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The four-parameter logistic (4PL) model has recently attracted much interest in

educational testing and psychological measurement. This paper develops a new

Gibbs-slice sampling algorithm for estimating the 4PL model parameters in a fully

Bayesian framework. Here, the Gibbs algorithm is employed to improve the sampling

efficiency by using the conjugate prior distributions in updating asymptote parameters. A

slice sampling algorithm is used to update the 2PL model parameters, which overcomes

the dependence of theMetropolis–Hastings algorithm on the proposal distribution (tuning

parameters). In fact, the Gibbs-slice sampling algorithm not only improves the accuracy

of parameter estimation, but also enhances sampling efficiency. Simulation studies

are conducted to show the good performance of the proposed Gibbs-slice sampling

algorithm and to investigate the impact of different choices of prior distribution on the

accuracy of parameter estimation. Based on Markov chain Monte Carlo samples from

the posterior distributions, the deviance information criterion and the logarithm of the

pseudomarginal likelihood are considered to assess the model fittings. Moreover, a

detailed analysis of PISA data is carried out to illustrate the proposed methodology.

Keywords: Bayesian inference, four-parameter logistic model, item response theory, model assessment, potential

scale reduction factor, slice sampling algorithm

1. INTRODUCTION

Over the past four decades, item response theory (IRT) models have been extensively used in
educational testing and psychological measurement (Lord and Novick, 1968; Van der Linden and
Hambleton, 1997; Embretson and Reise, 2000; Baker and Kim, 2004). These are latent variable
modeling techniques, in which the response probability is used to construct the interaction between
an individual’s “ability” and item level stimuli (difficulty, guessing, etc.), where the focus is on

the pattern of responses rather than on composite or total score variables and linear regression

theory. Specifically, IRT attempts to model individual ability using question-level performance
instead of aggregating test-level performance, and it focuses more on the information provided by

an individual on each question. In social sciences, IRT has been applied to attachment (Fraley et al.,
2000), personality (Ferrando, 1994; Steinberg and Thissen, 1995; Gray-Little et al., 1997; Rouse

et al., 1999), psychopathology (Reise andWaller, 2003; Loken and Rulison, 2010; Waller and Reise,
2010; Waller and Feuerstahler, 2017), attention deficit hyperactivity disorder (Lanza et al., 2005),
and delinquency (Osgood et al., 2002), among others.

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2020.02121
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2020.02121&domain=pdf&date_stamp=2020-09-18
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:luj282@nenu.edu.cn
https://doi.org/10.3389/fpsyg.2020.02121
https://www.frontiersin.org/articles/10.3389/fpsyg.2020.02121/full


Zhang et al. Estimating Four Parameter Logistic Model

To explore these applications, it is necessary to establish
how the appropriate IRT models should be built and what
valuable educational psychological phenomena can be examined
to guide practice. In the field of dichotomous IRT models,
the one-parameter logistic (1PL) model and the Rasch model
(Rasch, 1960), as well as their extensions, the two-parameter
logistic model (2PL) (Birnbaum, 1957) and the three-parameter
logistic model (3PL) (Birnbaum, 1968), have attracted increasing
attention in recent years because of their attractive mathematical
properties. However, compared with the widely used 1PL, 2PL,
and 3PL models, the four-parameter logistic (4PL) model has
languished in obscurity for nearly 30 years (Barton and Lord,
1981), although its importance has gradually been realized by
many researchers over the past decade (Hessen, 2005; Loken and
Rulison, 2010; Waller and Reise, 2010; Green, 2011; Liao et al.,
2012; Yen et al., 2012; Magis, 2013; Waller and Feuerstahler,
2017). This growing interest can be attributed to the need to
deal with a number of problems encountered in educational
psychology, which can be explained well and indeed solved using
the 4PL model. For example, in computerized adaptive testing
(CAT), high-ability examinees might on occasion miss items that
they should be able to answer correctly, owing to a number of
reasons, including anxiety, carelessness, unfamiliarity with the
computer environment, distraction by poor testing conditions,
or even misreading of the question (Hockemeyer, 2002; Rulison
and Loken, 2009). Chang and Ying (2008) demonstrated that
the ability determined using the traditional 2PL model is
underestimated when the examinee mistakenly answers several
items at the beginning of the CAT. In addition, Rulison and
Loken (2009) found that using the 3PL model could severely
penalize a high-ability examinee who makes a careless error on
an easy item (Barton and Lord, 1981; Rulison and Loken, 2009).
In psychopathology studies, researchers found that subjects with
severe psychopathological disorders may be reluctant to self-
report their true attitudes, behaviors, and experiences, so it is
obviously inappropriate to use the traditional 3PL model with
lower asymptotic parameter to explain such behaviors (Reise
and Waller, 2003; Waller and Reise, 2010). Descriptions of the
applications of the 4PL model in other areas can be found in
Osgood et al. (2002) and Tavares et al. (2004). In addition to the
development of the 4PL model in terms of its applications, its
theoretical properties have been investigated in some depth. For
example, Ogasawara (2012) discussed the asymptotic distribution
of the ability, and Magis (2013) systematically studied the
properties of the information function and proposed a method
for determining its maximum point.

The main reason why the 4PL model has not been more
widely used is that an upper asymptotic parameter is added
to the 3PL model, which makes parameter estimation more
difficult. However, with the rapid development of computer
technology in recent years, the estimation problem for complex
models has been solved. At the same time, the development of
statistical software makes it easier for psychometricians to study
complex models such as the 4PL model. Several researchers have
used existing software to estimate the 4PL model. For example,
Waller and Feuerstahler (2017) investigated 4PL model item
and person parameter estimations using marginal maximum

likelihood (MML) with themirt (Chalmers, 2012) package, which
uses MML via the expectation-maximization (EM) algorithm
to estimate simple item response theory models. This is a
different approach to that adopted here, where we use a Gibbs-
slice sampling algorithm based on augmented data (auxiliary
variables). Our Gibbs-slice sampling algorithm is in a fully
Bayesian framework, and the posterior samples are drawn from
the full conditional posterior distribution, whereas theMML–EM
algorithm used in themirt package is in a frequentist framework.
Parameter estimates are obtained by an integral operation in the
process of implementing the EM algorithm. Loken and Rulison
(2010) used WinBUGS (Spiegelhalter et al., 2003) to estimate
the 4PL model parameters in a Bayesian framework. However,
convergence of parameter estimation is not completely achieved
in the case of some non-informative prior distributions for
WinBUGS. The reason for this may be that WinBUGS does not
explicitly impose the monotonicity restriction c < d on the
4PL model, i.e., it does not assume that the lower asymptote
parameter c is smaller than the upper asymptote parameter
d. (The introduction of parameters in the 4PL model will be
described in section 2, and further discussion of these two
parameters can be found in Culpepper, 2016 and Junker and
Sijtsma, 2001). Thus, the prior Gibbs samplers do not strictly
enforce an identification condition, and this leads to estimator
non-convergence. More specifically, the prior distributions of the
upper and lower asymptote parameters are given by the following
informative priors (Loken and Rulison, 2010, p. 513):

cj ∼ N(0.22, 0.05), dj ∼ N(0.84, 0.05).

If we choose the non-informative prior distributions

cj ∼ N(0.22, 105), dj ∼ N(0.84, 105),

then, from the value ranges of the upper and lower asymptote
parameters, we find that the lower asymptote parameter can
be larger than the upper asymptote parameter, dj < cj, which
violates the model identification condition cj < dj (this condition
will be introduced in detail in section 2). In this case, using
WinBUGS to infer the model parameters may lead to biased
estimates when the sample size (the number of examinees) is
small and the prior distributions then play an important role.
To solve the above problems in using WinBUGS, Loken and
Rulison (2010) employed strong informative prior distributions
to obtain good recovery (Culpepper, 2016, p. 1,143). However,
Culpepper (2016, p. 1,161) pointed out that the use of informative
prior distribution may lead to serious deviations if it happens
to be centered at the wrong values. Therefore, he proposed
that recovery should also be dealt with by using some non-
informative priors.

In the present study, a novel and highly effective Gibbs-slice
sampling algorithm in the Bayesian framework is proposed to
estimate the 4PL model. The Gibbs-slice sampling algorithm
overcomes the defects of WinBUGS that affect the convergence
of parameter estimation based on the monotonicity restriction.
Moreover, the algorithm can obtain good recovery results by
using various types of prior distribution. In the following
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sections, we will introduce the theoretical foundation of the
slice sampling algorithm in detail, and we will then analyze the
advantages of the slice sampling algorithm over two traditional
Bayesian algorithms.

The rest of this paper is organized as follows. Section
2 contains a short introduction to the 4PL model, its
reparameterized form, and model identification restrictions.
In section 3, the theoretical foundation of the slice sampling
algorithm is presented and its advantages compared with
traditional Bayesian algorithms are analyzed. In section 4, three
simulation studies focus respectively on the performance of
parameter recovery, an analysis of the flexibility and sensitivity
of different prior distributions for the slice sampling algorithm,
and an assessment of model fittings using two Bayesian model
selection criteria. In section 5, the quality of the Gibbs-slice
sampling algorithm is investigated using an empirical example.
We conclude the article with a brief discussion in section 6.

