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Early models of human cognition appeared to posit the brain as a collection of discrete
digital computing modules with specific data processing functions. More recent theories
such as the Hierarchically Mechanistic Mind characterize the brain as a massive
hierarchy of interconnected and adaptive circuits whose primary aim is to reduce
entropy. However, studies in high workload/stress situations show that human behavior
is often error prone and seemingly irrational. Rather than regarding such behavior to
be uncharacteristic, this paper suggest that such “atypical” behavior provides the best
information on which to base theories of human cognition. Rather than using a digital
paradigm, human cognition should be seen as an analog computer based on resonating
circuits whose primary driver is to constantly extract information from the massively
complex and rapidly changing world around us to construct an internal model of reality
that allows us to rapidly respond to the threats and opportunities.
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INTRODUCTION

There is currently no widely accepted model of human cognition which resolves the results of
studies in both neuroscience and human psychology (Badcock et al., 2019). In addition, the analysis
of real life situations often reveals behavior which does not fit with ideas of human cognition as
based on logical decision making. (Example)

During complex surgery, two anesthetists were present, a senior with many years experience
in that area and an inexperienced anesthetist who had not seen the procedure before. At around
2 h into the procedure, the senior anesthetist, suddenly increased the infusion of intravenous fluid,
asked for blood and got it ready to infuse, despite their being no change in the patients pulse or
blood pressure. The inexperienced anesthetist questioned the decision to give blood, but almost
immediately the patients blood pressure fell and it became obvious that they were bleeding heavily.
Blood transfusion was therefore the correct action and the patient was treated successfully.

When asked, the senior anesthetist could not explain why they had started to treat the patient
so quickly. However, after some thought, three factors were identified. Firstly, they knew that 2 h
into the procedure was when blood loss was most likely, and that any bleeding at that point was
going to be rapid and need immediate treatment. Secondly, the surgeon had asked for an “M11,
which was an old type of heavy duty clip applicator, which was their long standing request when a
large blood vessel had been cut and there was rapid bleeding. A different clip applicator had been
in use for some time, but the surgical assistant knew what was required when asked for an “M11.”
Thirdly, the sound of surgical suction changes when blood flow into the wound increases. The
change is very difficult to describe, but easily recognized after years listening to the same procedure.
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The learning points were that the anesthetist used three
different cues to guide decision making which are not included
in any textbook description of how to identify bleeding during
surgery and, if asked about their normal practice, they would
not have identified them as cues that they used. In addition, the
less experienced anesthetist was completely unable to access this
information [It can be noted that this problem could have been
avoided by the surgeon warning the anesthetist of the bleeding,
but intraoperative communication during surgery is known to be
problematic (Nagpal et al., 2012)].

Many theories of human cognition are based on digital and
computational mechanisms with the brain conceptualized as
consisting of modules with specific neural functions turned on
or off by relevant cognitive mental activity. This is supported by
functional MRI studies which demonstrate increased neuronal
activity in response to isolated cognitive tasks completed by
subjects in a laboratory setting (Binder et al, 1999). It is
also supported by neuroanatomical models which shown that
localized damage to specific areas of the brain are associated with
specific neurological deficits (Cramer et al., 1997). For example,
damage to the occipital area of the cortex leads to loss of vision.

In contrast, studies of cognitive workload often use rapidly
changing and complex tasks and posit highly constrained
cognitive resources which are easily overwhelmed (Byrne,
2011). For example, research using medical simulators has
identified widespread patterns of error and poor performance
in those judged by accepted methods as both knowledgeable
and competent (Byrne et al., 1998, 2013). In particular, the field
of Human Factors research has found that not only is poor
performance common in complex environments, but also that
major errors in perception and even seemingly bizarre behavior
is not uncommon. Further, this “abnormal” behavior is not
random, but has well-defined patterns that can be predicted
and mitigated by changes to training, task or environment
(Reason, 1990).

