronounced, less pronounced
and non-existing transitions, and also for different degrees of
signal-to-noise ratios.

Another limitation of our preliminary work concerns the
use of surrogate data testing of the time series analysis (Theiler
et al., 1992; Prichard and Theiler, 1994; Rapp et al., 1994;
Schreiber and Schmitz, 2000; Schreiber and Schmitz, 2008).
Random surrogates, which are created by random shuffling of
the original series of the data points, destroy the nonlinear
characteristics of a time series but preserve the linear ones,
even the frequency distribution by creating phase-randomized
surrogates. Based on a multitude of surrogates, a statistical test of
the results from the original time series against the distribution
of the results from the surrogates is possible. This was not
done in our study because its focus was on the comparison of
methods and their convergent validation, not in the statistical
testing of the results using big numbers of cases and surrogate
data distributions. Both will be realized in the next step of the
validation project.

We included a very restricted number of methods which were
known as appropriate for the analysis of short non-stationary
real-world time series. Other methods exist (see the section
“Perspectives”) and should be tested for their sensitivity to detect
critical transitions.

The strength of the study is to combine proved methods for
the identification of critical transitions in simulated and empirical
data sets. This goes beyond what is called “eye balling” and

allowed for a first evidence of the comparative robustness and
validity of the methods.

Perspectives
Most of the methods used in this convergent validity test seem
to be promising and are used in routine process monitoring of
psychotherapy. In the SNS, DC, PE, RP, and SPA are implemented
(Schiepek et al., 2018). Beyond this, many other methods are
available for the identification of critical transitions and related
early warnings, which were published in different disciplines
(e.g., climate research, ecology, brain dynamics, and physiology).
In a current research project based on about 1.000 simulation
runs and 1.000 empirical cases – each of which was documented
by multiple time series assessed by daily TPQ-ratings – the
methods will be tested for feasibility and for sensitivity to
detect transitions.

Basically, all methods for the identification of chaotic
dynamics can be used for the identification of transitions
from regularity or noise to chaos or from one type of chaos
to another. One is the titration of chaos with added white
noise of increasing standard deviation, until its nonlinearity
gets undetected by a particular indicator at a limiting value
of the noise limit (Poon and Barahona, 2001). Others are
the well-known Lyapunov exponents, or more specifically, the
spectrum of Lyapunov exponents, one for each dimension of
a m-dimensional system (Wolf et al., 1985; Rosenstein et al.,
1993). More important than static measures of chaoticity are
dynamic ones, which calculate the largest Lyapunov exponent
of a time series within a gliding window (Kowalik et al.,
2001) and by this identify changes of predictability (exponential
divergences of nearby trajectories in an attractor) (Kowalik
et al., 1997), or the Pointwise Correlation Dimension (Skinner,
1992; Skinner et al., 1994) which uses each vector point of an
attractor as a reference for calculating the correlation dimension
D2. By this, it allows for the identification of transitions in
dynamic processes (Kowalik et al., 1997). Developments of
methods for the estimation of fractal dimensionality (D2) and
Lyapunov exponents for the identification of non-stationary
systems are presented in Strunk and Schiepek (2006; for
applications in psychotherapy research see Haken and Schiepek,
2010; Schiepek et al., 2016a).

Scheffer et al. (2009) and Dakos et al. (2012) report on a variety
of indicators of next to transition dynamics, such as increased
variance, critical slowing down with indicators like increased
autocorrelations or lag1 autoregression coefficients, as well as
extended skewness, kurtosis and conditional heteroscedasticity
in the distribution of the time series values. Although the
authors refer primarily to catastrophe theory, critical instability
with increased sensitivity to perturbations and critical slowing
down – the relaxation to stable attractors takes longer time
after perturbations – are core concepts of far-from-equilibrium
phase transitions as developed in Synergetics (Haken, 1977).
Whereas critical instabilities can be identified by measures like
DC, the detection of increased autocorrelation may require
much longer time series (Bence, 1995) which usually are not
available in psychotherapy research. Further indicators of critical
slowing down are spectral reddening (higher variation at low
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frequencies) close to transitions, and increases in short- and
mid-term memory measured by Detrended Fluctuation Analysis
(Dakos et al., 2012).

