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Cognitive diagnosis assessment (CDA) can be regarded as a kind of formative

assessments because it is intended to promote assessment for learning and modify

instruction and learning in classrooms by providing the formative diagnostic information

about students’ cognitive strengths and weaknesses. CDA has two phases, like

a statistical pattern recognition. The first phase is feature generation, followed by

classification stage. A Q-matrix, which describes the relationship between items

and latent skills, corresponds to the feature generation phase in statistical pattern

recognition. Feature generation is of paramount importance in any pattern recognition

task. In practice, the Q-matrix is difficult to specify correctly in cognitive diagnosis and

misspecification of the Q-matrix can seriously affect the accuracy of the classification

of examinees. Based on the fact that any columns of a reduced Q-matrix can be

expressed by the columns of a reachability R matrix under the logical OR operation, a

semi-supervised learning approach and an optimal design for examinee sampling were

proposed for Q-matrix specification under the conjunctive and disjunctive model with

independent structure. This method only required subject matter experts specifying a

R matrix corresponding to a small part of test items for the independent structure in

which the R matrix is an identity matrix. Simulation and real data analysis showed that

the new method with the optimal design is promising in terms of correct recovery rates

of q-entries.

Keywords: cognitive diagnostic assessment, Q-matrix, the augment algorithm, the reachability matrix, the

conjunctive model, the disjunctive model

INTRODUCTION

In educational assessment, cognitive diagnostic assessment (CDA) that combines psychometrics
and cognitive science has received increased attention recently (Leighton and Gierl, 2007; Tatsuoka,
2009; Rupp et al., 2010). This approach potentially provides useful diagnostic information regarding
students’ strengths and weaknesses, and can facilitate individualized learning (Chang, 2015).
Cognitive diagnostic models (CDMs) often utilize a Q-matrix (Embretson, 1984; Tatsuoka, 1990,
1995, 2009). Tatsuoka (2009) pointed out that “Tatsuoka (1990) organized the underlying cognitive
processing skills and knowledge that are required in answering test items correctly in a Q-matrix,
in which the rows represent attributes and the columns represent items.” The entries of a Q-matrix
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are 1 or 0, denoted by qkj. If attribute k is involved in correctly
answering item j, then qkj = 1, and qkj = 0 otherwise. The
definition of Q-matrix in Tatsuoka (1990) is used in our study.
Recently, one common representation of a Q-matrix is that
in which the rows represent items and the columns represent
attributes (Ma and de la Torre, 2020; Zhan et al., 2020). It should
be noted that the representation of the Q-matrix that they used
in the study differs from the traditional one.

Cognitive diagnostic assessment has two phases, like statistical
pattern recognition and classification methodology. The first
phase is feature generation, and then classification stage follows.
The specification of Q-matrix corresponds to the feature
extractor phase in statistical pattern recognition and classification
problems. Feature generation is of paramount importance in any
pattern recognition task. So, the Q-matrix plays a very important
role in establishing the relation between latent attribute patterns
and ideal/latent response patterns.

In practice, the Q-matrix is difficult to specify correctly in
cognitive diagnostic assessment (Jang, 2009; DeCarlo, 2011)
and misspecification of the Q-matrix can seriously affect the
accuracy of both item parameter estimates and the classification
of examinees (de la Torre, 2008; Rupp and Templin, 2008).
Researchers have proposed several quantitative methods for
deriving or refining Q-matrix. These methods can be classified
into two categories (Xu and Desmarais, 2018): (a) the
unsupervised method, including but not limited to the q-
matrix method (Barnes, 2003, 2011), the non-negative matrix
factorization technique (Desmarais, 2011; Desmarais et al.,
2012; Desmarais and Naceur, 2013) or alternate least-square
factorization method (Desmarais et al., 2014; Xu and Desmarais,
2016), the data-driven approach (Liu et al., 2012, 2013), and
the exploratory factor analysis method (Barnes, 2003; Close,
2012; Wang et al., 2018b, 2020), and (b) the supervised method,
including the sequential EM-based δ method (de la Torre, 2008)
and its extension ς

2 method (de la Torre and Chiu, 2016),
the Bayesian approach (DeCarlo, 2012), the non-parametric Q-
matrix refinement method (Chiu, 2013), the stepwise reduction
algorithm (Hartz, 2002), the EM-based methods (Wang et al.,
2018a), the residual-based or item fit statistic approach (Chen,
2017; Kang et al., 2018) and so on.

The unsupervised method is deriving a Q-matrix only from
test data or item responses. The unsupervised method is very
useful because there are many existing tests without specifying
the Q-matrix but with test response data. However, it would be
difficult to identify the number of latent skills and be slightly
more difficult to understand results from real data. A study of
Beheshti et al. (2012) found that the number of latent skills
estimated from real data is not well-aligned with the assessment
of experts.

The supervised method can incorporate the information
of experts’ Q-matrix and test response data to refine or
validate the provisional Q-matrix. If the provisional Q-matrix
is unknown for an existing test, the supervised methods cannot
be used. Furthermore, this method often needs a high-quality
provisional Q-matrix for a whole test. If the provisional Q-
matrix is specified by subject matter experts but contains a large
amount of misspecification, it will be difficult for the recovery
of a high-quality Q-matrix through the supervised method,

because the performance of the supervised method relies on the
precision of classification of attribute patterns resulting from the
provisional Q-matrix (de la Torre, 2008; Rupp and Templin,
2008).

Specifying a Q-matrix for a whole test by experts can be a
time-consuming and fatigue process. The purpose of this study is
to propose a semi-supervised method for Q-matrix specification
in order to check whether only some of items needs to be
identified by experts. The semi-supervised method falls between
unsupervised and supervised methods.