This inconsistency has led to the concept of two different
types of cognition: Type I which is rapid and based on pattern
recognition and Type II which is slower and logical/analytical
(Kahneman, 2011). This distinction has often led educators to
regard Type I thinking as primitive, biased and error prone,
with the conclusion that students should be taught to use
proper, logical and accurate Type II thinking (Croskerry et al.,
2013). However, while this paradigm is plausible and neatly
explains many of the problematic areas of human behavior,
it has increasingly been questioned (Grayot, 2020), principally
because there appears to be little evidence that such systems
actually exist within the brain. A fundamental principle used
in the construction of this paper is that rather than human
error providing inconvenient data that needs to be explained by
residual primitive systems or just ignored, error is regarded as
providing key insights into how the brain works.

More recent theories such as the Hierarchically Mechanistic
Mind (HMM) (Badcock et al., 2019) characterize the brain
as a “a complex adaptive system” based on the need to
rapidly minimize differences between the internal models of
an individual and their sensory input. It posits that the brain
consists of a hierarchy of modules, “ranging from lower-order

psychobiological mechanisms characterized by automatic, serial
processing, and a high degree of specialization, through to
higher-level modules that are flexible in their responses to
input and production of outputs, allow us to gain awareness
of these outputs, and enable top-down cognitive control”
(Badcock et al., 2019).

The principle suggestion made here is that HMM provides
a good model for cognition, but that in addition, cognition
should be seen as an analog rather than digital process. Although
the term computer is now almost synonymous with digital
technology, the earliest computers such as astrolabes and slide
rules used multiple components with mechanical linkages so
that data was inputted by moving parts of the mechanism and
the result being read from other parts of the mechanism. In
the 1950s, much more complex electromechanical devices were
developed, such as the Mark IV naval fire control computer
designed to control the guns on warships (Ben Clymer, 1993).
This device could integrate ship speed/course/roll/yaw/pitch,
target distance, ammunition type and even the effect of the
earth’s rotation to guide shells accurately on to targets many
miles from the ship. Such devices are known to provide
extremely rapid and accurate outputs. Although naturally suited
to analyzing continuous variables such as speed/distance, analog
devices can also produce discrete outputs. For example, a
coin flip can be used as an analog yes/no device and a
roulette wheel used to select numerical outputs. Despite their
simplicity, analog systems can produce highly complex outputs,
making them highly resource efficient, a key evolutionary
advantage (Allen et al., 2011). However, analog devices were
superseded by digital computers possibly because each factor
added to the computation produces an exponential rise in
the complexity of the device and because any change in the
program required the device to be physically rebuilt (Small,
2001). While this became a limiting factor to manufactured
analogue computers, the inherent complexity and able to self-
reconstruct means that these problems would not limit the use
of analog computation by the brain.

While individual neurons are effectively digital in that they are
either in a resting state or go through a rapid process of activation
and resetting, groups of neurons are arranged in circuits that
fire in regular sequences which produce rhythmic electrical
activity. This activity can which can be recorded at the scalp
as the Electroencephalogram (EEG) which shows characteristic
frequency changes with specific mental activity (Golnar-Nik et al.,
2019). The suggestion here is that the basic functional cognitive
component is a group of neurons which are arranged so that
when activated they discharge repeatedly at a specific frequency.
This is similar to the digital analogy given above, but rather
than brain module “turning on” in response to a stimulus, the
suggestion is that a circuit “resonates.”

This can be conceptualized as a massive array of pendulums
(Figure 1). Each pendulum has a length, weight and damping
factor that determine its resonant frequency and how responsive
it is to input. Each pendulum is then connected to an array
of other pendulums by lengths of elastic string which allow
each pendulum to either increase or decrease the swing of
other pendulums.
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FIGURE 1 | Simple analogue model with each resonant circuit represented by
a pendulum. Sensory input is represented by (A,B). Motion is transmitted
through elastic to pendulums (C) with the final result expressed by the motion
of pendulum (D).