2. MODELS AND MODEL
IDENTIFICATIONS

The 1PL and 2PL models have been widely used to fit binary
item response data. Birnbaum (1968) modified the 2PL model
to give the now well-known 3PL model, which includes a lower
asymptote parameter to represent the contribution of guessing
to the probability of correct response. To characterize the failure
of high-ability examinees to answer easy items, Barton and Lord
(1981) introduced an upper asymptote parameter into the 3PL
model, giving the 4PL model:

Pij = P(yij = 1 | aj, bj, cj, dj, θi)

= cj + (dj − cj)
exp[1.7aj(θi − bj)]

1+ exp[1.7aj(θi − bj)]
(1)

for i = 1, . . . ,N and j = 1, . . . , J, where N is the total number
of examinees participating in the test and J is the test length.
Here, yij is the binary response of the ith examinee with latent
ability level θi to answer the jth item and is coded as 1 for
a correct response and 0 for an incorrect response, Pij is the
corresponding probability of correct response, aj is the item
discrimination parameter, bj is the item difficulty parameter, cj
is the item lower asymptote (pseudo-guessing) parameter, and dj
is the item upper asymptote parameter. The 4PL model reduces
to the other models as special cases: dj = 1 gives the 3PL model,
cj = 0 gives the 2PL model, and aj = 1 gives the 1PL model.
Following Culpepper (2016), we reparameterize the traditional
4PL model to construct a new 4PL model by defining a slipping
parameter similar to that in cognitive diagnostic tests:

Pij = P(yij = 1 | aj, bj, cj, γj, θi)

= cj + (1− γj − cj)
exp[1.7aj(θi − bj)]

1+ exp[1.7aj(θi − bj)]
, (2)

where γj = 1− dj.
One identification restriction is that the upper asymptotemust

exceed the lower asymptote: dj > cj. Equivalently, the restriction
0 < cj + γj < 1 must be satisfied for the reparameterized

4PL model, Meanwhile, either the scale of latent abilities or
the scale of item parameters must be restricted to identify the
two0parameter IRT models. Three methods are widely used to
identify two-parameter IRT models.

1. Fx themean population level of ability to zero and the variance
population level of ability to one (Lord and Novick, 1968;
Bock and Aitkin, 1981; Fox and Glas, 2001; Fox, 2010), i.e.,
θ ∼ N(0, 1).

2. Restrict the sum of item difficulty parameters to zero and the
product of item discrimination parameters to one (Fox, 2001;
Fox, 2005, 2010), i.e.,

∑J
j = 1 bj = 0 and

∏J
j = 1 aj = 1.

3. Fix the item difficulty parameter at a specific value, most often
zero, and restrict the discrimination parameter to a specific
value, most often one (Fox, 2001; Fox, 2010), i.e., b1 = 0
and a1 = 1. The basic idea here is to identify the two-
parameter logistic model by anchoring an item discrimination
parameter to an arbitrary constant, typically a1 = 1, for a
given item. Meantime, a location identification constraint is
imposed by restricting a difficulty parameter, typically b1 = 0,
for a given item. Based on the fixed anchoring values of the
item parameters, other parameters are estimated on the same
scale. The estimated difficulty or discrimination values of item
parameters are interpreted based on their positions relative
to the corresponding anchoring values. For details, see Fox
(2010, p. 87).

In the present study, the main aim is to evaluate the accuracy of
parameter estimation obtained by the slice sampling algorithm
for different types of prior distributions. Therefore, the first of the
above methods is used to eliminate the trade-offs between ability
θ and the difficulty parameter b in location, and between ability
θ (difficulty parameter b) and the discrimination parameter a
in scale.

3. THEORETICAL FOUNDATION AND
ANALYSIS OF THE ADVANTAGES OF THE
SLICE SAMPLING ALGORITHM

3.1. Theoretical Foundation of the Slice
Sampling Algorithm
The motivation for the slice sampling algorithm (Damien et al.,
1999; Neal, 2003; Bishop, 2006; Lu et al., 2018) is that we can
use the auxiliary variable approach to sample from posterior
distributions arising from Bayesian non-conjugate models. The
theoretical basis for this algorithm is as follows.

Suppose that the simulated values are generated from a target
density function t(x) given by t(x) ∝ φ(x)

∏N
i = 1 li(x) that

cannot be sampled directly, where φ(x) is a known density from
which samples can be easily drawn and li(x) are non-negative
invertible functions, which do not have to be density functions.
We introduce the auxiliary variables represented by the vector
δ = (δ1, . . . , δN)

′, each element of which is from (0,+∞) and
where δ1, . . . , δN are mutually independent. The inequalities δi <

li(x) are established, and the joint density can be written as

t(x, δ1, . . . , δN) ∝ φ(x)

N∏

i = 1

I{δi < li(x)}, (3)
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where the indicator function I(A) takes the value 1 ifA is true and
the value 0 ifA is false. If the auxiliary variables are integrated out,
the marginal distribution t(x) is obtained as

t(x) =

∫ l1(x)

0
· · ·

∫ lN (x)

0
t(x, δ1, . . . , δN) dδN · · · dδ1,

∝ φ(x)

∫ l1(x)

0
· · ·

∫ lN (x)

0
1 dδN · · · dδ1 = φ(x)

N∏

i = 1

li(x). (4)

Using the invertibility of the function li(x), we can then obtain
the set 3δi = {x | δi < li(x)}. The simulated values are generated
from the Gibbs sampler based on the auxiliary variables by
repeatedly sampling from the full conditional distributions,
proceeding as follows at iteration r:

• Sample δ
(r)
i ∼ Uniform

(
0, li(x

(r−1))
)
, i = 1, . . . ,N.

• Sample x(r) ∼ 3δi = {x | δ
(r)
i < li(x)}.

We thereby derive a horizontal “slice” under the density
function. Thus, a Markov chain based on the new Gibbs
sampler can be constructed by sampling points alternately
from the uniform distribution under the density curve and
only concerning the horizontal “slice” defined by the current
sample points.

3.2. Advantages of the Slice Sampling
Algorithm Compared With the
Metropolis–Hastings Algorithm
In the Bayesian framework, we first consider the benefits of
the slice sampling algorithm compared with the traditional
Metropolis–Hastings (MH) algorithm (Metropolis et al., 1953;
Hastings, 1970; Tierney, 1994; Chib and Greenberg, 1995; Chen
et al., 2000). It is known that the MH algorithm relies heavily on
the tuning parameters of the proposal distribution for different
data sets. In addition, the MH algorithm is sensitive to step
size. If the step size is too small, the chain will take longer to
traverse the target density. If the step size is too large, there
will be inefficiencies due to high rejection rate. More specifically,
researchers should ensure that each parameter candidate is no
more than 50% accepted by adjusting the tuning parameters of
the MH algorithm. Further, for example, when we draw two-
dimensional item parameters at the same time in the 2PL model,
the probability of acceptance will be reduced to around 25%
(Patz and Junker, 1999, p. 163). Thus, the sampling efficiency
of the MH algorithm is greatly reduced. However, the slice
sampling algorithm avoids the retrospective tuning that is needed
in the MH algorithm if we do not know how to choose a
proper tuning parameter or if no value for the tuning parameter
is appropriate. It always keeps the drawn samples accepted,
thus increasing the sampling efficiency. Next, we show that
the slice sampling algorithm is more efficient than a particular
independent MH chain.

Let us use the MH algorithm to obtain samples from the
posterior distribution t(x) given by t(x) ∝ φ(x)l(x), where
φ(x) is selected as a special proposal distribution. Let x∗ be
a candidate value from the proposal distribution φ(x) and

let x(r) be the current point. The probability of the new
candidate being accepted, min{1, l(x∗)/l(x(r))}, is determined by
a random number u from Uniform(0, 1). Essentially, if u <

l(x∗)/l(x(r)), then x(r+1) = x∗; otherwise, x(r+1) = x(r).
The process is to draw the candidate first and then determine
whether or not to “move” or “stay” by using the random
number u. The “stay” process will lead to a reduction in the
sampling efficiency of the MH algorithm. By contrast, suppose
we consider the inverse process of the above sampling to draw
the random number u first. To achieve the purpose of moving,
we need to draw the candidate x∗ from φ(x) such that u <

l(x∗)/l(x(r)). Therefore, x∗ can be regarded as a sample from
φ(x) restricted to the set 2u(r) = {x | l(x) > ul(x(r))}. In
this case, the chain will always be moved, thus improving the
sampling efficiency.

In addition, with the MH algorithm, it is relatively difficult
to sample parameters with monotonicity or truncated interval
restrictions. Instead, it is possible to improve the accuracy
of parameter estimation by employing strong informative
prior distributions to avoid violating the restriction conditions
(Culpepper, 2016). For example, the prior distributions of the
lower asymptote and upper asymptote parameters used in Loken
and Rulison (2010) are, respectively Beta(5, 17) and Beta(17, 5),
and these two parameters are fairly concentrated in the range
of 0.227–0.773. However, the advantage of the slice sampling
algorithm is that it can easily draw the posterior samples from
any prior distribution as long as these distributions have a
reasonable value range of parameters. See the following sections
for details.