MODEL AND METHOD

Model
Let K be the number of attributes. Let Xij be a binary random
variable to denote the response of examinee i to item j, i =

1, 2, . . . ,N, j = 1, 2, . . . , J. Let αi be a column vector to denote an
attribute mastery pattern or a knowledge state from the universal
set of knowledge states. Moreover, Q-matrix that specifies the
item-attribute relationship is a K × J matrix, in which entry
qkj = 1 if attribute k is required for answering item j correctly;
otherwise, qkj = 0.

The item response function for the deterministic inputs, noisy
“and” gate (DINA) model (Haertel, 1989; Junker and Sijtsma,
2001; Chiu and Douglas, 2013) is as follows:

Pj(αi) = P(Xij = 1|αi) = g
1−ηij
j (1− sj)

ηij , (1)

where a deterministic latent response ηij =
∏K

k=1 α
qkj
ki

indicates
whether or not examinee i possesses all of the attributes required
by item j. A value of ηij = 1 means that examinee i has mastered
all of the attributes required by item j, and ηij = 0 otherwise. The
slip parameter sj refers to the probability of an incorrect response
to the item j when ηij = 1, and the guessing parameter gj refers
to the probability of a correct response to item j when ηij = 0.
Let B = (ηij) be a deterministic latent response matrix for the
DINA model.

The item response function for the deterministic inputs, noisy
“or” gate (DINO) model (Templin and Henson, 2006; Chiu and
Douglas, 2013) is as follows:

Pj(αi) = P(Xij = 1|αi) = (1− sj)
wijg

1−wij

j , (2)

where wij = 1 −
∏K

k=1 (1− αki)
qkj is a deterministic latent

response. As in the DINA model, sj and gj are the slip and
guessing parameters of item j. The DINA and DINO model are
conjunctive and disjunctive models (Maris, 1999), respectively.
Let W = (wij) be a deterministic latent response matrix for the
DINO model.

A Semi-supervised Learning Approach for the

Conjunctive Model
In the rule space method (Tatsuoka, 2009) or the attribute
hierarchy method (Leighton et al., 2004), the adjacency matrix
denoted byA represents the direct relationship among attributes.
We denote the entry in row k1 and column k2 of A by ak1k2 . If a
direct prerequisite relation exists from attribute k1 to attribute
k2, then ak1k2 = 1, and ak1k2 = 0 otherwise. Let R denote
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a reachability matrix of order (K,K) to specify the direct and
indirect relationships among attributes. The Rmatrix is given by
R = (A+ I)K with respect to Boolean operations, where I is an
identity matrix. The reduced Q matrix denoted byQr is obtained
by removing the items (columns) that do not satisfy the specified
relationships from the incidence Q matrix. The columns of Qr

and the zero vector forms the student matrix denoted by Qs in
which the columns forms the universal set of attribute patterns.
If K attributes are independent, A is a zero matrix, R with K
columns is an identity matrix, Qr with 2K − 1 columns does
not include the zero vector, and Qs with 2K columns contains
all possible combinations of attribute patterns.

We assume that the cognitive requirement for the multiple
skills within an item is conjunctive (Maris, 1999), that is,
answering an item correctly requires mastery of all the skills
required by that item. For the conjunctive model, Example 1 will
show the relationship of latent responses on items with q-vectors
corresponding to R andQr.

Example 1 for an independent structure. Let K = 2, R =
[

r1 r
2

]

=

[

1 0
0 1

]

, Qr =
[

q1 q2 q3
]

=

[

1 0 1
0 1 1

]

, and Qs =

[

α1 α2 α3 α4

]

=

[

0 1 0 1
0 0 1 1

]

.

GivenQs and a test Q-matrix ofQr, a latent response matrix B =

[

η1 η2 η3

]

=









0 0 0
1 0 0
0 1 0
1 1 1









can be calculated, in which the entry in

row i and column j is the deterministic latent response of ηij. If 0
corresponds to F (false) and 1 corresponds to T (true), the logical
conjunction and disjunction operators, ∨ and ∧, can be applied
to two binary vectors of equal length, by taking the bitwise AND
or OR of each pair of bits at corresponding positions. It can be
observed that η3 = η1∧η2, where η3 = η1∧η2 is the conjunction
of η1 and η2. This is because the relationship q3 = q1∨q2 is true,
where q1 ∨ q2 is the disjunction of q1 and q2.

Example 1 illustrates the following fact. For the conjunctive
model, consider two latent response matrices denoted by B1

and B2 from two tests corresponding two Q-matrices Qr and
R, where denoted as a reachability matrix. It means that B1

and B2 can be generated, respectively from the reduced Q-
matrix and the reachability matrix based on the universal set of
attribute patterns. From the example above, then any columns
of the B1 can be expressed by the columns of the B2 under the
logical AND operation. This is because the augmented algorithm
proposed by Ding et al. (2008, 2009) in the generalized Q-
matrix theory (Ding et al., 2015) provided the useful fact that
any columns of the reduced Q-matrix can be expressed by
the columns of the reachability matrix under the logical OR
operation. The argument in Example 1 can be adapted to prove
the following theorem.

Theorem 1. For the conjunctive model, if K attributes are
independent, then qj = ∨l∈Sjrl if and only if ηij = ∧l∈Sjηil, where
αi is any column of Qs and Sj is a subset of {1, 2, . . . ,K}.