At rest, each pendulum moves gently at its own resonant
frequency. Pushing specific pendulums on one side of the array
(sensory input) causes the amplitude of their swing to increase.
This energy is then passed across the array, eventually causing
the pendulums on the other side of the array to increase the
amplitude of their swing (motor action). Learning is the gradual
change in the length/weight of each pendulum or change in the
connecting strings which change the relationship between input
and output. Such a model using “coupled resonant pendulums”
has already been described as providing a mathematical solution
known as “quantum search” (Chen and Brylinski, 2002).

Cognitive function is therefore based on such waveform
principles as resonance, harmonization, interference and
temporal fluctuations rather than Boolean or Bayesian logic
(Glomb et al, 2019) and our behavior would be expected
to reflect these fundamental patterns (Glassman, 2000). The
principle that a relatively disorganized system could create such
a complex, self-organizing network through learning has already
been demonstrated in a computer model (Yang et al., 2019). As a
chaotic system, it would suggest that individual outputs would
be highly variable but probabilistic. It would predict that while it
would be difficult to predict the behavior/errors of an individual,
the pattern or behavior/error in a population could be reliably
predicted (Reason, 1990).

Other authors have linked such neuronal complexity to the
principles of quantum physics through “quantum psychology.”

The first implication is a direct implication in that as all
neural circuits are constructed of matter which has quantum
properties, it is inevitable that human cognition would have a
probabilistic/chaotic nature rather than a deterministic/logical
one. Secondly, there is a more philosophical implication that
in psychology, like particle physics, “Things never ‘are’ but
instead, ‘appear to be,” with any observation being temporary and
dependent on the observer (Campagne, 2020).

Sensory input is therefore processed through a hierarchy of
resonant circuits. Initial sensory input leads to resonance in low
level circuits. For example in the eye, activation of rods/cones in
the retina initially produces impulses in the optic nerve which
then produce resonance in circuits which represent edges, colors,
movement, which then move upward in the nervous system
to produce resonance in circuits which represent shapes and
then object and finally to circuits which represent meaning
and then emotions. Correspondingly, motor action starts with
a high order resonance representing a situation, which then
produces resonance in progressively lower circuits representing
an action, movement of limbs and finally the tension exerted by
individual muscle fibers.

The initial, subconscious processing of information is not
static, but a highly dynamic process, driven by a “bottom up”
process by which the initial sensory inputs change the sensory
process to enhance our ability to detect and make sense of
the input. So, for example, if our initial visual scan detects
a structure which is similar to a face, our attention will be
drawn to that area and our visual pathways will auto tune to
look for a familiar face. This can also be a learned process, for
example, studies of experienced doctors studying photographs
of patients showed that compared to novices, they took less
time to extract information from the photographs, because their
eyesight was directed specifically to the areas of the patients
with the most relevant clinical information (Balslev et al., 2012).
That is, “they knew where to look.” Again, a motor, descending
process is a highly active one depending on rapid feedback from
proprioceptors so that the intended action is achieved.

In the same way as above, the suggestion is that our brains are
also able to apply a “top down” influence on our subconscious
processing of information, so that an understanding of what
we are experiencing would allow more efficient extraction of
information (Miller and Cohen, 2001). This process massively
reduces the quantity of information required to analyze
incoming information, but also predisposes us to bias and
misinterpretation. The implication is that while familiar and
expected events will be perceived very quickly, the unexpected
or unfamiliar will tend to be ignored or misinterpreted. That is,
cognition is not viewed as making simple choices as to whether,
for example, the dot on the screen has moved, or which card is
correct, but rather that our environment is massively complex
and constantly changing. The principle cognitive function is
therefore to generate a working model of our immediate
environment so that our senses can be directed to extract relevant
information from specific locations.