3.3. Advantages of the Slice Sampling
Algorithm Compared With the Gibbs
Algorithm
The idea of the slice sampling algorithm is to draw the posterior
samples from a truncated prior distribution by introducing
auxiliary variables, where the truncated interval is deduced
from the likelihood function. This differs from the approach
of the Gibbs algorithm (Geman and Geman, 1984; Gelfand
and Smith, 1990), which is to generate posterior samples by
sweeping through each variable to sample from its conditional
distribution, with the remaining variables fixed at their current
values. However, slice sampling algorithm can be conceived
of as extensions of the Gibbs algorithm. In particular, when
the parameters in which we are interested are represented
by a multidimensional vector X, we cannot use the slice
sampling algorithm directly to obtain the multivariate set 2u =

(21
u, . . . ,2

k
u, . . . ,2

p
u), where p is the dimension of X. Therefore,

a Gibbs sampler is employed to draw the samples from the full
conditional distribution l(xk | x(−k), u) for k = 1, . . . , p, which is
a realization of t(X). This involves sampling from φ(xk | x(−k))

restricted to the set 2k
u = {xk | l(xk, x(−k)) > u}, where

the premise must be satisfied that l(xk, x(−k)) is invertible for
all k given x(−k).

It is well-known that the Gibbs algorithm can quickly and
effectively draw samples from the posterior distribution owing
to the fact that the full conditional posterior distribution is
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easy to sample using the conjugate prior distribution. However,
the Gibbs algorithm is not valid for Bayesian non-conjugate
models such as the 2PLmodel. By comparison, the slice sampling
algorithm for estimating the 2PL model has the advantage of
a flexible prior distribution being introduced to obtain samples
from the full conditional posterior distributions rather than being
restricted to using the conjugate distributions, which is required
in Gibbs sampling and is limited to the use of the normal ogive
framework (Tanner and Wong, 1987; Albert, 1992; Béguin and
Glas, 2001; Fox and Glas, 2001; Fox, 2010; Culpepper, 2016).
The slice sampling algorithm allows the use of informative prior
distributions and non-informative prior distributions, and even if
an inappropriate prior distribution is adopted, it can still obtain
satisfactory results. That is, any prior distribution can be used as
long as the values sampled from it are in a reasonable range of
the parameter support set. For example, for the discrimination
parameter, the following prior distributions can be considered:
the informative prior logN(0, 1), the non-informative priors
N(0, 1000)I(a > 0), and the inappropriate priors Exp(1)
and Gamma(2, 3).

4. BAYESIAN INFERENCE

4.1. Bayesian Estimation
In the present study, an efficient Gibbs-slice sampling algorithm
in a fully Bayesian framework is used to estimate the following
4PL model. The sampling process of Gibbs-slice sampling
algorithm consists of two parts. One part is the Gibbs sampling
algorithm, which is used to update the guessing and slipping
parameters from the truncated Beta distributions by introducing
auxiliary variables (Béguin and Glas, 2001; Fox, 2010; Culpepper,
2016). The efficiency of Gibbs sampling is greatly improved
by the use of conjugate prior distributions (Tanner and Wong,
1987; Albert, 1992). The other part is the slice sampling
algorithm, which samples the 2PL model from the truncated
full conditional posterior distributions by introducing different
auxiliary variables.

Next, the specific sampling process of the Gibbs-slice sampling
algorithm is described.

Gibbs Steps
First, following Béguin andGlas (2001), we introduce an auxiliary
variable ηij, where ηij = 1 indicates that examinee i has the
ability to answer item j correctly and ηij = 0 otherwise. The
purpose of introducing this auxiliary variable is to separate the
guessing and slipping parameters from the 4PL model and make
it easier to implement Gibbs sampling for the guessing and
slipping parameters through the conjugate Beta distributions.
Letting 1 = (θi, aj, bj, cj, γj), we can obtain the full conditional
distribution of ηij based on Bayes’ theorem:

P(ηij = 1 | yij = 1,1) =
P(ηij = 1, yij = 1,1)

P(yij = 1 | 1)

=
(1− γj)P

∗
ij

cj + (1− γj − cj)P
∗
ij

,

P(ηij = 0 | yij = 1,1) =
P(ηij = 0, yij = 1,1)

P(yij = 1 | 1)

=
cj(1− P∗ij)

cj + (1− γj − cj)P
∗
ij

, (5)

P(ηij = 1 | yij = 0,1) =
P(ηij = 1, yij = 0,1)

P(yij = 0 | 1)

=
γjP

∗
ij

1− cj − (1− γj − cj)P
∗
ij

,

P(ηij = 0 | yij = 0,1) =
P(ηij = 0, yij = 0,1)

P(yij = 0 | 1)

=
(1− cj)(1− P∗ij)

1− cj − (1− γj − cj)P
∗
ij

.

where

P∗ij =
exp[1.7aj(θi − bj)]

1+ exp[1.7aj(θi − bj)]
.

The priors of the guessing and slipping parameters follow the
Beta distributions, i.e., cj ∼ Beta(ν0, u0), γj ∼ Beta(ν1, u1).
However, the guessing and slipping parameters themselves satisfy
the following truncated restrictions owing tomodel identification
(Junker and Sijtsma, 2001; Culpepper, 2016):

4 = {(cj, γj) | 0 ≤ cj < 1, 0 ≤ γj < 1, 0 ≤ cj < 1− γj}. (6)

The joint posterior distribution of the guessing and slipping
parameters can be written as

p(cj, γj | yj, ηj) ∝

N∏

i = 1

[
(1− γj)

ηijc
(1−ηij)

j

]yij [
γ

ηij
j (1− cj)

(1−ηij)
](1−yij)

p(cj, γj)I
(
(cj, γj) ∈ 4

)
∝ ĉ

κ00+ν0−1
j (1− cj )̂

κ01+u0−1

γ
κ̂10+ν1−1
j (1− γj )̂

κ11+u1−1I
(
(cj, γj) ∈ 4

)
. (7)

Let y′j = (y1j, . . . , yNj), η
′
j = (η1j, . . . , ηNj), and

κ̂00 = (1N − ηj)
′yj, κ̂01 = (1N − ηj)

′(1N − yj),

κ̂10 = η′j(1N − yj), κ̂11 = η′jyj.

The full conditional posterior distributions of
(
cj, γj

)
can be

written as

c
(r)
j | γ

(r−1)
j ∼ Beta(̂κ00 + ν0, κ̂01 + u0)I(0 ≤ c

(r)
j < 1− γ

(r−1)
j ),

γ
(r)
j | c

(r)
j ∼ Beta(̂κ10 + ν1, κ̂11 + u1)I(0 ≤ γ

(r)
j < 1− c

(r)
j ).

(8)

Slice Steps
Supposing that the guessing and slipping parameters have been
updated by the Gibbs algorithm, we update the parameters
in the 2PL model using the slice sampling algorithm. Two
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additional independent auxiliary variables λij and ϕij, defined on
the intervals


0,

P
(r)
ij − c

(r)
j

1− γ
(r)
j − c

(r)
j


 and


0,

1− γ
(r)
j − P

(r)
ij

1− γ
(r)
j − c

(r)
j


 ,

are introduced to facilitate sampling, where r is the number of
iterations. In fact, (Pij − cj)/(1 − γj − cj) is the correct response
probability of the 2PL model, while (1− γj − Pij)/(1− γj − cj) is
the corresponding incorrect response probability. Therefore, the
joint likelihood of a, b, c, γ , θ based on the auxiliary variables λ

and ϕ can be written as

p(y | a, b, θ , c, γ ,λ,ϕ)

∝

N∏

i = 1

J∏

j = 1

[
I(yij = 1)I

(
0 < λij ≤

Pij − cj

1− γj − cj

)

+I(yij = 0)I

(
0 < ϕij ≤

1− γj − Pij

1− γj − cj

)]
. (9)

Equivalently,

p(y | a, b, θ , c, γ ,λ,ϕ) ∝
∏N

i = 1

∏J
j = 1 I(yij = 1)I(0 < λij ≤ P∗ij)

+I(yij = 0)I(0 < ϕij ≤ Q∗
ij), (10)

where

P∗ij = 1− Q∗
ij =

exp[1.7aj(θi − bj)]

1+ exp[1.7aj(θi − bj)]
=

Pij − cj

1− γj − cj
,

Q∗
ij =

1

1+ exp[1.7aj(θi − bj)]
=

1− γj − Pij

1− γj − cj
.

Integrating out the two random variables λ and ϕ in (10), the
joint likelihood based on responses can be obtained:

p(y | a, b, θ , c, γ ,λ,ϕ) ∝

N∏

i = 1

J∏

j = 1

I(yij = 1)Eλ[I(0 < λij ≤ P∗ij)]

+ I(yij = 0)Eϕ[I(0 < ϕij ≤ Q∗
ij)]

∝

N∏

i = 1

J∏

j = 1

(P∗ij)
(yij=1)(Q∗

ij)
(yij=0), (11)

where Eλ is an expectation operation for the random variable
λ. We know that η, λ, and ϕ are independent of each other.
Therefore, the joint posterior distribution based on the auxiliary
variables can be written as

p(η, θ , a, b, c, γ ,λ,ϕ | y) ∝ p(η | a, b, θ , c, γ , y)p(λ,ϕ | a, b, θ , c, γ , y)

× p(θ)p(a)p(b)p(c, γ )I
(
(c, γ ) ∈ 4

)
.