Proof : If qj = ∨l∈Sjrl, we need to consider two cases, when
ηij = 1 and ηij = 0. If ηij = 1 for αi as a column of Qs,
we know that αki = 1 for all attributes k with qkj = 1 by the

definition of the deterministic latent response. That is, examinee
i has mastered all the skills required by item j. Since qj = ∨l∈Sjrl,
then by the definition of conjunction, we can conclude that αki =

1 for all attributes k with rkl = 1 for all l ∈ Sj. We now use the
definition of the deterministic latent response to conclude that
ηil = 1 for all l ∈ Sj, that is, ∧l∈Sjηil = 1. This shows that
ηij = ∧l∈Sjηil when ηij = 1. If ηij = 0 for αi as a column
of Qs, we know that αki = 0 for at least one of attributes with
qkj = 1 by the definition of the deterministic latent response.
That is, examinee i has not mastered all the skills required by
item j. Since qkj = 1 and qj = ∨l∈Sjrl, there is an item l in Sj
such that rkl = 1. This means that item l measured attribute k.
Since αki = 0, then by the definition of the deterministic latent
response, it follows that ηil = 0 for at least one of items in Sj,
that is, ∧l∈Sjηil = 0. This show that ηij = ∧l∈Sjηil when ηij = 0.
Next, we try to prove the converse. First suppose that there exists
an attribute k ∈ {1, 2, . . . ,K} such that ∨l∈Sjrkl = 1 and qkj = 0.
Since ∨l∈Sjrkl = 1, we know that there exists an item l ∈ Sj with
rkl = 1. Due to the arbitrariness of αi, let αi = 1 − ek, where

1 = (1 1 . . . 1)
T
and ek is the vector with a 1 in the kth entry

and 0’s elsewhere. This is a contradiction, because we know that
ηij = 1, while ∧l∈Sjηil = 0. Similarly, we assume that there exists
an attribute k ∈ {1, 2, . . . ,K} such that ∨l∈Sjrkl = 0 and qkj = 1.
One can still take αi = 1−ek. This is also a contradiction, because
we know that ηij = 0, while ∧l∈Sjηil = 1. The proof is complete.

The important fact about Theorem 1 is that if a latent
response matrix is calculated from a Q-matrix, the relationship
between the columns in the Q-matrix can be constructed
from the relationship between the corresponding columns
in the latent response matrix. It should be noted that an
observed item response is a function of an underlying latent
response and slip and guessing parameters. In other words,
the noise introduced in the process is due to slip and
guessing parameters.

Next, we will introduce a semi-supervised learning method
for Q-matrix specification for the conjunctive model by using
the result of Theorem 1 and considering the noise in item
responses. Without loss of generality, we begin by arbitrarily
assigning q-vector qj to item j. Given a test Q-matrix, written as
Qt = [RK×K qj] = [r1 r2 . . . rK qj], where R is a reachability
matrix specified by subject matter experts and the remaining qj is
unknown. Let U = [XN×K YN×1] be an item response matrix
on Qt , where N is the sample size. The estimate of qj can be
written as

q̂j = ∨rk∈Ŝj
rk, (3)

where logical OR is applied to the corresponding entries of the
columns in the following set of Ŝj

Ŝj = argmin
S∈P({r1,r2 ,...,rK })−∅

(Yj − ∧rk∈SXk)
T(Yj − ∧rk∈SXk), (4)

where P({r1, r2, . . . , rK}) is the power set of the set {r1, r2, . . . , rK}.
The exhaustive method with time complexity O(2K) provided a
simple way to find a global solution of Ŝj.
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A Semi-supervised Learning Approach for the

Disjunctive Model
For the disjunctive model, the deterministic latent response on
an item is correct if and only if an examinee has mastered at
least one of the skills required by the item. This is illustrated in
Example 2. Similar to what we did in Example 1, Example 2 will
show the relationship of latent responses on items with q-vectors
corresponding to R andQr.

Example 2 for an independent structure. Let K = 2, R =
[

r1 r
2

]

=

[

1 0
0 1

]

, Qs =
[

α1 α2 α3 α4

]

=

[

0 1 0 1
0 0 1 1

]

, and

Qr =
[

q1 q2 q3
]

=

[

1 0 1
0 1 1

]

. FromQs andQr, a latent response

matrix W1 =
[

w1 w2 w3

]

=









0 0 0
1 0 1
0 1 1
1 1 1









can be calculated, in

which the entry in row i and column j is the deterministic latent
response of wij. It can be observed that w3 = w1 ∨ w2. This is
because the relationship q3 = q1 ∨ q2 is true.

Consider a latent responsematrix, denoted byW2 =
[

w1 w2

]

,
corresponding to the R matrix. The fact illustrated in Example 2
is that any columns of theW1 can be expressed by the columns of
theW2 under the logical OR operation for the disjunctive model.
This is also because the augmented algorithm proposed by Ding
et al. (2008, 2009) in the generalized Q-matrix theory (Ding et al.,
2015) provided the useful fact that any columns of the reducedQ-
matrix can be expressed by the columns of the reachability matrix
under the logical OR operation. The following theorem gives the
precise statement.

Theorem 2. For the disjunctive model, if K attributes are
independent, then qj = ∨l∈Sjrl if and only if wij = ∨l∈Sjwil,
where αi is any column ofQs and Sj is a subset of {1, 2, . . . ,K}.