Importantly, as this is an analog process, even with the briefest
and most incomplete information would produce a pattern or
resonance with that pattern either becoming stronger or changing
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in response to further information. For example, if we walk into a
room, we would form a mental picture of the room almost as soon
as we walk through the door despite the fact that our eyes may
only have scanned a tiny percentage of the contents and surfaces.
If we remain in the room, our own internal reality is updated by
further information from our senses. This makes sense from an
evolutionary process in that our brains are designed to constantly
provide a workable internal model of our surroundings so that
we can respond rapidly to threats or opportunities. That is, it
would be better to have an analog system which rapidly suggests
the presence of a predator in an uncertain situation, rather
than a digital system which needs a basic set of information on
which to base a logical decision. The downside is while a digital
system would rarely produce errors, an analog system would be
inherently less predictable.

The brain therefore is a massive collection of interconnected
circuits which all resonate at different fundamental frequencies,
but which all interact and influence each other to either amplify
or suppress resonance in other circuits. The implication is that
sensory inputs will all interact in ways that may not be logical
or explicable by a logical, computational model. For example,
it would be expected that some sensations like color, music,
shape, and touch would share resonant frequencies and therefore
be experienced by individuals as having a natural link, whereas
other combinations would feel “wrong” or dissonant (Hornsby
and Love, 2020). It would also be expected that apparently
unconnected sensory inputs would interact. For example, it
would explain why the same ice-cream tastes creamier when
called Frosh compared to when it is given a harder sounding
name like Frish (Doyle and Bottomley, 2011). It also implies
that the investigation of human cognition in response to isolated
stimuli or in a non-natural environment will inevitably produce
analyses which do not reflect real world performance. Further,
recent research suggests that changes to our environment are
changing our cognitive structures. For example, the change from
reading books which are associated with smell, tactile input and
physical processes such as turning pages to the use of electronic
devices will inevitably change the way we process information
(Moret-Tatay and Murphy, 2019). If true, a large scale change to
electronic communication could result in profound changes in
our perception and interpretation of the world around us.

Cognitive overload is the default state of the brain. Our brains
cannot process the quantity of information which our sensory
organs generate. Therefore our cognitive circuits are designed
to at a subconscious level to select information that is relevant
with all other information being ignored. This highly selected
information is then combined with stored patterns or schemata
to generate an internal representation which is our own personal
experience of the world around us. For example, although our
two eyes have only small areas of color, high definition vision,
our perception is that we can see everything ahead of ourselves in
high resolution color. The reality is that our eyes scan backwards
and forwards to pick out small details, directed to what we
perceive as the key areas and our brains then construct the rest
(O’Callaghan et al., 2017).

Learning is therefore the “tuning” of cognitive circuits. It
follows from the above that experience would cause our cognitive
circuits to resonate in response to the sensory inputs so that if

we are exposed to the same stimulus repeatedly, our cognitive
circuits will gradually become more receptive to the stimuli
and we will recognize the pattern earlier and respond faster.
Similarly, repeated practice of specific tasks will cause the
relevant motor circuits to become more easily activated and
to produce more accurate responses. This is exemplified in
studies of expertise which emphasize prolonged, practice in
real settings as the key to high performance in sport and the
arts, as well as in professional practice (Ericsson et al., 1993;
Cortellazzi et al., 2015). While single experiences result in some
changes to our cognitive circuits, it would be expected that brief
and disparate experiences would produce temporary and short
lived changes, prolonged and repetitive training would result
in cognitive circuits developing much more durable responses
(Yang et al., 2012).

The following is written with the apparent assumption that
in addition to the subconscious processes described, there is a
higher center of consciousness and decision making. However,
it is not the intent to suggest that such a center exists. The
hypothesis here is that the brain should be considered as a single,
massively interconnected analog computer and while individual
anatomical sites within the brain might predominate during some
functions, it suggests that consciousness and “the individual” are
a function of the entire, intact brain. The implication is that the
functions which have been described as “morality;” “free will,” and
“personality” are, similarly, products of the entire brain.