An interesting characteristics of system dynamics approaching
an attractor shift is flickering which is not only produced by
internal or external perturbations or by sensitivity to noise,
but by transient, short-term shifts between different alternative
regimes before the system breaks its symmetry into one of
these attractors (Schiepek et al., 2017). Methods proposed by
Dakos et al. (2012) for the identification of dynamics driven
by repeatedly crossing the domains of attraction of alternative
states is threshold AR(p) models and potential analysis. Potential
analysis is a technique for deriving the shape of the underlying
potential of a system assuming that a time series may be
approximated by a stochastic potential equation including a
term for polynomial potentials of even order. The order of the
best-fit polynomial in essence reflects the number of potential
system states identified along the time series (Livina et al., 2011;
Dakos et al., 2012). Finally, the emergence of scale-invariant
power-law distributions (de Felice and Giuliani, 2020) is a
precursor of transitions.

Chen et al. (2016) proposed an inconsistence index based
on the computational method of Hidden Markov models. The
inconsistence index measures the probability of a time point in
a discrete time series being a switching point from a stationary
Markov process to a time-varying Markov process. Healthy,
before-transition states should be stationary Markov processes
with high resilience and robustness to perturbations, whereas
pre-transition states to diseases should be low resilient and more
sensitive to perturbations (time-varying Markov processes). The
inconsistence index passes a threshold during a pre-transition
stage from a healthy pre-disease state to a disease state. Molenaar
et al. (2009) used an extended Kalman Filter with iteration
and smoothing to estimate time-varying parameters in non-
stationary (non-ergodic) state-space models of empirical data.

One of the prominent methods for the identification of
pattern transitions is RP. Unfortunately, the existing quantitative
indicators of the features of a RP characterize the plot as a whole
(Recurrence Quantification Analysis). They grasp important
features as the percent of a plot filled with recurrent points
(%Recurrent), percent of recurrent points forming diagonal lines
(%Determinism), the Shannon information entropy of the line
length distribution (Entropy), the length of the longest line
segment (MaxLengths), and a measure of the paling of recurrent
points away from the central diagonal (Trend) (Giuliani et al.,
2001; Webber and Zbilut, 2005). Wallot et al. (2016) proposed
sophisticated methods of Recurrence Quantification Analysis for
multidimensional time series. However, up to our knowledge
indicators of sub-segments and shifts of the dynamic qualities are

not yet available. Calculating the change points of each line in the
RPs may be a first approximation to Recurrence Quantification of
Transitions (RQT), but other quantitative indicators of shifting
recurrence patterns and sub-segmentation strategies should be
developed, what is the topic of one of our currents projects.

There are promising methods which are not based on point-
like measures but on spatio-temporal data sets. A method
proposed by Goswami et al. (2018) transforms the sequential
data of a spatial grid into a sequence of probability density
functions which can be analyzed, e.g., by networks of recurrence
probabilities. Ecosystems evidently undergo specific self-
organized spatial patterns as they approach a critical transition,
detectable by the analysis of coherences in the spatial structure
(Scheffer et al., 2009). A method for the identification of
changing coherence patterns is Spatiotemporal Stochastic
Resonance (STSR) which measures the stability of spatial patterns
displaying resonance-type dependency on noise amplitudes
(Hütt et al., 2002).

The application of these methods onto psychotherapy
and other psychological data sets needs for modifications,
developments, and rigid testing. In a next step, they should be
applied to big data sets created from computer simulations and
empirical process monitoring with the aim of selecting the most
valid ones on the way to a robust algorithm for detecting phase
transitions and their precursors.
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