Proof: If qj = ∨l∈Sjrl, we need to consider two cases, when
wij = 1 and wij = 0. If wij = 1 for αi as a column of Qs,
we know that αki = 1 for at least one of attributes k with
qkj = 1 by the definition of the deterministic latent response.
That is, examinee i has mastered at least one of the attributes
required by item j. Without loss of generality, we assume αki = 1
and qkj = 1. Since qj = ∨l∈Sjrl, then by the definition of
disjunction, we can conclude that rkl = 1 is true for at least
one of l ∈ Sj. From the definition of the deterministic latent
response, it follows that there is at least one item l ∈ Sj such that
wil = 1, that is, ∨l∈Sjwil = 1. This show that wij = ∨l∈Sjwil

when wij = 1. If wij = 0 for αi as a column of Qs, we know
that wki = 0 for all of attributes with qkj = 1 by the definition
of the deterministic latent response. That is, examinee i has
not mastered any skills required by item j. Since qj = ∨l∈Sjrl,
examinee i has not mastered any skills required by any item
l ∈ Sj. If we suppose that examinee i has mastered at least one
of attributes required by an item l ∈ Sj, then wij = 1, which
is a contradiction. It means that item l measured attribute k. It
follows that wil = 0 for all of items in Sj, that is, ∨l∈Sjwil = 0,
directly from the definition of the deterministic latent response.
This show that wij = ∨l∈Sjwil when wij = 0. Next, we use a proof
by contradiction to prove the converse. First assume that there
exists an attribute k ∈ {1, 2, . . . ,K} such that ∨l∈Sjrkl = 1 and

qkj = 0. Since ∨l∈Sjrkl = 1, we know that there exists an item
l ∈ Sj with rkl = 1. Due to the arbitrariness of αi, let αi = ek,
where ek is the vector with a 1 in the kth entry and 0’s elsewhere.
Then, we havewil = 1 and wij = 0. Sincewij = ∨l∈Sjwil, we
know that wij = 1 and arrive at a contradiction. Similarly, we
assume that there exists an attribute k ∈ {1, 2, . . . ,K} such that
∨l∈Sjrkl = 0 and qkj = 1. One can still take αi = ek. This is also a
contradiction, because we know that wij = 1, while ∧l∈Sjwil = 0.
The proof is complete.

The important fact about Theorem 2 is that one can derive
the relationship between the columns of a Q-matrix from
the relationship between the columns of corresponding latent
response matrix. For considering the noise introduced in item
responses due to slipping and guessing, we will introduce a semi-
supervised learning method for Q-matrix specification for the
disjunctive model by using the result of Theorem 2. Without
loss of generality, we begin by arbitrarily assigning a q-vector
to qj. Given a test Q-matrix, written as Qt = [RK×K qj] =

[r1 r2 . . . rK qj], where R is a reachability matrix specified by
subject matter experts and the remaining qj is unknown. Let
U = [XN×K YN×1] be an item response matrix on Qt . The
estimate of qj can be written as

q̂j = ∨rk∈Ŝj
rk, (5)

where logical OR is applied to the corresponding entries of the
columns in the following set of Ŝj

Ŝj = argmin
S∈P({r1,r2 ,...,rK })−∅

(Yj −∨rk∈SXk)
T(Yj −∨rk∈SXk), (6)

where P({r1, r2, . . . , rK}) is the power set of the set {r1, r2, . . . , rK}.
The exhaustive method with time complexity O(2K) provided a
simple way to find a global solution of Ŝj.

A SIMULATION STUDY

Study Design
A simulation study was conducted to investigate the performance
of the new method under five factors, such as sample size, item
parameters for items corresponding to a reachability matrix, item
parameters for new or raw items with unknown q-vectors, two
cognitive diagnostic models (the DINA and DINO model), and
two designs. Five attributes were considered in the simulation
study. Matlab 2015a and R-3.6.1 were used for estimating
unknown Q-matrix and analyzing real data below.

In the simulation study, a test Q-matrixQt = [R Qr] consists
of an identity or a reachability matrix and a reduced Q-matrix,
where the reduced Q-matrix with 31 items includes all non-zero
possible q-vectors. The number of examinees has 10 levels, such
as N =30, 60, . . . , and 300. Item parameters for R andQr have 10
levels, such as 0, 0.05, . . . , and 0.45. In general, for the DINA or
DINO model, a high quality or “good” item will have small slip
and guessing parameters (Rupp et al., 2010), which means that
the noise are small.

Random and optimal designs were considered in the
simulation study. For the random design, attribute patterns for
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examinees were generated by taking each of the 25 possible
patterns with equal probability for each sample size. From the
proof of Theorem 1 above, we know that the following set of
attribute patterns for examinees plays a very important role
in discriminating latent response vectors of different q-vectors
under the DINA model

SDINA = {1− e11− e2, . . . , 1− eK}{











0
1
...
1











,











1
0
...
1











, . . . ,











1
1
...
0











} (7)

where ek is the vector with a 1 in the kth entry and 0’s
otherwise. From the proof of Theorem 2 above, another set
of attribute patterns for examinees plays a very important role
in discriminating latent response vectors of different q-vectors
under the DINO model as follows

SDINO = {e1, e2, . . . , eK}{











1
0
...
0











,











0
1
...
0











, . . . ,











0
0
...
1











}, (8)

where ek is the vector with a 1 in the kth entry and 0’s otherwise.
For the optimal design, attribute patterns for examinees
under the DINA or DINA model were randomly drawn with
replacement from the set of SDINA or SDINO, respectively. Optimal
designs for two models are possible to meet the needs of learners
at different stages of skills and knowledge acquisition. For
example, the attribute patterns in SDINO containing only one skill.
This condition is really improbable for summary assessments in
real situations, but is expected to be common for novice learners
with respect to the new content to be learned in formative
assessments or classroom assessments.