(12)

The specific form can be represented as

p(η, a, b, θ , c, γ ,λ,ϕ | y) ∝

N∏

i = 1

J∏

j = 1

[
(1− γj)

ηijc
(1−ηij)

j

]yij

[
γ

ηij
j (1− cj)

(1−ηij)
](1−yij)

×

[
I(yij = 1)I(0 < λij ≤ P∗ij)

+I(yij = 0)I(0 < ϕij ≤ Q∗
ij)

]

×

J∏

j = 1

p(aj)p(bj)p(cj, γj)I
(
(cj, γj) ∈ 4

)

N∏

i = 1

p(θi). (13)

The detailed slice sampling algorithm is given below.
First, we update the auxiliary variables λij and ϕij when given

θi, aj, bj, cj, γj, and yij. According to (13), the auxiliary variables
λij and ϕij have the following interval constraints:

0 < λij ≤ P∗ij =
Pij − cj

1− γj − cj
when yij = 1,

0 < ϕij ≤ Q∗
ij =

1− γj − Pij

1− γj − cj
when yij = 0.

Therefore, the full conditional posterior distributions of λij and
ϕij can be written as

λij | θi, aj, bj, cj, γj, yij ∼ Uniform

(
0,

Pij − cj

1− γj − cj

)
when

yij = 1, (14)

ϕij | θi, aj, bj, cj, γj, yij ∼ Uniform

(
0,

1− γj − Pij

1− γj − cj

)
when

yij = 0. (15)

Next, we update the difficulty parameter bj. The prior of the
difficulty parameter is assumed to follow a normal distribution
with mean µb and variance σ 2

b
. According to (10), ∀i, when

yij = 1, we have 0 < λij ≤ P∗ij, and the following inequality

can be established:

aj(θi − bj) ≥
1

1.7
log

(
λij

1− λij

)
, or equivalently

bj ≤ θi −
1

1.7aj
log

(
λij

1− λij

)
.

In fact, this inequality is obtained through the following
calculation process:

0 < λij ≤ P∗ij, or equivalently 0 < λij ≤
exp[1.7aj(θi − bj)]

1+ exp[1.7aj(θi − bj)]
,

from which

λij + λij exp[1.7aj(θi − bj)] ≤ exp[1.7aj(θi − bj)], or equivalently

λij

1− λij
≤ exp[1.7aj(θi − bj)].
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Therefore, we have

log

(
λij

1− λij

)
≤ [1.7aj(θi − bj)], or equivalently

aj(θi − bj) ≥
1

1.7
log

(
λij

1− λij

)
.

Finally, we obtain the following inequality:

bj ≤ θi −
1

1.7aj
log

(
λij

1− λij

)
.

In the same way, ∀i, when yij = 0, we have 0 < ϕij ≤ Q∗
ij.

Therefore, the following inequality can be obtained:

aj(θi − bj) ≤
1

1.7
log

(
1− ϕij

ϕij

)
, or equivalently

bj ≥ θi −
1

1.7aj
log

(
1− ϕij

ϕij

)
.

Using the above inequalities 0 < λij ≤ P∗ij and 0 < ϕij ≤ Q∗
ij), we

can obtain a truncated interval about the difficulty parameter bj:

θi −
1

1.7aj
log

(
1− ϕij

ϕij

)
≤ bj ≤ θi −

1

1.7aj
log

(
λij

1− λij

)
.

If this truncated interval is narrow, the sampling efficiency
is improved and the parameter can converge fast. Therefore,
we need to limit the upper and lower bounds of the
truncated interval. In fact, we can obtain a maximum of θi −

(1/1.7aj) log[(1−ϕij)/ϕij] among all the examinees who correctly
answer the jth item. Similarly, we can obtain a minimum of
θi − (1/1.7aj) log[λij/(1 − λij)] among all the examinees who
mistakenly answer the jth item. Finally, the full conditional
posterior distribution of bj can be obtained as a truncated prior
distribution, with the truncated interval between maximum and
minimum. The specific mathematical expressions are as follows.

Let Dj = {i | yij = 1, 0 < λij ≤ P∗ij} and Fj = {i | yij = 0, 0 <

ϕij ≤ Q∗
ij}. Then, given aj, cj, γj, θ , λ, ϕ, and y, the full conditional

posterior distribution of bj is

bj | aj, cj, γj, θ ,λ,ϕ, y ∼ N(µb, σ
2
b )I(b

L
j ≤ bj ≤ bUj ), (16)

where

bLj = max
i∈Fj

{
θi −

1

1.7aj
log

(
1− ϕij

ϕij

)}
and

bUj = min
i∈Dj

{
θi −

1

1.7aj
log

(
λij

1− λij

)}
.

Subsequently, we update the discrimination parameter aj. To
ensure that this parameter is greater than zero, we use a truncated
normal distribution with mean µa and variance σ 2

a as a prior
distribution, N(µa, σ

2
a )I(aj > 0). Under the condition yij = 1,∀i,

θi − bj > 0, we have 0 < λij ≤ P∗ij, while under the condition

yij = 0,∀i, θi − bj < 0, we have 0 < ϕij ≤ Q∗
ij. The following

inequalities concerning the discrimination parameter aj can be
established using a procedure similar to that used above to derive
the truncated interval for the difficulty parameter bj:

aj ≥
1

1.7(θi − bj)
log

(
λij

1− λij

)
,

aj ≥
1

1.7(θi − bj)
log

(
1− ϕij

ϕij

)
.

Similarly, when yij = 1,∀i, θi − bj < 0, we have 0 < λij ≤ P∗ij,

and when yij = 0,∀i, θi − bj > 0, we have 0 < ϕij ≤ Q∗
ij, from

which we obtain

aj ≤
1

1.7(θi − bj)
log

(
λij

1− λij

)

aj ≤
1

1.7(θi − bj)
log

(
1− ϕij

ϕij

)
.

Let

1j = {i | yij = 1, θi − bj > 0, 0 < λij ≤ P∗ij},

Hj = {i | yij = 0, θi − bj < 0, 0 < ϕij ≤ Q∗
ij},

▽j = {i | yij = 1, θi − bj < 0, 0 < λij ≤ P∗ij},

3j = {i | yij = 0, θi − bj > 0, 0 < ϕij ≤ Q∗
ij}.

Given bj, cj, γj, λ, ϕ, θ , and y, the full conditional posterior
distribution of aj is given by

aj | bj, cj, γj,λ,ϕ, θ , y ∼ N(µa, σ
2
a )I(0 < aLj ≤ aj ≤ aUj ), (17)

where

aLj = max

{
0,max

i∈1j

{
1

1.7(θi − bj)
log

(
λij

1− λij

)}
,

max
i∈Hj

{
1

1.7(θi − bj)
log

(
1− ϕij

ϕij

)}}
,

aUj = min

{
min
i∈▽j

{
1

1.7(θi − bj)
log

(
λij

1− λij

)}
,

min
i∈3j

{
1

1.7(θi − bj)
log

(
1− ϕij

ϕij

)}}
.

In fact, the discrimination parameter is set to be greater than
zero in the item response theory. Therefore, the prior distribution
for the discrimination parameter is assumed to be a normal
distribution truncated at 0. Based on the likelihood information,
we can obtain the truncation interval of the discrimination
parameter. However, the left endpoint of the truncation interval
may be <0. In this case, we need to add 0 to the truncation
interval to restrict the left endpoint in 17.

Finally, we update the latent ability θi. The prior of θi is
assumed to follow a normal distribution, θi ∼ N(µθ , σ

2
θ ). The

latent ability θi is sampled from the following normal distribution
with truncated interval between θLi and θUi :

θi | λ,ϕ, a, b, c, γ , y ∼ N(µθ , σ
2
θ )I(θ

L
i ≤ θi ≤ θUi ), (18)
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where

θLi = max
j∈Di

{
1

1.7aj
log

(
λij

1− λij

)
+ bj

}
,

θUi = min
j∈Fi

{
1

1.7aj
log

(
1− ϕij

ϕij

)
+ bj

}
.