It is crucial for any theory of cognition to be able to explain
human performance within a wide range of environments and
especially those outside the confines of laboratory conditions.
A key principle here is that we recognize the world around
us as a massively complex and rapidly changing environment
which constantly threatens to overwhelm our limited cognitive
power. The best examples of this is the phenomenal abilities
of digital computers in highly constrained environments such
as chess, where positions and moves can be represented easily
in digital code. In contrast, digital computers fail in such
mundane tasks such as folding a towel, because complex
folds are difficult to recognize and represent in digital code
(Maitin-Shepard et al., 2010).

EVIDENCE FROM BEHAVIORAL
STUDIES

1. Where our environment changes rapidly and especially
where that change resulted in an unfamiliar experience,
we would expect an inability to form an internal model,
leading to a failure to extract information effectively. That
is, “not knowing where to look.” A subject would then
experience disorientation and an inability to function. For
example, seemingly competent professionals exposed to
high intensity simulation would exhibit high rates of error
and failure (Byrne et al., 1994; Byrne and Jones, 1997).

2. Where a subject experienced a slightly less rapid change
or where the sensory input was inconsistent or only
partially familiar, it would predict that even if the sensory
information was incomplete, our circuits would tend to
resonate in patterns which reflected our expectations.
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Our experiences in these situations would tend to be
stereotypical and perhaps reflect personal expectations
rather than reality. For example, in conditions such as
twilight it would be expected that subjects would “see”
ghosts or unidentified flying objects depending on which
their expectations (van Prooijen et al., 2018).

3. In order to function, we require some internal model
to guide our senses, so that we would tend to generate
and use an internal model even if it is inconsistent with
reality. From an evolutionary point of view, some error
would be acceptable if it avoided paralysis. This would
predict that in unusual situations, our responses would also
be expected to be stereotypical or “normal,” even if the
situation was highly abnormal. For example, in medical
simulations, when doctors misdiagnosed the condition of
the patient, their actions and perceptions appeared more
consistent with their own diagnosis rather than reality
(Byrne et al., 1998).

4. The suggestion here is that the process of cognition is
primarily one of selecting relevant sensory inputs from
the overwhelming sensory load that is available, to rapidly
construct an internal reality to allow us to rapidly respond
to threats or opportunities. The implication is that any
loss of that filtering function with a resulting transmission
of raw sensory data would be predicted to cognitively
overwhelming. This explains the finding in the first real
study of human efficiency in wartime, which showed that
only around 25% of soldiers fired their weapons, with most
paralyzed by the experience (Marshall, 2000).

5. In novel situations, as we are only capable of extracting
relatively small amounts of sensory information, we would
expect initial perceptions to be based on expectation and
the most prominent features of the situation, with an
inherent capacity for error. However, as more information
was extracted, we would expect the internal mental model
of a subject to develop in complexity and to reflect
reality more closely, leading to the appearance of a more
accurate and logical assessment of the situation. This would
explain an apparent rapid (Type 1) thinking and a slower
(Type II) thinking without having to posit two different
systems to exist.

6. In ambiguous situations, it would also suggest that
multiple circuits could be activated at the same time,
effectively activating several internal models at the same
time. The final conscious interpretation could then be
selected by either top down choice or bottom up sensory
input, explaining the visual illusions much loved by
surrealist artists (Koontz and Gunderman, 2008). The
implication is that the meaning of any experience must be
interpreted in terms of the totality of the experience rather
than as an addition of its components.

7. However, once a subject had formed a complex internal
model of their surroundings it would be expected that the
individual’s perception would be tuned to the expected
sensory inputs required to complete what they perceive as
the task in hand. Unexpected sensory inputs would then
be effectively excluded from the decision making process.

This would explain the “task fixation” or “tunnel vision”
often demonstrated by subject in high stress situations who
persist in their initial assessment of the situation despite
it rapidly becoming clear that their initial assessment was
incorrect (Byrne and Jones, 1997; Crane et al., 2017). It
would explain why the recommended strategy to combat
such behavior is the use of checklists, because they require
a subject to stop and effectively “reset” their cognitive
processes (Gawande, 2020).