Data Simulation
Simulated data were generated using five attributes. Based on
the simulated Q-matrix, item parameters, and attribute patterns,
item responses are generated in the following way

Xij =

{

1, if u ≤ Pj(αi),
0, otherwise,

(9)

where u is a random value from a Uniform (0, 1) distribution and
Pj(αi) is the item response function of the DINA or DINOmodel.
A total of 4,000 conditions were simulated (10 sample sizes × 10
item parameters × 10 item parameters × 2 models × 2 designs).
Thirty replication data sets were simulated for each condition.

Evaluation Criterion
The performance of the new method is evaluated in terms of the
correct recovery rate (CRR) of q-entries. The correct recovery
rate equals the ratio of the number of correct q-entries in the
estimated Q-matrix to the total number of q-entries (Chiu, 2013)

CRR =
1

KM

K
∑

k=1

M
∑

j=1

I(q̂kj = qkj), (10)

TABLE 1 | Mean and standard deviation (in brackets) of correct recovery rate of

q-entries for two models and two designs.

Sample

size

The DINA model The DINO model

Random

design

Optimal

design

Random

design

Optimal

design

30 0.651 (0.126) 0.720 (0.147) 0.653 (0.126) 0.721 (0.146)

60 0.699 (0.145) 0.769 (0.153) 0.700 (0.144) 0.770 (0.151)

90 0.725 (0.149) 0.796 (0.152) 0.726 (0.149) 0.796 (0.151)

120 0.742 (0.151) 0.815 (0.149) 0.743 (0.151) 0.815 (0.148)

150 0.756 (0.153) 0.827 (0.146) 0.754 (0.153) 0.829 (0.145)

180 0.764 (0.153) 0.839 (0.143) 0.765 (0.153) 0.838 (0.144)

210 0.772 (0.153) 0.847 (0.141) 0.772 (0.151) 0.846 (0.141)

240 0.779 (0.152) 0.854 (0.138) 0.777 (0.152) 0.854 (0.138)

270 0.784 (0.151) 0.858 (0.137) 0.783 (0.152) 0.858 (0.137)

300 0.789 (0.151) 0.863 (0.135) 0.789 (0.152) 0.864 (0.135)

Mean 0.746 (0.154) 0.819 (0.151) 0.746 (0.154) 0.819 (0.150)

where M = 31 is the number of columns of the unknown Q-
matrixQr, qkj is an (k, j)th entry of the simulatedQr, and q̂kj is an

(k, j) entry of the Q̂r estimated from the new method. The mean
and standard deviation of the CRR values of the 30 replications
were reported for each condition.

Results
Table 1 lists descriptive statistics of correct recovery rate of q-
entries for two models and two designs across other conditions.
It is clear that the mean of correct recovery rates of q-entries
tends to increase as sample size increases, but sample size has
slightly affected the standard deviations of correct recovery rates.
It should be noted that the mean of correct recovery rates of the
optimal design is larger than that of the randomdesign. The semi-
supervised learningmethod for q-matrix specification performed
similarly under two cognitive diagnostic models. In addition,
since there are 32 possible attribute patterns, no all attribute
patterns can be observed in the first sample size condition (N =

30). This might lead to lower rate of correct recovery observed
for this condition.

Table 2 shows the correct recovery rates of q-entries from
the new method with sample size of 300 for the DINA model
under the random design. From correct recovery rates of q-
entries, when item parameters for items with known (i.e., the
reachability matrix) and unknown q-vectors are ≤0.2, most of
the average of correct recovery rates of q-entries for the semi-
supervised method are larger than or equal to 0.9. From trends
of marginal means of last rows and columns in Table 2, item
parameters of the reachability matrix have a relatively larger
impact on the performance of the semi-supervised method than
item parameters with unknown q-vectors.

Table 3 presents the correct recovery rates of q-entries from
the new method with sample size of 300 for the DINA model
under the optimal design. From correct recovery rates of q-
entries, when item parameters for items with known and
unknown q-vectors are ≤0.25, the average of correct recovery
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TABLE 2 | The correct recovery rates of q-entries with sample size of 300 for the DINA model and random design.

Item parameters

for the R

Item parameters for the new items

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 M

0.00 1.000 1.000 1.000 0.999 0.998 0.993 0.974 0.929 0.837 0.665 0.939

0.05 1.000 1.000 0.997 0.995 0.991 0.976 0.946 0.908 0.791 0.642 0.925

0.10 0.994 0.992 0.984 0.984 0.967 0.954 0.927 0.857 0.767 0.632 0.906

0.15 0.974 0.968 0.958 0.954 0.932 0.915 0.866 0.807 0.724 0.608 0.870

0.20 0.927 0.922 0.910 0.901 0.881 0.860 0.826 0.776 0.692 0.591 0.829

0.25 0.866 0.846 0.850 0.839 0.825 0.802 0.776 0.733 0.652 0.567 0.775

0.30 0.791 0.801 0.782 0.793 0.760 0.735 0.727 0.670 0.624 0.563 0.725

0.35 0.728 0.718 0.720 0.709 0.709 0.698 0.683 0.637 0.604 0.546 0.675

0.40 0.673 0.686 0.681 0.680 0.668 0.643 0.620 0.608 0.589 0.527 0.638

0.45 0.647 0.634 0.623 0.620 0.615 0.612 0.604 0.575 0.575 0.537 0.604

M 0.860 0.857 0.851 0.847 0.835 0.819 0.795 0.750 0.686 0.588 0.789

The bold values are larger than 0.9.

TABLE 3 | The correct recovery rates of q-entries with sample size of 300 for the DINA model and optimal design.