4.2. Bayesian Model Assessment
In this paper, two Bayesian model assessment methods are
considered to fit three different models (the 2PL, 3PL, and
4PL models), namely, the deviance information criterion
(DIC; Spiegelhalter et al., 2002) and the logarithm of the
pseudomarginal likelihood (LPML; Geisser and Eddy, 1979;
Ibrahim et al., 2001). These two criteria are based on the log-
likelihood functions evaluated at the posterior samples of the
model parameters. Therefore, the DIC and LPML of the 4PL
model can be easily computed. Write� = (�ij, i = 1, . . . ,N, j =

1, . . . , J), where �ij = (θi, aj, bj, cj, γj)
′. Let {�(1), . . . ,�(R)}

denote an MCMC sample from the full conditional posterior

distribution in (8) and (16)–(18), where �(r) = (�
(r)
ij , i =

1, . . . ,N, j = 1, . . . , J) and �
(r)
ij = (θ

(r)
i , a

(r)
j , b

(r)
j , c

(r)
j , γ

(r)
j )′ for

i = 1, . . . ,N, j = 1, . . . , J, and r = 1, . . . ,R. The joint likelihood
function of the responses can be written as

L(Y | �) =

N∏

i = 1

J∏

j = 1

f (yij | θi, aj, bj, cj, γj), (19)

where f (yij | θi, aj, bj, cj, γj) is the probability of response. The

logarithm of the joint likelihood function in (19) evaluated at�(r)

is given by

log L(Y | �(r)) =

N∑

i = 1

J∑

j = 1

log f (yij | θ
(r)
i , a

(r)
j , b

(r)
j , c

(r)
j , γ

(r)
j ).

(20)
Since the joint log-likelihoods for the responses, log f (yij |

θ
(r)
i , a

(r)
j , b

(r)
j , c

(r)
j , γ

(r)
j ), i = 1, . . . ,N and j = 1, . . . , J, are

readily available from MCMC sampling outputs, log f (yij |

θ
(r)
i , a

(r)
j , b

(r)
j , c

(r)
j , γ

(r)
j ) in (20) is easy to compute. We now

calculate DIC as follows:

DIC =D̂ev(�)+2PD = D̂ev(�)+2
[
Dev(�)− D̂ev(�)

]
, (21)

where

Dev(�) = −
2

R

R∑

r = 1

log L(Y | �(r)) and

D̂ev(�) = −2 max
1≤r≤R

log L(Y | �(r)).

In (21), Dev(�) is a Monte Carlo estimate of the posterior
expectation of the deviance function Dev(�) = −2 log L(Y |

�), D̂ev(�) is an approximation of Dev(�̂), where �̂ is the
posterior mode, when the prior is relatively non-informative, and

PD = Dev(�) − D̂ev(�) is the effective number of parameters.
Based on our construction, both DIC and PD given in (21) are
always non-negative. The model with a smaller DIC value fits the
data better.

Letting Uij,max = max 1 ≤ r ≤ R{− log f (yij |

θ
(r)
i , a

(r)
j , b

(r)
j , c

(r)
j , γ

(r)
j )}, we obtain a Monte Carlo estimate

of the conditional predictive ordinate (CPO; Gelfand et al., 1992;
Chen et al., 2000) as

log ̂(CPOij) = −Uij,max − log

{
1

R

R∑

r = 1

exp[

− log f (yij | θ
(r)
i , a

(r)
j , b

(r)
j , c

(r)
j , γ

(r)
j )− Uij,max]

}
. (22)

Note that the maximum value adjustment used in log ̂(CPOij)
plays an important role in numerical stabilization in computing

exp[− log f (yij | θ
(r)
i , a

(r)
j , b

(r)
j , c

(r)
j , γ

(r)
j ) − Uij,max] in (22). A

summary statistic of the ĈPOij is the sum of their logarithms,
which is called the LPML and given by

LPML =

N∑

i = 1

J∑

j = 1

log ̂(CPOij). (23)

The model with a larger LPML has a better fit to the data.

5. SIMULATION STUDIES

5.1. Simulation Study 1
This simulation study is conducted to evaluate the recovery
performance of the Gibbs-slice sampling algorithm based on
different simulation conditions.

5.1.1. Simulation Design
The following manipulated conditions are considered: (a) test
length J = 20 or 40 and (b) number of examinees N = 500,
1, 000, or 2, 000. Fully crossing different levels of these two factors
yield six conditions (two test lengths× three sample sizes). Next,
the true values of the parameters are given. True values of the
item discrimination parameters aj are generated from a uniform
distribution, i.e., aj ∼ U(0.5, 2.5), j = 1, 2, . . . , J. The item
difficulty parameters bj are generated from a standardized normal
distribution. The item guessing and slipping parameters (cj, γj)
are generated from cj ∼ U(0, 0.25) and γj ∼ U(0, 0.25)I(γj <

1− cj). The ability parameters of examinees θi are also generated
from a standardized normal distribution. In addition, we adopt
non-informative prior distributions for the item parameters, i.e.,
aj ∼ N(0, 105)I(0,+∞), bj ∼ N(0, 105), gj ∼ Beta(1, 1), and γj ∼

Beta(1, 1), j = 1, 2, . . . , J. The prior for the ability parameters is
assumed to follow a standardized normal distribution owing to
the model identification restrictions. One hundred replications
are considered for each simulation condition.

5.1.2. Convergence Diagnostics
To evaluate the convergence of parameter estimation, we only
consider convergence in the case of minimum sample sizes owing
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FIGURE 1 | The trace plots of three randomly selected items and persons for the Simulation Study 1.

to space limitations. That is, the test length is fixed at 20, and
the number of examinees is 500. Two methods are used to
check the convergence of our algorithm: the “eyeball” method to
monitor convergence by visually inspecting the history plots of
the generated sequences (Zhang et al., 2007), and the Gelman–
Rubin method (Gelman and Rubin, 1992; Brooks and Gelman,
1998) to check the convergence of the parameters.

The convergence of the Gibbs-slice sampling algorithm is
checked by monitoring the trace plots of the parameters for
consecutive sequences of 20,000 iterations. The first 10,000
iterations are set as the burn-in period. As an illustration, four
chains started at overdispersed starting values are run for each

replication. The trace plots of three randomly selected items and
persons are shown in Figure 1. In addition, the potential scale
reduction factor (PSRF) (̂R; Brooks and Gelman, 1998) values of
all item and person parameters are shown in Figure 2. We find
that the PSRF values of all parameters are <1.2, which ensures
that all chains converge as expected.

5.1.3. Item Parameter Recovery
The accuracy of the parameter estimates is measured by four
evaluation criteria, namely, the Bias, mean squared error (MSE),
standard deviation (SD), and coverage probability (CP) of the
95% highest probability density interval (HPDI) statistics. Let η
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FIGURE 2 | The trace plots of R̂ for the Simulation Study 1.

be the parameter of interest. Assume that M = 100 data sets are
generated. Also, let η̂(m) and SD(m)(η) denote the posterior mean
and the posterior standard deviation of η obtained from the mth
simulated data set for m = 1, . . . ,M. The Bias for the parameter
η is defined as

Bias(η) =
1

M

M∑

m = 1

(̂η(m) − η), (24)

the MSE for η is defined as

MSE(η) =
1

M

M∑

m = 1

(̂η(m) − η)2, (25)

and the average of the posterior standard deviation is defined as

SD(η) =
1

M

M∑

m = 1

SD(m)(η). (26)

Bias andMSE are important criteria used to evaluate the accuracy
of parameter estimation in a simulation study. These criteria are
used to investigate the relative distance between the parameter
estimator and the true value. The greater the distance between the
parameter estimator and the true value, the lower is the accuracy
of parameter estimation and the poorer is the performance of

the algorithm. However, for real data analysis, it is impossible
to calculate Bias and MSE. The SD, on the other hand, can
be calculated from the posterior samples of a Markov chain
in simulation studies and real data analysis. In our simulation
study, we calculate the average SD through repeated experiments
to eliminate the error caused by randomness in a single
simulation experiment.

The coverage probability is defined as

CP(η) =
# of 95% HPDIs containing η inM simulated data sets

M
.

(27)
The average Bias, MSE, SD, and CP for item parameters
based on six different simulation conditions are
shown in Table 1. The following conclusions can
be drawn.

1. Given the total test length, when the number of individuals
increases from 500 to 2,000, the average MSE and SD for
discrimination, difficulty guessing, and slipping parameters
show a decreasing trend. For example, let us consider
a total test length of 20 items. When the number of
examinees increases from 500 to 2,000, the average MSE
and the average SD of all discrimination parameters
decrease from 0.0625 to 0.0474 and from 0.1460 to 0.0759,
respectively. The average MSE and the average SD of all
difficulty parameters decrease from 0.0505 to 0.0263 and
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TABLE 1 | Evaluating the accuracy of item parameters based on six different simulated conditions in Simulation Study 1.