8. In addition to the above, it would be expected that
as a single, massively interconnected system of resonant
circuits, the final result of the computation would be
dependent on not just the summation of individual sensory
inputs, but rather a highly complex, spatial, temporal and
multidimensional interaction between inputs with results
sometimes appearing to be chaotic. This would explain
why seemingly unrelated sensory inputs, such as music,
color, or taste could interact if their sensory pathways share
similar resonant frequencies. It would also predict that a
highly specific set of sensory inputs delivered in precisely
the right temporal arrangement could trigger a powerful
and seemingly unrelated response such as the experience
of “Déja vu” (Brown, 2004).

9. Perhaps the best exemplar of the need to redefine our
cognitive modeling is in the area of bias, where many
authors have identified that when decision making is
analyzed, it demonstrates recognizable patterns of bias with
what are seen as prejudicial tendencies to provide worse
care for groups such as older people, women and people
belonging to racial minorities (Crossley, 2003; Danziger
etal.,, 2011). Medical decision making has also been shown
to be influenced by less obvious patient characteristics
such as young age, obesity, sexual orientation, personal
grooming and courtesy (Hooper et al., 1982). Such bias
is described in terms of faulty decision making and often
linked to Type I (primitive, heuristic, rapid) with the
implication that professionals need further training or to
use better cognitive strategies to avoid error in the future
(Croskerry et al., 2013; Hughes et al., 2020).

Although it seems undoubtedly true that such bias exists and
any fair system would seek to exclude bias from any important
decision making process, it ignores the evidence that such biases
are largely subconscious and often in conflict with individuals’
conscious views (Chapman et al, 2013; Byrne and Tanesini,
2015). Further, it ignores evidence that decisions are influenced
by factors unrelated to individual cases. For example, decisions
by judges on whether to grant parole to prison inmates appeared
to be decrease during each session, but returned to baseline levels
after each food break (Danziger et al., 2011). The only reliable way
of removing bias is to interview candidates in a way that obscures
all their personal characteristics from the judges, for example,
blind auditions for orchestras (Goldin and Rouse, 2000).

The ubiquity of bias is explained by animal research which
shows that most decisions appear to be made after less than
100 ms and that giving a subject longer does not improve the
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quality of the decision (Uchida et al., 2006). More recently, and
in humans, confidence in a decision is detectable via an EEG
signal, even before the individual is consciously aware of that
decision having been made (Lim et al., 2020). This supports the
presence of a rapid, subconscious decision making system which
directs behavior, with conscious thought as a post-hoc justification
system (Patterson et al., 2012).

The evidence presented above is fragmentary and necessarily
omits much evidence that is contradictory. In addition, any
explanation of human cognition which is simple and easily
understood must represent a gross simplification of something so
complex as the human brain. The hypothesis put forward here is
therefore not intended to be a literal explanation of how the brain
works, but rather a different model which can be used to design
alternative strategies for research.

IMPLICATIONS FOR COGNITIVE
MODELING

1. Post event analyses of behavior based on subject recall
are likely to produce flawed conclusions as they ignore the
largely subconscious nature of decision making. Therefore,
research should start with independent observation and
analysis of the environment to identify all possible cues
used by decision makers. In particular, initial “expert
panel” reviews are likely to provide highly biased and
restricted decision making models.

2. Behavioral research needs to study the totality of the
decision maker’s environment and that this would include
much that would seem peripheral or irrelevant. Factors
for consideration should include such cues as times, dates,
sounds, and be specific to individual people/environments
as cues may be expressed in many different ways.

3. Rather than just whether factors are present or not,
their spatial, quantitative and temporal relationships may
also be important as the sequence of events may be key
to recognition. For example, a staff member suddenly
not talking may be a highly relevant cue to them
becoming stressed and an indicator that something is
wrong (Nagpal et al., 2012).

4. The chaotic nature of decision making may require
large datasets to reliably identify key factors for decision
making. For example, to reliably identify the cues used
by different individuals, it may be necessary to study
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