Item parameters

for the R

Item parameters for the new items

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 M

0.00 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.991 0.939 0.780 0.971

0.05 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.981 0.917 0.754 0.965

0.10 1.000 1.000 1.000 0.999 0.998 0.995 0.981 0.955 0.871 0.714 0.951

0.15 1.000 1.000 0.998 0.992 0.988 0.981 0.959 0.915 0.841 0.688 0.936

0.20 0.986 0.986 0.982 0.973 0.962 0.952 0.918 0.875 0.785 0.661 0.908

0.25 0.959 0.952 0.947 0.933 0.926 0.909 0.879 0.829 0.754 0.624 0.871

0.30 0.930 0.914 0.912 0.909 0.883 0.865 0.832 0.786 0.712 0.610 0.835

0.35 0.886 0.888 0.880 0.865 0.847 0.813 0.780 0.724 0.662 0.573 0.792

0.40 0.847 0.834 0.816 0.804 0.774 0.753 0.721 0.679 0.629 0.562 0.742

0.45 0.749 0.738 0.717 0.720 0.688 0.687 0.656 0.619 0.581 0.556 0.671

M 0.936 0.931 0.925 0.920 0.907 0.895 0.872 0.835 0.769 0.652 0.864

The bold values are larger than 0.9.

rates of q-entries for the semi-supervised method are larger than
or equal to 0.9. However, item parameters for known q-vectors
have slightly larger impact on the performance of the semi-
supervised method than for unknown q-vectors, because the row
means decreased more quickly than the column means. We need
to compare the Tables 2, 3 to see which designs are promising.
The number of correct recovery rates above 0.9 in Table 3 were
found to be larger than that of Table 2. Tables 4, 5 show the
correct recovery rates of q-entries from the new method with
sample size of 300 for the DINO model under the random and
optimal design. It can be observed that results for the DINO
model are the same as those for the DINAmodel described above.

REAL DATA ANALYSIS

The purpose of the real data analysis is to examinee whether the
proposed method is promising for a non-independent structure
under the conjunctive model based on an intuitive fact from the
following example.

Example 3 for an unstructured hierarchy under the
conjunctive model. Let K = 3, R = [r1 r2 r3] =




1 1 1
0 1 0
0 0 1



, Qr = [q1 q2 q3 q4] =





1 1 1 1
0 1 0 1
0 0 1 1



, and

Qs =
[

α0 α1 α2 α3 α4

]

=





0 1 1 1 1
0 0 1 0 1
0 0 0 1 1



. From the ideal

response matrix B =
[

η1 η2 η3 η4

]

=













0 0 0 0
1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1













, it can be

observed that η4 = η2 ∧η3 or η4 = η1 ∧η2 ∧η3. This is because
the relationship q4 = q2 ∨ q3 or q4 = q1 ∨ q2 ∨ q3 is true.

A common data set pertaining to fraction-subtraction data
contains 20 items and 536 examines (de la Torre and Douglas,
2004). In our real data analysis, we focused on the analysis
of a subset of test items where the expert Q-matrix comes
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TABLE 4 | The correct recovery rates of q-entries with sample size of 300 for the DINO model and random design.

Item parameters

for the R

Item parameters for the new items

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 M

0.00 1.000 1.000 1.000 0.999 0.998 0.990 0.976 0.929 0.840 0.685 0.942

0.05 1.000 0.999 0.998 0.996 0.991 0.980 0.946 0.889 0.796 0.650 0.925

0.10 0.996 0.991 0.992 0.985 0.968 0.945 0.918 0.848 0.767 0.639 0.905

0.15 0.971 0.969 0.963 0.947 0.931 0.912 0.864 0.806 0.724 0.604 0.869

0.20 0.927 0.921 0.915 0.905 0.885 0.854 0.819 0.763 0.687 0.578 0.825

0.25 0.855 0.854 0.865 0.842 0.831 0.797 0.773 0.733 0.665 0.572 0.779

0.30 0.787 0.795 0.789 0.774 0.763 0.743 0.722 0.677 0.629 0.571 0.725

0.35 0.734 0.721 0.717 0.720 0.720 0.686 0.662 0.634 0.597 0.550 0.674

0.40 0.677 0.678 0.689 0.675 0.660 0.654 0.623 0.624 0.573 0.536 0.639

0.45 0.632 0.630 0.628 0.633 0.611 0.608 0.600 0.586 0.571 0.525 0.603

M 0.858 0.856 0.856 0.848 0.836 0.817 0.790 0.749 0.685 0.591 0.789

The bold values are larger than 0.9.

TABLE 5 | The correct recovery rates of q-entries with sample size of 300 for the DINO model and optimal design.

Item parameters

for the R

Item parameters for the new items

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 M

0.00 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.992 0.939 0.780 0.971

0.05 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.973 0.916 0.744 0.963

0.10 1.000 1.000 1.000 1.000 0.998 0.994 0.983 0.954 0.873 0.715 0.952

0.15 0.998 0.999 0.996 0.995 0.985 0.978 0.957 0.922 0.836 0.695 0.936

0.20 0.991 0.986 0.982 0.970 0.961 0.946 0.916 0.873 0.795 0.666 0.909

0.25 0.957 0.951 0.951 0.935 0.925 0.909 0.885 0.829 0.752 0.628 0.872

0.30 0.922 0.910 0.913 0.902 0.894 0.866 0.840 0.772 0.705 0.595 0.832

0.35 0.887 0.882 0.870 0.862 0.842 0.807 0.787 0.731 0.678 0.571 0.792

0.40 0.838 0.830 0.812 0.802 0.788 0.749 0.715 0.675 0.620 0.560 0.739

0.45 0.737 0.733 0.733 0.703 0.690 0.663 0.645 0.619 0.595 0.544 0.666

M 0.933 0.929 0.926 0.917 0.908 0.891 0.872 0.834 0.771 0.650 0.863

The bold values are larger than 0.9.

from Table 7 both in de la Torre (2008) or DeCarlo (2012).
The labels given to the five skills are (A1) performing basic
fraction-subtraction operation, (A2) simplifying/reducing, (A3)
separating whole numbers from fractions, (A4) borrowing one
from whole number to fraction, and (A5) converting whole
numbers to fractions.