No. of examinees 500 No. of examinees 1,000 No. of examinees 2,000

Item parameter Bias MSE SD CP Bias MSE SD CP Bias MSE SD CP

NO. OF ITEMS = 20

Discriminationa −0.0087 0.0625 0.1460 0.9514 −0.0217 0.0513 0.1037 0.9504 0.0005 0.0474 0.0759 0.9486

Difficultyb −0.0000 0.0505 0.0559 0.9385 0.0000 0.0389 0.0390 0.9412 −0.0000 0.0263 0.0260 0.9285

Guessingc −0.0215 0.0092 0.0247 0.9325 −0.0453 0.0045 0.0193 0.9378 −0.0830 0.0023 0.0156 0.9515

Slippingγ 0.0132 0.0060 0.0260 0.9342 −0.0176 0.0038 0.0217 0.9628 −0.0558 0.0025 0.0166 0.9548

NO. OF ITEMS = 40

Discriminationa −0.0029 0.0842 0.1482 0.9546 −0.0035 0.0705 0.0962 0.9390 −0.0129 0.0594 0.0638 0.9781

Difficultyb −0.0000 0.0443 0.0561 0.9543 −0.0000 0.0325 0.0389 0.9495 0.0000 0.0224 0.0267 0.9652

Guessingc −0.0238 0.0075 0.0250 0.9385 −0.0625 0.0059 0.0201 0.9322 −0.0677 0.0033 0.0154 0.9418

Slippingγ −0.0061 0.0035 0.0264 0.9310 −0.0169 0.0025 0.0209 0.9438 −0.0407 0.0024 0.0152 0.9422

Note that the Bias, MSE, SD, and CP denote the average Bias, MSE, SD, and CP for the parameters. aDiscrimination parameters, bDifficulty parameters, cGuessing parameters,
γ Slipping parameters.

from 0.0559 to 0.0260, respectively. The average MSE and
the average SD of all guessing parameters decrease from
0.0092 to 0.0023 and from 0.0247 to 0.0156, respectively.
The average MSE and the average SD of all slipping
parameters decrease from 0.0060 to 0.0025 and from 0.0260 to
0.0166, respectively.

2. Under the six simulated conditions, the average CPs of the
discrimination, difficulty guessing, and slipping parameters
are about 0.9500.

3. When the number of examinees is fixed at 500, 1,000, or 2,000,
and the number of items is fixed at 40, the averageMSE and SD
show that the recovery results of the discrimination, difficulty,
guessing, and slipping parameters are close to those in the
case where the total test length is 20, which indicates that
the Gibbs-slice sampling algorithm is stable and there is no
reduction in accuracy owing to an increase in the number
of items.

In summary, the Gibbs-slice sampling algorithm provides
accurate estimates of the item parameters in term of various
numbers of examinees and items. Next, we will explain why
the Bias criterion is useful, and why it seems irrelevant in the
simulation study.

If we want to determine whether our algorithm estimates
the parameter accurately, we need more information to infer
the parameter, which requires a large sample size. Here, Bias
is an important criterion to evaluate the accuracy of parameter
estimation. Let us give an example to illustrate the role of Bias. In
Simulation Study 1, suppose that we investigate the accuracy of
the algorithm in estimating a discrimination parameter. When
the number of examinees increases from 500 to 2,000, the
Bias of the discrimination parameter should show a decreasing
trend. The result of Bias reduction further verifies that a greater
number of samples are needed to improve the accuracy of
parameter estimation.

In Simulation Study 1, we cannot enumerate the Bias of each
item parameter one by one because there are toomany simulation

conditions and we are subject to space limitations. Therefore, we
choose to calculate the average Bias of the parameter of interest.
Next, we take the discrimination parameters as an example to
further explain why Bias seems irrelevant in Simulation Study
1. Suppose that we have obtained 40 Biases of discrimination
parameters, that the Bias values of these 40 discrimination
parameters are either positive or negative, and that the average
Bias of all 40 items is close to 0. However, the near-zero value of
the average Bias does not show whether the parameter estimation
is accurate or the result is caused by the positive and negative
superposition of the 40 Biases. In fact, we find that the Bias for
each item discrimination parameter show a decreasing trend with
increasing number of examinees. To sum up, we do not analyze
the results of the average Bias in the simulation studies, but Bias
is indeed an important criterion to evaluate the accuracy of each
parameter estimation.

5.1.4. Ability Parameter Recovery
Next, we evaluate the recovery of the latent ability using four
accuracy evaluation criteria. The following conclusions can be
obtained from Table 2.

1. Given a fixed number of examinees (500, 1,000, or 2,000),
when the number of items increases from 20 to 40, the
average MSE and SD for the ability parameters also show a
decreasing trend.

2. Under the six simulated conditions, the average CP of the
ability is also about 0.9500.

3. Given a fixed number of examinees (500, 1,000, or 2,000),
when the number of items increases from 20 to 40, the
correlation between the estimates and the true values tends to
increase. For example, for 500 examinees, when the number
of items increases from 20 to 40, the correlation between the
estimates and the true values increases from 0.8631 to 0.9102.

4. Given a fixed number of items (20 or 40), when the number
of examinees increases from 500 to 2,000, the correlation
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TABLE 2 | Evaluating the accuracy of person parameters based on six different

simulated conditions in Simulation Study 1.

No. of No. of Bias MSE SD CP Correlation with

items examinees true value

20 500 0.0545 0.2783 0.2523 0.9428 0.8631

1,000 0.0149 0.2923 0.2636 0.9675 0.8764

2,000 0.0052 0.3341 0.2961 0.9322 0.8599

40 500 0.0315 0.2346 0.2180 0.9274 0.9102

1,000 0.0764 0.2553 0.2343 0.9626 0.9182

2,000 0.0439 0.3042 0.2866 0.9542 0.9225

Note that the Bias, MSE, SD, and CP denote the average Bias, MSE, SD, and CP for the

ability parameters.

between the estimates and the true values remains basically
the same.

In summary, it is shown again that the Gibbs-slice sampling
algorithm is effective and that the estimated results are accurate
under various simulation conditions.

5.2. Simulation Study 2
Culpepper (2016) conducted an additional simulation study
to confirm that the guessing and slipping parameters could
give good recovery results in the process of Gibbs sampling
regardless of whether informative or non-informative
priors were used. Therefore, in this simulation study, we
also adopt non-informative prior distributions for the
guessing and slipping parameters in the Gibbs step to
eliminate biased estimation of parameters due to wrong
choices of the prior distributions, i.e., c ∼ Beta(1, 1)
and γ ∼ Beta(1, 1), and we focus on the influence of
different prior distributions on the accuracy of parameter
estimation in the process of implementing the slice
sampling algorithm. Note that in this simulation study,
we do not focus on the accuracy of the guessing and
slipping parameters, since Culpepper (2016) has already
verified the accuracy of these two parameters in the
case of the Gibbs algorithm under different types of
prior distributions.

This simulation study is designed to show that the slice
sampling algorithm is sufficiently flexible to recover various
prior distributions of the item (discrimination and difficulty)
and person parameters, and to address the sensitivity of the
algorithm with different priors. Three types of prior distributions
are examined: informative priors, non-informative priors, and
inappropriate priors.

5.2.1. Simulation Design
The number of the examinees N = 1, 000, and the test length
J = 20. The true values for the items and persons are the
same as in Simulation Study 1. One hundred replications are
considered for each simulation condition. The following three

kinds of prior distributions are considered in implementing the
slice sampling algorithm:

(i) informative prior: a ∼ logN(0, 1), b ∼ N(0, 1),
and θ ∼ N(0, 1);

(ii) non-informative prior: a ∼ N(0, 1000)I(0,+∞), b ∼

Uniform(−1000, 1000), and θ ∼ N(0, 1000);
(iii) inappropriate prior: (1) a ∼ Exp(1), b ∼ t(1), and

θ ∼ t(1); (2) a ∼ Gamma(3, 2), b ∼ Cauchy(1, 3),
and θ ∼ Cauchy(1, 3).

The Gibbs-slice sampling algorithm is iterated 20,000 times. The
first 10,000 iterations are discarded as burn-in. The PSRF values
of all parameters are <1.2. The Bias, MSE, and SD of a and
b based on the three kinds of prior distribution are shown in
Figure 3.

5.2.2. Item Parameter Recovery
From Figure 3, we can see that the Bias, MSE, and SD of a and
b are almost the same under different prior distributions. This
shows that accuracy of parameter estimation can be guaranteed
by the slice sampling algorithm, nomatter what prior distribution
is chosen, as long as the values sampled from this distribution
belong to a reasonable parameter support set. In addition, the
Bias, MSE and SD of a and b fluctuate around 0, which shows
that the slice sampling algorithm is accurate and effective in
estimating the item parameters.

5.2.3. Ability Parameter Recovery
Next, we evaluate the recovery of the latent ability based on
different prior distributions in Table 3. We find that the MSE
of ability parameters is between 0.2676 and 0.3014, and the
corresponding SD is between 0.2436 and 0.3026 for all three
kinds of prior distribution, which indicates that the choice of
prior distribution has little impact on the accuracy of the ability
parameters. In summary, the slice sampling algorithm is accurate
and effective in estimating the person parameters. It is not
sensitive to the specification of priors.

5.3. Simulation Study 3
In this simulation study, we use two Bayesian model assessment
criteria to evaluate the model fittings. Two issues warrant further
study. The first is whether the two criteria can accurately identify
the true models under different design conditions. The second
is that we study the phenomena of over-fitting and under-fitting
between the true model and the fitting models.

5.3.1. Simulation Design
In this simulation, a number of individuals N = 1, 000 is
considered and the test length is fixed at 40. Three item response
models are considered: the 2PL, 3PL, and 4PL models. Thus, we
evaluate model fitting in the following three cases:

• Case 1: 2PL model (true model) vs. 2PL model, 3PL model, or
4PL model (fitted model).

• Case 2: 3PL model (true model) vs. 2PL model, 3PL model, or
4PL model (fitted model).

Frontiers in Psychology | www.frontiersin.org 12 September 2020 | Volume 11 | Article 2121

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Zhang et al. Estimating Four Parameter Logistic Model

FIGURE 3 | The Bias, MSE, and SD of discrimination and difficulty parameters based on different priors.
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TABLE 3 | Evaluating the accuracy of person parameters based on different prior

distributions in Simulation Study 2.

Parameter Accuracy

evaluation

index

Prior distribution

N(0, 1) N(0, 1, 000) t(1) Cauchy(1, 3)

θ Bias 0.0064 0.0149 0.0087 0.0238

MSE 0.2676 0.2923 0.3014 0.2713

SD 0.2436 0.3026 0.2810 0.2983

Note that the Bias, MSE, and SD denote the average Bias, MSE, and SD for the ability

parameters.

• Case 3: 4PL model (true model) vs. 2PL model, 3PL model, or
4PL model (fitted model).

The true values and prior distributions for the parameters are
specified in the same way as in Simulation Study 1. To implement
the MCMC sampling algorithm, chains of length 20,000 with
an initial burn-in period of 10,000 are chosen. There are 100
replications for each simulation condition. The potential scale
reduction factor (PSRF; Brooks and Gelman, 1998) values of all
item and person parameters for each simulation condition are
<1.2. The results of Bayesian model assessment based on the 100
replications are shown in Table 4.

From Table 4, we find that when the 2PL model is the
true model, the 2PL model is chosen as the best-fitting model
according to the results of DIC and LPML, which is what we
expect to see. The medians of DIC and LPML are, respectively
29,333.1917 and −14,881.2617. The second best-fitting model is
the 3PL model. The differences between the 2PL and 3PL models
in the medians of DIC and LPML are −1234.1551 and 650.9820,
respectively. The 4PL model is the worst model to fit the data.
This is because the data are generated from a simple 2PL model,
and the complex 4PL model is used to fit this data, which leads to
over-fitting. The differences between the 2PL and 4PL models in
the medians of DIC and LPML are −5369.4761 and 2805.5087,
respectively. When the 3PL model is the true model, the DIC
and LPML consistently choose the 3PL model as the best-fitting
model, with the corresponding median values being 24,866.9338
and −12,523.6985, respectively. The second best-fitting model is
the 2PL model. The differences between the 3PL and 4PL models
in the medians of DIC and LPML are−7786.6968 and 3934.9003,
respectively, while the corresponding differences between the
3PL and 2PL models are −7569.1249 and 3886.7071. This shows
that when the data are generated from the 3PL model, the simple
2PL model is more appropriate to fit the data compared with the
complex 4PL model. When the 4PL model is the true model, the
two criteria consistently select the 4PL model as the best-fitting
model. The other two models suffer from serious under-fitting.
The differences between the 4PL and 2PL models in the medians
of DIC and LPML are −7807.8880 and 4339.4735, respectively,
while the corresponding differences between the 4PL and 3PL
models are −1104.4156 and 634.0753. The failure to select the
2PL (3PL) model is attributed to the under-fitting caused by a few
parameters. That is, the guessing and slipping parameters in the
4PL model play an important role in adjusting the probability of

TABLE 4 | The results of Bayesian model assessment in the Simulation Study 3.

True model 2PL 3PL 4PL

Fitted model 2PL DIC Q1 29319.0702 30539.6070 34676.5622

Median 29333.1917 30567.3468 34702.6678

Q3 29341.0284 30591.9937 34722.2367

IQR 21.9582 52.3867 45.6745

LPML Q1 −14888.3688 −15543.2057 −17701.0943

Median −14881.2617 −15532.2437 −17686.7704

Q3 −14875.4347 −15515.0444 −17670.9324

IQR 12.9341 28.1613 30.1319

3PL DIC Q1 32431.0873 24857.3160 32648.0788

Median 32436.0587 24866.9338 32653.6306

Q3 32442.8955 24878.2528 32660.3940

IQR 11.8082 20.9368 12.3152

LPML Q1 −16413.9390 −12528.9444 −16462.3200

Median −16410.4056 −12523.6985 −16458.5988

Q3 −16406.8835 −12517.8991 −16453.9725

IQR 7.0555 11.0453 8.3427

4PL DIC Q1 35560.7897 28870.1192 27768.0166

Median 35583.7535 28880.2811 27775.8655

Q3 35611.7761 28890.8003 27780.0024

IQR 50.9863 20.6810 11.9857

LPML Q1 −18320.2375 −14603.6126 −13965.3888

Median −18302.6986 −14597.3004 −13963.2251

Q3 −18288.7386 −14593.5979 −13958.0409

IQR 31.4988 10.0147 7.3479

Note that the boldface values indicate that the corresponding model is the best fitted

model with the smallest DIC and largest LPML values.

the tail of the item characteristic curve. In summary, the Bayesian
assessment criteria are effective for identifying the true models
and can be used in the following empirical example.

6. EMPIRICAL EXAMPLE

In this example, the 2015 computer-based PISA (Program for
International Student Assessment) science data are used. Among
the many countries that have participated in this computer-based
assessment of sciences, we choose students from the USA as
the object of analysis. The original sample size of students is
658, and 110 students with Not Reached (original code 6) or
Not Response (original code 9) are removed, with Not Reached
and Not Response (omitted) being treated as missing data. The
final 548 students answer 16 items. All 16 items are scored
using a dichotomous scale. The descriptive statistics for these
PISA data are shown in Table 5. We find that three items,
DR442Q05C, DR442Q06C, and CR442Q07S, have lower correct
rates than the other items, with the corresponding values being
25.7, 23.2, and 28.5%, respectively. The correct rate represents the
proportion at which all examinees answer each item correctly.
Moreover, the four items with the highest correct rates are
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TABLE 5 | The descriptive statistics for PISA 2015 released computer-based

sciences items.

Item Item code Correct rate (%) Item Item code Correct rate (%)

1 CR083Q01S 54.2 9 CR442Q07S 28.5

2 CR083Q02S 83.6 10 CR245Q01S 53.8

3 CR083Q03S 75.2 11 CR245Q02S 60.0

4 CR083Q04S 66.6 12 CR101Q01S 43.6

5 DR442Q02C 80.1 13 CR101Q02S 87.6

6 DR442Q03C 76.5 14 CR101Q03S 57.7

7 DR442Q05C 25.7 15 CR101Q04S 80.1

8 DR442Q06C 23.1 16 CR101Q05S 48.7

Note that the correct rate represents the percentage of all examinees who correctly

answer each item.

FIGURE 4 | Frequency histograms of the correct rates for 548 examinees.

CR101Q02S (87.6%), CR083Q02S (83.6%) DR442Q02C (80.1%),
and CR101Q04S (80.1%). The frequency histogram of the correct
rates for the 548 examinees is shown in Figure 4.

6.1. Bayesian Model Assessment
We consider three models to fit the PISA data: the 2PL, 3PL,
and 4PL models. In the estimation procedure, the same non-
informative priors as in Simulation Study 1 are utilized for the
unknown parameters. In all of the Bayesian computations, we use
20,000 MCMC samples after a burn-in of 10,000 iterations for
each model to compute all posterior estimates. The convergence
of the chains is checked by PSRF. The PSRF values of all item
and ability parameters for each model are<1.2. On this basis, the
results of Bayesianmodel assessment for the PISA data are shown
in Table 6.

According to DIC and LPML in Table 6, we find that the
4PL model is the best-fitting model compared with the 2PL and
3PL models. The values of DIC and LPML are 10,854.2075 and
−5494.4088, respectively. The second best-fitting model is the
3PL model. The differences between the 4PL and 3PL models

TABLE 6 | The results of Bayesian model assessment for the PISA data.

Model DIC LPML

2PL model 14206.9508 −7290.7545

3PL model 12230.3819 −6168.9428

4PL model 10854.2075 − 5494.4088

Note that the boldface values indicate that the corresponding model is the best fitted

model with the smallest DIC and largest LPML values.

in DIC and LPML are −1376.1744 and 674.5340, respectively.
This shows that the introduction of slipping parameters in the
3PL model is sufficient to fit these PISA data. The worst-fitting
model is the 2PL model. This is attributed to the relatively
simple structure of this model, which makes it unable to describe
changes in probability at the end of the item characteristic curve
caused by guessing or slipping. The differences between the
4PL and 2PL models in DIC and LPML are −3353.7433 and
1796.3457, respectively.

Next, we will use the 4PL model to analyze the PISA data in
detail based on the results of the model assessment.