We assumed the corresponding Q-matrix of items 3, 8, 9,
12, and 10 known since these item parameters are relatively
small and the q-vectors of other items are combinations of q-
vectors for these five items. Then, the semi-supervised method
was applied to estimate q-vectors for the other 10 items. Results
in Table 6 show that the agreement rate of q-entries between
the estimate and expert Q-matrix on the 10 items is 84%. The
estimated q-entries suggest that items 4, 7, 13, 14, and 15 do
not require attribute 2 (simplifying/reducing). Item 4 (similar
to item 14) do not required attribute A2, which is consistent
with results from DeCarlo (2012). Items 7, 13, and 15 can
be answered correctly by using attributes required by item 12.

The estimated q-vector of item 1 has largest discrepancy with
the expert q-vector. The reason might be that solving item
1 correctly needs to find a common denominator and then
performs basic fraction-subtraction operation. The guessing and
slip parameter of item 1 are 0.0001 and 0.2769 under the
expert q-vector, respectively. The guessing and slip parameter
of item 1 are 0.3408 and 0.0716 under the estimated q-vector,
respectively. Since item 1 requires an extra attribute (i.e., find
a common denominator), the slip parameter for the expert q-
vector is relatively large, while the estimated q-vector contains
some unnecessary attributes, the guessing parameter is relatively
large. In the estimated Q-matrix, attribute A4 has been added to
item 11.The guessing probability of item 11 increased sensibly
(from 0.10 to 0.48). It indicated that attribute A4 is not necessary
for item 11 because this item is different from items 7, 12,
and so on.

The generalized DINAmodel (GDINA; de la Torre, 2011), the
DINA model, the linear logistic model (LLM; Fischer, 1995), and
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TABLE 6 | The expert and estimated Q-matrix and item parameters estimates of the DINA model for the fractional subtraction data.

No. Items The expert Q-matrix and item parameters

estimates of the DINA model

The estimated Q-matrix and item

parameters estimates of the DINA model

A1 A2 A3 A4 A5 ĝ ŝ A1 A2 A3 A4 A5 ĝ ŝ

1
3

4
−

3

8
1 0 0 0 0 0.00 0.28 1 0 1 1 1 0.34 0.07

2 3
1

2
− 2

3

2
1 1 1 1 0 0.21 0.12 1 1 1 1 0 0.21 0.11

3
6

7
−

4

7
1 0 0 0 0 0.14 0.04 1 0 0 0 0 0.10 0.05

4 3− 2
1

5
1 1 1 1 1 0.12 0.13 1 0 1 1 1 0.12 0.18

5 3
7

8
− 2 1 0 1 0 0 0.34 0.25 1 0 1 0 0 0.35 0.25

6 4
4

12
− 2

7

12
1 1 1 1 0 0.03 0.23 1 1 1 1 0 0.03 0.23

7 4
1

3
− 2

4

3
1 1 1 1 0 0.07 0.08 1 0 1 1 0 0.07 0.08

8
11

8
−

1

8
1 1 0 0 0 0.16 0.05 1 1 0 0 0 0.09 0.04

9 3
4

5
− 3

2

5
1 0 1 0 0 0.08 0.06 1 0 1 0 0 0.04 0.04

10 2−
1

3
1 0 1 1 1 0.17 0.07 1 0 1 1 1 0.15 0.09

11 4
5

7
− 1

4

7
1 0 1 0 0 0.10 0.10 1 0 1 1 0 0.48 0.07

12 7
3

5
−

4

5
1 0 1 1 0 0.03 0.13 1 0 1 1 0 0.05 0.14

13 4
1

10
− 2

8

10
1 1 1 1 0 0.13 0.16 1 0 1 1 0 0.13 0.16

14 4− 1
4

3
1 1 1 1 1 0.02 0.20 1 0 1 1 1 0.01 0.24

15 4
1

3
− 1

5

3
1 1 1 1 0 0.01 0.18 1 0 1 1 0 0.01 0.19

The bold values are the changes.

the reduced reparametrized unified model (R-RUM; Hartz, 2002)
were applied to fit the fraction-subtraction data with the expert
or estimated Q-matrix. Under the DINAmodel, the means of the
estimates of the guessing and slip parameter for the expert Q-
matrix are 0.1080 and 0.1381, respectively, while for the revised
Q-matrix, they are 0.1440 and 0.1295, respectively. It means
that the estimates of the slip parameter become lower, but the
guessing parameters tend to be larger. Table 7 presents fit results
for the fraction subtraction data using the expert and estimated q-
matrix. The LLM with the estimated Q-matrix is the best-fitting
CDM and the R-RUM with the estimated Q-matrix is slightly
worse, whereas the estimatedQ-matrix performed worse than the
expert Q-matrix only in the DINA model.

CONCLUSION AND DISCUSSION

The supervised methods rely on a provisional Q-matrix for a
whole test, the estimates of examinees’ attribute patterns and
their accuracy. It is not suitable for the case of a provisional
Q-matrix with a large amount of misspecification. The purpose
of this study is to propose the semi-supervised method under
independent structure based on item responses and a reachability
R matrix corresponding to a small part of test item specified by
subject matter experts. The new method doesn’t need to estimate
examinees’ attribute patterns. The main conclusion of this study
is that the new method will play a very important role in assist

subject matter experts for Q-matrix specification because it is
hard to correctly specify a Q-matrix with a large number of test
items by subject matter experts. It may be useful for cognitive
diagnostic assessment to facilitate teaching and learning.

The generalized Q-matrix theory has been shown that each
column in the reduced Q-matrix can be expressed as a logical
disjunction of some of columns of the reachability matrix.
With the aid of this theory, this study takes a look inside a
latent response matrix and reveals an interesting and useful
relationship hidden in its columns. If a latent response matrix
is calculated from a Q-matrix under the conjunctive model, a
column in the latent response matrix is the conjunction of some
other columns in this matrix if and only if the corresponding
column of the Q-matrix can be written as the disjunction of
their corresponding columns. While for the disjunctive model,
the columns of the latent response matrix have exactly the
same disjunction relationships as the columns of the Q-matrix.
Because any conjunction or disjunction relationship among the
columns of a latent response matrix would imply a disjunction
relationship among the columns of a Q-matrix, then we are
expected that the relationship between the columns in the
Q-matrix can be constructed from the relationship between
the corresponding columns in an observed response matrix,
resulting from the latent response matrix by adding the noise
or random errors. Another reason for this expectation is that
each entry in the observed response matrix is modeled as
a noisy observation of the corresponding entry in the latent
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TABLE 7 | Fit results for the fraction subtraction data using the expert and

estimated Q-matrix.

Q-matrix CDM –LL2 AIC BIC

Expert Q-matrix GDINA 6,695 7,133 8,071

Estimated Q-matrix GDINA 6,548 6,910 7,686

Expert Q-matrix DINA 6,912 7,034 7,295

Estimated Q-matrix DINA 7,030 7,152 7,413

Expert Q-matrix LLM 6,595 6,781 7,179

Estimated Q-matrix LLM 6,523 6,707 7,102

Expert Q-matrix R-RUM 6,696 6,882 7,280

Estimated Q-matrix R-RUM 6,543 6,727 7,122

−2LL, −2 log likelihood; AIC, Akaike’s information criterion; BIC, Bayesian

information criterion (Chen et al., 2013).

response matrix through slip and guessing parameters (Junker
and Sijtsma, 2001) and the discrepancies between the latent and
observed response matrices are considered as random errors
(Tatsuoka, 1987).

From the key theoretical results above, the semi-supervised
method and an optimal design were then proposed for Q-matrix
specification based on test response data and a reachabilitymatrix
specified by subject matter experts, and the simulation study was
conducted to investigate the performance of the newmethod and
the optimal design for examinee sampling in terms of the CRR
of q-entries. From the CRR of q-entries, it is clear found that:
(a) for the random design, when item parameters for items with
known and unknown q-vectors are≤0.20, the average of CRRs of
q-entries for the semi-supervised method is larger than or equal
to 0.9, (b) for the optimal design, when item parameters for items
with known and unknown q-vectors are ≤0.25, the average of
CRRs of q-entries for the semi-supervised method is larger than
or equal to 0.9, and (c) item parameters of the reachability matrix
have a larger impact on the performance of the semi-supervised
method than item parameters with unknown q-vectors.

Finally, based on the results obtained in this study, some
problems worthy of study in the future are put forward. First,
how to effectively use the most of data or information on some
other items for which experts have also specified q-vectors,
because as the increase of the number of item specified q-
vectors, the time complexity (more specifically, exponential time)
of the exhaustive method grows much faster? If the number of
items is increased to double or triple the number of attributes
corresponding to the reachability matrix, one should investigate
whether choosing a small part of items with high quality will
reduce the noise of the responses and improve the estimation of
q entries of unknown items. Second, in the simulation study, we
know exactly how many attributes all items include. However,
in the real situation, some items with unknown Q-matrix may
mix additional attributes not specified in the reachability matrix
because we haven’t reviewed all items. Thus, we should explore
a novel or revised method for identifying the possibility of
extra attribute(s). Third, if the Q-matrix obtained from the
semi-supervised method is taken as an initial matrix or a

provisional Q-matrix of the existing supervised methods, is it
possible to further improve the recovery of Q-matrix? From
the results of the study, it can be seen that item parameters
or random errors of item responses have an impact on the
recovery of Q-matrix. If there is a method to reduce noise
in item responses, the recovery of Q-matrix may be further
improved. We only considered the small set of items with known
q-vectors and fixed item parameters. Additional work is needed
to further examine the impact of not only error patterns for
known q-vectors but different item parameters for test items.
Fourth, the current study focused on the DINA and DINO
model only. In the future, the proposed method should be
applied to general families of cognitive diagnostic models such
as the generalized DINA model (de la Torre, 2011), the log-
linear cognitive diagnostic model (Henson et al., 2009), the
general diagnostic model (von Davier, 2008), testlet cognitive
diagnosis model (Zhan et al., 2018), or polytomous cognitive
diagnosis models (Chen and de la Torre, 2018; Ma, 2019). Lastly,
since only the independent attribute structure in the simulation
study and hierarchy structures for the conjunctive model in
real data analysis were considered, the proposed method for
other attribute hierarchies with different cognitive assumptions
is worth studying.
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