6.2. Analysis of Item Parameters
The estimated results for the item parameters are shown in
Table 7, from which we find that the expected a posteriori (EAP)
estimations of the 11 item discrimination parameters are greater
than one. This indicates that these items can distinguish the
differences between abilities well. The five items with the lowest
discrimination are items 16 (CR101Q05S), 10 (CR245Q01S), 12
(CR101Q01S), 2 (CR083Q02S), and 5 (DR442Q02C) in turn.
The EAP estimates of the discrimination parameters for these
five items are 0.6681, 0.6792, 0.7348, 0.8083, and 0.8901. In
addition, the EAP estimates of seven of the difficulty parameters
are less than zero, which indicates that these seven items are
easier than the other nine items. The five most difficult items
are items 8 (DR442Q06C), 7 (DR442Q05C), 9 (CR442Q07S), 12
(CR101Q01S), and 16 (CR101Q05S) in turn. The EAP estimates
of the difficulty parameters for these five items are 1.2528,
1.2203, 1.0804, 0.4521, and 0.3102. The corresponding correct
rates in Table 5 for these five items are 23.1, 25.7, 28.5, 43.63
and 48.7%, respectively. The most difficult five items have low
correct rates, which is consistent with our intuition. The EAP
estimates of the guessing parameters for the 16 items range
from 0.0737 to 0.1840. The five items with the highest guessing
parameters are items 2 (CR083Q02S), 5 (DR442Q02C), 13
(CR101Q02S), 15 (CR101Q04S), and 3 (CR083Q03S) in turn.
The EAP estimates of the guessing parameters for these five
items are 0.1840, 0.1791, 0.1790, 0.1673, and 0.3102. We find
that the five items with high guessing parameters also have
high correct rates. The corresponding correct rates for these
five items are 83.6, 80.1, 87.6, 80.1, and 75.2%. This shows that
these five items are more likely to be guessed correctly than
the other 11 items. In addition, the five easiest slipping items
are items 8 (DR442Q06C), 7 (DR442Q05C), 9 (CR442Q07S), 12
(CR101Q01S), and 16 (CR101Q05S) in turn. The EAP estimates
of the slipping parameters for these five items are 1.785, 1.619,
1.581, 0.1481, and 0.1431. We find that the more difficult an
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TABLE 7 | The estimation results of item parameter for the PISA data.

PARM EAP SD HPDI PARM EAP SD HPDI

a1 1.0416 0.1227 [0.8215, 1.2856] b1 0.1939 0.0615 [0.0861, 0.3222]

a2 0.8083 0.1316 [0.5715, 1.0665] b2 −0.8496 0.0815 [−0.9936,−0.6793]

a3 1.1171 0.1513 [0.8327, 1.4101] b3 −0.5071 0.0625 [−0.6214,−0.3699]

a4 1.1119 0.1308 [0.8813, 1.3996] b4 −0.1947 0.0563 [−0.3030,−0.0876]

a5 0.8901 0.1034 [0.6847, 1.0933] b5 −0.6969 0.0623 [−0.8230,−0.5741]

a6 1.2772 0.1719 [0.9642, 1.6355] b6 −0.5966 0.0700 [−0.7525,−0.4675]

a7 1.3404 0.1348 [1.0800, 1.5839] b7 1.2203 0.0778 [1.0635, 1.3738]

a8 1.1202 0.1608 [0.7827, 1.4713] b8 1.2528 0.0966 [1.0313, 1.4246]

a9 1.2377 0.1475 [0.9338, 1.5149] b9 1.0804 0.0819 [0.9117, 1.2155]

a10 0.6792 0.1125 [0.4780, 0.9079] b10 0.1669 0.0640 [0.0423, 0.2832]

a11 1.0720 0.1214 [0.8432, 1.3184] b11 0.0258 0.0512 [−0.0617, 0.1330]

a12 0.7348 0.0897 [0.5528, 0.9035] b12 0.4521 0.0548 [0.3448, 0.5506]

a13 1.1994 0.1706 [0.8682, 1.5513] b13 −1.1843 0.0841 [−1.3510,−1.0305]

a14 1.0083 0.1219 [0.7666, 1.2336] b14 0.0985 0.0525 [0.0029, 0.2053]

a15 1.2047 0.1707 [0.8618, 1.5329] b15 −0.7719 0.0667 [−0.9095,−0.6543]

a16 0.6681 0.0924 [0.4999, 0.8482] b16 0.3102 0.0584 [0.2012, 0.4321]

c1 0.1344 0.0254 [0.0870, 0.1853] γ1 0.1170 0.0225 [0.0738, 0.1616]

c2 0.1840 0.0363 [0.1137, 0.2545] γ2 0.0736 0.0142 [0.0466, 0.1023]

c3 0.1650 0.0315 [0.1065, 0.2285] γ3 0.0804 0.0155 [0.0506, 0.1106]

c4 0.1532 0.0292 [0.1006, 0.2137] γ4 0.0950 0.0182 [0.0605, 0.1306]

c5 0.1791 0.0343 [0.1131, 0.2461] γ5 0.0781 0.0149 [0.0495, 0.1077]

c6 0.1607 0.0309 [0.1014, 0.2210] γ6 0.0749 0.0148 [0.0458, 0.1032]

c7 0.0737 0.0147 [0.0459, 0.1023] γ7 0.1619 0.0314 [0.1034, 0.2261]

c8 0.0805 0.0152 [0.0507, 0.1096] γ8 0.1785 0.0339 [0.1145, 0.2470]

c9 0.0842 0.0159 [0.0549, 0.1165] γ9 0.1581 0.0307 [0.0983, 0.2178]

c10 0.1561 0.0279 [0.1024, 0.2115] γ10 0.1313 0.0248 [0.0832, 0.1786]

c11 0.1485 0.0268 [0.0996, 0.2035] γ11 0.1028 0.0197 [0.0646, 0.1408]

c12 0.1361 0.0243 [0.0897, 0.1842] γ12 0.1481 0.0275 [0.0967, 0.2040]

c13 0.1790 0.0354 [0.1118, 0.2484] γ13 0.0607 0.0118 [0.0368, 0.0827]

c14 0.1469 0.0268 [0.0952, 0.1991] γ14 0.1100 0.0211 [0.0697, 0.1523]

c15 0.1673 0.0322 [0.1057, 0.2299] γ15 0.0716 0.0143 [0.0444, 0.1006]

c16 0.1505 0.0266 [0.0991, 0.2028] γ16 0.1431 0.0268 [0.0931, 0.1960]

PARM denotes parameter, EAP is the expected a posteriori estimation, SD denotes the standard deviation, and HPDI denotes the highest probability density interval.

item is, the more likely is the examinee to slip in answering it,
which leads to a reduction in the correct rate. The SDs of the
discrimination parameters range from 0.0897 to 0.1719, those
of the difficulty parameters from 0.0512 to 0.0966, those of the
guessing parameters from 0.0147 to 0.0363, and those of the
slipping parameters from 0.0118 to 0.0339.

6.3. Analysis of Person Parameters
The histograms of the posterior estimates of the ability
parameters are shown in Figure 5. Most of the estimated abilities
of the examinees are near zero. The number of examinees with
high ability (the estimates are between 0 and 1.2) is more than
the number with low ability (the estimates are between −1.2 and
0). The ability parameter posterior histogram is consistent with
the frequency histogram of the correct rate (Figure 4). That is,
the trend of change in the correct rate in the histogram is same as
that in the ability posterior histogram. The number of examinees

with high correct rate is more than the number with low correct
rate. It is once again verified that the results of the estimation
are accurate.

7. DISCUSSION

In this paper, an efficient Gibbs-slice sampling algorithm in a
fully Bayesian framework has been proposed to estimate the 4PL
model. This algorithm, as its name suggests, can be conceived of
as an extension of the Gibbs algorithm. The sampling process
consists of two parts. One part is the Gibbs algorithm, which
is used to update the guessing and slipping parameters when
non-informative uniform priors are employed for cases that
are prototypical of educational and psychopathology items.
This part implements sampling by using a conjugate prior and
greatly increases efficiency. The other part is the slice sampling
algorithm, which samples the 2PL IRT model from the truncated
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FIGURE 5 | The histograms of the posterior estimates of ability parameters.

full conditional posterior distribution by introducing auxiliary
variables. The motivations for the slice sampling algorithm are
manifold. First, this algorithm has the advantage of flexibility in
the choice of prior distribution to obtain samples from the full
conditional posterior distributions, rather than being restricted
to using the conjugate distributions as in the Gibbs sampling
process, which is also limited to the normal ogive framework.
This allows the use of informative priors, non-informative
priors, and inappropriate priors for the item parameters. Second,
the Metropolis–Hastings algorithm depends on the proposal
distributions and variances (tuning parameters) and is sensitive
to step size. If the step size is too small, the chain will take longer
to traverse the target density. If the step size is too large, there
will be inefficiencies due to a high rejection rate. However, the
slice sampling algorithm can automatically tune the step size to
match the local shape of the target density and draw samples with

acceptance probability equal to one. Thus, it is easier and more
efficient to implement.

However, the computational burden of the Gibbs-slice
sampling algorithm becomes intensive, especially when a large
numbers of examinees or items are considered, or a large MCMC
sample size is used. Therefore, it is desirable to develop a
standalone R package associated with C++ or Fortran software
for more a extensive large-scale assessment program. In fact,
the new algorithm based on auxiliary variables can be extended
to estimate some more complex item response and response
time models, for example, the graded response model or the
Weibull response time model. Only DIC and LPML have been
considered in this study, but other Bayesian model selection
criteria such as marginal likelihoods may also be potentially
useful to compare different IRT models. These extensions
are beyond the scope of this paper but are currently under
further investigation.
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